1 | //
|
---|
2 | // integral.h --- definition of the Integral class
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Edward Seidl <seidl@janed.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifndef _chemistry_qc_basis_integral_h
|
---|
29 | #define _chemistry_qc_basis_integral_h
|
---|
30 |
|
---|
31 | #ifdef __GNUC__
|
---|
32 | #pragma interface
|
---|
33 | #endif
|
---|
34 |
|
---|
35 | #include <stddef.h>
|
---|
36 |
|
---|
37 | #include <util/state/state.h>
|
---|
38 | #include <util/group/message.h>
|
---|
39 | #include <chemistry/qc/basis/basis.h>
|
---|
40 | #include <chemistry/qc/basis/obint.h>
|
---|
41 | #include <chemistry/qc/basis/tbint.h>
|
---|
42 |
|
---|
43 | namespace sc {
|
---|
44 |
|
---|
45 | class SymmetryOperation;
|
---|
46 | class RefSymmSCMatrix;
|
---|
47 | class ShellRotation;
|
---|
48 | class CartesianIter;
|
---|
49 | class RedundantCartesianIter;
|
---|
50 | class RedundantCartesianSubIter;
|
---|
51 | class SphericalTransformIter;
|
---|
52 | class SphericalTransform;
|
---|
53 | class PointBag_double;
|
---|
54 | class PetiteList;
|
---|
55 |
|
---|
56 | /** The Integral abstract class acts as a factory to provide objects that
|
---|
57 | compute one and two electron integrals. */
|
---|
58 | class Integral : public SavableState {
|
---|
59 | protected:
|
---|
60 | /** Initialize the Integral object given a GaussianBasisSet for
|
---|
61 | each center. */
|
---|
62 | Integral(const Ref<GaussianBasisSet> &b1,
|
---|
63 | const Ref<GaussianBasisSet> &b2,
|
---|
64 | const Ref<GaussianBasisSet> &b3,
|
---|
65 | const Ref<GaussianBasisSet> &b4);
|
---|
66 | Ref<GaussianBasisSet> bs1_;
|
---|
67 | Ref<GaussianBasisSet> bs2_;
|
---|
68 | Ref<GaussianBasisSet> bs3_;
|
---|
69 | Ref<GaussianBasisSet> bs4_;
|
---|
70 |
|
---|
71 | // the maximum number of bytes that should be used for
|
---|
72 | // storing intermediates
|
---|
73 | size_t storage_;
|
---|
74 | size_t storage_used_;
|
---|
75 |
|
---|
76 | Ref<MessageGrp> grp_;
|
---|
77 | public:
|
---|
78 | /// Restore the Integral object from the given StateIn object.
|
---|
79 | Integral(StateIn&);
|
---|
80 | /// Construct the Integral object from the given KeyVal object.
|
---|
81 | Integral(const Ref<KeyVal>&);
|
---|
82 |
|
---|
83 | virtual ~Integral();
|
---|
84 |
|
---|
85 | void save_data_state(StateOut&);
|
---|
86 |
|
---|
87 | /** Create an integral factory. This routine looks for a -integral
|
---|
88 | argument, then the environmental variable INTEGRAL.
|
---|
89 | The argument to -integral should
|
---|
90 | be either string for a ParsedKeyVal constructor or a classname.
|
---|
91 | This factory is not guaranteed to have its storage and basis
|
---|
92 | sets set up properly, hence set_basis and set_storage
|
---|
93 | need to be called on it. */
|
---|
94 | static Integral* initial_integral(int &argc, char **argv);
|
---|
95 | /// Specifies a new default Integral factory
|
---|
96 | static void set_default_integral(const Ref<Integral>&);
|
---|
97 | /// Returns the default Integral factory
|
---|
98 | static Integral* get_default_integral();
|
---|
99 | /// Clones the given Integral factory. The new factory may need to have set_basis and set_storage to be called on it.
|
---|
100 | virtual Integral* clone() =0;
|
---|
101 |
|
---|
102 | /** Returns nonzero if this and the given Integral object have the same
|
---|
103 | integral ordering, normalization conventions, etc. */
|
---|
104 | virtual int equiv(const Ref<Integral> &);
|
---|
105 |
|
---|
106 | /// Sets the total amount of storage, in bytes, that is available.
|
---|
107 | void set_storage(size_t i) { storage_=i; };
|
---|
108 | /// Returns how much storage has been used.
|
---|
109 | size_t storage_used() { return storage_used_; }
|
---|
110 | /// Returns how much storage was not needed.
|
---|
111 | size_t storage_unused();
|
---|
112 | /** Returns how much storage will be needed to initialize a two-body integrals
|
---|
113 | evaluator for electron repulsion integrals. */
|
---|
114 | virtual size_t storage_required_eri(const Ref<GaussianBasisSet> &b1,
|
---|
115 | const Ref<GaussianBasisSet> &b2 = 0,
|
---|
116 | const Ref<GaussianBasisSet> &b3 = 0,
|
---|
117 | const Ref<GaussianBasisSet> &b4 = 0);
|
---|
118 | /** Returns how much storage will be needed to initialize a two-body integrals
|
---|
119 | evaluator for linear R12 integrals. */
|
---|
120 | virtual size_t storage_required_grt(const Ref<GaussianBasisSet> &b1,
|
---|
121 | const Ref<GaussianBasisSet> &b2 = 0,
|
---|
122 | const Ref<GaussianBasisSet> &b3 = 0,
|
---|
123 | const Ref<GaussianBasisSet> &b4 = 0);
|
---|
124 | /** Returns how much storage will be needed to initialize a two-body integrals
|
---|
125 | evaluator for derivative electron repulsion integrals. */
|
---|
126 | virtual size_t storage_required_eri_deriv(const Ref<GaussianBasisSet> &b1,
|
---|
127 | const Ref<GaussianBasisSet> &b2 = 0,
|
---|
128 | const Ref<GaussianBasisSet> &b3 = 0,
|
---|
129 | const Ref<GaussianBasisSet> &b4 = 0);
|
---|
130 |
|
---|
131 | /** The specific integral classes use this to tell Integral
|
---|
132 | how much memory they are using/freeing. */
|
---|
133 | void adjust_storage(ptrdiff_t s) { storage_used_ += s; }
|
---|
134 |
|
---|
135 | /// Return the PetiteList object.
|
---|
136 | Ref<PetiteList> petite_list();
|
---|
137 | /// Return the PetiteList object for the given basis set.
|
---|
138 | Ref<PetiteList> petite_list(const Ref<GaussianBasisSet>&);
|
---|
139 | /** Return the ShellRotation object for a shell of the given angular
|
---|
140 | momentum. Pass nonzero to pure to do solid harmonics. */
|
---|
141 | ShellRotation shell_rotation(int am, SymmetryOperation&, int pure=0);
|
---|
142 |
|
---|
143 | /// Set the basis set for each center.
|
---|
144 | virtual void set_basis(const Ref<GaussianBasisSet> &b1,
|
---|
145 | const Ref<GaussianBasisSet> &b2 = 0,
|
---|
146 | const Ref<GaussianBasisSet> &b3 = 0,
|
---|
147 | const Ref<GaussianBasisSet> &b4 = 0);
|
---|
148 |
|
---|
149 | // /////////////////////////////////////////////////////////////////////
|
---|
150 | // the following must be defined in the specific integral package
|
---|
151 |
|
---|
152 | /** Return a CartesianIter object. The caller is responsible for
|
---|
153 | freeing the object. */
|
---|
154 | virtual CartesianIter * new_cartesian_iter(int) =0;
|
---|
155 | /** Return a RedundantCartesianIter object. The caller is responsible
|
---|
156 | for freeing the object. */
|
---|
157 | virtual RedundantCartesianIter * new_redundant_cartesian_iter(int) =0;
|
---|
158 | /** Return a RedundantCartesianSubIter object. The caller is
|
---|
159 | responsible for freeing the object. */
|
---|
160 | virtual RedundantCartesianSubIter*
|
---|
161 | new_redundant_cartesian_sub_iter(int) =0;
|
---|
162 | /** Return a SphericalTransformIter object. The caller is
|
---|
163 | responsible for freeing the object. */
|
---|
164 | virtual SphericalTransformIter *
|
---|
165 | new_spherical_transform_iter(int l,
|
---|
166 | int inv=0, int subl=-1) =0;
|
---|
167 | /** Return a SphericalTransform object. The pointer is only valid
|
---|
168 | while this Integral object is valid. */
|
---|
169 | virtual const SphericalTransform *
|
---|
170 | spherical_transform(int l,
|
---|
171 | int inv=0, int subl=-1) =0;
|
---|
172 |
|
---|
173 | /// Return a OneBodyInt that computes the overlap.
|
---|
174 | virtual Ref<OneBodyInt> overlap() =0;
|
---|
175 |
|
---|
176 | /// Return a OneBodyInt that computes the kinetic energy.
|
---|
177 | virtual Ref<OneBodyInt> kinetic() =0;
|
---|
178 |
|
---|
179 | /** Return a OneBodyInt that computes the integrals for interactions
|
---|
180 | with point charges. */
|
---|
181 | virtual Ref<OneBodyInt> point_charge(const Ref<PointChargeData>&) =0;
|
---|
182 |
|
---|
183 | /** Return a OneBodyInt that computes the integrals for interactions
|
---|
184 | with point charges. */
|
---|
185 | virtual Ref<OneBodyOneCenterInt> point_charge1(const Ref<PointChargeData>&);
|
---|
186 |
|
---|
187 | /** Return a OneBodyInt that computes the nuclear repulsion integrals.
|
---|
188 | Charges from the atoms on center one are used. If center two is
|
---|
189 | not identical to center one, then the charges on center two are
|
---|
190 | included as well. */
|
---|
191 | virtual Ref<OneBodyInt> nuclear() = 0;
|
---|
192 |
|
---|
193 | /// Return a OneBodyInt that computes the core Hamiltonian integrals.
|
---|
194 | virtual Ref<OneBodyInt> hcore() = 0;
|
---|
195 |
|
---|
196 | /** Return a OneBodyInt that computes the electric field integrals
|
---|
197 | dotted with a given vector. */
|
---|
198 | virtual Ref<OneBodyInt> efield_dot_vector(const Ref<EfieldDotVectorData>&) =0;
|
---|
199 |
|
---|
200 | /** Return a OneBodyInt that computes electric dipole moment integrals.
|
---|
201 | The canonical order of integrals in a set is x, y, z. */
|
---|
202 | virtual Ref<OneBodyInt> dipole(const Ref<DipoleData>&) =0;
|
---|
203 |
|
---|
204 | /** Return a OneBodyInt that computes electric quadrupole moment integrals.
|
---|
205 | The canonical order of integrals in a set is x^2, xy, xz, y^2, yz, z^2. */
|
---|
206 | virtual Ref<OneBodyInt> quadrupole(const Ref<DipoleData>&) =0;
|
---|
207 |
|
---|
208 | /// Return a OneBodyDerivInt that computes overlap derivatives.
|
---|
209 | virtual Ref<OneBodyDerivInt> overlap_deriv() =0;
|
---|
210 |
|
---|
211 | /// Return a OneBodyDerivInt that computes kinetic energy derivatives.
|
---|
212 | virtual Ref<OneBodyDerivInt> kinetic_deriv() =0;
|
---|
213 |
|
---|
214 | /// Return a OneBodyDerivInt that computes nuclear repulsion derivatives.
|
---|
215 | virtual Ref<OneBodyDerivInt> nuclear_deriv() =0;
|
---|
216 |
|
---|
217 | /// Return a OneBodyDerivInt that computes core Hamiltonian derivatives.
|
---|
218 | virtual Ref<OneBodyDerivInt> hcore_deriv() =0;
|
---|
219 |
|
---|
220 | /** Return a TwoBodyThreeCenterInt that computes electron repulsion
|
---|
221 | integrals. If this is not re-implemented it will throw. */
|
---|
222 | virtual Ref<TwoBodyThreeCenterInt> electron_repulsion3();
|
---|
223 |
|
---|
224 | /** Return a TwoBodyThreeCenterInt that computes electron repulsion
|
---|
225 | integrals. If this is not re-implemented it will throw. */
|
---|
226 | virtual Ref<TwoBodyThreeCenterDerivInt> electron_repulsion3_deriv();
|
---|
227 |
|
---|
228 | /** Return a TwoBodyTwoCenterInt that computes electron repulsion
|
---|
229 | integrals. If this is not re-implemented it will throw. */
|
---|
230 | virtual Ref<TwoBodyTwoCenterInt> electron_repulsion2();
|
---|
231 |
|
---|
232 | /** Return a TwoBodyTwoCenterInt that computes electron repulsion
|
---|
233 | integrals. If this is not re-implemented it will throw. */
|
---|
234 | virtual Ref<TwoBodyTwoCenterDerivInt> electron_repulsion2_deriv();
|
---|
235 |
|
---|
236 | /// Return a TwoBodyInt that computes electron repulsion integrals.
|
---|
237 | virtual Ref<TwoBodyInt> electron_repulsion() =0;
|
---|
238 |
|
---|
239 | /// Return a TwoBodyDerivInt that computes electron repulsion derivatives.
|
---|
240 | virtual Ref<TwoBodyDerivInt> electron_repulsion_deriv() =0;
|
---|
241 |
|
---|
242 | /** Return a TwoBodyInt that computes two-electron integrals specific
|
---|
243 | to linear R12 methods. According to the convention in the
|
---|
244 | literature, "g" stands for electron repulsion integral, "r" for the
|
---|
245 | integral of r12 operator, and "t" for the commutator
|
---|
246 | integrals. Implementation for this kind of TwoBodyInt is
|
---|
247 | optional. */
|
---|
248 | virtual Ref<TwoBodyInt> grt();
|
---|
249 |
|
---|
250 | /// Return the MessageGrp used by the integrals objects.
|
---|
251 | Ref<MessageGrp> messagegrp() { return grp_; }
|
---|
252 | };
|
---|
253 |
|
---|
254 | }
|
---|
255 |
|
---|
256 | #endif
|
---|
257 |
|
---|
258 | // Local Variables:
|
---|
259 | // mode: c++
|
---|
260 | // c-file-style: "ETS"
|
---|
261 | // End:
|
---|