1 | //
|
---|
2 | // gaussshval.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #include <stdlib.h>
|
---|
29 | #include <math.h>
|
---|
30 |
|
---|
31 | #include <util/misc/formio.h>
|
---|
32 | #include <util/keyval/keyval.h>
|
---|
33 |
|
---|
34 | #include <chemistry/qc/basis/gaussshell.h>
|
---|
35 | #include <chemistry/qc/basis/integral.h>
|
---|
36 | #include <chemistry/qc/basis/cartiter.h>
|
---|
37 | #include <chemistry/qc/basis/transform.h>
|
---|
38 |
|
---|
39 | using namespace std;
|
---|
40 | using namespace sc;
|
---|
41 |
|
---|
42 | #define MAX_NPRIM 20
|
---|
43 | #define MAX_NCON 10
|
---|
44 | #define MAX_AM 8
|
---|
45 |
|
---|
46 | int
|
---|
47 | GaussianShell::values(CartesianIter **civec, SphericalTransformIter **sivec,
|
---|
48 | const SCVector3& r, double* basis_values)
|
---|
49 | {
|
---|
50 | return hessian_values(civec, sivec, r, 0, 0, basis_values);
|
---|
51 | }
|
---|
52 |
|
---|
53 | int
|
---|
54 | GaussianShell::grad_values(CartesianIter **civec,
|
---|
55 | SphericalTransformIter **sivec,
|
---|
56 | const SCVector3& r,
|
---|
57 | double* g_values,
|
---|
58 | double* basis_values) const
|
---|
59 | {
|
---|
60 | return hessian_values(civec, sivec, r, 0, g_values, basis_values);
|
---|
61 | }
|
---|
62 |
|
---|
63 | int
|
---|
64 | GaussianShell::hessian_values(CartesianIter **civec,
|
---|
65 | SphericalTransformIter **sivec,
|
---|
66 | const SCVector3& r,
|
---|
67 | double* h_values,
|
---|
68 | double* g_values,
|
---|
69 | double* basis_values) const
|
---|
70 | {
|
---|
71 |
|
---|
72 | // compute the maximum angular momentum component of the shell
|
---|
73 | int maxam = max_am();
|
---|
74 | if (g_values || h_values) maxam++;
|
---|
75 | if (h_values) maxam++;
|
---|
76 |
|
---|
77 | // check limitations
|
---|
78 | if (nprim > MAX_NPRIM || ncon > MAX_NCON || maxam >= MAX_AM) {
|
---|
79 | ExEnv::err0() << indent
|
---|
80 | << "GaussianShell::grad_values: limit exceeded:\n"
|
---|
81 | << indent
|
---|
82 | << scprintf(
|
---|
83 | "ncon = %d (%d max) nprim = %d (%d max) maxam = %d (%d max)\n",
|
---|
84 | ncon,MAX_NCON,nprim,MAX_NPRIM,maxam,MAX_AM-1);
|
---|
85 | abort();
|
---|
86 | }
|
---|
87 |
|
---|
88 | // loop variables
|
---|
89 | int i,j;
|
---|
90 |
|
---|
91 | // precompute powers of x, y, and z
|
---|
92 | double xs[MAX_AM];
|
---|
93 | double ys[MAX_AM];
|
---|
94 | double zs[MAX_AM];
|
---|
95 | xs[0] = ys[0] = zs[0] = 1.0;
|
---|
96 | if (maxam>0) {
|
---|
97 | xs[1] = r[0];
|
---|
98 | ys[1] = r[1];
|
---|
99 | zs[1] = r[2];
|
---|
100 | }
|
---|
101 | for (i=2; i<=maxam; i++) {
|
---|
102 | xs[i] = xs[i-1]*r[0];
|
---|
103 | ys[i] = ys[i-1]*r[1];
|
---|
104 | zs[i] = zs[i-1]*r[2];
|
---|
105 | }
|
---|
106 |
|
---|
107 | // precompute r*r
|
---|
108 | double r2;
|
---|
109 | if (maxam<2) {
|
---|
110 | r2 = 0.0;
|
---|
111 | for (i=0; i<3; i++) {
|
---|
112 | r2+=r[i]*r[i];
|
---|
113 | }
|
---|
114 | }
|
---|
115 | else {
|
---|
116 | r2 = xs[2] + ys[2] + zs[2];
|
---|
117 | }
|
---|
118 |
|
---|
119 | // precompute exponentials
|
---|
120 | double exps[MAX_NPRIM];
|
---|
121 | for (i=0; i<nprim; i++) {
|
---|
122 | exps[i]=::exp(-r2*exp[i]);
|
---|
123 | }
|
---|
124 |
|
---|
125 | // precompute contractions over exponentials
|
---|
126 | double precon[MAX_NCON];
|
---|
127 | for (i=0; i<ncon; i++) {
|
---|
128 | precon[i] = 0.0;
|
---|
129 | for (j=0; j<nprim; j++) {
|
---|
130 | precon[i] += coef[i][j] * exps[j];
|
---|
131 | }
|
---|
132 | }
|
---|
133 |
|
---|
134 | // precompute contractions over exponentials with exponent weighting
|
---|
135 | double precon_g[MAX_NCON];
|
---|
136 | if (g_values || h_values) {
|
---|
137 | for (i=0; i<ncon; i++) {
|
---|
138 | precon_g[i] = 0.0;
|
---|
139 | for (j=0; j<nprim; j++) {
|
---|
140 | precon_g[i] += exp[j] * coef[i][j] * exps[j];
|
---|
141 | }
|
---|
142 | precon_g[i] *= 2.0;
|
---|
143 | }
|
---|
144 | }
|
---|
145 |
|
---|
146 | // precompute contractions over exponentials with exponent^2 weighting
|
---|
147 | double precon_h[MAX_NCON];
|
---|
148 | if (h_values) {
|
---|
149 | for (i=0; i<ncon; i++) {
|
---|
150 | precon_h[i] = 0.0;
|
---|
151 | for (j=0; j<nprim; j++) {
|
---|
152 | precon_h[i] += exp[j] * exp[j] * coef[i][j] * exps[j];
|
---|
153 | }
|
---|
154 | precon_h[i] *= 4.0;
|
---|
155 | }
|
---|
156 | }
|
---|
157 |
|
---|
158 | // compute the shell values
|
---|
159 | int i_basis=0; // Basis function counter
|
---|
160 | if (basis_values) {
|
---|
161 | for (i=0; i<ncon; i++) {
|
---|
162 | // handle s functions with a special case to speed things up
|
---|
163 | if (l[i] == 0) {
|
---|
164 | basis_values[i_basis] = precon[i];
|
---|
165 | i_basis++;
|
---|
166 | }
|
---|
167 | else if (!puream[i]) {
|
---|
168 | CartesianIter *jp = civec[l[i]];
|
---|
169 | CartesianIter& j = *jp;
|
---|
170 | for (j.start(); j; j.next()) {
|
---|
171 | basis_values[i_basis] = xs[j.a()]*ys[j.b()]*zs[j.c()]
|
---|
172 | *precon[i];
|
---|
173 | i_basis++;
|
---|
174 | }
|
---|
175 | }
|
---|
176 | else {
|
---|
177 | double cart_basis_values[((MAX_AM+1)*(MAX_AM+2))/2];
|
---|
178 | CartesianIter *jp = civec[l[i]];
|
---|
179 | CartesianIter& j = *jp;
|
---|
180 | int i_cart = 0;
|
---|
181 | for (j.start(); j; j.next()) {
|
---|
182 | cart_basis_values[i_cart] = xs[j.a()]*ys[j.b()]*zs[j.c()]
|
---|
183 | *precon[i];
|
---|
184 | i_cart++;
|
---|
185 | }
|
---|
186 | SphericalTransformIter *ti = sivec[l[i]];
|
---|
187 | int n = ti->n();
|
---|
188 | memset(&basis_values[i_basis], 0, sizeof(double)*n);
|
---|
189 | for (ti->start(); ti->ready(); ti->next()) {
|
---|
190 | basis_values[i_basis + ti->pureindex()]
|
---|
191 | += ti->coef() * cart_basis_values[ti->cartindex()];
|
---|
192 | }
|
---|
193 | i_basis += n;
|
---|
194 | }
|
---|
195 | }
|
---|
196 | }
|
---|
197 |
|
---|
198 | // compute the gradient of the shell values
|
---|
199 | if (g_values) {
|
---|
200 | int i_grad=0; // Basis function counter
|
---|
201 | for (i=0; i<ncon; i++) {
|
---|
202 | // handle s functions with a special case to speed things up
|
---|
203 | if (l[i] == 0) {
|
---|
204 | double norm_precon_g = precon_g[i];
|
---|
205 | g_values[i_grad] = -xs[1]*norm_precon_g;
|
---|
206 | i_grad++;
|
---|
207 | g_values[i_grad] = -ys[1]*norm_precon_g;
|
---|
208 | i_grad++;
|
---|
209 | g_values[i_grad] = -zs[1]*norm_precon_g;
|
---|
210 | i_grad++;
|
---|
211 | }
|
---|
212 | else if (!puream[i]) {
|
---|
213 | CartesianIter *jp = civec[l[i]];
|
---|
214 | CartesianIter& j = *jp;
|
---|
215 | for (j.start(); j; j.next()) {
|
---|
216 | double norm_precon = precon[i];
|
---|
217 | double norm_precon_g = precon_g[i];
|
---|
218 | g_values[i_grad] = - norm_precon_g
|
---|
219 | * xs[j.a()+1] * ys[j.b()] * zs[j.c()];
|
---|
220 | if (j.a()) g_values[i_grad] += j.a() * norm_precon
|
---|
221 | * xs[j.a()-1] * ys[j.b()] * zs[j.c()];
|
---|
222 | i_grad++;
|
---|
223 |
|
---|
224 | g_values[i_grad] = - norm_precon_g
|
---|
225 | * xs[j.a()] * ys[j.b()+1] * zs[j.c()];
|
---|
226 | if (j.b()) g_values[i_grad] += j.b() * norm_precon
|
---|
227 | * xs[j.a()] * ys[j.b()-1] * zs[j.c()];
|
---|
228 | i_grad++;
|
---|
229 |
|
---|
230 | g_values[i_grad] = - norm_precon_g
|
---|
231 | * xs[j.a()] * ys[j.b()] * zs[j.c()+1];
|
---|
232 | if (j.c()) g_values[i_grad] += j.c() * norm_precon
|
---|
233 | * xs[j.a()] * ys[j.b()] * zs[j.c()-1];
|
---|
234 | i_grad++;
|
---|
235 | }
|
---|
236 | }
|
---|
237 | else {
|
---|
238 | double cart_g_values[3*((MAX_AM+1)*(MAX_AM+2))/2];
|
---|
239 | CartesianIter *jp = civec[l[i]];
|
---|
240 | CartesianIter& j = *jp;
|
---|
241 | int i_cart = 0;
|
---|
242 | for (j.start(); j; j.next()) {
|
---|
243 | double norm_precon = precon[i];
|
---|
244 | double norm_precon_g = precon_g[i];
|
---|
245 | cart_g_values[i_cart] = - norm_precon_g
|
---|
246 | * xs[j.a()+1] * ys[j.b()] * zs[j.c()];
|
---|
247 | if (j.a()) cart_g_values[i_cart] += j.a() * norm_precon
|
---|
248 | * xs[j.a()-1] * ys[j.b()] * zs[j.c()];
|
---|
249 | i_cart++;
|
---|
250 |
|
---|
251 | cart_g_values[i_cart] = - norm_precon_g
|
---|
252 | * xs[j.a()] * ys[j.b()+1] * zs[j.c()];
|
---|
253 | if (j.b()) cart_g_values[i_cart] += j.b() * norm_precon
|
---|
254 | * xs[j.a()] * ys[j.b()-1] * zs[j.c()];
|
---|
255 | i_cart++;
|
---|
256 |
|
---|
257 | cart_g_values[i_cart] = - norm_precon_g
|
---|
258 | * xs[j.a()] * ys[j.b()] * zs[j.c()+1];
|
---|
259 | if (j.c()) cart_g_values[i_cart] += j.c() * norm_precon
|
---|
260 | * xs[j.a()] * ys[j.b()] * zs[j.c()-1];
|
---|
261 | i_cart++;
|
---|
262 | }
|
---|
263 | SphericalTransformIter *ti = sivec[l[i]];
|
---|
264 | int n = ti->n();
|
---|
265 | memset(&g_values[i_grad], 0, sizeof(double)*n*3);
|
---|
266 | for (ti->start(); ti->ready(); ti->next()) {
|
---|
267 | double coef = ti->coef();
|
---|
268 | int pi = ti->pureindex();
|
---|
269 | int ci = ti->cartindex();
|
---|
270 | for (int xyz=0; xyz<3; xyz++) {
|
---|
271 | g_values[i_grad + pi*3 + xyz]
|
---|
272 | += coef * cart_g_values[ci*3 + xyz];
|
---|
273 | }
|
---|
274 | }
|
---|
275 | i_grad += 3*n;
|
---|
276 | }
|
---|
277 | }
|
---|
278 | }
|
---|
279 |
|
---|
280 | // compute the hessian of the shell values
|
---|
281 | if (h_values) {
|
---|
282 | int i_hess=0; // Basis function counter
|
---|
283 | for (i=0; i<ncon; i++) {
|
---|
284 | // handle s functions with a special case to speed things up
|
---|
285 | if (l[i] == 0) {
|
---|
286 | double norm_precon_g = precon_g[i];
|
---|
287 | double norm_precon_h = precon_h[i];
|
---|
288 | // xx
|
---|
289 | h_values[i_hess] = norm_precon_h*xs[2] - norm_precon_g;
|
---|
290 | i_hess++;
|
---|
291 | // yx
|
---|
292 | h_values[i_hess] = norm_precon_h*xs[1]*ys[1];
|
---|
293 | i_hess++;
|
---|
294 | // yy
|
---|
295 | h_values[i_hess] = norm_precon_h*ys[2] - norm_precon_g;
|
---|
296 | i_hess++;
|
---|
297 | // zx
|
---|
298 | h_values[i_hess] = norm_precon_h*zs[1]*xs[1];
|
---|
299 | i_hess++;
|
---|
300 | // zy
|
---|
301 | h_values[i_hess] = norm_precon_h*zs[1]*ys[1];
|
---|
302 | i_hess++;
|
---|
303 | // zz
|
---|
304 | h_values[i_hess] = norm_precon_h*zs[2] - norm_precon_g;
|
---|
305 | i_hess++;
|
---|
306 | }
|
---|
307 | else {
|
---|
308 | double *cart_h;
|
---|
309 | double tmp_cart_h[6*((MAX_AM+1)*(MAX_AM+2))/2];
|
---|
310 | if (!puream[i]) {
|
---|
311 | cart_h = &h_values[i_hess];
|
---|
312 | }
|
---|
313 | else {
|
---|
314 | cart_h = tmp_cart_h;
|
---|
315 | }
|
---|
316 | CartesianIter *jp = civec[l[i]];
|
---|
317 | CartesianIter& j = *jp;
|
---|
318 | int i_cart = 0;
|
---|
319 | for (j.start(); j; j.next()) {
|
---|
320 | double pre = precon[i];
|
---|
321 | double pre_g = - precon_g[i];
|
---|
322 | double pre_h = precon_h[i];
|
---|
323 | int a = j.a();
|
---|
324 | int b = j.b();
|
---|
325 | int c = j.c();
|
---|
326 | // xx
|
---|
327 | cart_h[i_cart] = pre_h * xs[a+2]*ys[b]*zs[c]
|
---|
328 | + pre_g * (a+1) * xs[a]*ys[b]*zs[c];
|
---|
329 | if (a>0) {
|
---|
330 | cart_h[i_cart] += pre_g * a*xs[a]*ys[b]*zs[c];
|
---|
331 | if (a>1) cart_h[i_cart] += pre * a*(a-1)
|
---|
332 | * xs[a-2]*ys[b]*zs[c];
|
---|
333 | }
|
---|
334 | i_cart++;
|
---|
335 |
|
---|
336 | // yx
|
---|
337 | cart_h[i_cart] = pre_h * xs[a+1]*ys[b+1]*zs[c];
|
---|
338 | if (a>0)
|
---|
339 | cart_h[i_cart] += pre_g * a * xs[a-1]*ys[b+1]*zs[c];
|
---|
340 | if (b>0)
|
---|
341 | cart_h[i_cart] += pre_g * b * xs[a+1]*ys[b-1]*zs[c];
|
---|
342 | if (a>0 && b>0)
|
---|
343 | cart_h[i_cart] += pre * a*b * xs[a-1]*ys[b-1]*zs[c];
|
---|
344 | i_cart++;
|
---|
345 |
|
---|
346 | // yy
|
---|
347 | cart_h[i_cart] = pre_h * xs[a]*ys[b+2]*zs[c]
|
---|
348 | + pre_g * (b+1) * xs[a]*ys[b]*zs[c];
|
---|
349 | if (b>0) {
|
---|
350 | cart_h[i_cart] += pre_g * b*xs[a]*ys[b]*zs[c];
|
---|
351 | if (b>1) cart_h[i_cart] += pre * b*(b-1)
|
---|
352 | * xs[a]*ys[b-2]*zs[c];
|
---|
353 | }
|
---|
354 | i_cart++;
|
---|
355 |
|
---|
356 | // zx
|
---|
357 | cart_h[i_cart] = pre_h * xs[a+1]*ys[b]*zs[c+1];
|
---|
358 | if (a>0)
|
---|
359 | cart_h[i_cart] += pre_g * a * xs[a-1]*ys[b]*zs[c+1];
|
---|
360 | if (c>0)
|
---|
361 | cart_h[i_cart] += pre_g * c * xs[a+1]*ys[b]*zs[c-1];
|
---|
362 | if (a>0 && c>0)
|
---|
363 | cart_h[i_cart] += pre * a*c * xs[a-1]*ys[b]*zs[c-1];
|
---|
364 | i_cart++;
|
---|
365 |
|
---|
366 | // zy
|
---|
367 | cart_h[i_cart] = pre_h * xs[a]*ys[b+1]*zs[c+1];
|
---|
368 | if (c>0)
|
---|
369 | cart_h[i_cart] += pre_g * c * xs[a]*ys[b+1]*zs[c-1];
|
---|
370 | if (b>0)
|
---|
371 | cart_h[i_cart] += pre_g * b * xs[a]*ys[b-1]*zs[c+1];
|
---|
372 | if (c>0 && b>0)
|
---|
373 | cart_h[i_cart] += pre * c*b * xs[a]*ys[b-1]*zs[c-1];
|
---|
374 | i_cart++;
|
---|
375 |
|
---|
376 | // zz
|
---|
377 | cart_h[i_cart] = pre_h * xs[a]*ys[b]*zs[c+2]
|
---|
378 | + pre_g * (c+1) * xs[a]*ys[b]*zs[c];
|
---|
379 | if (c>0) {
|
---|
380 | cart_h[i_cart] += pre_g * c*xs[a]*ys[b]*zs[c];
|
---|
381 | if (c>1) cart_h[i_cart] += pre * c*(c-1)
|
---|
382 | * xs[a]*ys[b]*zs[c-2];
|
---|
383 | }
|
---|
384 | i_cart++;
|
---|
385 | }
|
---|
386 | if (puream[i]) {
|
---|
387 | SphericalTransformIter *ti = sivec[l[i]];
|
---|
388 | int n = ti->n();
|
---|
389 | memset(&h_values[i_hess], 0, sizeof(double)*n*6);
|
---|
390 | for (ti->start(); ti->ready(); ti->next()) {
|
---|
391 | double coef = ti->coef();
|
---|
392 | int pi = ti->pureindex();
|
---|
393 | int ci = ti->cartindex();
|
---|
394 | for (int xyz2=0; xyz2<6; xyz2++) {
|
---|
395 | h_values[i_hess + pi*6 + xyz2]
|
---|
396 | += coef * cart_h[ci*6 + xyz2];
|
---|
397 | }
|
---|
398 | }
|
---|
399 | i_hess += 6*n;
|
---|
400 | }
|
---|
401 | else {
|
---|
402 | i_hess += 3*(l[i]+1)*(l[i]+2);
|
---|
403 | }
|
---|
404 | }
|
---|
405 | }
|
---|
406 | }
|
---|
407 |
|
---|
408 | return i_basis;
|
---|
409 | }
|
---|
410 |
|
---|
411 | int
|
---|
412 | GaussianShell::test_monobound(double &r, double &bound) const
|
---|
413 | {
|
---|
414 | // compute the maximum angular momentum component of the shell
|
---|
415 | // add one since derivatives will be needed
|
---|
416 | int maxam = max_am() + 1;
|
---|
417 |
|
---|
418 | // check limitations
|
---|
419 | if (nprim > MAX_NPRIM || ncon > MAX_NCON || maxam >= MAX_AM) {
|
---|
420 | ExEnv::err0() << indent
|
---|
421 | << "GaussianShell::gaussshval: limit exceeded:\n"
|
---|
422 | << indent
|
---|
423 | << scprintf(
|
---|
424 | "ncon = %d (%d max) nprim = %d (%d max) maxam = %d (%d max)\n",
|
---|
425 | ncon,MAX_NCON,nprim,MAX_NPRIM,maxam,MAX_AM-1);
|
---|
426 | abort();
|
---|
427 | }
|
---|
428 |
|
---|
429 | // loop variables
|
---|
430 | int i,j;
|
---|
431 |
|
---|
432 | // precompute powers of r
|
---|
433 | double rs[MAX_AM+1];
|
---|
434 | rs[0] = 1.0;
|
---|
435 | if (maxam>0) {
|
---|
436 | rs[1] = r;
|
---|
437 | }
|
---|
438 | for (i=2; i<=maxam; i++) {
|
---|
439 | rs[i] = rs[i-1]*r;
|
---|
440 | }
|
---|
441 |
|
---|
442 | // precompute r*r
|
---|
443 | double r2 = r*r;
|
---|
444 |
|
---|
445 | // precompute exponentials
|
---|
446 | double exps[MAX_NPRIM];
|
---|
447 | for (i=0; i<nprim; i++) {
|
---|
448 | exps[i]=::exp(-r2*exp[i]);
|
---|
449 | }
|
---|
450 |
|
---|
451 | // precompute contractions over exponentials
|
---|
452 | double precon[MAX_NCON];
|
---|
453 | for (i=0; i<ncon; i++) {
|
---|
454 | precon[i] = 0.0;
|
---|
455 | for (j=0; j<nprim; j++) {
|
---|
456 | // using fabs since we want a monotonically decreasing bound
|
---|
457 | precon[i] += fabs(coef[i][j]) * exps[j];
|
---|
458 | }
|
---|
459 | }
|
---|
460 |
|
---|
461 | // precompute contractions over exponentials with exponent weighting
|
---|
462 | double precon_w[MAX_NCON];
|
---|
463 | for (i=0; i<ncon; i++) {
|
---|
464 | precon_w[i] = 0.0;
|
---|
465 | for (j=0; j<nprim; j++) {
|
---|
466 | precon_w[i] += exp[j] * fabs(coef[i][j]) * exps[j];
|
---|
467 | }
|
---|
468 | }
|
---|
469 |
|
---|
470 | double max_bound = 0.0;
|
---|
471 | bound = 0.0;
|
---|
472 | for (i=0; i<ncon; i++) {
|
---|
473 | // using r^l since r^l >= x^a y^b z^c
|
---|
474 | double component_bound = rs[l[i]]*precon[i];
|
---|
475 | if (l[i] > 0) {
|
---|
476 | double d1 = -2.0*rs[l[i]+1]*precon_w[i];
|
---|
477 | double d2 = l[i]*rs[l[i]-1]*precon[i];
|
---|
478 | if (d1+d2 > 0) {
|
---|
479 | // This bound is no good since the contraction is increasing
|
---|
480 | // at this position. Move r out and return to let the driver
|
---|
481 | // call again.
|
---|
482 | double rold = r;
|
---|
483 | r = sqrt(l[i]*precon[i]/(2.0*precon_w[i]));
|
---|
484 | if (r<rold+0.01) r = rold+0.01;
|
---|
485 | //ExEnv::outn() << "rejected at " << rold << " trying again at "
|
---|
486 | // << r << endl;
|
---|
487 | return 1;
|
---|
488 | }
|
---|
489 | }
|
---|
490 | if (component_bound > max_bound) {
|
---|
491 | max_bound = component_bound;
|
---|
492 | }
|
---|
493 | }
|
---|
494 |
|
---|
495 | bound = max_bound;
|
---|
496 | return 0;
|
---|
497 | }
|
---|
498 |
|
---|
499 | double
|
---|
500 | GaussianShell::monobound(double r) const
|
---|
501 | {
|
---|
502 | // doesn't work at r <= zero
|
---|
503 | if (r<=0.001) r = 0.001;
|
---|
504 | double b;
|
---|
505 | while (test_monobound(r, b));
|
---|
506 | return b;
|
---|
507 | }
|
---|
508 |
|
---|
509 | /////////////////////////////////////////////////////////////////////////////
|
---|
510 |
|
---|
511 | // Local Variables:
|
---|
512 | // mode: c++
|
---|
513 | // c-file-style: "CLJ"
|
---|
514 | // End:
|
---|