[0b990d] | 1 | //
|
---|
| 2 | // gaussshval.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #include <stdlib.h>
|
---|
| 29 | #include <math.h>
|
---|
| 30 |
|
---|
| 31 | #include <util/misc/formio.h>
|
---|
| 32 | #include <util/keyval/keyval.h>
|
---|
| 33 |
|
---|
| 34 | #include <chemistry/qc/basis/gaussshell.h>
|
---|
| 35 | #include <chemistry/qc/basis/integral.h>
|
---|
| 36 | #include <chemistry/qc/basis/cartiter.h>
|
---|
| 37 | #include <chemistry/qc/basis/transform.h>
|
---|
| 38 |
|
---|
| 39 | using namespace std;
|
---|
| 40 | using namespace sc;
|
---|
| 41 |
|
---|
| 42 | #define MAX_NPRIM 20
|
---|
| 43 | #define MAX_NCON 10
|
---|
| 44 | #define MAX_AM 8
|
---|
| 45 |
|
---|
| 46 | int
|
---|
| 47 | GaussianShell::values(CartesianIter **civec, SphericalTransformIter **sivec,
|
---|
| 48 | const SCVector3& r, double* basis_values)
|
---|
| 49 | {
|
---|
| 50 | return hessian_values(civec, sivec, r, 0, 0, basis_values);
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | int
|
---|
| 54 | GaussianShell::grad_values(CartesianIter **civec,
|
---|
| 55 | SphericalTransformIter **sivec,
|
---|
| 56 | const SCVector3& r,
|
---|
| 57 | double* g_values,
|
---|
| 58 | double* basis_values) const
|
---|
| 59 | {
|
---|
| 60 | return hessian_values(civec, sivec, r, 0, g_values, basis_values);
|
---|
| 61 | }
|
---|
| 62 |
|
---|
| 63 | int
|
---|
| 64 | GaussianShell::hessian_values(CartesianIter **civec,
|
---|
| 65 | SphericalTransformIter **sivec,
|
---|
| 66 | const SCVector3& r,
|
---|
| 67 | double* h_values,
|
---|
| 68 | double* g_values,
|
---|
| 69 | double* basis_values) const
|
---|
| 70 | {
|
---|
| 71 |
|
---|
| 72 | // compute the maximum angular momentum component of the shell
|
---|
| 73 | int maxam = max_am();
|
---|
| 74 | if (g_values || h_values) maxam++;
|
---|
| 75 | if (h_values) maxam++;
|
---|
| 76 |
|
---|
| 77 | // check limitations
|
---|
| 78 | if (nprim > MAX_NPRIM || ncon > MAX_NCON || maxam >= MAX_AM) {
|
---|
| 79 | ExEnv::err0() << indent
|
---|
| 80 | << "GaussianShell::grad_values: limit exceeded:\n"
|
---|
| 81 | << indent
|
---|
| 82 | << scprintf(
|
---|
| 83 | "ncon = %d (%d max) nprim = %d (%d max) maxam = %d (%d max)\n",
|
---|
| 84 | ncon,MAX_NCON,nprim,MAX_NPRIM,maxam,MAX_AM-1);
|
---|
| 85 | abort();
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | // loop variables
|
---|
| 89 | int i,j;
|
---|
| 90 |
|
---|
| 91 | // precompute powers of x, y, and z
|
---|
| 92 | double xs[MAX_AM];
|
---|
| 93 | double ys[MAX_AM];
|
---|
| 94 | double zs[MAX_AM];
|
---|
| 95 | xs[0] = ys[0] = zs[0] = 1.0;
|
---|
| 96 | if (maxam>0) {
|
---|
| 97 | xs[1] = r[0];
|
---|
| 98 | ys[1] = r[1];
|
---|
| 99 | zs[1] = r[2];
|
---|
| 100 | }
|
---|
| 101 | for (i=2; i<=maxam; i++) {
|
---|
| 102 | xs[i] = xs[i-1]*r[0];
|
---|
| 103 | ys[i] = ys[i-1]*r[1];
|
---|
| 104 | zs[i] = zs[i-1]*r[2];
|
---|
| 105 | }
|
---|
| 106 |
|
---|
| 107 | // precompute r*r
|
---|
| 108 | double r2;
|
---|
| 109 | if (maxam<2) {
|
---|
| 110 | r2 = 0.0;
|
---|
| 111 | for (i=0; i<3; i++) {
|
---|
| 112 | r2+=r[i]*r[i];
|
---|
| 113 | }
|
---|
| 114 | }
|
---|
| 115 | else {
|
---|
| 116 | r2 = xs[2] + ys[2] + zs[2];
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | // precompute exponentials
|
---|
| 120 | double exps[MAX_NPRIM];
|
---|
| 121 | for (i=0; i<nprim; i++) {
|
---|
| 122 | exps[i]=::exp(-r2*exp[i]);
|
---|
| 123 | }
|
---|
| 124 |
|
---|
| 125 | // precompute contractions over exponentials
|
---|
| 126 | double precon[MAX_NCON];
|
---|
| 127 | for (i=0; i<ncon; i++) {
|
---|
| 128 | precon[i] = 0.0;
|
---|
| 129 | for (j=0; j<nprim; j++) {
|
---|
| 130 | precon[i] += coef[i][j] * exps[j];
|
---|
| 131 | }
|
---|
| 132 | }
|
---|
| 133 |
|
---|
| 134 | // precompute contractions over exponentials with exponent weighting
|
---|
| 135 | double precon_g[MAX_NCON];
|
---|
| 136 | if (g_values || h_values) {
|
---|
| 137 | for (i=0; i<ncon; i++) {
|
---|
| 138 | precon_g[i] = 0.0;
|
---|
| 139 | for (j=0; j<nprim; j++) {
|
---|
| 140 | precon_g[i] += exp[j] * coef[i][j] * exps[j];
|
---|
| 141 | }
|
---|
| 142 | precon_g[i] *= 2.0;
|
---|
| 143 | }
|
---|
| 144 | }
|
---|
| 145 |
|
---|
| 146 | // precompute contractions over exponentials with exponent^2 weighting
|
---|
| 147 | double precon_h[MAX_NCON];
|
---|
| 148 | if (h_values) {
|
---|
| 149 | for (i=0; i<ncon; i++) {
|
---|
| 150 | precon_h[i] = 0.0;
|
---|
| 151 | for (j=0; j<nprim; j++) {
|
---|
| 152 | precon_h[i] += exp[j] * exp[j] * coef[i][j] * exps[j];
|
---|
| 153 | }
|
---|
| 154 | precon_h[i] *= 4.0;
|
---|
| 155 | }
|
---|
| 156 | }
|
---|
| 157 |
|
---|
| 158 | // compute the shell values
|
---|
| 159 | int i_basis=0; // Basis function counter
|
---|
| 160 | if (basis_values) {
|
---|
| 161 | for (i=0; i<ncon; i++) {
|
---|
| 162 | // handle s functions with a special case to speed things up
|
---|
| 163 | if (l[i] == 0) {
|
---|
| 164 | basis_values[i_basis] = precon[i];
|
---|
| 165 | i_basis++;
|
---|
| 166 | }
|
---|
| 167 | else if (!puream[i]) {
|
---|
| 168 | CartesianIter *jp = civec[l[i]];
|
---|
| 169 | CartesianIter& j = *jp;
|
---|
| 170 | for (j.start(); j; j.next()) {
|
---|
| 171 | basis_values[i_basis] = xs[j.a()]*ys[j.b()]*zs[j.c()]
|
---|
| 172 | *precon[i];
|
---|
| 173 | i_basis++;
|
---|
| 174 | }
|
---|
| 175 | }
|
---|
| 176 | else {
|
---|
| 177 | double cart_basis_values[((MAX_AM+1)*(MAX_AM+2))/2];
|
---|
| 178 | CartesianIter *jp = civec[l[i]];
|
---|
| 179 | CartesianIter& j = *jp;
|
---|
| 180 | int i_cart = 0;
|
---|
| 181 | for (j.start(); j; j.next()) {
|
---|
| 182 | cart_basis_values[i_cart] = xs[j.a()]*ys[j.b()]*zs[j.c()]
|
---|
| 183 | *precon[i];
|
---|
| 184 | i_cart++;
|
---|
| 185 | }
|
---|
| 186 | SphericalTransformIter *ti = sivec[l[i]];
|
---|
| 187 | int n = ti->n();
|
---|
| 188 | memset(&basis_values[i_basis], 0, sizeof(double)*n);
|
---|
| 189 | for (ti->start(); ti->ready(); ti->next()) {
|
---|
| 190 | basis_values[i_basis + ti->pureindex()]
|
---|
| 191 | += ti->coef() * cart_basis_values[ti->cartindex()];
|
---|
| 192 | }
|
---|
| 193 | i_basis += n;
|
---|
| 194 | }
|
---|
| 195 | }
|
---|
| 196 | }
|
---|
| 197 |
|
---|
| 198 | // compute the gradient of the shell values
|
---|
| 199 | if (g_values) {
|
---|
| 200 | int i_grad=0; // Basis function counter
|
---|
| 201 | for (i=0; i<ncon; i++) {
|
---|
| 202 | // handle s functions with a special case to speed things up
|
---|
| 203 | if (l[i] == 0) {
|
---|
| 204 | double norm_precon_g = precon_g[i];
|
---|
| 205 | g_values[i_grad] = -xs[1]*norm_precon_g;
|
---|
| 206 | i_grad++;
|
---|
| 207 | g_values[i_grad] = -ys[1]*norm_precon_g;
|
---|
| 208 | i_grad++;
|
---|
| 209 | g_values[i_grad] = -zs[1]*norm_precon_g;
|
---|
| 210 | i_grad++;
|
---|
| 211 | }
|
---|
| 212 | else if (!puream[i]) {
|
---|
| 213 | CartesianIter *jp = civec[l[i]];
|
---|
| 214 | CartesianIter& j = *jp;
|
---|
| 215 | for (j.start(); j; j.next()) {
|
---|
| 216 | double norm_precon = precon[i];
|
---|
| 217 | double norm_precon_g = precon_g[i];
|
---|
| 218 | g_values[i_grad] = - norm_precon_g
|
---|
| 219 | * xs[j.a()+1] * ys[j.b()] * zs[j.c()];
|
---|
| 220 | if (j.a()) g_values[i_grad] += j.a() * norm_precon
|
---|
| 221 | * xs[j.a()-1] * ys[j.b()] * zs[j.c()];
|
---|
| 222 | i_grad++;
|
---|
| 223 |
|
---|
| 224 | g_values[i_grad] = - norm_precon_g
|
---|
| 225 | * xs[j.a()] * ys[j.b()+1] * zs[j.c()];
|
---|
| 226 | if (j.b()) g_values[i_grad] += j.b() * norm_precon
|
---|
| 227 | * xs[j.a()] * ys[j.b()-1] * zs[j.c()];
|
---|
| 228 | i_grad++;
|
---|
| 229 |
|
---|
| 230 | g_values[i_grad] = - norm_precon_g
|
---|
| 231 | * xs[j.a()] * ys[j.b()] * zs[j.c()+1];
|
---|
| 232 | if (j.c()) g_values[i_grad] += j.c() * norm_precon
|
---|
| 233 | * xs[j.a()] * ys[j.b()] * zs[j.c()-1];
|
---|
| 234 | i_grad++;
|
---|
| 235 | }
|
---|
| 236 | }
|
---|
| 237 | else {
|
---|
| 238 | double cart_g_values[3*((MAX_AM+1)*(MAX_AM+2))/2];
|
---|
| 239 | CartesianIter *jp = civec[l[i]];
|
---|
| 240 | CartesianIter& j = *jp;
|
---|
| 241 | int i_cart = 0;
|
---|
| 242 | for (j.start(); j; j.next()) {
|
---|
| 243 | double norm_precon = precon[i];
|
---|
| 244 | double norm_precon_g = precon_g[i];
|
---|
| 245 | cart_g_values[i_cart] = - norm_precon_g
|
---|
| 246 | * xs[j.a()+1] * ys[j.b()] * zs[j.c()];
|
---|
| 247 | if (j.a()) cart_g_values[i_cart] += j.a() * norm_precon
|
---|
| 248 | * xs[j.a()-1] * ys[j.b()] * zs[j.c()];
|
---|
| 249 | i_cart++;
|
---|
| 250 |
|
---|
| 251 | cart_g_values[i_cart] = - norm_precon_g
|
---|
| 252 | * xs[j.a()] * ys[j.b()+1] * zs[j.c()];
|
---|
| 253 | if (j.b()) cart_g_values[i_cart] += j.b() * norm_precon
|
---|
| 254 | * xs[j.a()] * ys[j.b()-1] * zs[j.c()];
|
---|
| 255 | i_cart++;
|
---|
| 256 |
|
---|
| 257 | cart_g_values[i_cart] = - norm_precon_g
|
---|
| 258 | * xs[j.a()] * ys[j.b()] * zs[j.c()+1];
|
---|
| 259 | if (j.c()) cart_g_values[i_cart] += j.c() * norm_precon
|
---|
| 260 | * xs[j.a()] * ys[j.b()] * zs[j.c()-1];
|
---|
| 261 | i_cart++;
|
---|
| 262 | }
|
---|
| 263 | SphericalTransformIter *ti = sivec[l[i]];
|
---|
| 264 | int n = ti->n();
|
---|
| 265 | memset(&g_values[i_grad], 0, sizeof(double)*n*3);
|
---|
| 266 | for (ti->start(); ti->ready(); ti->next()) {
|
---|
| 267 | double coef = ti->coef();
|
---|
| 268 | int pi = ti->pureindex();
|
---|
| 269 | int ci = ti->cartindex();
|
---|
| 270 | for (int xyz=0; xyz<3; xyz++) {
|
---|
| 271 | g_values[i_grad + pi*3 + xyz]
|
---|
| 272 | += coef * cart_g_values[ci*3 + xyz];
|
---|
| 273 | }
|
---|
| 274 | }
|
---|
| 275 | i_grad += 3*n;
|
---|
| 276 | }
|
---|
| 277 | }
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | // compute the hessian of the shell values
|
---|
| 281 | if (h_values) {
|
---|
| 282 | int i_hess=0; // Basis function counter
|
---|
| 283 | for (i=0; i<ncon; i++) {
|
---|
| 284 | // handle s functions with a special case to speed things up
|
---|
| 285 | if (l[i] == 0) {
|
---|
| 286 | double norm_precon_g = precon_g[i];
|
---|
| 287 | double norm_precon_h = precon_h[i];
|
---|
| 288 | // xx
|
---|
| 289 | h_values[i_hess] = norm_precon_h*xs[2] - norm_precon_g;
|
---|
| 290 | i_hess++;
|
---|
| 291 | // yx
|
---|
| 292 | h_values[i_hess] = norm_precon_h*xs[1]*ys[1];
|
---|
| 293 | i_hess++;
|
---|
| 294 | // yy
|
---|
| 295 | h_values[i_hess] = norm_precon_h*ys[2] - norm_precon_g;
|
---|
| 296 | i_hess++;
|
---|
| 297 | // zx
|
---|
| 298 | h_values[i_hess] = norm_precon_h*zs[1]*xs[1];
|
---|
| 299 | i_hess++;
|
---|
| 300 | // zy
|
---|
| 301 | h_values[i_hess] = norm_precon_h*zs[1]*ys[1];
|
---|
| 302 | i_hess++;
|
---|
| 303 | // zz
|
---|
| 304 | h_values[i_hess] = norm_precon_h*zs[2] - norm_precon_g;
|
---|
| 305 | i_hess++;
|
---|
| 306 | }
|
---|
| 307 | else {
|
---|
| 308 | double *cart_h;
|
---|
| 309 | double tmp_cart_h[6*((MAX_AM+1)*(MAX_AM+2))/2];
|
---|
| 310 | if (!puream[i]) {
|
---|
| 311 | cart_h = &h_values[i_hess];
|
---|
| 312 | }
|
---|
| 313 | else {
|
---|
| 314 | cart_h = tmp_cart_h;
|
---|
| 315 | }
|
---|
| 316 | CartesianIter *jp = civec[l[i]];
|
---|
| 317 | CartesianIter& j = *jp;
|
---|
| 318 | int i_cart = 0;
|
---|
| 319 | for (j.start(); j; j.next()) {
|
---|
| 320 | double pre = precon[i];
|
---|
| 321 | double pre_g = - precon_g[i];
|
---|
| 322 | double pre_h = precon_h[i];
|
---|
| 323 | int a = j.a();
|
---|
| 324 | int b = j.b();
|
---|
| 325 | int c = j.c();
|
---|
| 326 | // xx
|
---|
| 327 | cart_h[i_cart] = pre_h * xs[a+2]*ys[b]*zs[c]
|
---|
| 328 | + pre_g * (a+1) * xs[a]*ys[b]*zs[c];
|
---|
| 329 | if (a>0) {
|
---|
| 330 | cart_h[i_cart] += pre_g * a*xs[a]*ys[b]*zs[c];
|
---|
| 331 | if (a>1) cart_h[i_cart] += pre * a*(a-1)
|
---|
| 332 | * xs[a-2]*ys[b]*zs[c];
|
---|
| 333 | }
|
---|
| 334 | i_cart++;
|
---|
| 335 |
|
---|
| 336 | // yx
|
---|
| 337 | cart_h[i_cart] = pre_h * xs[a+1]*ys[b+1]*zs[c];
|
---|
| 338 | if (a>0)
|
---|
| 339 | cart_h[i_cart] += pre_g * a * xs[a-1]*ys[b+1]*zs[c];
|
---|
| 340 | if (b>0)
|
---|
| 341 | cart_h[i_cart] += pre_g * b * xs[a+1]*ys[b-1]*zs[c];
|
---|
| 342 | if (a>0 && b>0)
|
---|
| 343 | cart_h[i_cart] += pre * a*b * xs[a-1]*ys[b-1]*zs[c];
|
---|
| 344 | i_cart++;
|
---|
| 345 |
|
---|
| 346 | // yy
|
---|
| 347 | cart_h[i_cart] = pre_h * xs[a]*ys[b+2]*zs[c]
|
---|
| 348 | + pre_g * (b+1) * xs[a]*ys[b]*zs[c];
|
---|
| 349 | if (b>0) {
|
---|
| 350 | cart_h[i_cart] += pre_g * b*xs[a]*ys[b]*zs[c];
|
---|
| 351 | if (b>1) cart_h[i_cart] += pre * b*(b-1)
|
---|
| 352 | * xs[a]*ys[b-2]*zs[c];
|
---|
| 353 | }
|
---|
| 354 | i_cart++;
|
---|
| 355 |
|
---|
| 356 | // zx
|
---|
| 357 | cart_h[i_cart] = pre_h * xs[a+1]*ys[b]*zs[c+1];
|
---|
| 358 | if (a>0)
|
---|
| 359 | cart_h[i_cart] += pre_g * a * xs[a-1]*ys[b]*zs[c+1];
|
---|
| 360 | if (c>0)
|
---|
| 361 | cart_h[i_cart] += pre_g * c * xs[a+1]*ys[b]*zs[c-1];
|
---|
| 362 | if (a>0 && c>0)
|
---|
| 363 | cart_h[i_cart] += pre * a*c * xs[a-1]*ys[b]*zs[c-1];
|
---|
| 364 | i_cart++;
|
---|
| 365 |
|
---|
| 366 | // zy
|
---|
| 367 | cart_h[i_cart] = pre_h * xs[a]*ys[b+1]*zs[c+1];
|
---|
| 368 | if (c>0)
|
---|
| 369 | cart_h[i_cart] += pre_g * c * xs[a]*ys[b+1]*zs[c-1];
|
---|
| 370 | if (b>0)
|
---|
| 371 | cart_h[i_cart] += pre_g * b * xs[a]*ys[b-1]*zs[c+1];
|
---|
| 372 | if (c>0 && b>0)
|
---|
| 373 | cart_h[i_cart] += pre * c*b * xs[a]*ys[b-1]*zs[c-1];
|
---|
| 374 | i_cart++;
|
---|
| 375 |
|
---|
| 376 | // zz
|
---|
| 377 | cart_h[i_cart] = pre_h * xs[a]*ys[b]*zs[c+2]
|
---|
| 378 | + pre_g * (c+1) * xs[a]*ys[b]*zs[c];
|
---|
| 379 | if (c>0) {
|
---|
| 380 | cart_h[i_cart] += pre_g * c*xs[a]*ys[b]*zs[c];
|
---|
| 381 | if (c>1) cart_h[i_cart] += pre * c*(c-1)
|
---|
| 382 | * xs[a]*ys[b]*zs[c-2];
|
---|
| 383 | }
|
---|
| 384 | i_cart++;
|
---|
| 385 | }
|
---|
| 386 | if (puream[i]) {
|
---|
| 387 | SphericalTransformIter *ti = sivec[l[i]];
|
---|
| 388 | int n = ti->n();
|
---|
| 389 | memset(&h_values[i_hess], 0, sizeof(double)*n*6);
|
---|
| 390 | for (ti->start(); ti->ready(); ti->next()) {
|
---|
| 391 | double coef = ti->coef();
|
---|
| 392 | int pi = ti->pureindex();
|
---|
| 393 | int ci = ti->cartindex();
|
---|
| 394 | for (int xyz2=0; xyz2<6; xyz2++) {
|
---|
| 395 | h_values[i_hess + pi*6 + xyz2]
|
---|
| 396 | += coef * cart_h[ci*6 + xyz2];
|
---|
| 397 | }
|
---|
| 398 | }
|
---|
| 399 | i_hess += 6*n;
|
---|
| 400 | }
|
---|
| 401 | else {
|
---|
| 402 | i_hess += 3*(l[i]+1)*(l[i]+2);
|
---|
| 403 | }
|
---|
| 404 | }
|
---|
| 405 | }
|
---|
| 406 | }
|
---|
| 407 |
|
---|
| 408 | return i_basis;
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | int
|
---|
| 412 | GaussianShell::test_monobound(double &r, double &bound) const
|
---|
| 413 | {
|
---|
| 414 | // compute the maximum angular momentum component of the shell
|
---|
| 415 | // add one since derivatives will be needed
|
---|
| 416 | int maxam = max_am() + 1;
|
---|
| 417 |
|
---|
| 418 | // check limitations
|
---|
| 419 | if (nprim > MAX_NPRIM || ncon > MAX_NCON || maxam >= MAX_AM) {
|
---|
| 420 | ExEnv::err0() << indent
|
---|
| 421 | << "GaussianShell::gaussshval: limit exceeded:\n"
|
---|
| 422 | << indent
|
---|
| 423 | << scprintf(
|
---|
| 424 | "ncon = %d (%d max) nprim = %d (%d max) maxam = %d (%d max)\n",
|
---|
| 425 | ncon,MAX_NCON,nprim,MAX_NPRIM,maxam,MAX_AM-1);
|
---|
| 426 | abort();
|
---|
| 427 | }
|
---|
| 428 |
|
---|
| 429 | // loop variables
|
---|
| 430 | int i,j;
|
---|
| 431 |
|
---|
| 432 | // precompute powers of r
|
---|
| 433 | double rs[MAX_AM+1];
|
---|
| 434 | rs[0] = 1.0;
|
---|
| 435 | if (maxam>0) {
|
---|
| 436 | rs[1] = r;
|
---|
| 437 | }
|
---|
| 438 | for (i=2; i<=maxam; i++) {
|
---|
| 439 | rs[i] = rs[i-1]*r;
|
---|
| 440 | }
|
---|
| 441 |
|
---|
| 442 | // precompute r*r
|
---|
| 443 | double r2 = r*r;
|
---|
| 444 |
|
---|
| 445 | // precompute exponentials
|
---|
| 446 | double exps[MAX_NPRIM];
|
---|
| 447 | for (i=0; i<nprim; i++) {
|
---|
| 448 | exps[i]=::exp(-r2*exp[i]);
|
---|
| 449 | }
|
---|
| 450 |
|
---|
| 451 | // precompute contractions over exponentials
|
---|
| 452 | double precon[MAX_NCON];
|
---|
| 453 | for (i=0; i<ncon; i++) {
|
---|
| 454 | precon[i] = 0.0;
|
---|
| 455 | for (j=0; j<nprim; j++) {
|
---|
| 456 | // using fabs since we want a monotonically decreasing bound
|
---|
| 457 | precon[i] += fabs(coef[i][j]) * exps[j];
|
---|
| 458 | }
|
---|
| 459 | }
|
---|
| 460 |
|
---|
| 461 | // precompute contractions over exponentials with exponent weighting
|
---|
| 462 | double precon_w[MAX_NCON];
|
---|
| 463 | for (i=0; i<ncon; i++) {
|
---|
| 464 | precon_w[i] = 0.0;
|
---|
| 465 | for (j=0; j<nprim; j++) {
|
---|
| 466 | precon_w[i] += exp[j] * fabs(coef[i][j]) * exps[j];
|
---|
| 467 | }
|
---|
| 468 | }
|
---|
| 469 |
|
---|
| 470 | double max_bound = 0.0;
|
---|
| 471 | bound = 0.0;
|
---|
| 472 | for (i=0; i<ncon; i++) {
|
---|
| 473 | // using r^l since r^l >= x^a y^b z^c
|
---|
| 474 | double component_bound = rs[l[i]]*precon[i];
|
---|
| 475 | if (l[i] > 0) {
|
---|
| 476 | double d1 = -2.0*rs[l[i]+1]*precon_w[i];
|
---|
| 477 | double d2 = l[i]*rs[l[i]-1]*precon[i];
|
---|
| 478 | if (d1+d2 > 0) {
|
---|
| 479 | // This bound is no good since the contraction is increasing
|
---|
| 480 | // at this position. Move r out and return to let the driver
|
---|
| 481 | // call again.
|
---|
| 482 | double rold = r;
|
---|
| 483 | r = sqrt(l[i]*precon[i]/(2.0*precon_w[i]));
|
---|
| 484 | if (r<rold+0.01) r = rold+0.01;
|
---|
| 485 | //ExEnv::outn() << "rejected at " << rold << " trying again at "
|
---|
| 486 | // << r << endl;
|
---|
| 487 | return 1;
|
---|
| 488 | }
|
---|
| 489 | }
|
---|
| 490 | if (component_bound > max_bound) {
|
---|
| 491 | max_bound = component_bound;
|
---|
| 492 | }
|
---|
| 493 | }
|
---|
| 494 |
|
---|
| 495 | bound = max_bound;
|
---|
| 496 | return 0;
|
---|
| 497 | }
|
---|
| 498 |
|
---|
| 499 | double
|
---|
| 500 | GaussianShell::monobound(double r) const
|
---|
| 501 | {
|
---|
| 502 | // doesn't work at r <= zero
|
---|
| 503 | if (r<=0.001) r = 0.001;
|
---|
| 504 | double b;
|
---|
| 505 | while (test_monobound(r, b));
|
---|
| 506 | return b;
|
---|
| 507 | }
|
---|
| 508 |
|
---|
| 509 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 510 |
|
---|
| 511 | // Local Variables:
|
---|
| 512 | // mode: c++
|
---|
| 513 | // c-file-style: "CLJ"
|
---|
| 514 | // End:
|
---|