1 | //
|
---|
2 | // gaussshell.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <stdlib.h>
|
---|
33 | #include <math.h>
|
---|
34 |
|
---|
35 | #include <util/misc/formio.h>
|
---|
36 | #include <util/misc/math.h>
|
---|
37 | #include <util/keyval/keyval.h>
|
---|
38 | #include <util/state/stateio.h>
|
---|
39 |
|
---|
40 | #include <chemistry/qc/basis/gaussshell.h>
|
---|
41 | #include <chemistry/qc/basis/integral.h>
|
---|
42 | #include <chemistry/qc/basis/cartiter.h>
|
---|
43 |
|
---|
44 | using namespace std;
|
---|
45 | using namespace sc;
|
---|
46 |
|
---|
47 | const char* GaussianShell::amtypes = "spdfghiklmn";
|
---|
48 | const char* GaussianShell::AMTYPES = "SPDFGHIKLMN";
|
---|
49 |
|
---|
50 | static ClassDesc GaussianShell_cd(
|
---|
51 | typeid(GaussianShell),"GaussianShell",2,"public SavableState",
|
---|
52 | 0, create<GaussianShell>, create<GaussianShell>);
|
---|
53 |
|
---|
54 | // this GaussianShell ctor allocates and computes normalization constants
|
---|
55 | // and computes nfunc
|
---|
56 | GaussianShell::GaussianShell(
|
---|
57 | int ncn,int nprm,double*e,int*am,int*pure,double**c,PrimitiveType pt,
|
---|
58 | bool do_normalize_shell
|
---|
59 | ):
|
---|
60 | nprim(nprm),
|
---|
61 | ncon(ncn),
|
---|
62 | l(am),
|
---|
63 | puream(pure),
|
---|
64 | exp(e),
|
---|
65 | coef(c)
|
---|
66 | {
|
---|
67 | // Compute the number of basis functions in this shell
|
---|
68 | init_computed_data();
|
---|
69 |
|
---|
70 | // Convert the coefficients to coefficients for unnormalized primitives,
|
---|
71 | // if needed.
|
---|
72 | if (pt == Normalized) convert_coef();
|
---|
73 |
|
---|
74 | // Compute the normalization constants
|
---|
75 | if (do_normalize_shell) normalize_shell();
|
---|
76 | }
|
---|
77 |
|
---|
78 | // this GaussianShell ctor is much like the above except the puream
|
---|
79 | // array is generated according to the value of pure
|
---|
80 | GaussianShell::GaussianShell(
|
---|
81 | int ncn,int nprm,double*e,int*am,GaussianType pure,double**c,PrimitiveType pt
|
---|
82 | ):
|
---|
83 | nprim(nprm),
|
---|
84 | ncon(ncn),
|
---|
85 | l(am),
|
---|
86 | exp(e),
|
---|
87 | coef(c)
|
---|
88 | {
|
---|
89 | puream = new int [ncontraction()];
|
---|
90 | for (int i=0; i<ncontraction(); i++) puream[i] = (pure == Pure);
|
---|
91 |
|
---|
92 | // Compute the number of basis functions in this shell
|
---|
93 | init_computed_data();
|
---|
94 |
|
---|
95 | // Convert the coefficients to coefficients for unnormalized primitives,
|
---|
96 | // if needed.
|
---|
97 | if (pt == Normalized) convert_coef();
|
---|
98 |
|
---|
99 | // Compute the normalization constants
|
---|
100 | normalize_shell();
|
---|
101 | }
|
---|
102 |
|
---|
103 | GaussianShell::GaussianShell(const Ref<KeyVal>&keyval)
|
---|
104 | {
|
---|
105 | // read in the shell
|
---|
106 | PrimitiveType pt = keyval_init(keyval,0,0);
|
---|
107 |
|
---|
108 | // Compute the number of basis functions in this shell
|
---|
109 | init_computed_data();
|
---|
110 |
|
---|
111 | // Convert the coefficients to coefficients for unnormalized primitives,
|
---|
112 | // if needed.
|
---|
113 | if (pt == Normalized) convert_coef();
|
---|
114 |
|
---|
115 | // Compute the normalization constants
|
---|
116 | normalize_shell();
|
---|
117 | }
|
---|
118 |
|
---|
119 | GaussianShell::GaussianShell(StateIn&s):
|
---|
120 | SavableState(s)
|
---|
121 | {
|
---|
122 | s.get(nprim);
|
---|
123 | s.get(ncon);
|
---|
124 | if (s.version(::class_desc<GaussianShell>()) < 2) s.get(nfunc);
|
---|
125 | s.get(l);
|
---|
126 | s.get(puream);
|
---|
127 | s.get(exp);
|
---|
128 | coef = new double*[ncon];
|
---|
129 | for (int i=0; i<ncon; i++) {
|
---|
130 | s.get(coef[i]);
|
---|
131 | }
|
---|
132 | init_computed_data();
|
---|
133 | }
|
---|
134 |
|
---|
135 | void
|
---|
136 | GaussianShell::save_data_state(StateOut&s)
|
---|
137 | {
|
---|
138 | s.put(nprim);
|
---|
139 | s.put(ncon);
|
---|
140 | s.put(l,ncon);
|
---|
141 | s.put(puream,ncon);
|
---|
142 | s.put(exp,nprim);
|
---|
143 | for (int i=0; i<ncon; i++) {
|
---|
144 | s.put(coef[i],nprim);
|
---|
145 | }
|
---|
146 | }
|
---|
147 |
|
---|
148 | GaussianShell::GaussianShell(const Ref<KeyVal>&keyval,int pure)
|
---|
149 | {
|
---|
150 | // read in the shell
|
---|
151 | PrimitiveType pt = keyval_init(keyval,1,pure);
|
---|
152 |
|
---|
153 | // Compute the number of basis functions in this shell
|
---|
154 | init_computed_data();
|
---|
155 |
|
---|
156 | // Convert the coefficients to coefficients for unnormalized primitives,
|
---|
157 | // if needed.
|
---|
158 | if (pt == Normalized) convert_coef();
|
---|
159 |
|
---|
160 | // Compute the normalization constants
|
---|
161 | normalize_shell();
|
---|
162 | }
|
---|
163 |
|
---|
164 | GaussianShell::PrimitiveType
|
---|
165 | GaussianShell::keyval_init(const Ref<KeyVal>& keyval,int havepure,int pure)
|
---|
166 | {
|
---|
167 | ncon = keyval->count("type");
|
---|
168 | if (keyval->error() != KeyVal::OK) {
|
---|
169 | ExEnv::err0() << indent
|
---|
170 | << "GaussianShell couldn't find the \"type\" array:\n";
|
---|
171 | keyval->dump(ExEnv::err0());
|
---|
172 | abort();
|
---|
173 | }
|
---|
174 | nprim = keyval->count("exp");
|
---|
175 | if (keyval->error() != KeyVal::OK) {
|
---|
176 | ExEnv::err0() << indent
|
---|
177 | << "GaussianShell couldn't find the \"exp\" array:\n";
|
---|
178 | keyval->dump(ExEnv::err0());
|
---|
179 | abort();
|
---|
180 | }
|
---|
181 | int normalized = keyval->booleanvalue("normalized");
|
---|
182 | if (keyval->error() != KeyVal::OK) normalized = 1;
|
---|
183 |
|
---|
184 | l = new int[ncon];
|
---|
185 | puream = new int[ncon];
|
---|
186 | exp = new double[nprim];
|
---|
187 | coef = new double*[ncon];
|
---|
188 |
|
---|
189 | int i,j;
|
---|
190 | for (i=0; i<nprim; i++) {
|
---|
191 | exp[i] = keyval->doublevalue("exp",i);
|
---|
192 | if (keyval->error() != KeyVal::OK) {
|
---|
193 | ExEnv::err0() << indent
|
---|
194 | << scprintf("GaussianShell: error reading exp:%d: %s\n",
|
---|
195 | i,keyval->errormsg());
|
---|
196 | keyval->errortrace(ExEnv::err0());
|
---|
197 | exit(1);
|
---|
198 | }
|
---|
199 | }
|
---|
200 | for (i=0; i<ncon; i++) {
|
---|
201 | Ref<KeyVal> prefixkeyval = new PrefixKeyVal(keyval,"type",i);
|
---|
202 | coef[i] = new double[nprim];
|
---|
203 | char* am = prefixkeyval->pcharvalue("am");
|
---|
204 | if (prefixkeyval->error() != KeyVal::OK) {
|
---|
205 | ExEnv::err0() << indent
|
---|
206 | << scprintf("GaussianShell: error reading am: \"%s\"\n",
|
---|
207 | prefixkeyval->errormsg());
|
---|
208 | prefixkeyval->errortrace(ExEnv::err0());
|
---|
209 | exit(1);
|
---|
210 | }
|
---|
211 | l[i] = -1;
|
---|
212 | for (int li=0; amtypes[li] != '\0'; li++) {
|
---|
213 | if (amtypes[li] == am[0] || AMTYPES[li] == am[0]) { l[i] = li; break; }
|
---|
214 | }
|
---|
215 | if (l[i] == -1 || strlen(am) != 1) {
|
---|
216 | ExEnv::err0() << indent
|
---|
217 | << scprintf("GaussianShell: bad angular momentum: \"%s\"\n",
|
---|
218 | am);
|
---|
219 | prefixkeyval->errortrace(ExEnv::err0());
|
---|
220 | exit(1);
|
---|
221 | }
|
---|
222 | if (l[i] <= 1) puream[i] = 0;
|
---|
223 | else if (havepure) {
|
---|
224 | puream[i] = pure;
|
---|
225 | }
|
---|
226 | else {
|
---|
227 | puream[i] = prefixkeyval->booleanvalue("puream");
|
---|
228 | if (prefixkeyval->error() != KeyVal::OK) {
|
---|
229 | puream[i] = 0;
|
---|
230 | //ExEnv::err0() << indent
|
---|
231 | // << scprintf("GaussianShell: error reading puream: \"%s\"\n",
|
---|
232 | // prefixkeyval->errormsg());
|
---|
233 | //exit(1);
|
---|
234 | }
|
---|
235 | }
|
---|
236 | for (j=0; j<nprim; j++) {
|
---|
237 | coef[i][j] = keyval->doublevalue("coef",i,j);
|
---|
238 | if (keyval->error() != KeyVal::OK) {
|
---|
239 | ExEnv::err0() << indent
|
---|
240 | << scprintf("GaussianShell: error reading coef:%d:%d: %s\n",
|
---|
241 | i,j,keyval->errormsg());
|
---|
242 | keyval->errortrace(ExEnv::err0());
|
---|
243 | exit(1);
|
---|
244 | }
|
---|
245 | }
|
---|
246 | delete[] am;
|
---|
247 | }
|
---|
248 |
|
---|
249 | if (normalized) return Normalized;
|
---|
250 | else return Unnormalized;
|
---|
251 | }
|
---|
252 |
|
---|
253 | void
|
---|
254 | GaussianShell::init_computed_data()
|
---|
255 | {
|
---|
256 | int max = 0;
|
---|
257 | int min = 0;
|
---|
258 | int nc = 0;
|
---|
259 | int nf = 0;
|
---|
260 | has_pure_ = 0;
|
---|
261 | for (int i=0; i<ncontraction(); i++) {
|
---|
262 | int maxi = l[i];
|
---|
263 | if (max < maxi) max = maxi;
|
---|
264 |
|
---|
265 | int mini = l[i];
|
---|
266 | if (min > mini || i == 0) min = mini;
|
---|
267 |
|
---|
268 | nc += ncartesian(i);
|
---|
269 |
|
---|
270 | nf += nfunction(i);
|
---|
271 |
|
---|
272 | if (is_pure(i)) has_pure_ = 1;
|
---|
273 | }
|
---|
274 | max_am_ = max;
|
---|
275 | min_am_ = min;
|
---|
276 | ncart_ = nc;
|
---|
277 | nfunc = nf;
|
---|
278 | }
|
---|
279 |
|
---|
280 | int GaussianShell::max_cartesian() const
|
---|
281 | {
|
---|
282 | int max = 0;
|
---|
283 | for (int i=0; i<ncontraction(); i++) {
|
---|
284 | int maxi = ncartesian(i);
|
---|
285 | if (max < maxi) max = maxi;
|
---|
286 | }
|
---|
287 | return max;
|
---|
288 | }
|
---|
289 |
|
---|
290 | int GaussianShell::ncartesian_with_aminc(int aminc) const
|
---|
291 | {
|
---|
292 | int ret = 0;
|
---|
293 | for (int i=0; i<ncontraction(); i++) {
|
---|
294 | ret += (((l[i]+2+aminc)*(l[i]+1+aminc))>>1);
|
---|
295 | }
|
---|
296 | return ret;
|
---|
297 | }
|
---|
298 |
|
---|
299 | /* Compute the norm for ((x^x1)||(x^x2)). This is slower than need be. */
|
---|
300 | static double
|
---|
301 | norm(int x1,int x2,double c,double ss)
|
---|
302 | {
|
---|
303 | if (x1 < x2) return norm(x2,x1,c,ss);
|
---|
304 | if (x1 == 1) {
|
---|
305 | if (x2 == 1) return c * ss;
|
---|
306 | else return 0.0;
|
---|
307 | }
|
---|
308 | if (x1 == 0) return ss;
|
---|
309 | return c * ( (x1-1) * norm(x1-2,x2,c,ss) + (x2 * norm(x1-1,x2-1,c,ss)));
|
---|
310 | }
|
---|
311 |
|
---|
312 | void GaussianShell::convert_coef()
|
---|
313 | {
|
---|
314 | int i,gc;
|
---|
315 | double c,ss;
|
---|
316 |
|
---|
317 | // Convert the contraction coefficients from coefficients over
|
---|
318 | // normalized primitives to coefficients over unnormalized primitives
|
---|
319 | for (gc=0; gc<ncon; gc++) {
|
---|
320 | for (i=0; i<nprim; i++) {
|
---|
321 | c = 0.25/exp[i];
|
---|
322 | ss = pow(M_PI/(exp[i]+exp[i]),1.5);
|
---|
323 | coef[gc][i]
|
---|
324 | *= 1.0/sqrt(::norm(l[gc],l[gc],c,ss));
|
---|
325 | }
|
---|
326 | }
|
---|
327 | }
|
---|
328 |
|
---|
329 | double GaussianShell::coefficient_norm(int con,int prim) const
|
---|
330 | {
|
---|
331 | double c = 0.25/exp[prim];
|
---|
332 | double ss = pow(M_PI/(exp[prim]+exp[prim]),1.5);
|
---|
333 | return coef[con][prim] * sqrt(::norm(l[con],l[con],c,ss));
|
---|
334 | }
|
---|
335 |
|
---|
336 | // Compute the normalization constant for a shell.
|
---|
337 | // returns 1/sqrt(<(x^l 0 0|(x^l 0 0)>).
|
---|
338 | // The formula is from Obara and Saika (for the basis functions within
|
---|
339 | // the shell that have powers of x only (a and b refer to the power
|
---|
340 | // of x):
|
---|
341 | // (a||b) = 1/(4 alpha) * ( a (a-1||b) + b (a||b-1) )
|
---|
342 | double
|
---|
343 | GaussianShell::shell_normalization(int gc)
|
---|
344 | {
|
---|
345 | int i,j;
|
---|
346 | double result,c,ss;
|
---|
347 |
|
---|
348 | result = 0.0;
|
---|
349 | for (i=0; i<nprim; i++) {
|
---|
350 | for (j=0; j<nprim; j++) {
|
---|
351 | c = 0.50/(exp[i] + exp[j]);
|
---|
352 | ss = pow(M_PI/(exp[i]+exp[j]),1.5);
|
---|
353 | result += coef[gc][i] * coef[gc][j] *
|
---|
354 | ::norm(l[gc],l[gc],c,ss);
|
---|
355 | }
|
---|
356 | }
|
---|
357 |
|
---|
358 | return 1.0/sqrt(result);
|
---|
359 | }
|
---|
360 |
|
---|
361 | void GaussianShell::normalize_shell()
|
---|
362 | {
|
---|
363 | int i,gc;
|
---|
364 |
|
---|
365 | for (gc=0; gc<ncon; gc++) {
|
---|
366 | // Normalize the contraction coefficients
|
---|
367 | double normalization = shell_normalization(gc);
|
---|
368 | for (i=0; i<nprim; i++) {
|
---|
369 | coef[gc][i] *= normalization;
|
---|
370 | }
|
---|
371 | }
|
---|
372 |
|
---|
373 | }
|
---|
374 |
|
---|
375 | static int
|
---|
376 | comp_relative_overlap(int i1, int j1, int k1, int i2, int j2, int k2)
|
---|
377 | {
|
---|
378 | int result = 0;
|
---|
379 |
|
---|
380 | if (i1) {
|
---|
381 | if (i1>1) result += (i1-1)*comp_relative_overlap(i1-2,j1,k1,i2,j2,k2);
|
---|
382 | if (i2>0) result += i2*comp_relative_overlap(i1-1,j1,k1,i2-1,j2,k2);
|
---|
383 | return result;
|
---|
384 | }
|
---|
385 | if (j1) {
|
---|
386 | if (j1>1) result += (j1-1)*comp_relative_overlap(i1,j1-2,k1,i2,j2,k2);
|
---|
387 | if (j2>0) result += j2*comp_relative_overlap(i1,j1-1,k1,i2,j2-1,k2);
|
---|
388 | return result;
|
---|
389 | }
|
---|
390 | if (k1) {
|
---|
391 | if (k1>1) result += (k1-1)*comp_relative_overlap(i1,j1,k1-2,i2,j2,k2);
|
---|
392 | if (k2>0) result += k2*comp_relative_overlap(i1,j1,k1-1,i2,j2,k2-1);
|
---|
393 | return result;
|
---|
394 | }
|
---|
395 |
|
---|
396 | if (i2) {
|
---|
397 | if (i2>1) result += (i2-1)*comp_relative_overlap(i1,j1,k1,i2-2,j2,k2);
|
---|
398 | if (i1>0) result += i1*comp_relative_overlap(i1-1,j1,k1,i2-1,j2,k2);
|
---|
399 | return result;
|
---|
400 | }
|
---|
401 | if (j2) {
|
---|
402 | if (j2>1) result += (j2-1)*comp_relative_overlap(i1,j1,k1,i2,j2-2,k2);
|
---|
403 | if (j1>0) result += j1*comp_relative_overlap(i1,j1-1,k1,i2,j2-1,k2);
|
---|
404 | return result;
|
---|
405 | }
|
---|
406 | if (k2) {
|
---|
407 | if (k2>1) result += (k2-1)*comp_relative_overlap(i1,j1,k1,i2,j2,k2-2);
|
---|
408 | if (k1>0) result += k1*comp_relative_overlap(i1,j1,k1-1,i2,j2,k2-1);
|
---|
409 | return result;
|
---|
410 | }
|
---|
411 |
|
---|
412 | return 1;
|
---|
413 | }
|
---|
414 |
|
---|
415 | double
|
---|
416 | GaussianShell::relative_overlap(int con,
|
---|
417 | int a1, int b1, int c1,
|
---|
418 | int a2, int b2, int c2) const
|
---|
419 | {
|
---|
420 | int result = comp_relative_overlap(a1,b1,c1,a2,b2,c2);
|
---|
421 | return (double) result;
|
---|
422 | }
|
---|
423 |
|
---|
424 | double
|
---|
425 | GaussianShell::relative_overlap(const Ref<Integral>& ints,
|
---|
426 | int con, int func1, int func2) const
|
---|
427 | {
|
---|
428 | if (puream[con]) {
|
---|
429 | // depends on how intv2 currently normalizes things
|
---|
430 | ExEnv::err0() << indent
|
---|
431 | << "GaussianShell::relative_overlap "
|
---|
432 | << "only implemented for Cartesians\n";
|
---|
433 | abort();
|
---|
434 | }
|
---|
435 |
|
---|
436 | CartesianIter *i1p = ints->new_cartesian_iter(l[con]);
|
---|
437 | CartesianIter *i2p = ints->new_cartesian_iter(l[con]);
|
---|
438 |
|
---|
439 | CartesianIter& i1 = *i1p;
|
---|
440 | CartesianIter& i2 = *i2p;
|
---|
441 |
|
---|
442 | int i;
|
---|
443 | for (i1.start(), i=0; i<func1; i1.next(), i++);
|
---|
444 | for (i2.start(), i=0; i<func2; i2.next(), i++);
|
---|
445 |
|
---|
446 | double ret = relative_overlap(con, i1.a(), i1.b(), i1.c(),
|
---|
447 | i2.a(), i2.b(), i2.c());
|
---|
448 |
|
---|
449 | delete i1p;
|
---|
450 | delete i2p;
|
---|
451 |
|
---|
452 | return ret;
|
---|
453 | }
|
---|
454 |
|
---|
455 | void
|
---|
456 | GaussianShell::print(ostream& os) const
|
---|
457 | {
|
---|
458 | int i,j;
|
---|
459 |
|
---|
460 | os << indent << "GaussianShell:\n" << incindent
|
---|
461 | << indent << "ncontraction = " << ncon << endl
|
---|
462 | << indent << "nprimitive = " << nprim << endl << indent
|
---|
463 | << "exponents:";
|
---|
464 |
|
---|
465 | for (i=0; i<nprim; i++)
|
---|
466 | os << scprintf(" %f",exp[i]);
|
---|
467 |
|
---|
468 | os << endl << indent << "l:";
|
---|
469 | for (i=0; i<ncon; i++)
|
---|
470 | os << scprintf(" %d", l[i]);
|
---|
471 |
|
---|
472 | os << endl << indent << "type:";
|
---|
473 | for (i=0; i<ncon; i++)
|
---|
474 | os << scprintf(" %s", puream[i]?"pure":"cart");
|
---|
475 | os << endl;
|
---|
476 |
|
---|
477 | for (i=0; i<ncon; i++) {
|
---|
478 | os << indent << scprintf("coef[%d]:",i);
|
---|
479 | for (j=0; j<nprim; j++)
|
---|
480 | os << scprintf(" %f",coef[i][j]);
|
---|
481 | os << endl;
|
---|
482 | }
|
---|
483 |
|
---|
484 | os << decindent;
|
---|
485 | }
|
---|
486 |
|
---|
487 | GaussianShell::~GaussianShell()
|
---|
488 | {
|
---|
489 | delete[] l;
|
---|
490 | delete[] puream;
|
---|
491 | delete[] exp;
|
---|
492 |
|
---|
493 | for (int i=0; i<ncon; i++) {
|
---|
494 | delete[] coef[i];
|
---|
495 | }
|
---|
496 |
|
---|
497 | delete[] coef;
|
---|
498 | }
|
---|
499 |
|
---|
500 | int
|
---|
501 | GaussianShell::nfunction(int con) const
|
---|
502 | {
|
---|
503 | return puream[con]?
|
---|
504 | ((l[con]<<1)+1):
|
---|
505 | (((l[con]+2)*(l[con]+1))>>1);
|
---|
506 | }
|
---|
507 |
|
---|
508 | int
|
---|
509 | GaussianShell::equiv(const GaussianShell *s)
|
---|
510 | {
|
---|
511 | if (nprim != s->nprim) return 0;
|
---|
512 | if (ncon != s->ncon) return 0;
|
---|
513 | for (int i=0; i<ncon; i++) {
|
---|
514 | if (l[i] != s->l[i]) return 0;
|
---|
515 | if (puream[i] != s->puream[i]) return 0;
|
---|
516 | if (fabs((exp[i] - s->exp[i])/exp[i]) > 1.0e-13) return 0;
|
---|
517 | for (int j=0; j<nprim; j++) {
|
---|
518 | if (coef[i][j] != 0.0) {
|
---|
519 | if (fabs((coef[i][j] - s->coef[i][j])/coef[i][j]) > 1.0e-13) return 0;
|
---|
520 | }
|
---|
521 | else {
|
---|
522 | if (fabs((coef[i][j] - s->coef[i][j])) > 1.0e-13) return 0;
|
---|
523 | }
|
---|
524 | }
|
---|
525 | }
|
---|
526 | return 1;
|
---|
527 | }
|
---|
528 |
|
---|
529 | double
|
---|
530 | GaussianShell::extent(double threshold) const
|
---|
531 | {
|
---|
532 | double tol = 0.1;
|
---|
533 | double r0 = tol;
|
---|
534 | double r1 = 3.0*r0;
|
---|
535 | double b0 = monobound(r0);
|
---|
536 | double b1 = monobound(r1);
|
---|
537 | //ExEnv::outn() << "r0 = " << r0 << " b0 = " << b0 << endl;
|
---|
538 | //ExEnv::outn() << "r1 = " << r0 << " b1 = " << b1 << endl;
|
---|
539 | if (b0 <= threshold) {
|
---|
540 | return r0;
|
---|
541 | }
|
---|
542 | // step out until r0 and r1 bracket the return value
|
---|
543 | while (b1 > threshold) {
|
---|
544 | r0 = r1;
|
---|
545 | r1 = 3.0*r0;
|
---|
546 | b0 = b1;
|
---|
547 | b1 = monobound(r1);
|
---|
548 | //ExEnv::outn() << "r0 = " << r0 << " b0 = " << b0 << endl;
|
---|
549 | //ExEnv::outn() << "r1 = " << r0 << " b1 = " << b1 << endl;
|
---|
550 | }
|
---|
551 | while (r1 - r0 > 0.1) {
|
---|
552 | double rtest = 0.5*(r0+r1);
|
---|
553 | double btest = monobound(rtest);
|
---|
554 | if (btest <= threshold) {
|
---|
555 | b1 = btest;
|
---|
556 | r1 = rtest;
|
---|
557 | //ExEnv::outn() << "r1 = " << r0 << " b1 = " << b0 << endl;
|
---|
558 | }
|
---|
559 | else {
|
---|
560 | b0 = btest;
|
---|
561 | r0 = rtest;
|
---|
562 | //ExEnv::outn() << "r0 = " << r0 << " b0 = " << b0 << endl;
|
---|
563 | }
|
---|
564 | }
|
---|
565 | return r1;
|
---|
566 | }
|
---|
567 |
|
---|
568 | /////////////////////////////////////////////////////////////////////////////
|
---|
569 |
|
---|
570 | // Local Variables:
|
---|
571 | // mode: c++
|
---|
572 | // c-file-style: "CLJ"
|
---|
573 | // End:
|
---|