1 | //
|
---|
2 | // aotoso.cc --- more symmetry stuff
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Edward Seidl <seidl@janed.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #include <float.h>
|
---|
29 |
|
---|
30 | #include <util/misc/formio.h>
|
---|
31 |
|
---|
32 | #include <chemistry/qc/basis/basis.h>
|
---|
33 | #include <chemistry/qc/basis/integral.h>
|
---|
34 | #include <chemistry/qc/basis/shellrot.h>
|
---|
35 | #include <chemistry/qc/basis/petite.h>
|
---|
36 | #include <chemistry/qc/basis/f77sym.h>
|
---|
37 |
|
---|
38 | using namespace std;
|
---|
39 | using namespace sc;
|
---|
40 |
|
---|
41 | extern "C" {
|
---|
42 | void
|
---|
43 | F77_DGESVD(const char * JOBU, const char *JOBVT,
|
---|
44 | int *M, int *N, double *A, int *LDA,
|
---|
45 | double *S, double *U, int *LDU, double *VT, int *LDVT,
|
---|
46 | double *WORK, int *LWORK, int *INFO );
|
---|
47 | }
|
---|
48 |
|
---|
49 | ////////////////////////////////////////////////////////////////////////////
|
---|
50 |
|
---|
51 | contribution::contribution()
|
---|
52 | {
|
---|
53 | }
|
---|
54 |
|
---|
55 | contribution::~contribution()
|
---|
56 | {
|
---|
57 | }
|
---|
58 |
|
---|
59 | contribution::contribution(int b, double c) : bfn(b), coef(c)
|
---|
60 | {
|
---|
61 | }
|
---|
62 |
|
---|
63 | ////////////////////////////////////////////////////////////////////////////
|
---|
64 |
|
---|
65 | SO::SO() : len(0), length(0), cont(0)
|
---|
66 | {
|
---|
67 | }
|
---|
68 |
|
---|
69 | SO::SO(int l) : len(0), length(0), cont(0)
|
---|
70 | {
|
---|
71 | set_length(l);
|
---|
72 | }
|
---|
73 |
|
---|
74 | SO::~SO()
|
---|
75 | {
|
---|
76 | set_length(0);
|
---|
77 | }
|
---|
78 |
|
---|
79 | SO&
|
---|
80 | SO::operator=(const SO& so)
|
---|
81 | {
|
---|
82 | set_length(so.length);
|
---|
83 | length = so.length;
|
---|
84 | for (int i=0; i < length; i++)
|
---|
85 | cont[i] = so.cont[i];
|
---|
86 | return *this;
|
---|
87 | }
|
---|
88 |
|
---|
89 | void
|
---|
90 | SO::set_length(int l)
|
---|
91 | {
|
---|
92 | len=l;
|
---|
93 | length=l;
|
---|
94 | if (cont) {
|
---|
95 | delete[] cont;
|
---|
96 | cont=0;
|
---|
97 | }
|
---|
98 |
|
---|
99 | if (l)
|
---|
100 | cont = new contribution[l];
|
---|
101 | }
|
---|
102 |
|
---|
103 | void
|
---|
104 | SO::reset_length(int l)
|
---|
105 | {
|
---|
106 | length=l;
|
---|
107 |
|
---|
108 | if (l <= len)
|
---|
109 | return;
|
---|
110 |
|
---|
111 | l=l+10;
|
---|
112 |
|
---|
113 | contribution *newcont = new contribution[l];
|
---|
114 |
|
---|
115 | if (cont) {
|
---|
116 | for (int i=0; i < len; i++)
|
---|
117 | newcont[i] = cont[i];
|
---|
118 |
|
---|
119 | delete[] cont;
|
---|
120 | }
|
---|
121 |
|
---|
122 | cont=newcont;
|
---|
123 | len=l;
|
---|
124 | }
|
---|
125 |
|
---|
126 | int
|
---|
127 | SO::equiv(const SO& so)
|
---|
128 | {
|
---|
129 | int i;
|
---|
130 |
|
---|
131 | if (so.length != length)
|
---|
132 | return 0;
|
---|
133 |
|
---|
134 | double c=0;
|
---|
135 | for (i=0; i < length; i++) {
|
---|
136 | if (cont[i].bfn != so.cont[i].bfn)
|
---|
137 | return 0;
|
---|
138 | c += cont[i].coef*so.cont[i].coef;
|
---|
139 | }
|
---|
140 |
|
---|
141 | // if the overlap == 1.0, they're equal (SO's should have been
|
---|
142 | // normalized by now)
|
---|
143 | if (fabs(fabs(c)-1.0) < 1.0e-3)
|
---|
144 | return 1;
|
---|
145 |
|
---|
146 | return 0;
|
---|
147 | }
|
---|
148 |
|
---|
149 | ////////////////////////////////////////////////////////////////////////////
|
---|
150 |
|
---|
151 | SO_block::SO_block() : len(0), so(0)
|
---|
152 | {
|
---|
153 | }
|
---|
154 |
|
---|
155 | SO_block::SO_block(int l) : len(0), so(0)
|
---|
156 | {
|
---|
157 | set_length(l);
|
---|
158 | }
|
---|
159 |
|
---|
160 | SO_block::~SO_block()
|
---|
161 | {
|
---|
162 | set_length(0);
|
---|
163 | }
|
---|
164 |
|
---|
165 | void
|
---|
166 | SO_block::set_length(int l)
|
---|
167 | {
|
---|
168 | len=l;
|
---|
169 | if (so) {
|
---|
170 | delete[] so;
|
---|
171 | so=0;
|
---|
172 | }
|
---|
173 |
|
---|
174 | if (l)
|
---|
175 | so = new SO[l];
|
---|
176 | }
|
---|
177 |
|
---|
178 | void
|
---|
179 | SO_block::reset_length(int l)
|
---|
180 | {
|
---|
181 | if (len == l) return;
|
---|
182 |
|
---|
183 | SO *newso = new SO[l];
|
---|
184 |
|
---|
185 | if (so) {
|
---|
186 | for (int i=0; i < len; i++)
|
---|
187 | newso[i] = so[i];
|
---|
188 |
|
---|
189 | delete[] so;
|
---|
190 | }
|
---|
191 |
|
---|
192 | so=newso;
|
---|
193 | len=l;
|
---|
194 | }
|
---|
195 |
|
---|
196 | int
|
---|
197 | SO_block::add(SO& s, int i)
|
---|
198 | {
|
---|
199 | // first check to see if s is already here
|
---|
200 | for (int j=0; j < ((i < len) ? i : len); j++)
|
---|
201 | if (so[j].equiv(s))
|
---|
202 | return 0;
|
---|
203 |
|
---|
204 | if (i >= len)
|
---|
205 | reset_length(i+1);
|
---|
206 | so[i] = s;
|
---|
207 |
|
---|
208 | return 1;
|
---|
209 | }
|
---|
210 |
|
---|
211 | void
|
---|
212 | SO_block::print(const char *title)
|
---|
213 | {
|
---|
214 | int i,j;
|
---|
215 | ExEnv::out0() << indent << "SO block " << title << endl;
|
---|
216 | for (i=0; i < len; i++) {
|
---|
217 | ExEnv::out0() << indent << "SO " << i+1 << endl << indent;
|
---|
218 | for (j=0; j < so[i].length; j++)
|
---|
219 | ExEnv::out0() << scprintf(" %10d",so[i].cont[j].bfn);
|
---|
220 | ExEnv::out0() << endl << indent;
|
---|
221 | for (j=0; j < so[i].length; j++)
|
---|
222 | ExEnv::out0() << scprintf(" %10.7f",so[i].cont[j].coef);
|
---|
223 | ExEnv::out0() << endl;
|
---|
224 | }
|
---|
225 | }
|
---|
226 |
|
---|
227 | ////////////////////////////////////////////////////////////////////////////
|
---|
228 |
|
---|
229 | struct lin_comb {
|
---|
230 | int ns;
|
---|
231 | int f0;
|
---|
232 | int mapf0;
|
---|
233 | double **c;
|
---|
234 |
|
---|
235 | lin_comb(int ins, int if0, int imf0) : ns(ins), f0(if0), mapf0(imf0) {
|
---|
236 | int i;
|
---|
237 |
|
---|
238 | c = new double*[ns];
|
---|
239 | for (i=0; i < ns; i++) {
|
---|
240 | c[i] = new double[ns];
|
---|
241 | memset(c[i],0,sizeof(double)*ns);
|
---|
242 | }
|
---|
243 | }
|
---|
244 |
|
---|
245 | ~lin_comb() {
|
---|
246 | if (c) {
|
---|
247 | for (int i=0; i < ns; i++)
|
---|
248 | if (c[i])
|
---|
249 | delete[] c[i];
|
---|
250 | delete[] c;
|
---|
251 | c=0;
|
---|
252 | }
|
---|
253 | }
|
---|
254 |
|
---|
255 | void print() const {
|
---|
256 | int i;
|
---|
257 | ExEnv::out0() << indent;
|
---|
258 | for (i=0; i < ns; i++)
|
---|
259 | ExEnv::out0() << scprintf(" %10d",mapf0+i);
|
---|
260 | ExEnv::out0() << endl;
|
---|
261 |
|
---|
262 | for (i=0; i < ns; i++) {
|
---|
263 | ExEnv::out0() << indent << scprintf("%2d",f0+i);
|
---|
264 | for (int j=0; j < ns; j++)
|
---|
265 | ExEnv::out0() << scprintf(" %10.7f",c[i][j]);
|
---|
266 | ExEnv::out0() << endl;
|
---|
267 | }
|
---|
268 | }
|
---|
269 | };
|
---|
270 |
|
---|
271 | ////////////////////////////////////////////////////////////////////////////
|
---|
272 |
|
---|
273 | SO_block *
|
---|
274 | PetiteList::aotoso_info()
|
---|
275 | {
|
---|
276 | int iuniq, i, j, d, ii, jj, g, s, c, ir;
|
---|
277 |
|
---|
278 | GaussianBasisSet& gbs = *gbs_.pointer();
|
---|
279 | Molecule& mol = *gbs.molecule().pointer();
|
---|
280 |
|
---|
281 | // create the character table for the point group
|
---|
282 | CharacterTable ct = mol.point_group()->char_table();
|
---|
283 | SymmetryOperation so;
|
---|
284 |
|
---|
285 | if (c1_) {
|
---|
286 | SO_block *SOs = new SO_block[1];
|
---|
287 | SOs[0].set_length(gbs.nbasis());
|
---|
288 | for (i=0; i < gbs.nbasis(); i++) {
|
---|
289 | SOs[0].so[i].set_length(1);
|
---|
290 | SOs[0].so[i].cont[0].bfn=i;
|
---|
291 | SOs[0].so[i].cont[0].coef=1.0;
|
---|
292 | }
|
---|
293 | return SOs;
|
---|
294 | }
|
---|
295 |
|
---|
296 | // ncomp is the number of symmetry blocks we have. for point groups with
|
---|
297 | // complex E representations, this will be cut in two eventually
|
---|
298 | int ncomp=0;
|
---|
299 | for (i=0; i < nirrep_; i++)
|
---|
300 | ncomp += ct.gamma(i).degeneracy();
|
---|
301 |
|
---|
302 | // saoelem is the current SO in a block
|
---|
303 | int *saoelem = new int[ncomp];
|
---|
304 | memset(saoelem,0,sizeof(int)*ncomp);
|
---|
305 |
|
---|
306 | int *whichir = new int[ncomp];
|
---|
307 | int *whichcmp = new int[ncomp];
|
---|
308 | for (i=ii=0; i < nirrep_; i++) {
|
---|
309 | for (int j=0; j < ct.gamma(i).degeneracy(); j++,ii++) {
|
---|
310 | whichir[ii] = i;
|
---|
311 | whichcmp[ii] = j;
|
---|
312 | }
|
---|
313 | }
|
---|
314 |
|
---|
315 | // SOs is an array of SO_blocks which holds the redundant SO's
|
---|
316 | SO_block *SOs = new SO_block[ncomp];
|
---|
317 |
|
---|
318 | for (i=0; i < ncomp; i++) {
|
---|
319 | ir = whichir[i];
|
---|
320 | int len = (ct.gamma(ir).complex()) ? nbf_in_ir_[ir]/2 : nbf_in_ir_[ir];
|
---|
321 | SOs[i].set_length(len);
|
---|
322 | }
|
---|
323 |
|
---|
324 | // loop over all unique shells
|
---|
325 | for (iuniq=0; iuniq < gbs.molecule()->nunique(); iuniq++) {
|
---|
326 | int nequiv = gbs.molecule()->nequivalent(iuniq);
|
---|
327 | i = gbs.molecule()->unique(iuniq);
|
---|
328 | for (s=0; s < gbs.nshell_on_center(i); s++) {
|
---|
329 | int shell_i = gbs.shell_on_center(i,s);
|
---|
330 |
|
---|
331 | // test to see if there are any high am cartesian functions in this
|
---|
332 | // shell. for now don't allow symmetry with cartesian functions...I
|
---|
333 | // just can't seem to get them working.
|
---|
334 | for (c=0; c < gbs(i,s).ncontraction(); c++) {
|
---|
335 | if (gbs(i,s).am(c) > 1 && gbs(i,s).is_cartesian(c)) {
|
---|
336 | if (ng_ != nirrep_) {
|
---|
337 | ExEnv::err0() << indent
|
---|
338 | << "PetiteList::aotoso: cannot yet handle"
|
---|
339 | << " symmetry for angular momentum >= 2\n";
|
---|
340 | abort();
|
---|
341 | }
|
---|
342 | }
|
---|
343 | }
|
---|
344 |
|
---|
345 | // the functions do not mix between contractions
|
---|
346 | // so the contraction loop can be done outside the symmetry
|
---|
347 | // operation loop
|
---|
348 | int bfn_offset_in_shell = 0;
|
---|
349 | for (c=0; c < gbs(i,s).ncontraction(); c++) {
|
---|
350 | int nfuncuniq = gbs(i,s).nfunction(c);
|
---|
351 | int nfuncall = nfuncuniq * nequiv;
|
---|
352 |
|
---|
353 | // allocate an array to store linear combinations of orbitals
|
---|
354 | // this is destroyed by the SVD routine
|
---|
355 | double **linorb = new double*[nfuncuniq];
|
---|
356 | linorb[0] = new double[nfuncuniq*nfuncall];
|
---|
357 | for (j=1; j<nfuncuniq; j++) {
|
---|
358 | linorb[j] = &linorb[j-1][nfuncall];
|
---|
359 | }
|
---|
360 |
|
---|
361 | // a copy of linorb
|
---|
362 | double **linorbcop = new double*[nfuncuniq];
|
---|
363 | linorbcop[0] = new double[nfuncuniq*nfuncall];
|
---|
364 | for (j=1; j<nfuncuniq; j++) {
|
---|
365 | linorbcop[j] = &linorbcop[j-1][nfuncall];
|
---|
366 | }
|
---|
367 |
|
---|
368 | // allocate an array for the SVD routine
|
---|
369 | double **u = new double*[nfuncuniq];
|
---|
370 | u[0] = new double[nfuncuniq*nfuncuniq];
|
---|
371 | for (j=1; j<nfuncuniq; j++) {
|
---|
372 | u[j] = &u[j-1][nfuncuniq];
|
---|
373 | }
|
---|
374 |
|
---|
375 | // loop through each irrep to form the linear combination
|
---|
376 | // of orbitals of that symmetry
|
---|
377 | int irnum = 0;
|
---|
378 | for (ir=0; ir<ct.nirrep(); ir++) {
|
---|
379 | int cmplx = (ct.complex() && ct.gamma(ir).complex());
|
---|
380 | for (int comp=0; comp < ct.gamma(ir).degeneracy(); comp++) {
|
---|
381 | memset(linorb[0], 0, nfuncuniq*nfuncall*sizeof(double));
|
---|
382 | for (d=0; d < ct.gamma(ir).degeneracy(); d++) {
|
---|
383 | // if this is a point group with a complex E representation,
|
---|
384 | // then only do the first set of projections for E
|
---|
385 | if (d && cmplx) break;
|
---|
386 |
|
---|
387 | // operate on each function in this contraction with each
|
---|
388 | // symmetry operation to form symmetrized linear combinations
|
---|
389 | // of orbitals
|
---|
390 |
|
---|
391 | for (g=0; g<ng_; g++) {
|
---|
392 | // the character
|
---|
393 | double ccdg = ct.gamma(ir).p(comp,d,g);
|
---|
394 |
|
---|
395 | so = ct.symm_operation(g);
|
---|
396 | int equivatom = atom_map_[i][g];
|
---|
397 | int atomoffset
|
---|
398 | = gbs.molecule()->atom_to_unique_offset(equivatom);
|
---|
399 |
|
---|
400 | ShellRotation rr
|
---|
401 | = ints_->shell_rotation(gbs(i,s).am(c),
|
---|
402 | so,gbs(i,s).is_pure(c));
|
---|
403 |
|
---|
404 | for (ii=0; ii < rr.dim(); ii++) {
|
---|
405 | for (jj=0; jj < rr.dim(); jj++) {
|
---|
406 | linorb[ii][atomoffset*nfuncuniq+jj] += ccdg * rr(ii,jj);
|
---|
407 | }
|
---|
408 | }
|
---|
409 | }
|
---|
410 | }
|
---|
411 | // find the linearly independent SO's for this irrep/component
|
---|
412 | memcpy(linorbcop[0], linorb[0], nfuncuniq*nfuncall*sizeof(double));
|
---|
413 | double *singval = new double[nfuncuniq];
|
---|
414 | double djunk=0; int ijunk=1;
|
---|
415 | int lwork = 5*nfuncall;
|
---|
416 | double *work = new double[lwork];
|
---|
417 | int info;
|
---|
418 | // solves At = V SIGMA Ut (since FORTRAN array layout is used)
|
---|
419 | F77_DGESVD("N","A",&nfuncall,&nfuncuniq,linorb[0],&nfuncall,
|
---|
420 | singval, &djunk, &ijunk, u[0], &nfuncuniq,
|
---|
421 | work, &lwork, &info);
|
---|
422 | // put the lin indep symm orbs into the so array
|
---|
423 | for (j=0; j<nfuncuniq; j++) {
|
---|
424 | if (singval[j] > 1.0e-6) {
|
---|
425 | SO tso;
|
---|
426 | tso.set_length(nfuncall);
|
---|
427 | int ll = 0, llnonzero = 0;
|
---|
428 | for (int k=0; k<nequiv; k++) {
|
---|
429 | for (int l=0; l<nfuncuniq; l++,ll++) {
|
---|
430 | double tmp = 0.0;
|
---|
431 | for (int m=0; m<nfuncuniq; m++) {
|
---|
432 | tmp += u[m][j] * linorbcop[m][ll] / singval[j];
|
---|
433 | }
|
---|
434 | if (fabs(tmp) > DBL_EPSILON) {
|
---|
435 | int equivatom = gbs.molecule()->equivalent(iuniq,k);
|
---|
436 | tso.cont[llnonzero].bfn
|
---|
437 | = l
|
---|
438 | + bfn_offset_in_shell
|
---|
439 | + gbs.shell_to_function(gbs.shell_on_center(equivatom,
|
---|
440 | s));
|
---|
441 | tso.cont[llnonzero].coef = tmp;
|
---|
442 | llnonzero++;
|
---|
443 | }
|
---|
444 | }
|
---|
445 | }
|
---|
446 | tso.reset_length(llnonzero);
|
---|
447 | if (llnonzero == 0) {
|
---|
448 | ExEnv::errn() << "aotoso: internal error: no bfns in SO"
|
---|
449 | << endl;
|
---|
450 | abort();
|
---|
451 | }
|
---|
452 | if (SOs[irnum+comp].add(tso,saoelem[irnum+comp])) {
|
---|
453 | saoelem[irnum+comp]++;
|
---|
454 | }
|
---|
455 | else {
|
---|
456 | ExEnv::errn() << "aotoso: internal error: "
|
---|
457 | << "impossible duplicate SO"
|
---|
458 | << endl;
|
---|
459 | abort();
|
---|
460 | }
|
---|
461 | }
|
---|
462 | }
|
---|
463 | delete[] singval;
|
---|
464 | delete[] work;
|
---|
465 | }
|
---|
466 | irnum += ct.gamma(ir).degeneracy();
|
---|
467 | }
|
---|
468 | bfn_offset_in_shell += gbs(i,s).nfunction(c);
|
---|
469 |
|
---|
470 | delete[] linorb[0];
|
---|
471 | delete[] linorb;
|
---|
472 | delete[] linorbcop[0];
|
---|
473 | delete[] linorbcop;
|
---|
474 | delete[] u[0];
|
---|
475 | delete[] u;
|
---|
476 | }
|
---|
477 | }
|
---|
478 | }
|
---|
479 |
|
---|
480 | // Make sure all the nodes agree on what the symmetry orbitals are.
|
---|
481 | // (All the above work for me > 0 is ignored.)
|
---|
482 | Ref<MessageGrp> grp = MessageGrp::get_default_messagegrp();
|
---|
483 | for (i=0; i<ncomp; i++) {
|
---|
484 | int len = SOs[i].len;
|
---|
485 | grp->bcast(len);
|
---|
486 | SOs[i].reset_length(len);
|
---|
487 | for (j=0; j<len; j++) {
|
---|
488 | int solen = SOs[i].so[j].length;
|
---|
489 | grp->bcast(solen);
|
---|
490 | SOs[i].so[j].reset_length(solen);
|
---|
491 | for (int k=0; k<solen; k++) {
|
---|
492 | grp->bcast(SOs[i].so[j].cont[k].bfn);
|
---|
493 | grp->bcast(SOs[i].so[j].cont[k].coef);
|
---|
494 | }
|
---|
495 | }
|
---|
496 | }
|
---|
497 |
|
---|
498 | for (i=0; i < ncomp; i++) {
|
---|
499 | ir = whichir[i];
|
---|
500 | int scal = ct.gamma(ir).complex() ? 2 : 1;
|
---|
501 |
|
---|
502 | if (saoelem[i] < nbf_in_ir_[ir]/scal) {
|
---|
503 | // if we found too few, there are big problems
|
---|
504 |
|
---|
505 | ExEnv::err0() << indent
|
---|
506 | << scprintf("trouble making SO's for irrep %s\n",
|
---|
507 | ct.gamma(ir).symbol());
|
---|
508 | ExEnv::err0() << indent
|
---|
509 | << scprintf(" only found %d out of %d SO's\n",
|
---|
510 | saoelem[i], nbf_in_ir_[ir]/scal);
|
---|
511 | SOs[i].print("");
|
---|
512 | abort();
|
---|
513 |
|
---|
514 | } else if (saoelem[i] > nbf_in_ir_[ir]/scal) {
|
---|
515 | // there are some redundant so's left...need to do something to get
|
---|
516 | // the elements we want
|
---|
517 |
|
---|
518 | ExEnv::err0() << indent
|
---|
519 | << scprintf("trouble making SO's for irrep %s\n",
|
---|
520 | ct.gamma(ir).symbol());
|
---|
521 | ExEnv::err0() << indent
|
---|
522 | << scprintf(" found %d SO's, but there should only be %d\n",
|
---|
523 | saoelem[i], nbf_in_ir_[ir]/scal);
|
---|
524 | SOs[i].print("");
|
---|
525 | abort();
|
---|
526 | }
|
---|
527 | }
|
---|
528 |
|
---|
529 | if (ct.complex()) {
|
---|
530 | SO_block *nSOs = new SO_block[nblocks_];
|
---|
531 |
|
---|
532 | int in=0;
|
---|
533 |
|
---|
534 | for (i=ir=0; ir < nirrep_; ir++) {
|
---|
535 | if (ct.gamma(ir).complex()) {
|
---|
536 | nSOs[in].set_length(nbf_in_ir_[ir]);
|
---|
537 | int k;
|
---|
538 | for (k=0; k < SOs[i].len; k++)
|
---|
539 | nSOs[in].add(SOs[i].so[k],k);
|
---|
540 | i++;
|
---|
541 |
|
---|
542 | for (j=0; j < SOs[i].len; j++,k++)
|
---|
543 | nSOs[in].add(SOs[i].so[j],k);
|
---|
544 |
|
---|
545 | i++;
|
---|
546 | in++;
|
---|
547 | } else {
|
---|
548 | for (j=0; j < ct.gamma(ir).degeneracy(); j++,i++,in++) {
|
---|
549 | nSOs[in].set_length(nbf_in_ir_[ir]);
|
---|
550 | for (int k=0; k < SOs[i].len; k++)
|
---|
551 | nSOs[in].add(SOs[i].so[k],k);
|
---|
552 | }
|
---|
553 | }
|
---|
554 | }
|
---|
555 |
|
---|
556 | SO_block *tmp= SOs;
|
---|
557 | SOs = nSOs;
|
---|
558 | delete[] tmp;
|
---|
559 | }
|
---|
560 |
|
---|
561 | delete[] saoelem;
|
---|
562 | delete[] whichir;
|
---|
563 | delete[] whichcmp;
|
---|
564 |
|
---|
565 | return SOs;
|
---|
566 | }
|
---|
567 |
|
---|
568 | RefSCMatrix
|
---|
569 | PetiteList::aotoso()
|
---|
570 | {
|
---|
571 | RefSCMatrix aoso(AO_basisdim(), SO_basisdim(), gbs_->so_matrixkit());
|
---|
572 | aoso.assign(0.0);
|
---|
573 |
|
---|
574 | if (c1_) {
|
---|
575 | aoso->unit();
|
---|
576 | return aoso;
|
---|
577 | }
|
---|
578 |
|
---|
579 | SO_block *sos = aotoso_info();
|
---|
580 |
|
---|
581 | BlockedSCMatrix *aosop = dynamic_cast<BlockedSCMatrix*>(aoso.pointer());
|
---|
582 |
|
---|
583 | for (int b=0; b < aosop->nblocks(); b++) {
|
---|
584 | RefSCMatrix aosb = aosop->block(b);
|
---|
585 |
|
---|
586 | if (aosb.null())
|
---|
587 | continue;
|
---|
588 |
|
---|
589 | SO_block& sob = sos[b];
|
---|
590 |
|
---|
591 | Ref<SCMatrixSubblockIter> iter =
|
---|
592 | aosb->local_blocks(SCMatrixSubblockIter::Write);
|
---|
593 |
|
---|
594 | for (iter->begin(); iter->ready(); iter->next()) {
|
---|
595 | if (dynamic_cast<SCMatrixRectBlock*>(iter->block())) {
|
---|
596 | SCMatrixRectBlock *blk = dynamic_cast<SCMatrixRectBlock*>(iter->block());
|
---|
597 |
|
---|
598 | int jlen = blk->jend-blk->jstart;
|
---|
599 |
|
---|
600 | for (int j=0; j < sob.len; j++) {
|
---|
601 | if (j < blk->jstart || j >= blk->jend)
|
---|
602 | continue;
|
---|
603 |
|
---|
604 | SO& soj = sob.so[j];
|
---|
605 |
|
---|
606 | for (int i=0; i < soj.len; i++) {
|
---|
607 | int ii=soj.cont[i].bfn;
|
---|
608 |
|
---|
609 | if (ii < blk->istart || ii >= blk->iend)
|
---|
610 | continue;
|
---|
611 |
|
---|
612 | blk->data[(ii-blk->istart)*jlen+(j-blk->jstart)] =
|
---|
613 | soj.cont[i].coef;
|
---|
614 | }
|
---|
615 | }
|
---|
616 | } else {
|
---|
617 | SCMatrixRectSubBlock *blk =
|
---|
618 | dynamic_cast<SCMatrixRectSubBlock*>(iter->block());
|
---|
619 |
|
---|
620 | for (int j=0; j < sob.len; j++) {
|
---|
621 | if (j < blk->jstart || j >= blk->jend)
|
---|
622 | continue;
|
---|
623 |
|
---|
624 | SO& soj = sob.so[j];
|
---|
625 |
|
---|
626 | for (int i=0; i < soj.len; i++) {
|
---|
627 | int ii=soj.cont[i].bfn;
|
---|
628 |
|
---|
629 | if (ii < blk->istart || ii >= blk->iend)
|
---|
630 | continue;
|
---|
631 |
|
---|
632 | blk->data[ii*blk->istride+j] = soj.cont[i].coef;
|
---|
633 | }
|
---|
634 | }
|
---|
635 | }
|
---|
636 | }
|
---|
637 | }
|
---|
638 |
|
---|
639 | delete[] sos;
|
---|
640 |
|
---|
641 | return aoso;
|
---|
642 | }
|
---|
643 |
|
---|
644 | RefSCMatrix
|
---|
645 | PetiteList::sotoao()
|
---|
646 | {
|
---|
647 | if (c1_)
|
---|
648 | return aotoso();
|
---|
649 | else if (nirrep_ == ng_) // subgroup of d2h
|
---|
650 | return aotoso().t();
|
---|
651 | else
|
---|
652 | return aotoso().i();
|
---|
653 | }
|
---|
654 |
|
---|
655 | RefSymmSCMatrix
|
---|
656 | PetiteList::to_SO_basis(const RefSymmSCMatrix& a)
|
---|
657 | {
|
---|
658 | // SO basis is always blocked, so first make sure a is blocked
|
---|
659 | RefSymmSCMatrix aomatrix = dynamic_cast<BlockedSymmSCMatrix*>(a.pointer());
|
---|
660 | if (aomatrix.null()) {
|
---|
661 | aomatrix = gbs_->so_matrixkit()->symmmatrix(AO_basisdim());
|
---|
662 | aomatrix->convert(a);
|
---|
663 | }
|
---|
664 |
|
---|
665 | // if C1, then do nothing
|
---|
666 | if (c1_)
|
---|
667 | return aomatrix.copy();
|
---|
668 |
|
---|
669 | RefSymmSCMatrix somatrix(SO_basisdim(), gbs_->so_matrixkit());
|
---|
670 | somatrix.assign(0.0);
|
---|
671 | somatrix->accumulate_transform(aotoso(), aomatrix,
|
---|
672 | SCMatrix::TransposeTransform);
|
---|
673 |
|
---|
674 | return somatrix;
|
---|
675 | }
|
---|
676 |
|
---|
677 | RefSymmSCMatrix
|
---|
678 | PetiteList::to_AO_basis(const RefSymmSCMatrix& somatrix)
|
---|
679 | {
|
---|
680 | // if C1, then do nothing
|
---|
681 | if (c1_)
|
---|
682 | return somatrix.copy();
|
---|
683 |
|
---|
684 | RefSymmSCMatrix aomatrix(AO_basisdim(), gbs_->so_matrixkit());
|
---|
685 | aomatrix.assign(0.0);
|
---|
686 |
|
---|
687 | if (nirrep_ == ng_) // subgroup of d2h
|
---|
688 | aomatrix->accumulate_transform(aotoso(), somatrix);
|
---|
689 | else
|
---|
690 | aomatrix->accumulate_transform(aotoso().i(), somatrix,
|
---|
691 | SCMatrix::TransposeTransform);
|
---|
692 |
|
---|
693 | return aomatrix;
|
---|
694 | }
|
---|
695 |
|
---|
696 | RefSCMatrix
|
---|
697 | PetiteList::evecs_to_SO_basis(const RefSCMatrix& aoev)
|
---|
698 | {
|
---|
699 | ExEnv::err0() << indent
|
---|
700 | << "PetiteList::evecs_to_SO_basis: don't work yet\n";
|
---|
701 | abort();
|
---|
702 |
|
---|
703 | RefSCMatrix aoevecs = dynamic_cast<BlockedSCMatrix*>(aoev.pointer());
|
---|
704 | if (aoevecs.null()) {
|
---|
705 | aoevecs = gbs_->so_matrixkit()->matrix(AO_basisdim(), AO_basisdim());
|
---|
706 | aoevecs->convert(aoev);
|
---|
707 | }
|
---|
708 |
|
---|
709 | RefSCMatrix soev = aotoso().t() * aoevecs;
|
---|
710 | soev.print("soev");
|
---|
711 |
|
---|
712 | RefSCMatrix soevecs(SO_basisdim(), SO_basisdim(), gbs_->so_matrixkit());
|
---|
713 | soevecs->convert(soev);
|
---|
714 |
|
---|
715 | return soevecs;
|
---|
716 | }
|
---|
717 |
|
---|
718 | RefSCMatrix
|
---|
719 | PetiteList::evecs_to_AO_basis(const RefSCMatrix& soevecs)
|
---|
720 | {
|
---|
721 | // if C1, then do nothing
|
---|
722 | if (c1_)
|
---|
723 | return soevecs.copy();
|
---|
724 |
|
---|
725 | RefSCMatrix aoev = aotoso() * soevecs;
|
---|
726 |
|
---|
727 | return aoev;
|
---|
728 | }
|
---|
729 |
|
---|
730 | /////////////////////////////////////////////////////////////////////////////
|
---|
731 |
|
---|
732 | void
|
---|
733 | PetiteList::symmetrize(const RefSymmSCMatrix& skel,
|
---|
734 | const RefSymmSCMatrix& sym)
|
---|
735 | {
|
---|
736 | GaussianBasisSet& gbs = *gbs_.pointer();
|
---|
737 |
|
---|
738 | // SO basis is always blocked, so first make sure skel is blocked
|
---|
739 | RefSymmSCMatrix bskel = dynamic_cast<BlockedSymmSCMatrix*>(skel.pointer());
|
---|
740 | if (bskel.null()) {
|
---|
741 | bskel = gbs.so_matrixkit()->symmmatrix(AO_basisdim());
|
---|
742 | bskel->convert(skel);
|
---|
743 | }
|
---|
744 |
|
---|
745 | // if C1, then do nothing
|
---|
746 | if (c1_) {
|
---|
747 | sym.assign(bskel);
|
---|
748 | return;
|
---|
749 | }
|
---|
750 |
|
---|
751 | int b,c;
|
---|
752 |
|
---|
753 | CharacterTable ct = gbs.molecule()->point_group()->char_table();
|
---|
754 |
|
---|
755 | RefSCMatrix aoso = aotoso();
|
---|
756 | BlockedSCMatrix *lu = dynamic_cast<BlockedSCMatrix*>(aoso.pointer());
|
---|
757 |
|
---|
758 | for (b=0; b < lu->nblocks(); b++) {
|
---|
759 | if (lu->block(b).null())
|
---|
760 | continue;
|
---|
761 |
|
---|
762 | int ir = ct.which_irrep(b);
|
---|
763 |
|
---|
764 | double skal = (double)ct.order()/(double)ct.gamma(ir).degeneracy();
|
---|
765 | skal = sqrt(skal);
|
---|
766 | lu->block(b).scale(skal);
|
---|
767 | }
|
---|
768 |
|
---|
769 | sym.assign(0.0);
|
---|
770 | sym.accumulate_transform(aoso,bskel,SCMatrix::TransposeTransform);
|
---|
771 | aoso=0;
|
---|
772 |
|
---|
773 | BlockedSymmSCMatrix *la = dynamic_cast<BlockedSymmSCMatrix*>(sym.pointer());
|
---|
774 |
|
---|
775 | // loop through blocks and finish symmetrizing degenerate blocks
|
---|
776 | for (b=0; b < la->nblocks(); b++) {
|
---|
777 | if (la->block(b).null())
|
---|
778 | continue;
|
---|
779 |
|
---|
780 | int ir=ct.which_irrep(b);
|
---|
781 |
|
---|
782 | if (ct.gamma(ir).degeneracy()==1)
|
---|
783 | continue;
|
---|
784 |
|
---|
785 | if (ct.gamma(ir).complex()) {
|
---|
786 | int nbf = nbf_in_ir_[ir]/2;
|
---|
787 |
|
---|
788 | RefSymmSCMatrix irrep = la->block(b).get_subblock(0, nbf-1);
|
---|
789 | irrep.accumulate(la->block(b).get_subblock(nbf, 2*nbf-1));
|
---|
790 |
|
---|
791 | RefSCMatrix sub = la->block(b).get_subblock(nbf, 2*nbf-1, 0, nbf-1);
|
---|
792 | RefSCMatrix subt = sub.t();
|
---|
793 | subt.scale(-1.0);
|
---|
794 | sub.accumulate(subt);
|
---|
795 | subt=0;
|
---|
796 |
|
---|
797 | la->block(b).assign_subblock(irrep, 0, nbf-1);
|
---|
798 | la->block(b).assign_subblock(irrep,nbf, 2*nbf-1);
|
---|
799 | la->block(b).assign_subblock(sub, nbf, 2*nbf-1, 0, nbf-1);
|
---|
800 |
|
---|
801 | } else {
|
---|
802 | RefSymmSCMatrix irrep = la->block(b).copy();
|
---|
803 | for (c=1; c < ct.gamma(ir).degeneracy(); c++)
|
---|
804 | irrep.accumulate(la->block(b+c));
|
---|
805 |
|
---|
806 | for (c=0; c < ct.gamma(ir).degeneracy(); c++)
|
---|
807 | la->block(b+c).assign(irrep);
|
---|
808 |
|
---|
809 | b += ct.gamma(ir).degeneracy()-1;
|
---|
810 | }
|
---|
811 | }
|
---|
812 | }
|
---|
813 |
|
---|
814 | /////////////////////////////////////////////////////////////////////////////
|
---|
815 |
|
---|
816 | // Local Variables:
|
---|
817 | // mode: c++
|
---|
818 | // c-file-style: "ETS"
|
---|
819 | // End:
|
---|