// // tors.cc // // Modifications are // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Edward Seidl // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // /* tors.cc -- implementation of the torsion internal coordinate class * * THIS SOFTWARE FITS THE DESCRIPTION IN THE U.S. COPYRIGHT ACT OF A * "UNITED STATES GOVERNMENT WORK". IT WAS WRITTEN AS A PART OF THE * AUTHOR'S OFFICIAL DUTIES AS A GOVERNMENT EMPLOYEE. THIS MEANS IT * CANNOT BE COPYRIGHTED. THIS SOFTWARE IS FREELY AVAILABLE TO THE * PUBLIC FOR USE WITHOUT A COPYRIGHT NOTICE, AND THERE ARE NO * RESTRICTIONS ON ITS USE, NOW OR SUBSEQUENTLY. * * Author: * E. T. Seidl * Bldg. 12A, Rm. 2033 * Computer Systems Laboratory * Division of Computer Research and Technology * National Institutes of Health * Bethesda, Maryland 20892 * Internet: seidl@alw.nih.gov * February, 1993 */ #include #include #include #include using namespace sc; static ClassDesc TorsSimpleCo_cd( typeid(TorsSimpleCo),"TorsSimpleCo",1,"public SimpleCo", create, create, create); SimpleCo_IMPL(TorsSimpleCo) TorsSimpleCo::TorsSimpleCo() : SimpleCo(4) {} TorsSimpleCo::TorsSimpleCo(const TorsSimpleCo& s) : SimpleCo(4) { *this=s; } TorsSimpleCo::TorsSimpleCo(const char *refr, int a1, int a2, int a3, int a4) : SimpleCo(4,refr) { atoms[0]=a1; atoms[1]=a2; atoms[2]=a3; atoms[3]=a4; } TorsSimpleCo::~TorsSimpleCo() { } TorsSimpleCo::TorsSimpleCo(const Ref &kv): SimpleCo(kv,4) { } TorsSimpleCo& TorsSimpleCo::operator=(const TorsSimpleCo& s) { if(label_) delete[] label_; label_=new char[strlen(s.label_)+1]; strcpy(label_,s.label_); atoms[0]=s.atoms[0]; atoms[1]=s.atoms[1]; atoms[2]=s.atoms[2]; atoms[3]=s.atoms[3]; return *this; } double TorsSimpleCo::calc_intco(Molecule& m, double *bmat, double coeff) { int a=atoms[0]-1; int b=atoms[1]-1; int c=atoms[2]-1; int d=atoms[3]-1; SCVector3 u1,u2,u3,z1,z2; SCVector3 ra(m.r(a)); SCVector3 rb(m.r(b)); SCVector3 rc(m.r(c)); SCVector3 rd(m.r(d)); u1 = ra-rb; u1.normalize(); u2 = rc-rb; u2.normalize(); u3 = rc-rd; u3.normalize(); z1 = u1.perp_unit(u2); z2 = u3.perp_unit(u2); double co=z1.dot(z2); u1[0]=z1[1]*z2[2]-z1[2]*z2[1]; u1[1]=z1[2]*z2[0]-z1[0]*z2[2]; u1[2]=z1[0]*z2[1]-z1[1]*z2[0]; double co2=u1.dot(u2); if (co < -1.0) co= -1.0; if (co > 1.0) co = 1.0; // save the old value of the torsion so we can make sure the discontinuity // at -pi/2 doesn't bite us double oldval = -value_; value_=(co2<0) ? -acos(-co) : acos(-co); // ok, we want omega between 3*pi/2 and -pi/2, so if omega is > pi/2 // (omega is eventually -omega), then knock 2pi off of it if(value_ > pih) value_ -= tpi; // the following tests to see if the new coordinate has crossed the // 3pi/2 <--> -pi/2 boundary...if so, then we add or subtract 2pi as // needed to prevent the transformation from internals to cartesians // from blowing up while(oldval-value_ > (pi + 1.0e-8)) value_ += tpi; while(oldval-value_ < -(pi + 1.0e-8)) value_ -= tpi; value_ = -value_; if (bmat) { double uu,vv,ww,zz; u1 = ra-rb; u1.normalize(); u2 = rc-rb; u2.normalize(); u3 = rc-rd; u3.normalize(); z1 = u1.perp_unit(u2); z2 = u3.perp_unit(u2); co=u1.dot(u2); double si=s2(co); co2=u2.dot(u3); double si2=s2(co2); double r1 = ra.dist(rb); double r2 = rc.dist(rb); double r3 = rc.dist(rd); #if OLD_BMAT r1 *= bohr; r2 *= bohr; r3 *= bohr; #endif for (int j=0; j < 3; j++) { if (si > 1.0e-5) uu = z1[j]/(r1*si); else uu = 0.0; if (si2 > 1.0e-5) zz = z2[j]/(r3*si2); else zz = 0.0; vv = (r1*co/r2-1.0)*uu-zz*r3*co2/r2; ww = -uu-vv-zz; bmat[a*3+j] += coeff*uu; bmat[b*3+j] += coeff*vv; bmat[c*3+j] += coeff*ww; bmat[d*3+j] += coeff*zz; } } return value_; } double TorsSimpleCo::calc_force_con(Molecule& m) { int a=atoms[1]-1; int b=atoms[2]-1; double rad_ab = m.atominfo()->atomic_radius(m.Z(a)) + m.atominfo()->atomic_radius(m.Z(b)); SCVector3 ra(m.r(a)); SCVector3 rb(m.r(b)); double r_ab = ra.dist(rb); double k = 0.0015 + 14.0*pow(1.0,0.57)/pow((rad_ab*r_ab),4.0) * exp(-2.85*(r_ab-rad_ab)); #if OLD_BMAT // return force constant in mdyn*ang/rad^2 return k*4.359813653; #else return k; #endif } const char * TorsSimpleCo::ctype() const { return "TORS"; } double TorsSimpleCo::radians() const { return value_; } double TorsSimpleCo::degrees() const { return value_*rtd; } double TorsSimpleCo::preferred_value() const { return value_*rtd; } ///////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: c++ // c-file-style: "ETS" // End: