// // stors.cc // // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Curtis Janssen // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // #include #include #include #include #include #include using namespace sc; static ClassDesc ScaledTorsSimpleCo_cd( typeid(ScaledTorsSimpleCo),"ScaledTorsSimpleCo",1,"public SimpleCo", create, create, create); SimpleCo_IMPL_eq(ScaledTorsSimpleCo) ScaledTorsSimpleCo::ScaledTorsSimpleCo(StateIn&s): SimpleCo(s) { s.get(old_torsion_); } void ScaledTorsSimpleCo::save_data_state(StateOut&s) { SimpleCo::save_data_state(s); s.put(old_torsion_); } ScaledTorsSimpleCo::ScaledTorsSimpleCo() : SimpleCo(4) { old_torsion_ = 0.0; } ScaledTorsSimpleCo::ScaledTorsSimpleCo(const ScaledTorsSimpleCo& s) : SimpleCo(4) { *this=s; old_torsion_ = 0.0; } ScaledTorsSimpleCo::ScaledTorsSimpleCo(const char *refr, int a1, int a2, int a3, int a4) : SimpleCo(4,refr) { atoms[0]=a1; atoms[1]=a2; atoms[2]=a3; atoms[3]=a4; old_torsion_ = 0.0; } ScaledTorsSimpleCo::~ScaledTorsSimpleCo() { } ScaledTorsSimpleCo::ScaledTorsSimpleCo(const Ref &kv): SimpleCo(kv,4) { old_torsion_ = 0.0; } ScaledTorsSimpleCo& ScaledTorsSimpleCo::operator=(const ScaledTorsSimpleCo& s) { if(label_) delete[] label_; label_=new char[strlen(s.label_)+1]; strcpy(label_,s.label_); atoms[0]=s.atoms[0]; atoms[1]=s.atoms[1]; atoms[2]=s.atoms[2]; atoms[3]=s.atoms[3]; return *this; } double ScaledTorsSimpleCo::calc_intco(Molecule& m, double *bmat, double coeff) { int a=atoms[0]-1; int b=atoms[1]-1; int c=atoms[2]-1; int d=atoms[3]-1; SCVector3 u1,u2,u3,z1,z2; SCVector3 ra(m.r(a)), rb(m.r(b)), rc(m.r(c)), rd(m.r(d)); double rab, rbc, rcd; u1 = ra - rb; rab = u1.norm(); u1 *= 1.0/rab; u2 = rc - rb; rbc = u2.norm(); u2 *= 1.0/rbc; u3 = rc - rd; rcd = u3.norm(); u3 *= 1.0/rcd; z1 = u1.perp_unit(u2); z2 = u3.perp_unit(u2); double co=z1.dot(z2); SCVector3 z1xz2 = z1.cross(z2); double co2=z1xz2.dot(u2); if (co < -1.0) co= -1.0; if (co > 1.0) co = 1.0; double tors_value = (co2<0) ? acos(-co) : -acos(-co); // ok, we want omega between 3*pi/2 and -pi/2, so if omega is > pi/2 // (omega is eventually -omega), then knock 2pi off of it if(tors_value > pih) tors_value -= tpi; // the following tests to see if the new coordinate has crossed the // 3pi/2 <--> -pi/2 boundary...if so, then we add or subtract 2pi as // needed to prevent the transformation from internals to cartesians // from blowing up while(old_torsion_ - tors_value > pi + 1.0e-6) tors_value += tpi; while(old_torsion_ - tors_value < -(pi + 1.0e-6)) tors_value -= tpi; // This differs from a normal torsion by the factor // scalar(u1,u2)*scalar(u2,u3). This prevents the // value from being ill defined at nearly linear geometries. double cos_abc = u1.dot(u2); double cos_bcd = u2.dot(u3); double sin_abc=s2(cos_abc); double sin_bcd=s2(cos_bcd); double colin = sin_abc * sin_bcd; value_ = tors_value * colin; if (bmat) { double uu,vv,ww,zz; double r1 = rab; double r2 = rbc; double r3 = rcd; #if OLD_BMAT r1 *= bohr; r2 *= bohr; r3 *= bohr; #endif for (int j=0; j < 3; j++) { // compute the derivatives for a normal torsion if (sin_abc > 1.0e-5) uu = z1[j]/(r1*sin_abc); else uu = 0.0; if (sin_bcd > 1.0e-5) zz = z2[j]/(r3*sin_bcd); else zz = 0.0; vv = (r1*cos_abc/r2-1.0)*uu-zz*r3*cos_bcd/r2; // use the chain rule to get the values for the scaled torsion static int first = 0; if (first) { ExEnv::out0() << indent << scprintf("uu = %12.8f colin = %12.8f sin_abc = %12.8f\n", uu, colin, sin_abc) << indent << scprintf("tors_value = %12.8f (%12.8f deg)\n", tors_value, tors_value * 180.0/M_PI) << indent << scprintf("cos_abc = %12.8f cos_bcd = %12.8f\n", cos_abc, cos_bcd); } uu = uu*colin; if (sin_abc > 1.0e-5) uu += tors_value * (-cos_abc/sin_abc) * sin_bcd * (u2[j] - cos_abc * u1[j])/rab; vv = vv*colin; if (sin_abc > 1.0e-5) vv += tors_value * (-cos_abc/sin_abc) * sin_bcd * ((-u2[j] + cos_abc*u1[j])/rab +(-u1[j] + cos_abc*u2[j])/rbc); if (sin_bcd > 1.0e-5) vv += tors_value * (-cos_bcd/sin_bcd) * sin_abc * (-u3[j] + cos_bcd * u2[j])/rbc; zz = zz*colin; if (sin_bcd > 1.0e-5) zz += tors_value * (-cos_bcd/sin_bcd) * sin_abc * (-u2[j] + cos_bcd * u3[j])/rcd; ww = -uu-vv-zz; bmat[a*3+j] += coeff*uu; bmat[b*3+j] += coeff*vv; bmat[c*3+j] += coeff*ww; bmat[d*3+j] += coeff*zz; if (first) first = 0; } } // save the old value of the torsion so we can make sure the discontinuity // at -pi/2 doesn't bite us old_torsion_ = tors_value; return value_; } double ScaledTorsSimpleCo::calc_force_con(Molecule& m) { int a=atoms[1]-1; int b=atoms[2]-1; SCVector3 ra(m.r(a)); SCVector3 rb(m.r(b)); double rad_ab = m.atominfo()->atomic_radius(m.Z(a)) + m.atominfo()->atomic_radius(m.Z(b)); double r_ab = ra.dist(rb); double k = 0.0015 + 14.0*pow(1.0,0.57)/pow((rad_ab*r_ab),4.0) * exp(-2.85*(r_ab-rad_ab)); #if OLD_BMAT // return force constant in mdyn*ang/rad^2 return k*4.359813653; #else return k; #endif } const char * ScaledTorsSimpleCo::ctype() const { return "STOR"; } double ScaledTorsSimpleCo::radians() const { return value_; } double ScaledTorsSimpleCo::degrees() const { return value_*rtd; } double ScaledTorsSimpleCo::preferred_value() const { return value_*rtd; } ///////////////////////////////////////////////////////////////////////////// // Local Variables: // mode: c++ // c-file-style: "CLJ" // End: