[0b990d] | 1 | //
|
---|
| 2 | // stors.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #include <string.h>
|
---|
| 29 | #include <util/misc/math.h>
|
---|
| 30 |
|
---|
| 31 | #include <util/misc/formio.h>
|
---|
| 32 | #include <util/state/stateio.h>
|
---|
| 33 | #include <chemistry/molecule/simple.h>
|
---|
| 34 | #include <chemistry/molecule/localdef.h>
|
---|
| 35 |
|
---|
| 36 | using namespace sc;
|
---|
| 37 |
|
---|
| 38 | static ClassDesc ScaledTorsSimpleCo_cd(
|
---|
| 39 | typeid(ScaledTorsSimpleCo),"ScaledTorsSimpleCo",1,"public SimpleCo",
|
---|
| 40 | create<ScaledTorsSimpleCo>, create<ScaledTorsSimpleCo>, create<ScaledTorsSimpleCo>);
|
---|
| 41 | SimpleCo_IMPL_eq(ScaledTorsSimpleCo)
|
---|
| 42 |
|
---|
| 43 | ScaledTorsSimpleCo::ScaledTorsSimpleCo(StateIn&s):
|
---|
| 44 | SimpleCo(s)
|
---|
| 45 | {
|
---|
| 46 | s.get(old_torsion_);
|
---|
| 47 | }
|
---|
| 48 |
|
---|
| 49 | void
|
---|
| 50 | ScaledTorsSimpleCo::save_data_state(StateOut&s)
|
---|
| 51 | {
|
---|
| 52 | SimpleCo::save_data_state(s);
|
---|
| 53 | s.put(old_torsion_);
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | ScaledTorsSimpleCo::ScaledTorsSimpleCo() : SimpleCo(4)
|
---|
| 57 | {
|
---|
| 58 | old_torsion_ = 0.0;
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | ScaledTorsSimpleCo::ScaledTorsSimpleCo(const ScaledTorsSimpleCo& s)
|
---|
| 62 | : SimpleCo(4)
|
---|
| 63 | {
|
---|
| 64 | *this=s;
|
---|
| 65 | old_torsion_ = 0.0;
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 | ScaledTorsSimpleCo::ScaledTorsSimpleCo(const char *refr,
|
---|
| 69 | int a1, int a2, int a3, int a4)
|
---|
| 70 | : SimpleCo(4,refr)
|
---|
| 71 | {
|
---|
| 72 | atoms[0]=a1; atoms[1]=a2; atoms[2]=a3; atoms[3]=a4;
|
---|
| 73 | old_torsion_ = 0.0;
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | ScaledTorsSimpleCo::~ScaledTorsSimpleCo()
|
---|
| 77 | {
|
---|
| 78 | }
|
---|
| 79 |
|
---|
| 80 | ScaledTorsSimpleCo::ScaledTorsSimpleCo(const Ref<KeyVal> &kv):
|
---|
| 81 | SimpleCo(kv,4)
|
---|
| 82 | {
|
---|
| 83 | old_torsion_ = 0.0;
|
---|
| 84 | }
|
---|
| 85 |
|
---|
| 86 | ScaledTorsSimpleCo&
|
---|
| 87 | ScaledTorsSimpleCo::operator=(const ScaledTorsSimpleCo& s)
|
---|
| 88 | {
|
---|
| 89 | if(label_) delete[] label_;
|
---|
| 90 | label_=new char[strlen(s.label_)+1];
|
---|
| 91 | strcpy(label_,s.label_);
|
---|
| 92 | atoms[0]=s.atoms[0]; atoms[1]=s.atoms[1]; atoms[2]=s.atoms[2];
|
---|
| 93 | atoms[3]=s.atoms[3];
|
---|
| 94 | return *this;
|
---|
| 95 | }
|
---|
| 96 |
|
---|
| 97 | double
|
---|
| 98 | ScaledTorsSimpleCo::calc_intco(Molecule& m, double *bmat, double coeff)
|
---|
| 99 | {
|
---|
| 100 | int a=atoms[0]-1; int b=atoms[1]-1; int c=atoms[2]-1; int d=atoms[3]-1;
|
---|
| 101 | SCVector3 u1,u2,u3,z1,z2;
|
---|
| 102 |
|
---|
| 103 | SCVector3 ra(m.r(a)), rb(m.r(b)), rc(m.r(c)), rd(m.r(d));
|
---|
| 104 |
|
---|
| 105 | double rab, rbc, rcd;
|
---|
| 106 | u1 = ra - rb; rab = u1.norm(); u1 *= 1.0/rab;
|
---|
| 107 | u2 = rc - rb; rbc = u2.norm(); u2 *= 1.0/rbc;
|
---|
| 108 | u3 = rc - rd; rcd = u3.norm(); u3 *= 1.0/rcd;
|
---|
| 109 |
|
---|
| 110 | z1 = u1.perp_unit(u2);
|
---|
| 111 | z2 = u3.perp_unit(u2);
|
---|
| 112 |
|
---|
| 113 | double co=z1.dot(z2);
|
---|
| 114 | SCVector3 z1xz2 = z1.cross(z2);
|
---|
| 115 | double co2=z1xz2.dot(u2);
|
---|
| 116 |
|
---|
| 117 | if (co < -1.0) co= -1.0;
|
---|
| 118 | if (co > 1.0) co = 1.0;
|
---|
| 119 |
|
---|
| 120 | double tors_value = (co2<0) ? acos(-co) : -acos(-co);
|
---|
| 121 |
|
---|
| 122 | // ok, we want omega between 3*pi/2 and -pi/2, so if omega is > pi/2
|
---|
| 123 | // (omega is eventually -omega), then knock 2pi off of it
|
---|
| 124 | if(tors_value > pih) tors_value -= tpi;
|
---|
| 125 |
|
---|
| 126 | // the following tests to see if the new coordinate has crossed the
|
---|
| 127 | // 3pi/2 <--> -pi/2 boundary...if so, then we add or subtract 2pi as
|
---|
| 128 | // needed to prevent the transformation from internals to cartesians
|
---|
| 129 | // from blowing up
|
---|
| 130 | while(old_torsion_ - tors_value > pi + 1.0e-6) tors_value += tpi;
|
---|
| 131 | while(old_torsion_ - tors_value < -(pi + 1.0e-6)) tors_value -= tpi;
|
---|
| 132 |
|
---|
| 133 | // This differs from a normal torsion by the factor
|
---|
| 134 | // scalar(u1,u2)*scalar(u2,u3). This prevents the
|
---|
| 135 | // value from being ill defined at nearly linear geometries.
|
---|
| 136 | double cos_abc = u1.dot(u2);
|
---|
| 137 | double cos_bcd = u2.dot(u3);
|
---|
| 138 | double sin_abc=s2(cos_abc);
|
---|
| 139 | double sin_bcd=s2(cos_bcd);
|
---|
| 140 | double colin = sin_abc * sin_bcd;
|
---|
| 141 | value_ = tors_value * colin;
|
---|
| 142 |
|
---|
| 143 | if (bmat) {
|
---|
| 144 | double uu,vv,ww,zz;
|
---|
| 145 | double r1 = rab;
|
---|
| 146 | double r2 = rbc;
|
---|
| 147 | double r3 = rcd;
|
---|
| 148 | #if OLD_BMAT
|
---|
| 149 | r1 *= bohr;
|
---|
| 150 | r2 *= bohr;
|
---|
| 151 | r3 *= bohr;
|
---|
| 152 | #endif
|
---|
| 153 | for (int j=0; j < 3; j++) {
|
---|
| 154 | // compute the derivatives for a normal torsion
|
---|
| 155 | if (sin_abc > 1.0e-5) uu = z1[j]/(r1*sin_abc);
|
---|
| 156 | else uu = 0.0;
|
---|
| 157 | if (sin_bcd > 1.0e-5) zz = z2[j]/(r3*sin_bcd);
|
---|
| 158 | else zz = 0.0;
|
---|
| 159 | vv = (r1*cos_abc/r2-1.0)*uu-zz*r3*cos_bcd/r2;
|
---|
| 160 | // use the chain rule to get the values for the scaled torsion
|
---|
| 161 | static int first = 0;
|
---|
| 162 | if (first) {
|
---|
| 163 | ExEnv::out0() << indent
|
---|
| 164 | << scprintf("uu = %12.8f colin = %12.8f sin_abc = %12.8f\n",
|
---|
| 165 | uu, colin, sin_abc)
|
---|
| 166 | << indent
|
---|
| 167 | << scprintf("tors_value = %12.8f (%12.8f deg)\n", tors_value,
|
---|
| 168 | tors_value * 180.0/M_PI)
|
---|
| 169 | << indent
|
---|
| 170 | << scprintf("cos_abc = %12.8f cos_bcd = %12.8f\n",
|
---|
| 171 | cos_abc, cos_bcd);
|
---|
| 172 | }
|
---|
| 173 | uu = uu*colin;
|
---|
| 174 | if (sin_abc > 1.0e-5) uu += tors_value
|
---|
| 175 | * (-cos_abc/sin_abc)
|
---|
| 176 | * sin_bcd
|
---|
| 177 | * (u2[j] - cos_abc * u1[j])/rab;
|
---|
| 178 | vv = vv*colin;
|
---|
| 179 | if (sin_abc > 1.0e-5) vv += tors_value
|
---|
| 180 | * (-cos_abc/sin_abc)
|
---|
| 181 | * sin_bcd
|
---|
| 182 | * ((-u2[j] + cos_abc*u1[j])/rab
|
---|
| 183 | +(-u1[j] + cos_abc*u2[j])/rbc);
|
---|
| 184 | if (sin_bcd > 1.0e-5) vv += tors_value
|
---|
| 185 | * (-cos_bcd/sin_bcd)
|
---|
| 186 | * sin_abc
|
---|
| 187 | * (-u3[j] + cos_bcd * u2[j])/rbc;
|
---|
| 188 | zz = zz*colin;
|
---|
| 189 | if (sin_bcd > 1.0e-5) zz += tors_value
|
---|
| 190 | * (-cos_bcd/sin_bcd)
|
---|
| 191 | * sin_abc
|
---|
| 192 | * (-u2[j] + cos_bcd * u3[j])/rcd;
|
---|
| 193 | ww = -uu-vv-zz;
|
---|
| 194 | bmat[a*3+j] += coeff*uu;
|
---|
| 195 | bmat[b*3+j] += coeff*vv;
|
---|
| 196 | bmat[c*3+j] += coeff*ww;
|
---|
| 197 | bmat[d*3+j] += coeff*zz;
|
---|
| 198 | if (first) first = 0;
|
---|
| 199 | }
|
---|
| 200 | }
|
---|
| 201 |
|
---|
| 202 | // save the old value of the torsion so we can make sure the discontinuity
|
---|
| 203 | // at -pi/2 doesn't bite us
|
---|
| 204 | old_torsion_ = tors_value;
|
---|
| 205 | return value_;
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | double
|
---|
| 209 | ScaledTorsSimpleCo::calc_force_con(Molecule& m)
|
---|
| 210 | {
|
---|
| 211 | int a=atoms[1]-1; int b=atoms[2]-1;
|
---|
| 212 |
|
---|
| 213 | SCVector3 ra(m.r(a));
|
---|
| 214 | SCVector3 rb(m.r(b));
|
---|
| 215 |
|
---|
| 216 | double rad_ab = m.atominfo()->atomic_radius(m.Z(a))
|
---|
| 217 | + m.atominfo()->atomic_radius(m.Z(b));
|
---|
| 218 |
|
---|
| 219 | double r_ab = ra.dist(rb);
|
---|
| 220 |
|
---|
| 221 | double k = 0.0015 + 14.0*pow(1.0,0.57)/pow((rad_ab*r_ab),4.0) *
|
---|
| 222 | exp(-2.85*(r_ab-rad_ab));
|
---|
| 223 |
|
---|
| 224 | #if OLD_BMAT
|
---|
| 225 | // return force constant in mdyn*ang/rad^2
|
---|
| 226 | return k*4.359813653;
|
---|
| 227 | #else
|
---|
| 228 | return k;
|
---|
| 229 | #endif
|
---|
| 230 | }
|
---|
| 231 |
|
---|
| 232 | const char *
|
---|
| 233 | ScaledTorsSimpleCo::ctype() const
|
---|
| 234 | {
|
---|
| 235 | return "STOR";
|
---|
| 236 | }
|
---|
| 237 |
|
---|
| 238 | double
|
---|
| 239 | ScaledTorsSimpleCo::radians() const
|
---|
| 240 | {
|
---|
| 241 | return value_;
|
---|
| 242 | }
|
---|
| 243 |
|
---|
| 244 | double
|
---|
| 245 | ScaledTorsSimpleCo::degrees() const
|
---|
| 246 | {
|
---|
| 247 | return value_*rtd;
|
---|
| 248 | }
|
---|
| 249 |
|
---|
| 250 | double
|
---|
| 251 | ScaledTorsSimpleCo::preferred_value() const
|
---|
| 252 | {
|
---|
| 253 | return value_*rtd;
|
---|
| 254 | }
|
---|
| 255 |
|
---|
| 256 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 257 |
|
---|
| 258 | // Local Variables:
|
---|
| 259 | // mode: c++
|
---|
| 260 | // c-file-style: "CLJ"
|
---|
| 261 | // End:
|
---|