[0b990d] | 1 | //
|
---|
| 2 | // molsymm.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1997 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #include <util/misc/math.h>
|
---|
| 29 |
|
---|
| 30 | #include <util/misc/formio.h>
|
---|
| 31 | #include <chemistry/molecule/molecule.h>
|
---|
| 32 |
|
---|
| 33 | using namespace std;
|
---|
| 34 | using namespace sc;
|
---|
| 35 |
|
---|
| 36 | #undef DEBUG
|
---|
| 37 |
|
---|
| 38 | void
|
---|
| 39 | Molecule::clear_symmetry_info()
|
---|
| 40 | {
|
---|
| 41 | for (int i=0; i<nuniq_; i++) {
|
---|
| 42 | delete[] equiv_[i];
|
---|
| 43 | }
|
---|
| 44 | delete[] equiv_;
|
---|
| 45 | delete[] nequiv_;
|
---|
| 46 | delete[] atom_to_uniq_;
|
---|
| 47 | nuniq_ = 0;
|
---|
| 48 | equiv_ = 0;
|
---|
| 49 | nequiv_ = 0;
|
---|
| 50 | atom_to_uniq_ = 0;
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | void
|
---|
| 54 | Molecule::init_symmetry_info(double tol)
|
---|
| 55 | {
|
---|
| 56 | if (equiv_)
|
---|
| 57 | clear_symmetry_info();
|
---|
| 58 |
|
---|
| 59 | if (natom() == 0) {
|
---|
| 60 | nuniq_ = 0;
|
---|
| 61 | equiv_ = 0;
|
---|
| 62 | nequiv_ = 0;
|
---|
| 63 | atom_to_uniq_ = 0;
|
---|
| 64 | return;
|
---|
| 65 | }
|
---|
| 66 |
|
---|
| 67 | nequiv_ = new int[natom()];
|
---|
| 68 | atom_to_uniq_ = new int[natom()];
|
---|
| 69 | equiv_ = new int*[natom()];
|
---|
| 70 |
|
---|
| 71 | if (!strcmp(point_group()->symbol(),"c1")) {
|
---|
| 72 | nuniq_ = natom();
|
---|
| 73 | for (int i=0; i < natom(); i++) {
|
---|
| 74 | nequiv_[i]=1;
|
---|
| 75 | equiv_[i]=new int[1];
|
---|
| 76 | equiv_[i][0]=i;
|
---|
| 77 | atom_to_uniq_[i]=i;
|
---|
| 78 | }
|
---|
| 79 | return;
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | // the first atom is always unique
|
---|
| 83 | nuniq_ = 1;
|
---|
| 84 | nequiv_[0]=1;
|
---|
| 85 | equiv_[0] = new int[1];
|
---|
| 86 | equiv_[0][0]=0;
|
---|
| 87 | atom_to_uniq_[0]=0;
|
---|
| 88 |
|
---|
| 89 | CharacterTable ct = point_group()->char_table();
|
---|
| 90 |
|
---|
| 91 | SCVector3 ac;
|
---|
| 92 | SymmetryOperation so;
|
---|
| 93 | SCVector3 np;
|
---|
| 94 |
|
---|
| 95 | // find the equivalent atoms
|
---|
| 96 | int i;
|
---|
| 97 | for (i=1; i < natom(); i++) {
|
---|
| 98 | ac = r(i);
|
---|
| 99 | int i_is_unique=1;
|
---|
| 100 | int i_equiv=0;
|
---|
| 101 |
|
---|
| 102 | // apply all symmetry ops in the group to the atom
|
---|
| 103 | for (int g=0; g < ct.order(); g++) {
|
---|
| 104 | so = ct.symm_operation(g);
|
---|
| 105 | for (int ii=0; ii < 3; ii++) {
|
---|
| 106 | np[ii]=0;
|
---|
| 107 | for (int jj=0; jj < 3; jj++) np[ii] += so(ii,jj) * ac[jj];
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | // see if the transformed atom is equivalent to a unique atom
|
---|
| 111 | for (int j=0; j<nuniq_; j++) {
|
---|
| 112 | int uniq = equiv_[j][0];
|
---|
| 113 | SCVector3 aj(r(uniq));
|
---|
| 114 | if (np.dist(aj) < tol
|
---|
| 115 | && Z(uniq) == Z(i)
|
---|
| 116 | && fabs(charge(uniq)-charge(i)) < tol
|
---|
| 117 | && fabs(mass(uniq)-mass(i)) < tol) {
|
---|
| 118 | i_is_unique = 0;
|
---|
| 119 | i_equiv = j;
|
---|
| 120 | break;
|
---|
| 121 | }
|
---|
| 122 | }
|
---|
| 123 | }
|
---|
| 124 | if (i_is_unique) {
|
---|
| 125 | nequiv_[nuniq_]=1;
|
---|
| 126 | equiv_[nuniq_]=new int[1];
|
---|
| 127 | equiv_[nuniq_][0]=i;
|
---|
| 128 | atom_to_uniq_[i] = nuniq_;
|
---|
| 129 | nuniq_++;
|
---|
| 130 | }
|
---|
| 131 | else {
|
---|
| 132 | int *tmp = new int[nequiv_[i_equiv]+1];
|
---|
| 133 | memcpy(tmp,equiv_[i_equiv],nequiv_[i_equiv]*sizeof(int));
|
---|
| 134 | delete[] equiv_[i_equiv];
|
---|
| 135 | equiv_[i_equiv] = tmp;
|
---|
| 136 | equiv_[i_equiv][nequiv_[i_equiv]] = i;
|
---|
| 137 | nequiv_[i_equiv]++;
|
---|
| 138 | atom_to_uniq_[i] = i_equiv;
|
---|
| 139 | }
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | // The first atom in the equiv list is considered the primary unique
|
---|
| 143 | // atom. Just to make things look pretty, make the atom with the most
|
---|
| 144 | // zeros in its x, y, z coordinate the unique atom. Nothing else should
|
---|
| 145 | // rely on this being done.
|
---|
| 146 | double ztol=1.0e-5;
|
---|
| 147 | for (i=0; i < nuniq_; i++) {
|
---|
| 148 | int maxzero = 0;
|
---|
| 149 | int jmaxzero = 0;
|
---|
| 150 | for (int j=0; j<nequiv_[i]; j++) {
|
---|
| 151 | int nzero = 0;
|
---|
| 152 | for (int k=0; k<3; k++) if (fabs(r(equiv_[i][j],k)) < ztol) nzero++;
|
---|
| 153 | if (nzero > maxzero) {
|
---|
| 154 | maxzero = nzero;
|
---|
| 155 | jmaxzero = j;
|
---|
| 156 | }
|
---|
| 157 | }
|
---|
| 158 | int tmp = equiv_[i][jmaxzero];
|
---|
| 159 | equiv_[i][jmaxzero] = equiv_[i][0];
|
---|
| 160 | equiv_[i][0] = tmp;
|
---|
| 161 | }
|
---|
| 162 | }
|
---|
| 163 |
|
---|
| 164 | int
|
---|
| 165 | Molecule::has_inversion(SCVector3 &origin, double tol) const
|
---|
| 166 | {
|
---|
| 167 | for (int i=0; i<natom(); i++) {
|
---|
| 168 | SCVector3 inverted = origin-(SCVector3(r(i))-origin);
|
---|
| 169 | int atom = atom_at_position(inverted.data(), tol);
|
---|
| 170 | if (atom < 0
|
---|
| 171 | || Z(atom) != Z(i)
|
---|
| 172 | || fabs(charge(atom)-charge(i)) > tol
|
---|
| 173 | || fabs(mass(atom)-mass(i)) > tol) {
|
---|
| 174 | return 0;
|
---|
| 175 | }
|
---|
| 176 | }
|
---|
| 177 | return 1;
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | int
|
---|
| 181 | Molecule::is_plane(SCVector3 &origin, SCVector3 &uperp, double tol) const
|
---|
| 182 | {
|
---|
| 183 | for (int i=0; i<natom(); i++) {
|
---|
| 184 | SCVector3 A = SCVector3(r(i))-origin;
|
---|
| 185 | SCVector3 Apar = uperp.dot(A) * uperp;
|
---|
| 186 | SCVector3 Aperp = A - Apar;
|
---|
| 187 | A = (Aperp - Apar) + origin;
|
---|
| 188 | int atom = atom_at_position(A.data(), tol);
|
---|
| 189 | if (atom < 0
|
---|
| 190 | || Z(atom) != Z(i)
|
---|
| 191 | || fabs(charge(atom)-charge(i)) > tol
|
---|
| 192 | || fabs(mass(atom)-mass(i)) > tol) {
|
---|
| 193 | //ExEnv::outn() << " is_plane: rejected (atom " << i << ")" << endl;
|
---|
| 194 | return 0;
|
---|
| 195 | }
|
---|
| 196 | }
|
---|
| 197 | return 1;
|
---|
| 198 | }
|
---|
| 199 |
|
---|
| 200 | int
|
---|
| 201 | Molecule::is_axis(SCVector3 &origin, SCVector3 &axis,
|
---|
| 202 | int order, double tol) const
|
---|
| 203 | {
|
---|
| 204 | // loop through atoms to see if axis is a c2 axis
|
---|
| 205 | for (int i=0; i<natom(); i++) {
|
---|
| 206 | SCVector3 A = SCVector3(r(i))-origin;
|
---|
| 207 | for (int j=1; j<order; j++) {
|
---|
| 208 | SCVector3 R = A;
|
---|
| 209 | R.rotate(j*2.0*M_PI/order, axis);
|
---|
| 210 | R += origin;
|
---|
| 211 | int atom = atom_at_position(R.data(), tol);
|
---|
| 212 | if (atom < 0
|
---|
| 213 | || Z(atom) != Z(i)
|
---|
| 214 | || fabs(charge(atom)-charge(i)) > tol
|
---|
| 215 | || fabs(mass(atom)-mass(i)) > tol) {
|
---|
| 216 | //ExEnv::outn() << " is_axis: rejected (atom " << i << ")" << endl;
|
---|
| 217 | return 0;
|
---|
| 218 | }
|
---|
| 219 | }
|
---|
| 220 | }
|
---|
| 221 | return 1;
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 | enum AxisName { XAxis, YAxis, ZAxis };
|
---|
| 225 |
|
---|
| 226 | static AxisName
|
---|
| 227 | like_world_axis(SCVector3 &axis,
|
---|
| 228 | const SCVector3 &worldxaxis,
|
---|
| 229 | const SCVector3 &worldyaxis,
|
---|
| 230 | const SCVector3 &worldzaxis
|
---|
| 231 | )
|
---|
| 232 | {
|
---|
| 233 | AxisName like;
|
---|
| 234 | double xlikeness = fabs(axis.dot(worldxaxis));
|
---|
| 235 | double ylikeness = fabs(axis.dot(worldyaxis));
|
---|
| 236 | double zlikeness = fabs(axis.dot(worldzaxis));
|
---|
| 237 | if (xlikeness > ylikeness && xlikeness > zlikeness) {
|
---|
| 238 | like = XAxis;
|
---|
| 239 | if (axis.dot(worldxaxis) < 0) axis = - axis;
|
---|
| 240 | }
|
---|
| 241 | else if (ylikeness > zlikeness) {
|
---|
| 242 | like = YAxis;
|
---|
| 243 | if (axis.dot(worldyaxis) < 0) axis = - axis;
|
---|
| 244 | }
|
---|
| 245 | else {
|
---|
| 246 | like = ZAxis;
|
---|
| 247 | if (axis.dot(worldzaxis) < 0) axis = - axis;
|
---|
| 248 | }
|
---|
| 249 | return like;
|
---|
| 250 | }
|
---|
| 251 |
|
---|
| 252 | Ref<PointGroup>
|
---|
| 253 | Molecule::highest_point_group(double tol) const
|
---|
| 254 | {
|
---|
| 255 | int i,j;
|
---|
| 256 |
|
---|
| 257 | SCVector3 com = center_of_mass();
|
---|
| 258 |
|
---|
| 259 | SCVector3 worldzaxis(0.,0.,1.);
|
---|
| 260 | SCVector3 worldxaxis(1.,0.,0.);
|
---|
| 261 | SCVector3 worldyaxis(0.,1.,0.);
|
---|
| 262 |
|
---|
| 263 | int linear,planar;
|
---|
| 264 | is_linear_planar(linear,planar,tol);
|
---|
| 265 |
|
---|
| 266 | int have_inversion = has_inversion(com,tol);
|
---|
| 267 |
|
---|
| 268 | // check for C2 axis
|
---|
| 269 | SCVector3 c2axis;
|
---|
| 270 | int have_c2axis = 0;
|
---|
| 271 | if (natom() < 2) {
|
---|
| 272 | have_c2axis = 1;
|
---|
| 273 | c2axis = SCVector3(0.0,0.0,1.0);
|
---|
| 274 | }
|
---|
| 275 | else if (linear) {
|
---|
| 276 | have_c2axis = 1;
|
---|
| 277 | c2axis = SCVector3(r(1)) - SCVector3(r(0));
|
---|
| 278 | c2axis.normalize();
|
---|
| 279 | }
|
---|
| 280 | else if (planar && have_inversion) {
|
---|
| 281 | // there is a c2 axis that won't be found using the usual algorithm.
|
---|
| 282 | // find two noncolinear atom-atom vectors (we know that linear==0)
|
---|
| 283 | SCVector3 BA = SCVector3(r(1))-SCVector3(r(0));
|
---|
| 284 | BA.normalize();
|
---|
| 285 | for (i=2; i<natom(); i++) {
|
---|
| 286 | SCVector3 CA = SCVector3(r(i))-SCVector3(r(0));
|
---|
| 287 | CA.normalize();
|
---|
| 288 | SCVector3 BAxCA = BA.cross(CA);
|
---|
| 289 | if (BAxCA.norm() > tol) {
|
---|
| 290 | have_c2axis = 1;
|
---|
| 291 | BAxCA.normalize();
|
---|
| 292 | c2axis = BAxCA;
|
---|
| 293 | break;
|
---|
| 294 | }
|
---|
| 295 | }
|
---|
| 296 | }
|
---|
| 297 | else {
|
---|
| 298 | // loop through pairs of atoms to find C2 axis candidates
|
---|
| 299 | for (i=0; i<natom(); i++) {
|
---|
| 300 | SCVector3 A = SCVector3(r(i))-com;
|
---|
| 301 | double AdotA = A.dot(A);
|
---|
| 302 | for (j=0; j<=i; j++) {
|
---|
| 303 | // the atoms must be identical
|
---|
| 304 | if (Z(i) != Z(j) || fabs(mass(i)-mass(j)) > tol) continue;
|
---|
| 305 | SCVector3 B = SCVector3(r(j))-com;
|
---|
| 306 | // the atoms must be the same distance from the com
|
---|
| 307 | if (fabs(AdotA - B.dot(B)) > tol) continue;
|
---|
| 308 | SCVector3 axis = A+B;
|
---|
| 309 | // atoms colinear with the com don't work
|
---|
| 310 | if (axis.norm() < tol) continue;
|
---|
| 311 | axis.normalize();
|
---|
| 312 | if (is_axis(com,axis,2,tol)) {
|
---|
| 313 | have_c2axis = 1;
|
---|
| 314 | c2axis = axis;
|
---|
| 315 | goto found_c2axis;
|
---|
| 316 | }
|
---|
| 317 | }
|
---|
| 318 | }
|
---|
| 319 | }
|
---|
| 320 | found_c2axis:
|
---|
| 321 |
|
---|
| 322 | AxisName c2like = ZAxis;
|
---|
| 323 | if (have_c2axis) {
|
---|
| 324 | // try to make the sign of the axis correspond to one of the world axes
|
---|
| 325 | c2like = like_world_axis(c2axis,worldxaxis,worldyaxis,worldzaxis);
|
---|
| 326 | }
|
---|
| 327 |
|
---|
| 328 | // check for C2 axis perp to first C2 axis
|
---|
| 329 | SCVector3 c2axisperp;
|
---|
| 330 | int have_c2axisperp = 0;
|
---|
| 331 | if (have_c2axis) {
|
---|
| 332 | if (natom() < 2) {
|
---|
| 333 | have_c2axisperp = 1;
|
---|
| 334 | c2axisperp = SCVector3(1.0,0.0,0.0);
|
---|
| 335 | }
|
---|
| 336 | else if (linear) {
|
---|
| 337 | if (have_inversion) {
|
---|
| 338 | have_c2axisperp = 1;
|
---|
| 339 | c2axisperp = c2axis.perp_unit(SCVector3(0.0,0.0,1.0));
|
---|
| 340 | }
|
---|
| 341 | }
|
---|
| 342 | else {
|
---|
| 343 | // loop through pairs of atoms to find C2 axis candidates
|
---|
| 344 | for (i=0; i<natom(); i++) {
|
---|
| 345 | SCVector3 A = SCVector3(r(i))-com;
|
---|
| 346 | double AdotA = A.dot(A);
|
---|
| 347 | for (j=0; j<i; j++) {
|
---|
| 348 | // the atoms must be identical
|
---|
| 349 | if (Z(i) != Z(j) || fabs(mass(i)-mass(j)) > tol) continue;
|
---|
| 350 | SCVector3 B = SCVector3(r(j))-com;
|
---|
| 351 | // the atoms must be the same distance from the com
|
---|
| 352 | if (fabs(AdotA - B.dot(B)) > tol) continue;
|
---|
| 353 | SCVector3 axis = A+B;
|
---|
| 354 | // atoms colinear with the com don't work
|
---|
| 355 | if (axis.norm() < tol) continue;
|
---|
| 356 | axis.normalize();
|
---|
| 357 | // if axis is not perp continue
|
---|
| 358 | if (fabs(axis.dot(c2axis)) > tol) continue;
|
---|
| 359 | if (is_axis(com,axis,2,tol)) {
|
---|
| 360 | have_c2axisperp = 1;
|
---|
| 361 | c2axisperp = axis;
|
---|
| 362 | goto found_c2axisperp;
|
---|
| 363 | }
|
---|
| 364 | }
|
---|
| 365 | }
|
---|
| 366 | }
|
---|
| 367 | }
|
---|
| 368 | found_c2axisperp:
|
---|
| 369 |
|
---|
| 370 | AxisName c2perplike;
|
---|
| 371 | if (have_c2axisperp) {
|
---|
| 372 | // try to make the sign of the axis correspond to one of the world axes
|
---|
| 373 | c2perplike = like_world_axis(c2axisperp,worldxaxis,worldyaxis,worldzaxis);
|
---|
| 374 |
|
---|
| 375 | // try to make c2axis the z axis
|
---|
| 376 | if (c2perplike == ZAxis) {
|
---|
| 377 | SCVector3 tmpv = c2axisperp;
|
---|
| 378 | tmpv = c2axisperp; c2axisperp = c2axis; c2axis = tmpv;
|
---|
| 379 | c2perplike = c2like;
|
---|
| 380 | c2like = ZAxis;
|
---|
| 381 | }
|
---|
| 382 | if (c2like != ZAxis) {
|
---|
| 383 | if (c2like == XAxis) c2axis = c2axis.cross(c2axisperp);
|
---|
| 384 | else c2axis = c2axisperp.cross(c2axis);
|
---|
| 385 | c2like = like_world_axis(c2axis,worldxaxis,worldyaxis,worldzaxis);
|
---|
| 386 | }
|
---|
| 387 |
|
---|
| 388 | // try to make c2axisperp like the x axis
|
---|
| 389 | if (c2perplike == YAxis) {
|
---|
| 390 | c2axisperp = c2axisperp.cross(c2axis);
|
---|
| 391 | c2perplike = like_world_axis(c2axisperp,
|
---|
| 392 | worldxaxis,worldyaxis,worldzaxis);
|
---|
| 393 | }
|
---|
| 394 | }
|
---|
| 395 |
|
---|
| 396 | // check for vertical plane
|
---|
| 397 | int have_sigmav = 0;
|
---|
| 398 | SCVector3 sigmav;
|
---|
| 399 | if (have_c2axis) {
|
---|
| 400 | if (natom() < 2) {
|
---|
| 401 | have_sigmav = 1;
|
---|
| 402 | sigmav = c2axisperp;
|
---|
| 403 | }
|
---|
| 404 | else if (linear) {
|
---|
| 405 | have_sigmav = 1;
|
---|
| 406 | if (have_c2axisperp) {
|
---|
| 407 | sigmav = c2axisperp;
|
---|
| 408 | }
|
---|
| 409 | else {
|
---|
| 410 | sigmav = c2axis.perp_unit(SCVector3(0.0,0.0,1.0));
|
---|
| 411 | }
|
---|
| 412 | }
|
---|
| 413 | else {
|
---|
| 414 | // loop through pairs of atoms to find sigma v plane candidates
|
---|
| 415 | for (i=0; i<natom(); i++) {
|
---|
| 416 | SCVector3 A = SCVector3(r(i))-com;
|
---|
| 417 | double AdotA = A.dot(A);
|
---|
| 418 | // the second atom can equal i because i might be in the plane.
|
---|
| 419 | for (j=0; j<=i; j++) {
|
---|
| 420 | // the atoms must be identical
|
---|
| 421 | if (Z(i) != Z(j) || fabs(mass(i)-mass(j)) > tol) continue;
|
---|
| 422 | SCVector3 B = SCVector3(r(j))-com;
|
---|
| 423 | // the atoms must be the same distance from the com
|
---|
| 424 | if (fabs(AdotA - B.dot(B)) > tol) continue;
|
---|
| 425 | SCVector3 inplane = B+A;
|
---|
| 426 | double norm_inplane = inplane.norm();
|
---|
| 427 | if (norm_inplane < tol) continue;
|
---|
| 428 | inplane *= 1.0/norm_inplane;
|
---|
| 429 | SCVector3 perp = c2axis.cross(inplane);
|
---|
| 430 | double norm_perp = perp.norm();
|
---|
| 431 | if (norm_perp < tol) continue;
|
---|
| 432 | perp *= 1.0/norm_perp;
|
---|
| 433 | if (is_plane(com,perp,tol)) {
|
---|
| 434 | have_sigmav = 1;
|
---|
| 435 | sigmav = perp;
|
---|
| 436 | goto found_sigmav;
|
---|
| 437 | }
|
---|
| 438 | }
|
---|
| 439 | }
|
---|
| 440 | }
|
---|
| 441 | }
|
---|
| 442 | found_sigmav:
|
---|
| 443 |
|
---|
| 444 | if (have_sigmav) {
|
---|
| 445 | // try to make the sign of the oop vec correspond to one of the world axes
|
---|
| 446 | int sigmavlike = like_world_axis(sigmav,worldxaxis,worldyaxis,worldzaxis);
|
---|
| 447 |
|
---|
| 448 | // choose sigmav to be the world x axis, if possible
|
---|
| 449 | if (c2like == ZAxis && sigmavlike == YAxis) {
|
---|
| 450 | sigmav = sigmav.cross(c2axis);
|
---|
| 451 | }
|
---|
| 452 | else if (c2like == YAxis && sigmavlike == ZAxis) {
|
---|
| 453 | sigmav = c2axis.cross(sigmav);
|
---|
| 454 | }
|
---|
| 455 | }
|
---|
| 456 |
|
---|
| 457 | // under certain conditions i need to know if there is any sigma plane
|
---|
| 458 | int have_sigma = 0;
|
---|
| 459 | SCVector3 sigma;
|
---|
| 460 | if (!have_inversion && !have_c2axis) {
|
---|
| 461 | if (planar) {
|
---|
| 462 | // find two noncolinear atom-atom vectors
|
---|
| 463 | // we know that linear==0 since !have_c2axis
|
---|
| 464 | SCVector3 BA = SCVector3(r(1))-SCVector3(r(0));
|
---|
| 465 | BA.normalize();
|
---|
| 466 | for (i=2; i<natom(); i++) {
|
---|
| 467 | SCVector3 CA = SCVector3(r(i))-SCVector3(r(0));
|
---|
| 468 | CA.normalize();
|
---|
| 469 | SCVector3 BAxCA = BA.cross(CA);
|
---|
| 470 | if (BAxCA.norm() > tol) {
|
---|
| 471 | have_sigma = 1;
|
---|
| 472 | BAxCA.normalize();
|
---|
| 473 | sigma = BAxCA;
|
---|
| 474 | break;
|
---|
| 475 | }
|
---|
| 476 | }
|
---|
| 477 | }
|
---|
| 478 | else {
|
---|
| 479 | // loop through pairs of atoms to construct trial planes
|
---|
| 480 | for (i=0; i<natom(); i++) {
|
---|
| 481 | SCVector3 A = SCVector3(r(i))-com;
|
---|
| 482 | double AdotA = A.dot(A);
|
---|
| 483 | for (j=0; j<i; j++) {
|
---|
| 484 | //ExEnv::outn() << "sigma atoms = " << i << ", " << j << endl;
|
---|
| 485 | // the atoms must be identical
|
---|
| 486 | if (Z(i) != Z(j) || fabs(mass(i)-mass(j)) > tol) continue;
|
---|
| 487 | SCVector3 B = SCVector3(r(j))-com;
|
---|
| 488 | double BdotB = B.dot(B);
|
---|
| 489 | // the atoms must be the same distance from the com
|
---|
| 490 | if (fabs(AdotA - BdotB) > tol) continue;
|
---|
| 491 | SCVector3 perp = B-A;
|
---|
| 492 | double norm_perp = perp.norm();
|
---|
| 493 | if (norm_perp < tol) {
|
---|
| 494 | //ExEnv::outn() << " rejected (atoms at same point?)" << endl;
|
---|
| 495 | continue;
|
---|
| 496 | }
|
---|
| 497 | perp *= 1.0/norm_perp;
|
---|
| 498 | if (is_plane(com,perp,tol)) {
|
---|
| 499 | have_sigma = 1;
|
---|
| 500 | sigma = perp;
|
---|
| 501 | goto found_sigma;
|
---|
| 502 | }
|
---|
| 503 | }
|
---|
| 504 | }
|
---|
| 505 | }
|
---|
| 506 | }
|
---|
| 507 | found_sigma:
|
---|
| 508 |
|
---|
| 509 | if (have_sigma) {
|
---|
| 510 | // try to make the sign of the oop vec correspond to one of the world axes
|
---|
| 511 | double xlikeness = fabs(sigma.dot(worldxaxis));
|
---|
| 512 | double ylikeness = fabs(sigma.dot(worldyaxis));
|
---|
| 513 | double zlikeness = fabs(sigma.dot(worldzaxis));
|
---|
| 514 | if (xlikeness > ylikeness && xlikeness > zlikeness) {
|
---|
| 515 | if (sigma.dot(worldxaxis) < 0) sigma = - sigma;
|
---|
| 516 | }
|
---|
| 517 | else if (ylikeness > zlikeness) {
|
---|
| 518 | if (sigma.dot(worldyaxis) < 0) sigma = - sigma;
|
---|
| 519 | }
|
---|
| 520 | else {
|
---|
| 521 | if (sigma.dot(worldzaxis) < 0) sigma = - sigma;
|
---|
| 522 | }
|
---|
| 523 | }
|
---|
| 524 |
|
---|
| 525 | #ifdef DEBUG
|
---|
| 526 | ExEnv::out0()
|
---|
| 527 | << indent << "highest point group:" << endl
|
---|
| 528 | << indent << " linear = " << linear << endl
|
---|
| 529 | << indent << " planar = " << planar << endl
|
---|
| 530 | << indent << " have_inversion = " << have_inversion << endl
|
---|
| 531 | << indent << " have_c2axis = " << have_c2axis << endl
|
---|
| 532 | << indent << " have_c2axisperp = " << have_c2axisperp << endl
|
---|
| 533 | << indent << " have_sigmav = " << have_sigmav << endl
|
---|
| 534 | << indent << " have_sigma = " << have_sigma << endl;
|
---|
| 535 |
|
---|
| 536 | if (have_c2axis)
|
---|
| 537 | ExEnv::out0() << indent << " c2axis = " << c2axis << endl;
|
---|
| 538 | if (have_c2axisperp)
|
---|
| 539 | ExEnv::out0() << indent << " c2axisperp = " << c2axisperp << endl;
|
---|
| 540 | if (have_sigmav)
|
---|
| 541 | ExEnv::out0() << indent << " sigmav = " << sigmav << endl;
|
---|
| 542 | if (have_sigma)
|
---|
| 543 | ExEnv::out0() << indent << " sigma = " << sigma << endl;
|
---|
| 544 | #endif
|
---|
| 545 |
|
---|
| 546 | // Find the three axes for the symmetry frame
|
---|
| 547 | SCVector3 xaxis = worldxaxis;
|
---|
| 548 | SCVector3 yaxis;
|
---|
| 549 | SCVector3 zaxis = worldzaxis;;
|
---|
| 550 | if (have_c2axis) {
|
---|
| 551 | zaxis = c2axis;
|
---|
| 552 | if (have_sigmav) {
|
---|
| 553 | xaxis = sigmav;
|
---|
| 554 | }
|
---|
| 555 | else if (have_c2axisperp) {
|
---|
| 556 | xaxis = c2axisperp;
|
---|
| 557 | }
|
---|
| 558 | else {
|
---|
| 559 | // any axis orthogonal to the zaxis will do
|
---|
| 560 | xaxis = zaxis.perp_unit(zaxis);
|
---|
| 561 | }
|
---|
| 562 | }
|
---|
| 563 | else if (have_sigma) {
|
---|
| 564 | zaxis = sigma;
|
---|
| 565 | xaxis = zaxis.perp_unit(zaxis);
|
---|
| 566 | }
|
---|
| 567 | // the y axis is then -x cross z
|
---|
| 568 | yaxis = - xaxis.cross(zaxis);
|
---|
| 569 |
|
---|
| 570 | #ifdef DEBUG
|
---|
| 571 | ExEnv::outn() << "X: " << xaxis << endl;
|
---|
| 572 | ExEnv::outn() << "Y: " << yaxis << endl;
|
---|
| 573 | ExEnv::outn() << "Z: " << zaxis << endl;
|
---|
| 574 | #endif
|
---|
| 575 |
|
---|
| 576 | SymmetryOperation frame;
|
---|
| 577 | SCVector3 origin;
|
---|
| 578 | for (i=0; i<3; i++) {
|
---|
| 579 | frame(i,0) = xaxis[i];
|
---|
| 580 | frame(i,1) = yaxis[i];
|
---|
| 581 | frame(i,2) = zaxis[i];
|
---|
| 582 | origin[i] = com[i];
|
---|
| 583 | }
|
---|
| 584 |
|
---|
| 585 | #ifdef DEBUG
|
---|
| 586 | ExEnv::out0() << "frame:" << endl;
|
---|
| 587 | frame.print(ExEnv::out0());
|
---|
| 588 |
|
---|
| 589 | ExEnv::out0() << "origin:" << endl;
|
---|
| 590 | origin.print(ExEnv::out0());
|
---|
| 591 | #endif
|
---|
| 592 |
|
---|
| 593 | Ref<PointGroup> pg;
|
---|
| 594 | if (have_inversion) {
|
---|
| 595 | if (have_c2axis) {
|
---|
| 596 | if (have_sigmav) {
|
---|
| 597 | pg = new PointGroup("d2h",frame,origin);
|
---|
| 598 | }
|
---|
| 599 | else {
|
---|
| 600 | pg = new PointGroup("c2h",frame,origin);
|
---|
| 601 | }
|
---|
| 602 | }
|
---|
| 603 | else {
|
---|
| 604 | pg = new PointGroup("ci",frame,origin);
|
---|
| 605 | }
|
---|
| 606 | }
|
---|
| 607 | else {
|
---|
| 608 | if (have_c2axis) {
|
---|
| 609 | if (have_sigmav) {
|
---|
| 610 | pg = new PointGroup("c2v",frame,origin);
|
---|
| 611 | }
|
---|
| 612 | else {
|
---|
| 613 | if (have_c2axisperp) {
|
---|
| 614 | pg = new PointGroup("d2",frame,origin);
|
---|
| 615 | }
|
---|
| 616 | else {
|
---|
| 617 | pg = new PointGroup("c2",frame,origin);
|
---|
| 618 | }
|
---|
| 619 | }
|
---|
| 620 | }
|
---|
| 621 | else {
|
---|
| 622 | if (have_sigma) {
|
---|
| 623 | pg = new PointGroup("cs",frame,origin);
|
---|
| 624 | }
|
---|
| 625 | else {
|
---|
| 626 | pg = new PointGroup("c1",frame,origin);
|
---|
| 627 | }
|
---|
| 628 | }
|
---|
| 629 | }
|
---|
| 630 |
|
---|
| 631 | return pg;
|
---|
| 632 | }
|
---|
| 633 |
|
---|
| 634 | int
|
---|
| 635 | Molecule::is_linear(double tol) const
|
---|
| 636 | {
|
---|
| 637 | int linear, planar;
|
---|
| 638 |
|
---|
| 639 | is_linear_planar(linear,planar,tol);
|
---|
| 640 |
|
---|
| 641 | return linear;
|
---|
| 642 | }
|
---|
| 643 |
|
---|
| 644 | int
|
---|
| 645 | Molecule::is_planar(double tol) const
|
---|
| 646 | {
|
---|
| 647 | int linear, planar;
|
---|
| 648 |
|
---|
| 649 | is_linear_planar(linear,planar,tol);
|
---|
| 650 |
|
---|
| 651 | return planar;
|
---|
| 652 | }
|
---|
| 653 |
|
---|
| 654 | void
|
---|
| 655 | Molecule::is_linear_planar(int &linear, int &planar, double tol) const
|
---|
| 656 | {
|
---|
| 657 | if (natom() < 3) {
|
---|
| 658 | linear = 1;
|
---|
| 659 | planar = 1;
|
---|
| 660 | return;
|
---|
| 661 | }
|
---|
| 662 |
|
---|
| 663 | // find three atoms not on the same line
|
---|
| 664 | SCVector3 A = r(0);
|
---|
| 665 | SCVector3 B = r(1);
|
---|
| 666 | SCVector3 BA = B-A;
|
---|
| 667 | BA.normalize();
|
---|
| 668 | SCVector3 CA;
|
---|
| 669 |
|
---|
| 670 | int i;
|
---|
| 671 | double min_BAdotCA = 1.0;
|
---|
| 672 | for (i=2; i<natom(); i++) {
|
---|
| 673 | SCVector3 tmp = SCVector3(r(i))-A;
|
---|
| 674 | tmp.normalize();
|
---|
| 675 | if (fabs(BA.dot(tmp)) < min_BAdotCA) {
|
---|
| 676 | CA = tmp;
|
---|
| 677 | min_BAdotCA = fabs(BA.dot(tmp));
|
---|
| 678 | }
|
---|
| 679 | }
|
---|
| 680 | if (min_BAdotCA >= 1.0 - tol) {
|
---|
| 681 | linear = 1;
|
---|
| 682 | planar = 1;
|
---|
| 683 | return;
|
---|
| 684 | }
|
---|
| 685 |
|
---|
| 686 | linear = 0;
|
---|
| 687 | if (natom() < 4) {
|
---|
| 688 | planar = 1;
|
---|
| 689 | return;
|
---|
| 690 | }
|
---|
| 691 |
|
---|
| 692 | // check for nontrivial planar molecules
|
---|
| 693 | SCVector3 BAxCA = BA.cross(CA);
|
---|
| 694 | BAxCA.normalize();
|
---|
| 695 | for (i=2; i<natom(); i++) {
|
---|
| 696 | SCVector3 tmp = SCVector3(r(i))-A;
|
---|
| 697 | if (fabs(tmp.dot(BAxCA)) > tol) {
|
---|
| 698 | planar = 0;
|
---|
| 699 | return;
|
---|
| 700 | }
|
---|
| 701 | }
|
---|
| 702 | planar = 1;
|
---|
| 703 | return;
|
---|
| 704 | }
|
---|
| 705 |
|
---|
| 706 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 707 |
|
---|
| 708 | // Local Variables:
|
---|
| 709 | // mode: c++
|
---|
| 710 | // c-file-style: "CLJ-CONDENSED"
|
---|
| 711 | // End:
|
---|