1 | //
|
---|
2 | // molshape.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <stdio.h>
|
---|
33 | #include <util/misc/math.h>
|
---|
34 | #include <vector>
|
---|
35 |
|
---|
36 | #include <util/class/scexception.h>
|
---|
37 | #include <chemistry/molecule/molshape.h>
|
---|
38 | #include <chemistry/molecule/molecule.h>
|
---|
39 | #include <math/scmat/matrix3.h>
|
---|
40 |
|
---|
41 | using namespace std;
|
---|
42 | using namespace sc;
|
---|
43 |
|
---|
44 | ////////////////////////////////////////////////////////////////////////
|
---|
45 | // VDWShape
|
---|
46 |
|
---|
47 | static ClassDesc VDWShape_cd(
|
---|
48 | typeid(VDWShape),"VDWShape",1,"public UnionShape",
|
---|
49 | 0, create<VDWShape>, 0);
|
---|
50 |
|
---|
51 | VDWShape::VDWShape(const Ref<Molecule>&mol)
|
---|
52 | {
|
---|
53 | initialize(mol);
|
---|
54 | }
|
---|
55 |
|
---|
56 | VDWShape::VDWShape(const Ref<KeyVal>&keyval)
|
---|
57 | {
|
---|
58 | Ref<Molecule> mol; mol << keyval->describedclassvalue("molecule");
|
---|
59 | atominfo_ << keyval->describedclassvalue("atominfo");
|
---|
60 | initialize(mol);
|
---|
61 | }
|
---|
62 |
|
---|
63 | void
|
---|
64 | VDWShape::initialize(const Ref<Molecule>&mol)
|
---|
65 | {
|
---|
66 | Ref<AtomInfo> a;
|
---|
67 | if (atominfo_.null()) a = mol->atominfo();
|
---|
68 | else a = atominfo_;
|
---|
69 |
|
---|
70 | _shapes.clear();
|
---|
71 | for (int i=0; i<mol->natom(); i++) {
|
---|
72 | SCVector3 r;
|
---|
73 | for (int j=0; j<3; j++) r[j] = mol->r(i,j);
|
---|
74 | add_shape(
|
---|
75 | new SphereShape(r,a->vdw_radius(mol->Z(i)))
|
---|
76 | );
|
---|
77 | }
|
---|
78 | }
|
---|
79 |
|
---|
80 | VDWShape::~VDWShape()
|
---|
81 | {
|
---|
82 | }
|
---|
83 |
|
---|
84 | ////////////////////////////////////////////////////////////////////////
|
---|
85 | // static functions for DiscreteConnollyShape and ConnollyShape
|
---|
86 |
|
---|
87 | static double
|
---|
88 | find_atom_size(const Ref<AtomInfo>& a, int Z)
|
---|
89 | {
|
---|
90 | return a->vdw_radius(Z);
|
---|
91 | }
|
---|
92 |
|
---|
93 | ////////////////////////////////////////////////////////////////////////
|
---|
94 | // DiscreteConnollyShape
|
---|
95 |
|
---|
96 | static ClassDesc DiscreteConnollyShape_cd(
|
---|
97 | typeid(DiscreteConnollyShape),"DiscreteConnollyShape",1,"public UnionShape",
|
---|
98 | 0, create<DiscreteConnollyShape>, 0);
|
---|
99 |
|
---|
100 | DiscreteConnollyShape::DiscreteConnollyShape(const Ref<KeyVal>&keyval)
|
---|
101 | {
|
---|
102 | Ref<Molecule> mol; mol << keyval->describedclassvalue("molecule");
|
---|
103 | double probe_radius = keyval->doublevalue("probe_radius");
|
---|
104 | if (keyval->error() != KeyVal::OK) {
|
---|
105 | probe_radius = 2.6456173;
|
---|
106 | }
|
---|
107 | radius_scale_factor_ = keyval->doublevalue("radius_scale_factor");
|
---|
108 | if (keyval->error() != KeyVal::OK) {
|
---|
109 | radius_scale_factor_ = 1.2;
|
---|
110 | }
|
---|
111 | atominfo_ << keyval->describedclassvalue("atominfo");
|
---|
112 | initialize(mol,probe_radius);
|
---|
113 | }
|
---|
114 |
|
---|
115 | void
|
---|
116 | DiscreteConnollyShape::initialize(const Ref<Molecule>&mol,double probe_radius)
|
---|
117 | {
|
---|
118 | _shapes.clear();
|
---|
119 | std::vector<Ref<SphereShape> > spheres(0);
|
---|
120 |
|
---|
121 | Ref<AtomInfo> a;
|
---|
122 | if (atominfo_.null()) a = mol->atominfo();
|
---|
123 | else a = atominfo_;
|
---|
124 |
|
---|
125 | int i;
|
---|
126 | for (i=0; i<mol->natom(); i++) {
|
---|
127 | SCVector3 r(mol->r(i));
|
---|
128 | Ref<SphereShape>
|
---|
129 | sphere(
|
---|
130 | new SphereShape(r,radius_scale_factor_*find_atom_size(a,
|
---|
131 | mol->Z(i)))
|
---|
132 | );
|
---|
133 | add_shape(sphere.pointer());
|
---|
134 | spheres.push_back(sphere);
|
---|
135 | }
|
---|
136 |
|
---|
137 | ////////////////////// Leave out the other shapes
|
---|
138 | //return;
|
---|
139 |
|
---|
140 | for (i=0; i<spheres.size(); i++) {
|
---|
141 | for (int j=0; j<i; j++) {
|
---|
142 | Ref<Shape> th =
|
---|
143 | UncappedTorusHoleShape::newUncappedTorusHoleShape(probe_radius,
|
---|
144 | *(spheres[i].pointer()),
|
---|
145 | *(spheres[j].pointer()));
|
---|
146 | if (th.null()) continue;
|
---|
147 | add_shape(th);
|
---|
148 |
|
---|
149 | ////////////////////// Leave out the three sphere shapes
|
---|
150 | //continue;
|
---|
151 |
|
---|
152 | // now check for excluding volume for groups of three spheres
|
---|
153 | for (int k=0; k<j; k++) {
|
---|
154 | Ref<Shape> e =
|
---|
155 | Uncapped5SphereExclusionShape::
|
---|
156 | newUncapped5SphereExclusionShape(probe_radius,
|
---|
157 | *(spheres[i].pointer()),
|
---|
158 | *(spheres[j].pointer()),
|
---|
159 | *(spheres[k].pointer()));
|
---|
160 | if (e.nonnull()) add_shape(e);
|
---|
161 | }
|
---|
162 | }
|
---|
163 | }
|
---|
164 | }
|
---|
165 |
|
---|
166 | DiscreteConnollyShape::~DiscreteConnollyShape()
|
---|
167 | {
|
---|
168 | }
|
---|
169 |
|
---|
170 | ////////////////////////////////////////////////////////////////////////
|
---|
171 | // ConnollyShape
|
---|
172 |
|
---|
173 | static ClassDesc ConnollyShape_cd(
|
---|
174 | typeid(ConnollyShape),"ConnollyShape",1,"public Shape",
|
---|
175 | 0, create<ConnollyShape>, 0);
|
---|
176 |
|
---|
177 | ConnollyShape::ConnollyShape(const Ref<KeyVal>&keyval)
|
---|
178 | {
|
---|
179 | box_ = 0;
|
---|
180 | sphere = 0;
|
---|
181 | Ref<Molecule> mol; mol << keyval->describedclassvalue("molecule");
|
---|
182 | probe_r = keyval->doublevalue("probe_radius");
|
---|
183 | if (keyval->error() != KeyVal::OK) {
|
---|
184 | probe_r = 2.6456173;
|
---|
185 | }
|
---|
186 | atominfo_ << keyval->describedclassvalue("atominfo");
|
---|
187 | radius_scale_factor_ = keyval->doublevalue("radius_scale_factor");
|
---|
188 | if (keyval->error() != KeyVal::OK) {
|
---|
189 | radius_scale_factor_ = 1.2;
|
---|
190 | }
|
---|
191 | initialize(mol,probe_r);
|
---|
192 | }
|
---|
193 |
|
---|
194 | #if COUNT_CONNOLLY
|
---|
195 | int ConnollyShape::n_total_ = 0;
|
---|
196 | int ConnollyShape::n_inside_vdw_ = 0;
|
---|
197 | int ConnollyShape::n_with_nsphere_[CONNOLLYSHAPE_N_WITH_NSPHERE_DIM];
|
---|
198 | #endif
|
---|
199 |
|
---|
200 | void
|
---|
201 | ConnollyShape::print_counts(ostream& os)
|
---|
202 | {
|
---|
203 | os << indent << "ConnollyShape::print_counts():\n" << incindent;
|
---|
204 | #if COUNT_CONNOLLY
|
---|
205 | os
|
---|
206 | << indent << "n_total = " << n_total_ << endl
|
---|
207 | << indent << "n_inside_vdw = " << n_inside_vdw_ << endl;
|
---|
208 | for (int i=0; i<CONNOLLYSHAPE_N_WITH_NSPHERE_DIM-1; i++) {
|
---|
209 | os << indent
|
---|
210 | << scprintf("n with nsphere = %2d: %d\n", i, n_with_nsphere_[i]);
|
---|
211 | }
|
---|
212 | os << indent
|
---|
213 | << scprintf("n with nsphere >= %d: %d\n",
|
---|
214 | CONNOLLYSHAPE_N_WITH_NSPHERE_DIM-1,
|
---|
215 | n_with_nsphere_[CONNOLLYSHAPE_N_WITH_NSPHERE_DIM-1])
|
---|
216 | << decindent;
|
---|
217 | #else
|
---|
218 | os << indent << "No count information is available.\n" << decindent;
|
---|
219 | #endif
|
---|
220 | }
|
---|
221 |
|
---|
222 | void
|
---|
223 | ConnollyShape::initialize(const Ref<Molecule>&mol,double probe_radius)
|
---|
224 | {
|
---|
225 | clear();
|
---|
226 |
|
---|
227 | n_spheres = mol->natom();
|
---|
228 | sphere = new CS2Sphere[n_spheres];
|
---|
229 |
|
---|
230 | Ref<AtomInfo> a;
|
---|
231 | if (atominfo_.null()) a = mol->atominfo();
|
---|
232 | else a = atominfo_;
|
---|
233 |
|
---|
234 | int i;
|
---|
235 | for (i=0; i<n_spheres; i++) {
|
---|
236 | SCVector3 r(mol->r(i));
|
---|
237 | sphere[i].initialize(r,radius_scale_factor_*find_atom_size(a,
|
---|
238 | mol->Z(i))
|
---|
239 | + probe_r);
|
---|
240 | }
|
---|
241 |
|
---|
242 | // initialize a grid of lists of local spheres
|
---|
243 | if (n_spheres) {
|
---|
244 | // find the bounding box
|
---|
245 | SCVector3 lower(sphere[0].center()), upper(sphere[0].center());
|
---|
246 | for (i=0; i<n_spheres; i++) {
|
---|
247 | SCVector3 l(sphere[i].center()), u(sphere[i].center());
|
---|
248 | for (int j=0; j<3; j++) {
|
---|
249 | l[j] -= probe_r + sphere[i].radius();
|
---|
250 | u[j] += probe_r + sphere[i].radius();
|
---|
251 | if (l[j]<lower[j]) lower[j] = l[j];
|
---|
252 | if (u[j]>upper[j]) upper[j] = u[j];
|
---|
253 | }
|
---|
254 | }
|
---|
255 | // compute the parameters for converting x, y, z into a box number
|
---|
256 | lower_ = lower;
|
---|
257 | l_ = 10.0;
|
---|
258 | xmax_ = (int)((upper[0]-lower[0])/l_);
|
---|
259 | ymax_ = (int)((upper[1]-lower[1])/l_);
|
---|
260 | zmax_ = (int)((upper[2]-lower[2])/l_);
|
---|
261 | // allocate the boxes
|
---|
262 | box_ = new std::vector<int>**[xmax_+1];
|
---|
263 | for (i=0; i<=xmax_; i++) {
|
---|
264 | box_[i] = new std::vector<int>*[ymax_+1];
|
---|
265 | for (int j=0; j<=ymax_; j++) {
|
---|
266 | box_[i][j] = new std::vector<int>[zmax_+1];
|
---|
267 | }
|
---|
268 | }
|
---|
269 | // put the spheres in the boxes
|
---|
270 | for (i=0; i<n_spheres; i++) {
|
---|
271 | int ixmin, iymin, izmin, ixmax, iymax, izmax;
|
---|
272 | SCVector3 l(sphere[i].center()), u(sphere[i].center());
|
---|
273 | for (int j=0; j<3; j++) {
|
---|
274 | l[j] -= probe_r + sphere[i].radius();
|
---|
275 | u[j] += probe_r + sphere[i].radius();
|
---|
276 | }
|
---|
277 | get_box(l,ixmin,iymin,izmin);
|
---|
278 | get_box(u,ixmax,iymax,izmax);
|
---|
279 | for (int ii=ixmin; ii<=ixmax; ii++) {
|
---|
280 | for (int jj=iymin; jj<=iymax; jj++) {
|
---|
281 | for (int kk=izmin; kk<=izmax; kk++) {
|
---|
282 | box_[ii][jj][kk].push_back(i);
|
---|
283 | }
|
---|
284 | }
|
---|
285 | }
|
---|
286 | }
|
---|
287 | }
|
---|
288 | }
|
---|
289 |
|
---|
290 | int
|
---|
291 | ConnollyShape::get_box(const SCVector3 &v, int &x, int &y, int &z) const
|
---|
292 | {
|
---|
293 | if (!box_) return 0;
|
---|
294 | SCVector3 pos = v-lower_;
|
---|
295 | x = (int)(pos[0]/l_);
|
---|
296 | y = (int)(pos[1]/l_);
|
---|
297 | z = (int)(pos[2]/l_);
|
---|
298 | if (x<0) x=0;
|
---|
299 | if (y<0) y=0;
|
---|
300 | if (z<0) z=0;
|
---|
301 | if (x>xmax_) x=xmax_;
|
---|
302 | if (y>ymax_) y=ymax_;
|
---|
303 | if (z>zmax_) z=zmax_;
|
---|
304 | return 1;
|
---|
305 | }
|
---|
306 |
|
---|
307 | ConnollyShape::~ConnollyShape()
|
---|
308 | {
|
---|
309 | clear();
|
---|
310 | }
|
---|
311 |
|
---|
312 | void
|
---|
313 | ConnollyShape::clear()
|
---|
314 | {
|
---|
315 | delete[] sphere;
|
---|
316 | sphere = 0;
|
---|
317 | if (box_) {
|
---|
318 | for (int i=0; i<=xmax_; i++) {
|
---|
319 | for (int j=0; j<=ymax_; j++) {
|
---|
320 | delete[] box_[i][j];
|
---|
321 | }
|
---|
322 | delete[] box_[i];
|
---|
323 | }
|
---|
324 | delete[] box_;
|
---|
325 | box_ = 0;
|
---|
326 | }
|
---|
327 | }
|
---|
328 |
|
---|
329 | double
|
---|
330 | ConnollyShape::distance_to_surface(const SCVector3&r, SCVector3*grad) const
|
---|
331 | {
|
---|
332 | #if COUNT_CONNOLLY
|
---|
333 | n_total_++;
|
---|
334 | #endif
|
---|
335 |
|
---|
336 | // can't compute grad so zero it if it is requested
|
---|
337 | if (grad) {
|
---|
338 | *grad = 0.0;
|
---|
339 | }
|
---|
340 |
|
---|
341 | CS2Sphere probe_centers(r,probe_r);
|
---|
342 |
|
---|
343 | const int max_local_spheres = 60;
|
---|
344 | CS2Sphere local_sphere[max_local_spheres];
|
---|
345 |
|
---|
346 | const double outside = 1.0;
|
---|
347 | const double inside = -1.0;
|
---|
348 |
|
---|
349 | // find out which spheres are near the probe_centers sphere
|
---|
350 | int n_local_spheres = 0;
|
---|
351 | int boxi, boxj, boxk;
|
---|
352 | if (get_box(r,boxi,boxj,boxk)) {
|
---|
353 | std::vector<int> & box = box_[boxi][boxj][boxk];
|
---|
354 | for (int ibox=0; ibox<box.size(); ibox++) {
|
---|
355 | int i = box[ibox];
|
---|
356 | double distance = sphere[i].distance(probe_centers);
|
---|
357 | double r_i = sphere[i].radius();
|
---|
358 | if (distance < r_i + probe_r) {
|
---|
359 | if (distance < r_i - probe_r) {
|
---|
360 | #if COUNT_CONNOLLY
|
---|
361 | n_inside_vdw_++;
|
---|
362 | #endif
|
---|
363 | return inside;
|
---|
364 | }
|
---|
365 | if (n_local_spheres == max_local_spheres) {
|
---|
366 | throw LimitExceeded<int>("distance_to_surface: "
|
---|
367 | "max_local_spheres exceeded",
|
---|
368 | __FILE__, __LINE__,
|
---|
369 | max_local_spheres,
|
---|
370 | n_local_spheres+1,
|
---|
371 | class_desc());
|
---|
372 | }
|
---|
373 | local_sphere[n_local_spheres] = sphere[i];
|
---|
374 | n_local_spheres++;
|
---|
375 | }
|
---|
376 | }
|
---|
377 | }
|
---|
378 |
|
---|
379 | #if COUNT_CONNOLLY
|
---|
380 | if (n_local_spheres >= CONNOLLYSHAPE_N_WITH_NSPHERE_DIM) {
|
---|
381 | n_with_nsphere_[CONNOLLYSHAPE_N_WITH_NSPHERE_DIM-1]++;
|
---|
382 | }
|
---|
383 | else {
|
---|
384 | n_with_nsphere_[n_local_spheres]++;
|
---|
385 | }
|
---|
386 | #endif
|
---|
387 |
|
---|
388 | if (probe_centers.intersect(local_sphere,n_local_spheres)
|
---|
389 | == 1) return inside;
|
---|
390 | return outside;
|
---|
391 | }
|
---|
392 |
|
---|
393 | void
|
---|
394 | ConnollyShape::boundingbox(double valuemin,
|
---|
395 | double valuemax,
|
---|
396 | SCVector3& p1, SCVector3& p2)
|
---|
397 | {
|
---|
398 | int i,j;
|
---|
399 | if (valuemin < -1.0 || valuemax > 1.0) {
|
---|
400 | throw LimitExceeded<double>("boundingbox: value out of range",
|
---|
401 | __FILE__, __LINE__,
|
---|
402 | ((valuemin<0.0)?-1.0:1.0),
|
---|
403 | valuemin, class_desc());
|
---|
404 | }
|
---|
405 |
|
---|
406 | if (n_spheres == 0) {
|
---|
407 | for (i=0; i<3; i++) {
|
---|
408 | p1[i] = 0.0;
|
---|
409 | p2[i] = 0.0;
|
---|
410 | }
|
---|
411 | return;
|
---|
412 | }
|
---|
413 |
|
---|
414 | double r = sphere[0].radius() - probe_r;
|
---|
415 | SCVector3 v1(sphere[0].x() - r, sphere[0].y() - r, sphere[0].z() - r);
|
---|
416 | SCVector3 v2(sphere[0].x() + r, sphere[0].y() + r, sphere[0].z() + r);
|
---|
417 |
|
---|
418 | for (i=1; i<n_spheres; i++) {
|
---|
419 | double r = sphere[i].radius() - probe_r;
|
---|
420 | for (j=0; j<3; j++) {
|
---|
421 | if (v1[j] > sphere[i].center()[j] - r) {
|
---|
422 | v1[j] = sphere[i].center()[j] - r;
|
---|
423 | }
|
---|
424 | if (v2[j] < sphere[i].center()[j] + r) {
|
---|
425 | v2[j] = sphere[i].center()[j] + r;
|
---|
426 | }
|
---|
427 | }
|
---|
428 | }
|
---|
429 |
|
---|
430 | for (i=0; i<3; i++) {
|
---|
431 | p1[i] = v1[i] - 0.01;
|
---|
432 | p2[i] = v2[i] + 0.01;
|
---|
433 | }
|
---|
434 | }
|
---|
435 |
|
---|
436 | ////////////////////////////////////////////////////////////////////////
|
---|
437 | // interval class needed by CS2Sphere
|
---|
438 |
|
---|
439 | // Simple class to keep track of regions along an interval
|
---|
440 | class interval
|
---|
441 | {
|
---|
442 | int _nsegs; // # disjoint segments in interval
|
---|
443 | int _max_segs; // # segments currently allocated
|
---|
444 |
|
---|
445 | double *_min, *_max; // arrays of ranges for segments
|
---|
446 |
|
---|
447 | private:
|
---|
448 | // internal member function to compact interval list--this
|
---|
449 | // assumes that new segment is located in last element of
|
---|
450 | // _min and _max
|
---|
451 | void compact(void)
|
---|
452 | {
|
---|
453 |
|
---|
454 | if (_nsegs==1) return;
|
---|
455 |
|
---|
456 | // case 0 new segment is disjoint and below all other segments
|
---|
457 | if (_max[_nsegs-1] < _min[0])
|
---|
458 | {
|
---|
459 | double mintmp=_min[_nsegs-1];
|
---|
460 | double maxtmp=_max[_nsegs-1];
|
---|
461 | for (int i=_nsegs-2; i>=0 ; i--)
|
---|
462 | {
|
---|
463 | _min[i+1]=_min[i];
|
---|
464 | _max[i+1]=_max[i];
|
---|
465 | }
|
---|
466 | _min[0]=mintmp;
|
---|
467 | _max[0]=maxtmp;
|
---|
468 | return;
|
---|
469 | }
|
---|
470 |
|
---|
471 | // case 1: new segment is disjoint and above all other segments
|
---|
472 | if (_min[_nsegs-1] > _max[_nsegs-2]) return;
|
---|
473 |
|
---|
474 | // Fast forward to where this interval belongs
|
---|
475 | int icount=0;
|
---|
476 | while (_min[_nsegs-1] > _max[icount]) icount++;
|
---|
477 |
|
---|
478 | // case 2: new segment is disjoint and between two segments
|
---|
479 | if (_max[_nsegs-1] < _min[icount])
|
---|
480 | {
|
---|
481 | double mintmp=_min[_nsegs-1];
|
---|
482 | double maxtmp=_max[_nsegs-1];
|
---|
483 | for (int i=_nsegs-2; i >= icount; i--)
|
---|
484 | {
|
---|
485 | _min[i+1]=_min[i];
|
---|
486 | _max[i+1]=_max[i];
|
---|
487 | }
|
---|
488 | _min[icount]=mintmp;
|
---|
489 | _max[icount]=maxtmp;
|
---|
490 | return;
|
---|
491 | }
|
---|
492 |
|
---|
493 | // new segment must overlap lower part of segment icount,
|
---|
494 | // so redefine icount's lower boundary
|
---|
495 | _min[icount] = (_min[_nsegs-1] < _min[icount])?
|
---|
496 | _min[_nsegs-1]:_min[icount];
|
---|
497 |
|
---|
498 | // Now figure how far up this new segment extends
|
---|
499 | // case 3: if it doesn't extend beyond this segment, just exit
|
---|
500 | if (_max[_nsegs-1] < _max[icount]) { _nsegs--; return;}
|
---|
501 |
|
---|
502 | // Search forward till we find its end
|
---|
503 | int jcount=icount;
|
---|
504 | while (_max[_nsegs-1] > _max[jcount]) jcount++;
|
---|
505 |
|
---|
506 | // Case 4
|
---|
507 | // The new segment goes to the end of all the other segments
|
---|
508 | if (jcount == _nsegs-1)
|
---|
509 | {
|
---|
510 | _max[icount]=_max[_nsegs-1];
|
---|
511 | _nsegs=icount+1;
|
---|
512 | return;
|
---|
513 | }
|
---|
514 |
|
---|
515 | // Case 5
|
---|
516 | // The new segment ends between segments
|
---|
517 | if (_max[_nsegs-1] < _min[jcount])
|
---|
518 | {
|
---|
519 | _max[icount]=_max[_nsegs-1];
|
---|
520 | // Now clobber all the segments covered by the new one
|
---|
521 | int kcount=icount+1;
|
---|
522 | for (int i=jcount; i<_nsegs; i++)
|
---|
523 | {
|
---|
524 | _min[kcount]=_min[i];
|
---|
525 | _max[kcount]=_max[i];
|
---|
526 | kcount++;
|
---|
527 | }
|
---|
528 | _nsegs=kcount-1;
|
---|
529 | return;
|
---|
530 | }
|
---|
531 |
|
---|
532 | // Case 6
|
---|
533 | // The new segment ends inside a segment
|
---|
534 | if (_max[_nsegs-1] >= _min[jcount])
|
---|
535 | {
|
---|
536 | _max[icount]=_max[jcount];
|
---|
537 | // Now clobber all the segments covered by the new one
|
---|
538 | int kcount=icount+1;
|
---|
539 | for (int i=jcount+1; i<_nsegs; i++)
|
---|
540 | {
|
---|
541 | _min[kcount]=_min[i];
|
---|
542 | _max[kcount]=_max[i];
|
---|
543 | kcount++;
|
---|
544 | }
|
---|
545 | _nsegs=kcount-1;
|
---|
546 | return;
|
---|
547 | }
|
---|
548 |
|
---|
549 | // Shouldn't get here!
|
---|
550 | ExEnv::err0() << indent
|
---|
551 | << "Found no matching cases in interval::compact()\n";
|
---|
552 | print();
|
---|
553 | exit(1);
|
---|
554 | }
|
---|
555 |
|
---|
556 | public:
|
---|
557 | interval(void):_nsegs(0),_max_segs(10)
|
---|
558 | { _min = (double*) malloc(_max_segs*sizeof(double)); // Use malloc so
|
---|
559 | _max = (double*) malloc(_max_segs*sizeof(double));} //we can use realloc
|
---|
560 |
|
---|
561 | ~interval() { free(_min); free(_max); }
|
---|
562 |
|
---|
563 | // add a new segment to interval
|
---|
564 | void add(double min, double max)
|
---|
565 | {
|
---|
566 | if (min > max) {double tmp=min; min=max; max=tmp;}
|
---|
567 | if (_nsegs == _max_segs)
|
---|
568 | {
|
---|
569 | _max_segs *= 2;
|
---|
570 | _min=(double *)realloc(_min, _max_segs*sizeof(double));
|
---|
571 | _max=(double *)realloc(_max, _max_segs*sizeof(double));
|
---|
572 | }
|
---|
573 |
|
---|
574 | _min[_nsegs]=min;
|
---|
575 | _max[_nsegs]=max;
|
---|
576 | _nsegs++;
|
---|
577 | compact();
|
---|
578 | }
|
---|
579 |
|
---|
580 | // Test to see if the interval is complete over {min, max}
|
---|
581 | int test_interval(double min, double max)
|
---|
582 | {
|
---|
583 | if (_nsegs == 0) return 0;
|
---|
584 |
|
---|
585 | if (min > max) {double tmp=min; min=max; max=tmp;}
|
---|
586 |
|
---|
587 | if (min < _min[0] || max > _max[_nsegs-1]) return 0;
|
---|
588 | for (int i=0; i < _nsegs; i++)
|
---|
589 | {
|
---|
590 | if (min > _min[i] && max < _max[i]) return 1;
|
---|
591 | if (max < _min[i]) return 0;
|
---|
592 | }
|
---|
593 | return 0;
|
---|
594 | }
|
---|
595 |
|
---|
596 | // Print out the currect state of the interval
|
---|
597 | void print()
|
---|
598 | {
|
---|
599 | ExEnv::out0() << indent
|
---|
600 | << scprintf(" _nsegs=%d; _max_segs=%d\n",_nsegs, _max_segs);
|
---|
601 | for (int i=0; i<_nsegs; i++)
|
---|
602 | ExEnv::out0() << indent
|
---|
603 | << scprintf("min[%d]=%7.4lf, max[%d]=%7.4lf\n",
|
---|
604 | i,_min[i],i,_max[i]);
|
---|
605 | }
|
---|
606 |
|
---|
607 | void clear() { _nsegs = 0; }
|
---|
608 | };
|
---|
609 |
|
---|
610 | ////////////////////////////////////////////////////////////////////////
|
---|
611 | // CS2Sphere
|
---|
612 |
|
---|
613 | #if COUNT_CONNOLLY
|
---|
614 | int CS2Sphere::n_no_spheres_ = 0;
|
---|
615 | int CS2Sphere::n_probe_enclosed_by_a_sphere_ = 0;
|
---|
616 | int CS2Sphere::n_probe_center_not_enclosed_ = 0;
|
---|
617 | int CS2Sphere::n_surface_of_s0_not_covered_ = 0;
|
---|
618 | int CS2Sphere::n_plane_totally_covered_ = 0;
|
---|
619 | int CS2Sphere::n_internal_edge_not_covered_ = 0;
|
---|
620 | int CS2Sphere::n_totally_covered_ = 0;
|
---|
621 | #endif
|
---|
622 |
|
---|
623 | void
|
---|
624 | CS2Sphere::print_counts(ostream& os)
|
---|
625 | {
|
---|
626 | os << indent << "CS2Sphere::print_counts():\n" << incindent;
|
---|
627 | #if COUNT_CONNOLLY
|
---|
628 | os
|
---|
629 | << indent << "n_no_spheres = " << n_no_spheres_ << endl
|
---|
630 | << indent << "n_probe_enclosed_by_a_sphere = "
|
---|
631 | << n_probe_enclosed_by_a_sphere_ << endl
|
---|
632 | << indent << "n_probe_center_not_enclosed = "
|
---|
633 | << n_probe_center_not_enclosed_ << endl
|
---|
634 | << indent << "n_surface_of_s0_not_covered = "
|
---|
635 | << n_surface_of_s0_not_covered_ << endl
|
---|
636 | << indent << "n_plane_totally_covered_ = "
|
---|
637 | << n_plane_totally_covered_ << endl
|
---|
638 | << indent << "n_internal_edge_not_covered = "
|
---|
639 | << n_internal_edge_not_covered_ << endl
|
---|
640 | << indent << "n_totally_covered = " << n_totally_covered_ << endl
|
---|
641 | << decindent;
|
---|
642 | #else
|
---|
643 | os << indent << "No count information is available.\n"
|
---|
644 | << decindent;
|
---|
645 | #endif
|
---|
646 | }
|
---|
647 |
|
---|
648 | // Function to determine if the centers of a bunch of spheres are separated
|
---|
649 | // by a plane from the center of another plane
|
---|
650 |
|
---|
651 | // s0 is assumed to be at the origin.
|
---|
652 |
|
---|
653 | // Return 1 if all of the points can be placed on the same side of a
|
---|
654 | // plane passing through s0's center.
|
---|
655 | static int
|
---|
656 | same_side(const CS2Sphere& s0, CS2Sphere *s, int n_spheres)
|
---|
657 | {
|
---|
658 | if (n_spheres <= 3) return 1;
|
---|
659 |
|
---|
660 | SCVector3 perp;
|
---|
661 | int sign;
|
---|
662 |
|
---|
663 | for (int i=0; i<n_spheres; i++)
|
---|
664 | {
|
---|
665 | for (int j=0; j<i; j++)
|
---|
666 | {
|
---|
667 | perp = s[i].center().perp_unit(s[j].center());
|
---|
668 | int old_sign=0;
|
---|
669 | for (int k=0; k < n_spheres; k++)
|
---|
670 | {
|
---|
671 | if (i != k && j != k)
|
---|
672 | {
|
---|
673 | sign=(perp.dot(s[k].center()) < 0)? -1:1;
|
---|
674 | if (old_sign && old_sign != sign)
|
---|
675 | goto next_plane;
|
---|
676 | old_sign=sign;
|
---|
677 | }
|
---|
678 | }
|
---|
679 | // We found a plane with all centers on one side
|
---|
680 | return 1;
|
---|
681 | next_plane:
|
---|
682 | continue;
|
---|
683 | }
|
---|
684 | }
|
---|
685 | // All of the planes had points on both sides.
|
---|
686 | return 0;
|
---|
687 | }
|
---|
688 |
|
---|
689 | double
|
---|
690 | CS2Sphere::common_radius(CS2Sphere &asphere)
|
---|
691 | {
|
---|
692 | double d=distance(asphere);
|
---|
693 | double s=0.5*(d+_radius+asphere._radius);
|
---|
694 | double p = s*(s-d)*(s-_radius)*(s-asphere._radius);
|
---|
695 | //printf("common_radius: p = %5.3f\n", p);
|
---|
696 | if (p <= 0.0) return 0.0;
|
---|
697 | return 2.*sqrt(p)/d;
|
---|
698 | }
|
---|
699 |
|
---|
700 | #define PRINT_SPECIAL_CASES 0
|
---|
701 | #if PRINT_SPECIAL_CASES
|
---|
702 | static void
|
---|
703 | print_spheres(const CS2Sphere& s0, CS2Sphere* s, int n_spheres)
|
---|
704 | {
|
---|
705 | static int output_number;
|
---|
706 | char filename[80];
|
---|
707 | sprintf(filename,"spherelist_%d.oogl",output_number);
|
---|
708 | FILE* fp = fopen(filename,"w");
|
---|
709 | fprintf(fp,"LIST\n");
|
---|
710 | fprintf(fp,"{\n");
|
---|
711 | fprintf(fp," appearance {\n");
|
---|
712 | fprintf(fp," material {\n");
|
---|
713 | fprintf(fp," ambient 0.5 0.1 0.1\n");
|
---|
714 | fprintf(fp," diffuse 1.0 0.2 0.2\n");
|
---|
715 | fprintf(fp," }\n");
|
---|
716 | fprintf(fp," }\n");
|
---|
717 | fprintf(fp," = SPHERE\n");
|
---|
718 | fprintf(fp," %15.8f %15.8f %15.8f %15.8f\n",
|
---|
719 | s0.radius(), s0.x(), s0.y(), s0.z());
|
---|
720 | fprintf(fp,"}\n");
|
---|
721 | for (int i=0; i<n_spheres; i++) {
|
---|
722 | fprintf(fp,"{ = SPHERE\n");
|
---|
723 | fprintf(fp," %15.8f %15.8f %15.8f %15.8f\n",
|
---|
724 | s[i].radius(), s[i].x(), s[i].y(), s[i].z());
|
---|
725 | fprintf(fp,"}\n");
|
---|
726 | }
|
---|
727 | fclose(fp);
|
---|
728 | output_number++;
|
---|
729 | }
|
---|
730 | #endif
|
---|
731 |
|
---|
732 | // Function to determine if there is any portion of s0 that
|
---|
733 | // is not inside one or more of the spheres in s[]
|
---|
734 | int
|
---|
735 | CS2Sphere::intersect(CS2Sphere *s, int n_spheres) const
|
---|
736 | {
|
---|
737 | if (n_spheres == 0) {
|
---|
738 | n_no_spheres_++;
|
---|
739 | return 0;
|
---|
740 | }
|
---|
741 | CS2Sphere s0;
|
---|
742 | s0 = *this;
|
---|
743 | // Declare an interval object to manage overlap information
|
---|
744 | // it is static so it will only call malloc twice
|
---|
745 | static interval intvl;
|
---|
746 | // First make sure that at least one sphere in s[] contains
|
---|
747 | // the center of s0 and that s0 is not contained inside
|
---|
748 | // one of the spheres
|
---|
749 | int center_is_contained = 0;
|
---|
750 | int i;
|
---|
751 | for (i=0; i<n_spheres; i++)
|
---|
752 | {
|
---|
753 | double d=s0.distance(s[i]);
|
---|
754 | if (d+s0.radius() < s[i].radius()) {
|
---|
755 | n_probe_enclosed_by_a_sphere_++;
|
---|
756 | return 1;
|
---|
757 | }
|
---|
758 | if (d < s[i].radius()) center_is_contained = 1;
|
---|
759 | }
|
---|
760 | if (!center_is_contained) {
|
---|
761 | n_probe_center_not_enclosed_++;
|
---|
762 | return 0;
|
---|
763 | }
|
---|
764 |
|
---|
765 | // Let's first put s0 at the origin
|
---|
766 | for (i=0; i<n_spheres; i++)
|
---|
767 | s[i].recenter(s0.center());
|
---|
768 | s0.recenter(s0.center());
|
---|
769 |
|
---|
770 | // Now check to make sure that the surface of s0 is completely
|
---|
771 | // included in spheres in s[], by making sure that all the
|
---|
772 | // circles describing the intersections of every sphere with
|
---|
773 | // s0 are included in at least one other sphere.
|
---|
774 | double epsilon=1.e-8;
|
---|
775 | for (i=0; i<n_spheres; i++)
|
---|
776 | {
|
---|
777 | // calculate radius of the intersection of s0 and s[i]
|
---|
778 | double cr = s0.common_radius(s[i]);
|
---|
779 | if (cr == 0.0) {
|
---|
780 | continue;
|
---|
781 | }
|
---|
782 |
|
---|
783 | // We're chosing that the intersection of s[i] and s0
|
---|
784 | // occurs parallel to the x-y plane, so we'll need to rotate the
|
---|
785 | // center of s[j] appropriately.
|
---|
786 | // Create a rotation matrix that take the vector from
|
---|
787 | // the centers of s0 to s[i] and puts it on the z axis
|
---|
788 | static const SCVector3 Zaxis(0.0, 0.0, 1.0);
|
---|
789 | SCMatrix3 rot = rotation_mat(s0.center_vec(s[i]),Zaxis);
|
---|
790 |
|
---|
791 | // Now calculate the Z position of the intersection of
|
---|
792 | // s0 and s[i]
|
---|
793 | double d=s0.distance(s[i]);
|
---|
794 | double z_plane;
|
---|
795 | if (s[i].radius()*s[i].radius() < d*d+s0.radius()*s0.radius())
|
---|
796 | z_plane=sqrt(s0.radius()*s0.radius()-cr*cr);
|
---|
797 | else
|
---|
798 | z_plane=-sqrt(s0.radius()*s0.radius()-cr*cr);
|
---|
799 |
|
---|
800 | // Initialize the interval object
|
---|
801 | intvl.clear();
|
---|
802 |
|
---|
803 | // Loop over the other spheres
|
---|
804 | for (int j=0; j<n_spheres; j++)
|
---|
805 | if (i != j)
|
---|
806 | {
|
---|
807 | // Rotate the center of s[j] to appropriate refence frame
|
---|
808 | SCVector3 rcent = rot*s0.center_vec(s[j]);
|
---|
809 |
|
---|
810 | double x0=rcent.x();
|
---|
811 | double y0=rcent.y();
|
---|
812 | double z0=rcent.z();
|
---|
813 |
|
---|
814 | // Does this sphere even reach the plane where
|
---|
815 | // the intersection of s0 and s[i] occurs?
|
---|
816 | // If not, let's go to the next sphere
|
---|
817 | double z_dist=s[j].radius()*s[j].radius()-
|
---|
818 | (z0-z_plane)*(z0-z_plane);
|
---|
819 | if (z_dist < 0.0)
|
---|
820 | continue;
|
---|
821 |
|
---|
822 | // Calculate radius of circular projection of s[j]
|
---|
823 | // onto s0-s[i] intersection plane
|
---|
824 | double r_2=z_dist;
|
---|
825 |
|
---|
826 | // Precalculate a bunch of factors
|
---|
827 | double cr_2=cr*cr;
|
---|
828 | double x0_2=x0*x0; double y0_2=y0*y0;
|
---|
829 | double dist=sqrt(x0_2+y0_2);
|
---|
830 |
|
---|
831 | // If the projection of s[j] on x-y doesn't reach the
|
---|
832 | // intersection of s[i] and s0, continue.
|
---|
833 | if (r_2 < (dist-cr)*(dist-cr))
|
---|
834 | continue;
|
---|
835 |
|
---|
836 | // If the projection of s[j] on x-y engulfs the intersection
|
---|
837 | // of s[i] and s0, cover interval and continue
|
---|
838 | if (r_2 > (dist+cr)*(dist+cr))
|
---|
839 | {
|
---|
840 | intvl.add(0, 2.*M_PI);
|
---|
841 | continue;
|
---|
842 | }
|
---|
843 |
|
---|
844 | // Calculation the radical in the quadratic equation
|
---|
845 | // determining the overlap of the two circles
|
---|
846 | double radical=x0_2*(-cr_2*cr_2 + 2*cr_2*r_2 -
|
---|
847 | r_2*r_2 + 2*cr_2*x0_2 +
|
---|
848 | 2*r_2*x0_2 - x0_2*x0_2 +
|
---|
849 | 2*cr_2*y0_2 + 2*r_2*y0_2 -
|
---|
850 | 2*x0_2*y0_2 - y0_2*y0_2);
|
---|
851 |
|
---|
852 | // Check to see if there's any intersection at all
|
---|
853 | // I.e. if one circle is inside the other (Note that
|
---|
854 | // we've already checked to see if s[j] engulfs
|
---|
855 | // the intersection of s0 and s[i])
|
---|
856 | if (radical <= 0.0) continue;
|
---|
857 |
|
---|
858 | // Okay, go ahead and calculate the intersection points
|
---|
859 | double x_numer = cr_2*x0_2 - r_2*x0_2 + x0_2*x0_2 + x0_2*y0_2;
|
---|
860 | double x_denom = 2*x0*x0_2 + 2*x0*y0_2;
|
---|
861 | double y_numer = cr_2*y0 - r_2*y0 + x0_2*y0 + y0*y0_2;
|
---|
862 | double y_denom = 2*(x0_2 + y0_2);
|
---|
863 |
|
---|
864 | double sqrt_radical = sqrt(radical);
|
---|
865 |
|
---|
866 | double x_0=(x_numer - y0*sqrt_radical)/x_denom;
|
---|
867 | double y_0=(y_numer + sqrt_radical)/y_denom;
|
---|
868 | double x_1=(x_numer + y0*sqrt_radical)/x_denom;
|
---|
869 | double y_1=(y_numer - sqrt_radical)/y_denom;
|
---|
870 |
|
---|
871 | // Now calculate the angular range of these ordered
|
---|
872 | // points and place them on the first Riemann sheet.
|
---|
873 | // and sort their order
|
---|
874 | double theta1=atan2(y_0, x_0);
|
---|
875 | double theta2=atan2(y_1, x_1);
|
---|
876 | if (theta1 < 0.0) theta1+=2.*M_PI;
|
---|
877 | if (theta2 < 0.0) theta2+=2.*M_PI;
|
---|
878 | if (theta1 > theta2)
|
---|
879 | {
|
---|
880 | double tmptheta=theta1;
|
---|
881 | theta1=theta2;
|
---|
882 | theta2=tmptheta;
|
---|
883 | }
|
---|
884 |
|
---|
885 | // Determine which of the two possible chords
|
---|
886 | // is inside s[j]
|
---|
887 | double dor=(x0-cr)*(x0-cr)+y0*y0;
|
---|
888 | if (dor < r_2)
|
---|
889 | {
|
---|
890 | intvl.add(0, theta1);
|
---|
891 | intvl.add(theta2, 2.*M_PI);
|
---|
892 | }
|
---|
893 | else
|
---|
894 | {
|
---|
895 | intvl.add(theta1, theta2);
|
---|
896 | }
|
---|
897 |
|
---|
898 | // Now test to see if the range is covered
|
---|
899 | if (intvl.test_interval(epsilon, 2.*M_PI-epsilon))
|
---|
900 | {
|
---|
901 | // No need to keep testing, move on to next i
|
---|
902 | break;
|
---|
903 | }
|
---|
904 |
|
---|
905 | }
|
---|
906 | // If the intersection wasn't totally covered, the sphere
|
---|
907 | // intersection is incomplete
|
---|
908 | if (!intvl.test_interval(epsilon, 2.*M_PI-epsilon)) {
|
---|
909 | n_surface_of_s0_not_covered_++;
|
---|
910 | // goto next_test;
|
---|
911 | return 0;
|
---|
912 | }
|
---|
913 | }
|
---|
914 |
|
---|
915 | // for the special case of all sphere's centers on one side of
|
---|
916 | // a plane passing through s0's center we are done; the probe
|
---|
917 | // must be completely intersected.
|
---|
918 | if (same_side(s0,s,n_spheres)) {
|
---|
919 | n_plane_totally_covered_++;
|
---|
920 | return 1;
|
---|
921 | }
|
---|
922 |
|
---|
923 | // As a final test of the surface coverage, make sure that all
|
---|
924 | // of the intersection surfaces between s0 and s[] are included
|
---|
925 | // inside more than one sphere.
|
---|
926 | int angle_segs;
|
---|
927 | double max_angle[2], min_angle[2];
|
---|
928 | for (i=0; i<n_spheres; i++)
|
---|
929 | {
|
---|
930 | // For my own sanity, let's put s[i] at the origin
|
---|
931 | int k;
|
---|
932 | for (k=0; k<n_spheres; k++)
|
---|
933 | if (k != i)
|
---|
934 | s[k].recenter(s[i].center());
|
---|
935 | s0.recenter(s[i].center());
|
---|
936 | s[i].recenter(s[i].center());
|
---|
937 |
|
---|
938 | for (int j=0; j<i; j++)
|
---|
939 | {
|
---|
940 |
|
---|
941 | // calculate radius of the intersection of s[i] and s[j]
|
---|
942 | double cr = s[i].common_radius(s[j]);
|
---|
943 | if (cr == 0.0) {
|
---|
944 | continue; // s[i] and s[j] don't intersect
|
---|
945 | }
|
---|
946 |
|
---|
947 | // We're chosing that the intersection of s[i] and s[j]
|
---|
948 | // occurs parallel to the x-y plane, so we'll need to rotate the
|
---|
949 | // center of all s[]'s and s0 appropriately.
|
---|
950 | // Create a rotation matrix that take the vector from
|
---|
951 | // the centers of s0 to s[i] and puts it on the z axis
|
---|
952 | static const SCVector3 Zaxis(0.0, 0.0, 1.0);
|
---|
953 | SCMatrix3 rot = rotation_mat(s[i].center_vec(s[j]),Zaxis);
|
---|
954 |
|
---|
955 | // Now calculate the Z position of the intersection of
|
---|
956 | // s[i] and s[j]
|
---|
957 | double d=s[i].distance(s[j]);
|
---|
958 | double z_plane;
|
---|
959 | if (s[j].radius()*s[j].radius() < s[i].radius()*s[i].radius()+d*d)
|
---|
960 | z_plane=sqrt(s[i].radius()*s[i].radius()-cr*cr);
|
---|
961 | else
|
---|
962 | z_plane=-sqrt(s[i].radius()*s[i].radius()-cr*cr);
|
---|
963 |
|
---|
964 | // Determine which part of the this intersection
|
---|
965 | // occurs within s0
|
---|
966 | // Rotate the center of s0 to appropriate refence frame
|
---|
967 | SCVector3 rcent = rot*s[i].center_vec(s0);
|
---|
968 |
|
---|
969 | double x0=rcent.x();
|
---|
970 | double y0=rcent.y();
|
---|
971 | double z0=rcent.z();
|
---|
972 |
|
---|
973 | // Does this s0 even reach the plane where
|
---|
974 | // the intersection of s[i] and s[j] occurs?
|
---|
975 | // If not, let's go to the next sphere j
|
---|
976 | double z_dist=s0.radius()*s0.radius()-
|
---|
977 | (z0-z_plane)*(z0-z_plane);
|
---|
978 | if (z_dist < 0.0)
|
---|
979 | continue;
|
---|
980 |
|
---|
981 | // Calculate radius of circular projection of s0
|
---|
982 | // onto s[i]-s[j] intersection plane
|
---|
983 | double r_2=z_dist;
|
---|
984 |
|
---|
985 | // Precalculate a bunch of factors
|
---|
986 | double cr_2=cr*cr;
|
---|
987 | double x0_2=x0*x0; double y0_2=y0*y0;
|
---|
988 | double dist=sqrt(x0_2+y0_2);
|
---|
989 |
|
---|
990 | // If the projection of s[j] on x-y doesn't reach the
|
---|
991 | // intersection of s[i] and s0, continue.
|
---|
992 | if (r_2 < (dist-cr)*(dist-cr))
|
---|
993 | continue;
|
---|
994 |
|
---|
995 | // If the projection of s0 on x-y engulfs the intersection
|
---|
996 | // of s[i] and s[j], the intersection interval is 0 to 2pi
|
---|
997 | if (r_2 > (dist+cr)*(dist+cr))
|
---|
998 | {
|
---|
999 | angle_segs=1;
|
---|
1000 | min_angle[0]=0.0;
|
---|
1001 | max_angle[0]=2.*M_PI;
|
---|
1002 | }
|
---|
1003 |
|
---|
1004 | // Calculation the radical in the quadratic equation
|
---|
1005 | // determining the overlap of the two circles
|
---|
1006 | double radical=x0_2*(-cr_2*cr_2 + 2*cr_2*r_2 -
|
---|
1007 | r_2*r_2 + 2*cr_2*x0_2 +
|
---|
1008 | 2*r_2*x0_2 - x0_2*x0_2 +
|
---|
1009 | 2*cr_2*y0_2 + 2*r_2*y0_2 -
|
---|
1010 | 2*x0_2*y0_2 - y0_2*y0_2);
|
---|
1011 |
|
---|
1012 | // Check to see if there's any intersection at all
|
---|
1013 | // I.e. if one circle is inside the other (Note that
|
---|
1014 | // we've already checked to see if s0 engulfs
|
---|
1015 | // the intersection of s[i] and s[j]), so this
|
---|
1016 | // must mean that the intersection of s[i] and s[j]
|
---|
1017 | // occurs outside s0
|
---|
1018 | if (radical <= 0.0) continue;
|
---|
1019 |
|
---|
1020 | // Okay, go ahead and calculate the intersection points
|
---|
1021 | double x_numer = cr_2*x0_2 - r_2*x0_2 + x0_2*x0_2 + x0_2*y0_2;
|
---|
1022 | double x_denom = 2*x0*x0_2 + 2*x0*y0_2;
|
---|
1023 | double y_numer = cr_2*y0 - r_2*y0 + x0_2*y0 + y0*y0_2;
|
---|
1024 | double y_denom = 2*(x0_2 + y0_2);
|
---|
1025 |
|
---|
1026 | double sqrt_radical = sqrt(radical);
|
---|
1027 |
|
---|
1028 | double x_0=(x_numer - y0*sqrt_radical)/x_denom;
|
---|
1029 | double y_0=(y_numer + sqrt_radical)/y_denom;
|
---|
1030 | double x_1=(x_numer + y0*sqrt_radical)/x_denom;
|
---|
1031 | double y_1=(y_numer - sqrt_radical)/y_denom;
|
---|
1032 |
|
---|
1033 | // Now calculate the angular range of these ordered
|
---|
1034 | // points and place them on the first Riemann sheet.
|
---|
1035 | // and sort their order
|
---|
1036 | double theta1=atan2(y_0, x_0);
|
---|
1037 | double theta2=atan2(y_1, x_1);
|
---|
1038 | if (theta1 < 0.0) theta1+=2.*M_PI;
|
---|
1039 | if (theta2 < 0.0) theta2+=2.*M_PI;
|
---|
1040 | if (theta1 > theta2)
|
---|
1041 | {
|
---|
1042 | double tmptheta=theta1;
|
---|
1043 | theta1=theta2;
|
---|
1044 | theta2=tmptheta;
|
---|
1045 | }
|
---|
1046 | //printf("theta1=%lf, theta2=%lf\n",theta1,theta2);
|
---|
1047 |
|
---|
1048 | // Determine which of the two possible chords
|
---|
1049 | // is inside s0
|
---|
1050 |
|
---|
1051 | // But first see if s0 is inside this intersection:
|
---|
1052 | double origin_dist=((x0-cr)*(x0-cr)+(y0*y0));
|
---|
1053 | if (origin_dist < r_2) // it's the angle containing
|
---|
1054 | // the origin
|
---|
1055 | {
|
---|
1056 | angle_segs=2;
|
---|
1057 | min_angle[0]=0.0;
|
---|
1058 | max_angle[0]=theta1;
|
---|
1059 | min_angle[1]=theta2;
|
---|
1060 | max_angle[1]=2.*M_PI;
|
---|
1061 | }
|
---|
1062 | else // it's the angle not including the origin
|
---|
1063 | {
|
---|
1064 | angle_segs=1;
|
---|
1065 | min_angle[0]=theta1;
|
---|
1066 | max_angle[0]=theta2;
|
---|
1067 | }
|
---|
1068 |
|
---|
1069 | // Initialize the interval object
|
---|
1070 | intvl.clear();
|
---|
1071 |
|
---|
1072 | // Loop over the other spheres
|
---|
1073 | for (k=0; k<n_spheres; k++)
|
---|
1074 | {
|
---|
1075 | if (k != i && k != j)
|
---|
1076 | {
|
---|
1077 | // Rotate the center of s[k] to appropriate reference frame
|
---|
1078 | rcent = rot*s[i].center_vec(s[k]);
|
---|
1079 |
|
---|
1080 | double x0=rcent.x();
|
---|
1081 | double y0=rcent.y();
|
---|
1082 | double z0=rcent.z();
|
---|
1083 |
|
---|
1084 | // Does this sphere even reach the plane where
|
---|
1085 | // the intersection of s[i] and s[j] occurs?
|
---|
1086 | // If not, let's go to the next sphere
|
---|
1087 | double z_dist=s[k].radius()*s[k].radius()-
|
---|
1088 | (z0-z_plane)*(z0-z_plane);
|
---|
1089 | if (z_dist < 0.0)
|
---|
1090 | continue;
|
---|
1091 |
|
---|
1092 | // Calculate radius of circular projection of s[k]
|
---|
1093 | // onto s[i]-s[j] intersection plane
|
---|
1094 | double r_2=z_dist;
|
---|
1095 |
|
---|
1096 | // Precalculate a bunch of factors
|
---|
1097 | double cr_2=cr*cr;
|
---|
1098 | double x0_2=x0*x0; double y0_2=y0*y0;
|
---|
1099 | double dist=sqrt(x0_2+y0_2);
|
---|
1100 |
|
---|
1101 | // If the projection of s[k] on x-y doesn't reach the
|
---|
1102 | // intersection of s[i] and s[j], continue.
|
---|
1103 | if (r_2 < (dist-cr)*(dist-cr))
|
---|
1104 | continue;
|
---|
1105 |
|
---|
1106 | // If the projection of s[k] on x-y engulfs the intersection
|
---|
1107 | // of s[i] and s0, cover interval and continue
|
---|
1108 | if (r_2 > (dist+cr)*(dist+cr))
|
---|
1109 | {
|
---|
1110 | intvl.add(0, 2.*M_PI);
|
---|
1111 | continue;
|
---|
1112 | }
|
---|
1113 |
|
---|
1114 | // Calculation the radical in the quadratic equation
|
---|
1115 | // determining the overlap of the two circles
|
---|
1116 | radical=x0_2*(-cr_2*cr_2 + 2*cr_2*r_2 -
|
---|
1117 | r_2*r_2 + 2*cr_2*x0_2 +
|
---|
1118 | 2*r_2*x0_2 - x0_2*x0_2 +
|
---|
1119 | 2*cr_2*y0_2 + 2*r_2*y0_2 -
|
---|
1120 | 2*x0_2*y0_2 - y0_2*y0_2);
|
---|
1121 |
|
---|
1122 | // Check to see if there's any intersection at all
|
---|
1123 | // I.e. if one circle is inside the other (Note that
|
---|
1124 | // we've already checked to see if s[k] engulfs
|
---|
1125 | // the intersection of s[i] and s[j])
|
---|
1126 | if (radical <= 0.0) continue;
|
---|
1127 |
|
---|
1128 | // Okay, go ahead and calculate the intersection points
|
---|
1129 | x_numer = cr_2*x0_2 - r_2*x0_2 + x0_2*x0_2 + x0_2*y0_2;
|
---|
1130 | x_denom = 2*x0*x0_2 + 2*x0*y0_2;
|
---|
1131 | y_numer = cr_2*y0 - r_2*y0 + x0_2*y0 + y0*y0_2;
|
---|
1132 | y_denom = 2*(x0_2 + y0_2);
|
---|
1133 |
|
---|
1134 | sqrt_radical = sqrt(radical);
|
---|
1135 |
|
---|
1136 | double x_0=(x_numer - y0*sqrt_radical)/x_denom;
|
---|
1137 | double y_0=(y_numer + sqrt_radical)/y_denom;
|
---|
1138 | double x_1=(x_numer + y0*sqrt_radical)/x_denom;
|
---|
1139 | double y_1=(y_numer - sqrt_radical)/y_denom;
|
---|
1140 |
|
---|
1141 | // Now calculate the angular range of these ordered
|
---|
1142 | // points and place them on the first Riemann sheet.
|
---|
1143 | // and sort their order
|
---|
1144 | theta1=atan2(y_0, x_0);
|
---|
1145 | theta2=atan2(y_1, x_1);
|
---|
1146 | if (theta1 < 0.0) theta1+=2.*M_PI;
|
---|
1147 | if (theta2 < 0.0) theta2+=2.*M_PI;
|
---|
1148 | if (theta1 > theta2)
|
---|
1149 | {
|
---|
1150 | double tmptheta=theta1;
|
---|
1151 | theta1=theta2;
|
---|
1152 | theta2=tmptheta;
|
---|
1153 | }
|
---|
1154 | //printf("In k loop, k=%d, theta1=%lf, theta2=%lf\n",
|
---|
1155 | // k,theta1, theta2);
|
---|
1156 | // Determine which of the two possible chords
|
---|
1157 | // is inside s[k]
|
---|
1158 | double origin_dist=((x0-cr)*(x0-cr)+(y0*y0));
|
---|
1159 | if (origin_dist < r_2) // it's got the origin
|
---|
1160 | {
|
---|
1161 | intvl.add(0, theta1);
|
---|
1162 | intvl.add(theta2, 2.*M_PI);
|
---|
1163 | }
|
---|
1164 | else // it doesn't have the origin
|
---|
1165 | {
|
---|
1166 | intvl.add(theta1, theta2);
|
---|
1167 | }
|
---|
1168 |
|
---|
1169 | // Now test to see if the range is covered
|
---|
1170 | if (intvl.test_interval(min_angle[0]+epsilon,
|
---|
1171 | max_angle[0]-epsilon) &&
|
---|
1172 | (angle_segs!=2 ||
|
---|
1173 | intvl.test_interval(min_angle[1]+epsilon,
|
---|
1174 | max_angle[1]-epsilon)))
|
---|
1175 | {
|
---|
1176 | goto next_j;
|
---|
1177 | }
|
---|
1178 | }
|
---|
1179 | }
|
---|
1180 | if (!intvl.test_interval(min_angle[0]+epsilon,
|
---|
1181 | max_angle[0]-epsilon))
|
---|
1182 | {
|
---|
1183 | // No need to keep testing, return 0
|
---|
1184 | n_internal_edge_not_covered_++;
|
---|
1185 | return 0;
|
---|
1186 | //printf(" Non-internal coverage(1)\n");
|
---|
1187 | //goto next_test;
|
---|
1188 | }
|
---|
1189 | if (angle_segs==2)
|
---|
1190 | {
|
---|
1191 | if (!intvl.test_interval(min_angle[1]+epsilon,
|
---|
1192 | max_angle[1]-epsilon))
|
---|
1193 | {
|
---|
1194 | n_internal_edge_not_covered_++;
|
---|
1195 | return 0;
|
---|
1196 | //printf(" Non-internal coverage(2)\n");
|
---|
1197 | //goto next_test;
|
---|
1198 | }
|
---|
1199 | else
|
---|
1200 | {
|
---|
1201 | goto next_j;
|
---|
1202 | }
|
---|
1203 | }
|
---|
1204 | next_j:
|
---|
1205 | continue;
|
---|
1206 | }
|
---|
1207 | }
|
---|
1208 |
|
---|
1209 | // Since we made it past all of the sphere intersections, the
|
---|
1210 | // surface is totally covered
|
---|
1211 | n_totally_covered_++;
|
---|
1212 | return 1;
|
---|
1213 | }
|
---|
1214 |
|
---|
1215 | /////////////////////////////////////////////////////////////////////////////
|
---|
1216 |
|
---|
1217 | // Local Variables:
|
---|
1218 | // mode: c++
|
---|
1219 | // c-file-style: "CLJ"
|
---|
1220 | // End:
|
---|