1 | //
|
---|
2 | // molfreq.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Curtis Janssen <cljanss@limitpt.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #ifdef __GNUC__
|
---|
29 | #pragma implementation
|
---|
30 | #endif
|
---|
31 |
|
---|
32 | #include <util/misc/math.h>
|
---|
33 | #include <util/class/scexception.h>
|
---|
34 | #include <util/misc/formio.h>
|
---|
35 | #include <util/state/stateio.h>
|
---|
36 | #include <util/group/message.h>
|
---|
37 | #include <math/symmetry/corrtab.h>
|
---|
38 | #include <math/scmat/local.h>
|
---|
39 | #include <math/scmat/blocked.h>
|
---|
40 | #include <chemistry/molecule/molfreq.h>
|
---|
41 | #include <chemistry/molecule/molrender.h>
|
---|
42 |
|
---|
43 | using namespace std;
|
---|
44 | using namespace sc;
|
---|
45 |
|
---|
46 | #undef DEBUG
|
---|
47 |
|
---|
48 | static ClassDesc MolecularFrequencies_cd(
|
---|
49 | typeid(MolecularFrequencies),"MolecularFrequencies",3,"public SavableState",
|
---|
50 | 0, create<MolecularFrequencies>, create<MolecularFrequencies>);
|
---|
51 |
|
---|
52 | MolecularFrequencies::MolecularFrequencies(const Ref<KeyVal>& keyval)
|
---|
53 | {
|
---|
54 | mol_ << keyval->describedclassvalue("molecule");
|
---|
55 | if (mol_.null()) {
|
---|
56 | throw InputError("missing required input of type Molecule",
|
---|
57 | __FILE__, __LINE__, "molecule", 0,
|
---|
58 | class_desc());
|
---|
59 | }
|
---|
60 | KeyValValueRefDescribedClass def_pg(mol_->point_group().pointer());
|
---|
61 | pg_ << keyval->describedclassvalue("point_group", def_pg);
|
---|
62 | nirrep_ = pg_->char_table().nirrep();
|
---|
63 | debug_ = keyval->booleanvalue("debug");
|
---|
64 | nfreq_ = 0;
|
---|
65 | freq_ = 0;
|
---|
66 | }
|
---|
67 |
|
---|
68 | MolecularFrequencies::~MolecularFrequencies()
|
---|
69 | {
|
---|
70 | delete[] nfreq_;
|
---|
71 | if (freq_) {
|
---|
72 | for (int i=0; i<nirrep_; i++) {
|
---|
73 | delete[] freq_[i];
|
---|
74 | }
|
---|
75 | delete[] freq_;
|
---|
76 | }
|
---|
77 | }
|
---|
78 |
|
---|
79 | MolecularFrequencies::MolecularFrequencies(StateIn& si):
|
---|
80 | SavableState(si)
|
---|
81 | {
|
---|
82 | int i;
|
---|
83 |
|
---|
84 | if (si.version(::class_desc<MolecularFrequencies>()) < 3) {
|
---|
85 | throw FileOperationFailed("cannot restore from old version",
|
---|
86 | __FILE__, __LINE__, 0,
|
---|
87 | FileOperationFailed::Corrupt,
|
---|
88 | class_desc());
|
---|
89 | }
|
---|
90 |
|
---|
91 | mol_ << SavableState::restore_state(si);
|
---|
92 | pg_ << SavableState::restore_state(si);
|
---|
93 |
|
---|
94 | si.get(nirrep_);
|
---|
95 | si.get(nfreq_);
|
---|
96 | for (i=0; i<nirrep_; i++) si.get(freq_[i]);
|
---|
97 | }
|
---|
98 |
|
---|
99 | void
|
---|
100 | MolecularFrequencies::save_data_state(StateOut& so)
|
---|
101 | {
|
---|
102 | int i;
|
---|
103 |
|
---|
104 | SavableState::save_state(mol_.pointer(),so);
|
---|
105 | SavableState::save_state(pg_.pointer(),so);
|
---|
106 |
|
---|
107 | so.put(nirrep_);
|
---|
108 | so.put(nfreq_,nirrep_);
|
---|
109 | for (i=0; i<nirrep_; i++) so.put(freq_[i],nfreq_[i]);
|
---|
110 | }
|
---|
111 |
|
---|
112 | void
|
---|
113 | MolecularFrequencies::compute_frequencies(const RefSymmSCMatrix &xhessian)
|
---|
114 | {
|
---|
115 | int i, coor;
|
---|
116 |
|
---|
117 | RefSCMatrix symmbasis
|
---|
118 | = MolecularHessian::cartesian_to_symmetry(mol_,pg_);
|
---|
119 | BlockedSCMatrix *bsymmbasis = dynamic_cast<BlockedSCMatrix*>(symmbasis.pointer());
|
---|
120 |
|
---|
121 | kit_ = xhessian->kit();
|
---|
122 | d3natom_ = xhessian->dim();
|
---|
123 | symkit_ = symmbasis->kit();
|
---|
124 | bd3natom_ = symmbasis->coldim();
|
---|
125 | disym_ = symmbasis->rowdim();
|
---|
126 |
|
---|
127 | ExEnv::out0() << endl
|
---|
128 | << indent << "Frequencies (cm-1; negative is imaginary):"
|
---|
129 | << endl;
|
---|
130 |
|
---|
131 | // initialize the frequency tables
|
---|
132 | if (nfreq_) delete[] nfreq_;
|
---|
133 | nfreq_ = new int[nirrep_];
|
---|
134 | if (freq_) delete[] freq_;
|
---|
135 | freq_ = new double*[nirrep_];
|
---|
136 |
|
---|
137 | // initialize normal coordinate matrix
|
---|
138 | normco_ = symmatrixkit()->matrix(bd3natom_, disym_);
|
---|
139 |
|
---|
140 | // find the inverse sqrt mass matrix
|
---|
141 | RefDiagSCMatrix m(d3natom_, matrixkit());
|
---|
142 | for (i=0,coor=0; i<mol_->natom(); i++) {
|
---|
143 | for (int j=0; j<3; j++, coor++) {
|
---|
144 | m(coor) = 1.0/sqrt(mol_->mass(i)*(1.0/5.48579903e-4));
|
---|
145 | }
|
---|
146 | }
|
---|
147 |
|
---|
148 | RefSymmSCMatrix dhessian;
|
---|
149 |
|
---|
150 | for (int irrep=0; irrep<nirrep_; irrep++) {
|
---|
151 | RefSCMatrix dtranst = bsymmbasis->block(irrep);
|
---|
152 | RefSCDimension ddim = dtranst.rowdim();
|
---|
153 | nfreq_[irrep] = ddim.n();
|
---|
154 | freq_[irrep] = new double[nfreq_[irrep]];
|
---|
155 | if (ddim.n() == 0) continue;
|
---|
156 | dhessian = matrixkit()->symmmatrix(ddim);
|
---|
157 | dhessian.assign(0.0);
|
---|
158 | dhessian.accumulate_transform(dtranst,xhessian);
|
---|
159 | do_freq_for_irrep(irrep, m, dhessian, dtranst);
|
---|
160 | }
|
---|
161 | }
|
---|
162 |
|
---|
163 | void
|
---|
164 | MolecularFrequencies::do_freq_for_irrep(
|
---|
165 | int irrep,
|
---|
166 | const RefDiagSCMatrix &m,
|
---|
167 | const RefSymmSCMatrix &dhessian,
|
---|
168 | const RefSCMatrix &dtranst)
|
---|
169 | {
|
---|
170 | int i;
|
---|
171 | RefSCMatrix dtrans = dtranst.t();
|
---|
172 | RefSCDimension ddim = dtrans.coldim();
|
---|
173 | if (ddim.n() == 0) return;
|
---|
174 | if (debug_) {
|
---|
175 | dhessian.print("dhessian");
|
---|
176 | dtrans.print("dtrans");
|
---|
177 | }
|
---|
178 | // find the basis for the normal coordinates
|
---|
179 | RefSCMatrix ncbasis = m * dtrans;
|
---|
180 | // use the SVD to orthogonalize and check this basis
|
---|
181 | RefSCMatrix basU(d3natom_, d3natom_, matrixkit());
|
---|
182 | RefSCMatrix basV(ddim, ddim, matrixkit());
|
---|
183 | RefDiagSCMatrix bassigma(ddim, matrixkit());
|
---|
184 | ncbasis.svd(basU, bassigma, basV);
|
---|
185 | for (i=0; i<ddim.n(); i++) {
|
---|
186 | if (bassigma(i) < 1.e-3) {
|
---|
187 | throw ToleranceExceeded("singular value too small: "
|
---|
188 | "displacements don't span coordinates",
|
---|
189 | __FILE__, __LINE__, 1.e-3, bassigma(i),
|
---|
190 | class_desc());
|
---|
191 | }
|
---|
192 | }
|
---|
193 | ncbasis.assign_subblock(basU, 0, d3natom_.n()-1, 0, ddim.n()-1, 0, 0);
|
---|
194 | // a transform from disp to x to q (mass weighted x) to disp
|
---|
195 | RefSCMatrix dxqd = ncbasis.t() * m * dtrans;
|
---|
196 | // transform the dhessian to the mass weighted dhessian
|
---|
197 | RefSymmSCMatrix mdhessian = matrixkit()->symmmatrix(dxqd.rowdim());
|
---|
198 | mdhessian.assign(0.0);
|
---|
199 | mdhessian.accumulate_transform(dxqd, dhessian);
|
---|
200 | if (debug_) {
|
---|
201 | mdhessian.print("mass weighted dhessian");
|
---|
202 | }
|
---|
203 | // diagonalize the hessian
|
---|
204 | RefDiagSCMatrix freqs(ddim,matrixkit());
|
---|
205 | RefSCMatrix eigvecs(ddim,ddim,matrixkit());
|
---|
206 | mdhessian.diagonalize(freqs,eigvecs);
|
---|
207 | // convert the eigvals to frequencies in wavenumbers
|
---|
208 | for (i=0; i<freqs.n(); i++) {
|
---|
209 | if (freqs(i) >=0.0) freqs(i) = sqrt(freqs(i));
|
---|
210 | else freqs(i) = -sqrt(-freqs(i));
|
---|
211 | freq_[irrep][i] = freqs(i);
|
---|
212 | freqs(i) = freqs->get_element(i) * 219474.63;
|
---|
213 | }
|
---|
214 |
|
---|
215 | ExEnv::out0() << indent
|
---|
216 | << pg_->char_table().gamma(irrep).symbol() << endl;
|
---|
217 | int ifreqoff = 1;
|
---|
218 | for (i=0; i<irrep; i++) ifreqoff += nfreq_[i];
|
---|
219 | for (i=0; i<freqs.n(); i++) {
|
---|
220 | double freq = freqs(freqs.n()-i-1);
|
---|
221 | ExEnv::out0() << indent
|
---|
222 | << scprintf("%4d % 8.2f",i+ifreqoff,freq)
|
---|
223 | << endl;
|
---|
224 | }
|
---|
225 | ExEnv::out0() << endl;
|
---|
226 |
|
---|
227 | if (debug_) {
|
---|
228 | eigvecs.print("eigenvectors");
|
---|
229 | ncbasis.print("ncbasis");
|
---|
230 | (ncbasis*eigvecs).print("ncbasis*eigvecs");
|
---|
231 | }
|
---|
232 | dynamic_cast<BlockedSCMatrix*>(
|
---|
233 | normco_.pointer())->block(irrep).assign(ncbasis*eigvecs);
|
---|
234 | }
|
---|
235 |
|
---|
236 | void
|
---|
237 | MolecularFrequencies::thermochemistry(int degeneracy, double T, double P)
|
---|
238 | {
|
---|
239 | int i;
|
---|
240 | double tmpvar;
|
---|
241 |
|
---|
242 | if (!nfreq_) return;
|
---|
243 |
|
---|
244 | // default values for temperature T and pressure P are
|
---|
245 | // 298.15 K and 1 atm (=101325.0 Pa), respectively
|
---|
246 |
|
---|
247 | // 1986 CODATA
|
---|
248 | const double NA = 6.0221367e23; // Avogadro's number
|
---|
249 | const double k = 1.380658e-23; // Boltzmann's constant (J/K)
|
---|
250 | const double h = 6.6260755e-34; // Planck's constant (J*s)
|
---|
251 | const double R = 8.314510; // gas constant (J/(mol*K)) (R=k*NA)
|
---|
252 | const double pi = M_PI;
|
---|
253 | const double hartree_to_hertz = 6.5796838e15; // (hertz/hartree)
|
---|
254 |
|
---|
255 | const double hartree_to_joule = 4.3597482e-18; // (J/hartree)
|
---|
256 | const double hartree_to_joule_per_mol = hartree_to_joule*NA;
|
---|
257 | // (J/(mol*hartree))
|
---|
258 | const double amu_to_kg = 1.6605402e-27; // (kg/amu)
|
---|
259 | const double angstrom_to_meter = 1.0e-10;
|
---|
260 | const double atm_to_Pa = 101325.0; // (Pa/atm)
|
---|
261 |
|
---|
262 |
|
---|
263 | ////////////////////////////////////////////////////////////////////////
|
---|
264 | // compute the molar entropy using formulas for ideal polyatomic gasses
|
---|
265 | // from McQuarrie, Statistical Mechanics, 1976, Ch. 8; [use (8-27) for
|
---|
266 | // linear and (8-33) for non-linear molecules]
|
---|
267 | // S = S_trans + S_rot + S_vib + S_el
|
---|
268 | ////////////////////////////////////////////////////////////////////////
|
---|
269 |
|
---|
270 | // compute the mass of the molecule (in kg)
|
---|
271 | double mass = 0.0;
|
---|
272 | for (i=0; i<mol_->natom(); i++) {
|
---|
273 | mass += mol_->mass(i);
|
---|
274 | }
|
---|
275 | mass *= amu_to_kg;
|
---|
276 |
|
---|
277 | // compute principal moments of inertia (pmi) in amu*angstrom^2
|
---|
278 | double pmi[3];
|
---|
279 | mol_->principal_moments_of_inertia(pmi);
|
---|
280 |
|
---|
281 | // find out if molecule is linear (if smallest pmi < 1.0e-5 amu angstrom^2)
|
---|
282 | // (elements of pmi are sorted in order smallest to largest)
|
---|
283 | int linear = 0;
|
---|
284 | if (pmi[0] < 1.0e-5) linear = 1;
|
---|
285 |
|
---|
286 | // compute the symmetry number sigma;
|
---|
287 | // for linear molecules: sigma = 2 (D_inf_h), sigma = 1 (C_inf_v)
|
---|
288 | // for non-linear molecules: sigma = # of rot. in pt. grp, including E
|
---|
289 | int sigma;
|
---|
290 | CharacterTable ct = pg_->char_table();
|
---|
291 | if (linear) {
|
---|
292 | //if (D_inf_h) sigma = 2;
|
---|
293 | if (ct.symbol()[0] == 'D' ||
|
---|
294 | ct.symbol()[0] == 'd') sigma = 2;
|
---|
295 | else if (ct.symbol()[0] == 'C' ||
|
---|
296 | ct.symbol()[0] == 'c') sigma = 1;
|
---|
297 | else {
|
---|
298 | throw InputError("for linear molecules "
|
---|
299 | " the specified point group must be Cnv or Dnh",
|
---|
300 | __FILE__, __LINE__, 0, 0, class_desc());
|
---|
301 | }
|
---|
302 | }
|
---|
303 | else if ((ct.symbol()[0] == 'C' ||
|
---|
304 | ct.symbol()[0] == 'c') &&
|
---|
305 | (ct.symbol()[1] >= '1' &&
|
---|
306 | ct.symbol()[1] <= '8') &&
|
---|
307 | ct.symbol()[2] == '\0') {
|
---|
308 | sigma = ct.order(); // group is a valid CN
|
---|
309 | }
|
---|
310 | else if ((ct.symbol()[0] == 'D' ||
|
---|
311 | ct.symbol()[0] == 'd') &&
|
---|
312 | (ct.symbol()[1] >= '2' &&
|
---|
313 | ct.symbol()[1] <= '6') &&
|
---|
314 | ct.symbol()[2] == '\0') {
|
---|
315 | sigma = ct.order(); // group is a valid DN
|
---|
316 | }
|
---|
317 | else if ((ct.symbol()[0] == 'T' ||
|
---|
318 | ct.symbol()[0] == 't') &&
|
---|
319 | ct.symbol()[1] == '\0') {
|
---|
320 | sigma = ct.order(); // group is T
|
---|
321 | }
|
---|
322 | else sigma = (int)(0.5*ct.order()); // group is not pure rot. group (CN, DN, or T)
|
---|
323 |
|
---|
324 | // compute S_trans
|
---|
325 | double S_trans;
|
---|
326 | tmpvar = pow(2*pi*mass*k*T/(h*h),1.5);
|
---|
327 | S_trans = R*(log(tmpvar*R*T/(P*atm_to_Pa)) + 2.5 - log(NA));
|
---|
328 |
|
---|
329 | // compute S_rot
|
---|
330 | double S_rot;
|
---|
331 | double theta[3]; // rotational temperatures (K)
|
---|
332 | if (linear) {
|
---|
333 | theta[1] = h*h/(8*pi*pi*pmi[1]*amu_to_kg*pow(angstrom_to_meter,2.0)*k);
|
---|
334 | S_rot = log(T/(sigma*theta[1])) + 1.0;
|
---|
335 | }
|
---|
336 | else {
|
---|
337 | theta[0] = h*h/(8*pi*pi*pmi[0]*amu_to_kg*pow(angstrom_to_meter,2.0)*k);
|
---|
338 | theta[1] = h*h/(8*pi*pi*pmi[1]*amu_to_kg*pow(angstrom_to_meter,2.0)*k);
|
---|
339 | theta[2] = h*h/(8*pi*pi*pmi[2]*amu_to_kg*pow(angstrom_to_meter,2.0)*k);
|
---|
340 | tmpvar = theta[0]*theta[1]*theta[2];
|
---|
341 | S_rot = log(pow(pi*T*T*T/tmpvar,0.5)/sigma) + 1.5;
|
---|
342 | }
|
---|
343 | S_rot *= R;
|
---|
344 |
|
---|
345 | // compute S_vib
|
---|
346 | double S_vib = 0.0;
|
---|
347 | for (i=0; i<nirrep_; i++) {
|
---|
348 | for (int j=0; j<nfreq_[i]; j++) {
|
---|
349 | if (freq_[i][j] > 0.0) {
|
---|
350 | tmpvar = hartree_to_hertz*h*freq_[i][j]/(k*T);
|
---|
351 | double expval = exp(-tmpvar);
|
---|
352 | S_vib += tmpvar*expval/(1.0-expval) - log(1.0-expval);
|
---|
353 | }
|
---|
354 | }
|
---|
355 | }
|
---|
356 | S_vib *= R;
|
---|
357 |
|
---|
358 | // compute S_el
|
---|
359 | double S_el;
|
---|
360 | S_el = R*log(double(degeneracy));
|
---|
361 |
|
---|
362 | // compute total molar entropy S (in J/(mol*K))
|
---|
363 | double S;
|
---|
364 | S = S_trans + S_rot + S_vib + S_el;
|
---|
365 |
|
---|
366 |
|
---|
367 | //////////////////////////////////////////////
|
---|
368 | // compute the molar enthalpy (nonelectronic)
|
---|
369 | //////////////////////////////////////////////
|
---|
370 |
|
---|
371 | int n_zero_or_imaginary = 0;
|
---|
372 | double E0vib = 0.0;
|
---|
373 | for (i=0; i<nirrep_; i++) {
|
---|
374 | for (int j=0; j<nfreq_[i]; j++) {
|
---|
375 | if (freq_[i][j] > 0.0) E0vib += freq_[i][j] * hartree_to_joule_per_mol;
|
---|
376 | else n_zero_or_imaginary++;
|
---|
377 | }
|
---|
378 | }
|
---|
379 | E0vib *= 0.5;
|
---|
380 |
|
---|
381 | double EvibT = 0.0;
|
---|
382 | for (i=0; i<nirrep_; i++) {
|
---|
383 | for (int j=0; j<nfreq_[i]; j++) {
|
---|
384 | if (freq_[i][j] > 0.0) {
|
---|
385 | double expval = exp(-freq_[i][j]*hartree_to_joule/(k*T));
|
---|
386 | EvibT += freq_[i][j] * hartree_to_joule_per_mol
|
---|
387 | * expval/(1.0-expval);
|
---|
388 | }
|
---|
389 | }
|
---|
390 | }
|
---|
391 |
|
---|
392 | double EPV = NA*k*T;
|
---|
393 |
|
---|
394 | int nexternal = 6;
|
---|
395 | if (mol_->natom() == 1) nexternal = 3;
|
---|
396 | else if (mol_->is_linear()) nexternal = 5;
|
---|
397 |
|
---|
398 | double Erot;
|
---|
399 | if (nexternal == 3) {
|
---|
400 | // atom
|
---|
401 | Erot = 0.0;
|
---|
402 | }
|
---|
403 | else if (nexternal == 5) {
|
---|
404 | // linear
|
---|
405 | Erot = EPV;
|
---|
406 | }
|
---|
407 | else if (nexternal == 6) {
|
---|
408 | // nonlinear
|
---|
409 | Erot = 1.5 * EPV;
|
---|
410 | }
|
---|
411 | else {
|
---|
412 | ExEnv::errn() << "Strange number of external coordinates: " << nexternal
|
---|
413 | << ". Setting Erot to 0.0" << endl;
|
---|
414 | Erot = 0.0;
|
---|
415 | }
|
---|
416 |
|
---|
417 | double Etrans = 1.5 * EPV;
|
---|
418 |
|
---|
419 | ////////////////////////////////////////////////
|
---|
420 | // Print out results of thermodynamic analysis
|
---|
421 | ////////////////////////////////////////////////
|
---|
422 |
|
---|
423 | ExEnv::out0() << indent << "THERMODYNAMIC ANALYSIS:" << endl << endl
|
---|
424 | << indent << scprintf("Contributions to the nonelectronic enthalpy at %.2lf K:\n",T)
|
---|
425 | << indent << " kJ/mol kcal/mol"<< endl
|
---|
426 | << indent << scprintf(" E0vib = %9.4lf %9.4lf\n",
|
---|
427 | E0vib/1000, E0vib/(4.184*1000))
|
---|
428 | << indent << scprintf(" Evib(T) = %9.4lf %9.4lf\n",
|
---|
429 | EvibT/1000, EvibT/(4.184*1000))
|
---|
430 | << indent << scprintf(" Erot(T) = %9.4lf %9.4lf\n",
|
---|
431 | Erot/1000, Erot/(4.184*1000))
|
---|
432 | << indent << scprintf(" Etrans(T) = %9.4lf %9.4lf\n",
|
---|
433 | Etrans/1000, Etrans/(4.184*1000))
|
---|
434 | << indent << scprintf(" PV(T) = %9.4lf %9.4lf\n",
|
---|
435 | EPV/1000, EPV/(4.184*1000))
|
---|
436 | << indent << scprintf(" Total nonelectronic enthalpy:\n")
|
---|
437 | << indent << scprintf(" H_nonel(T) = %9.4lf %9.4lf\n",
|
---|
438 | (E0vib+EvibT+Erot+Etrans+EPV)/1000,
|
---|
439 | (E0vib+EvibT+Erot+Etrans+EPV)/(4.184*1000))
|
---|
440 | << endl
|
---|
441 | << indent
|
---|
442 | << scprintf("Contributions to the entropy at %.2lf K and %.1lf atm:\n",
|
---|
443 | T, P)
|
---|
444 | << indent << " J/(mol*K) cal/(mol*K)"<< endl
|
---|
445 | << indent
|
---|
446 | << scprintf(" S_trans(T,P) = %9.4lf %9.4lf\n",
|
---|
447 | S_trans, S_trans/4.184)
|
---|
448 | << indent
|
---|
449 | << scprintf(" S_rot(T) = %9.4lf %9.4lf\n", S_rot,S_rot/4.184)
|
---|
450 | << indent
|
---|
451 | << scprintf(" S_vib(T) = %9.4lf %9.4lf\n", S_vib,S_vib/4.184)
|
---|
452 | << indent
|
---|
453 | << scprintf(" S_el = %9.4lf %9.4lf\n", S_el,S_el/4.184)
|
---|
454 | << indent << scprintf(" Total entropy:\n")
|
---|
455 | << indent << scprintf(" S_total(T,P) = %9.4lf %9.4lf\n", S, S/4.184)
|
---|
456 | << indent << endl
|
---|
457 |
|
---|
458 | << indent << "Various data used for thermodynamic analysis:" << endl
|
---|
459 | << indent << endl;
|
---|
460 |
|
---|
461 | if (linear) ExEnv::out0() << indent << "Linear molecule" << endl;
|
---|
462 | else ExEnv::out0() << indent << "Nonlinear molecule" << endl;
|
---|
463 |
|
---|
464 | ExEnv::out0() << indent
|
---|
465 | << scprintf("Principal moments of inertia (amu*angstrom^2):"
|
---|
466 | " %.5lf, %.5lf, %.5lf\n", pmi[0], pmi[1], pmi[2])
|
---|
467 | << indent << "Point group: " << ct.symbol()
|
---|
468 | << endl
|
---|
469 | << indent << "Order of point group: " << ct.order() << endl
|
---|
470 | << indent << "Rotational symmetry number: " << sigma << endl;
|
---|
471 |
|
---|
472 | if (linear) {
|
---|
473 | ExEnv::out0() << indent
|
---|
474 | << scprintf("Rotational temperature (K): %.4lf\n", theta[1]);
|
---|
475 | }
|
---|
476 | else {
|
---|
477 | ExEnv::out0() << indent
|
---|
478 | << scprintf("Rotational temperatures (K): %.4lf, %.4lf, %.4lf\n",
|
---|
479 | theta[0], theta[1], theta[2]);
|
---|
480 | }
|
---|
481 |
|
---|
482 | ExEnv::out0() << indent << "Electronic degeneracy: " << degeneracy
|
---|
483 | << endl << endl;
|
---|
484 | }
|
---|
485 |
|
---|
486 | void
|
---|
487 | MolecularFrequencies::animate(const Ref<Render>& render,
|
---|
488 | const Ref<MolFreqAnimate>& anim)
|
---|
489 | {
|
---|
490 | int i,j, symoff = 0;
|
---|
491 | for (i=0; i<nirrep_; i++) {
|
---|
492 | int nfreq = disym_->blocks()->size(i);
|
---|
493 | for (j=0; j<nfreq; j++) {
|
---|
494 | char name[128];
|
---|
495 | sprintf(name,"%02d.%s",
|
---|
496 | nfreq-j+symoff, pg_->char_table().gamma(i).symbol_ns());
|
---|
497 | anim->set_name(name);
|
---|
498 | anim->set_mode(i,j);
|
---|
499 | render->animate(anim.pointer());
|
---|
500 | }
|
---|
501 | symoff += nfreq;
|
---|
502 | }
|
---|
503 | }
|
---|
504 |
|
---|
505 | /////////////////////////////////////////////////////////////////////////////
|
---|
506 | // MolFreqAnimate
|
---|
507 |
|
---|
508 | static ClassDesc MolFreqAnimate_cd(
|
---|
509 | typeid(MolFreqAnimate),"MolFreqAnimate",1,"public AnimatedObject",
|
---|
510 | 0, create<MolFreqAnimate>, 0);
|
---|
511 |
|
---|
512 | MolFreqAnimate::MolFreqAnimate(const Ref<KeyVal> &keyval):
|
---|
513 | AnimatedObject(keyval)
|
---|
514 | {
|
---|
515 | renmol_ << keyval->describedclassvalue("rendered");
|
---|
516 | molfreq_ << keyval->describedclassvalue("freq");
|
---|
517 | dependent_mole_ << keyval->describedclassvalue("dependent_mole");
|
---|
518 | irrep_ = keyval->intvalue("irrep");
|
---|
519 | mode_ = keyval->intvalue("mode");
|
---|
520 | KeyValValueint default_nframe(10);
|
---|
521 | nframe_ = keyval->intvalue("nframe",default_nframe);
|
---|
522 | KeyValValuedouble default_disp(0.2);
|
---|
523 | disp_ = keyval->doublevalue("displacement", default_disp);
|
---|
524 | }
|
---|
525 |
|
---|
526 | MolFreqAnimate::~MolFreqAnimate()
|
---|
527 | {
|
---|
528 | }
|
---|
529 |
|
---|
530 | int
|
---|
531 | MolFreqAnimate::nobject()
|
---|
532 | {
|
---|
533 | return nframe_;
|
---|
534 | }
|
---|
535 |
|
---|
536 | Ref<RenderedObject>
|
---|
537 | MolFreqAnimate::object(int iobject)
|
---|
538 | {
|
---|
539 | BlockedSCMatrix *normco
|
---|
540 | = dynamic_cast<BlockedSCMatrix*>(molfreq_->normal_coordinates().pointer());
|
---|
541 | Ref<Molecule> mol = renmol_->molecule();
|
---|
542 | Ref<Molecule> molcopy = new Molecule(*mol.pointer());
|
---|
543 |
|
---|
544 | double scale = disp_ * cos(M_PI*(iobject+0.5)/(double)nframe_);
|
---|
545 |
|
---|
546 | RefSCMatrix irrepblock = normco->block(irrep_);
|
---|
547 | int ixyz, iatom, icoor=0;
|
---|
548 | for (iatom=0; iatom<mol->natom(); iatom++) {
|
---|
549 | for (ixyz=0; ixyz<3; ixyz++, icoor++) {
|
---|
550 | mol->r(iatom,ixyz) += scale
|
---|
551 | * irrepblock->get_element(icoor,mode_);
|
---|
552 | }
|
---|
553 | }
|
---|
554 |
|
---|
555 | if (dependent_mole_.nonnull()) dependent_mole_->obsolete();
|
---|
556 | renmol_->init();
|
---|
557 |
|
---|
558 | char name[64];
|
---|
559 | sprintf(name,"%02d",iobject);
|
---|
560 | renmol_->set_name(name);
|
---|
561 |
|
---|
562 | // restore the original molecule
|
---|
563 | mol->operator = (*molcopy.pointer());
|
---|
564 | if (dependent_mole_.nonnull()) dependent_mole_->obsolete();
|
---|
565 |
|
---|
566 | return renmol_.pointer();
|
---|
567 | }
|
---|
568 |
|
---|
569 |
|
---|
570 | /////////////////////////////////////////////////////////////////////////////
|
---|
571 |
|
---|
572 | // Local Variables:
|
---|
573 | // mode: c++
|
---|
574 | // c-file-style: "CLJ"
|
---|
575 | // End:
|
---|