// // localdef.h // // Copyright (C) 1996 Limit Point Systems, Inc. // // Author: Edward Seidl // Maintainer: LPS // // This file is part of the SC Toolkit. // // The SC Toolkit is free software; you can redistribute it and/or modify // it under the terms of the GNU Library General Public License as published by // the Free Software Foundation; either version 2, or (at your option) // any later version. // // The SC Toolkit is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU Library General Public License for more details. // // You should have received a copy of the GNU Library General Public License // along with the SC Toolkit; see the file COPYING.LIB. If not, write to // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. // // The U.S. Government is granted a limited license as per AL 91-7. // // some inline functions for dealing with 3 dimensional vectors #ifndef _localdef_h #define _localdef_h #include namespace sc { static const double pi=M_PI; static const double pih=M_PI_2; static const double tpi=2.0*pi; static const double bohr = 0.52917706; // ///////////////////////////////////////////////////////// static inline void delta(double u[], const double a[], const double b[]) { u[0]=a[0]-b[0]; u[1]=a[1]-b[1]; u[2]=a[2]-b[2]; } // ///////////////////////////////////////////////////////// // returns the distance between two points static inline double dist(const double a[], const double b[]) { double x,y,z; return (sqrt((x=a[0]-b[0])*x + (y=a[1]-b[1])*y + (z=a[2]-b[2])*z)); } // ///////////////////////////////////////////////////////// // given sin(x) returns cos(x) static inline double s2(double x) { double tmp = 1.0 - x*x; if (tmp < 0.0) tmp = 0.0; return sqrt(tmp); } // ///////////////////////////////////////////////////////// // returns the dot product for two vectors static inline double scalar(const double a[], const double b[]) { double x = a[0]*b[0]; double x1 = a[1]*b[1]; x += a[2]*b[2]; return x+x1; } // ///////////////////////////////////////////////////////// // given vectors a and b, returns a unit vector directed along the difference // of the two vectors static inline void norm(double u[], const double a[], const double b[]) { delta(u,a,b); double x = 1.0/sqrt(scalar(u,u)); u[0] *= x; u[1] *= x; u[2] *= x; } // ///////////////////////////////////////////////////////// // given two vectors, returns the normalized cross product of those vectors static inline void normal(const double a[], const double b[], double w[]) { w[0] = a[1]*b[2]-a[2]*b[1]; w[1] = a[2]*b[0]-a[0]*b[2]; w[2] = a[0]*b[1]-a[1]*b[0]; double x = 1.0/sqrt(scalar(w,w)); w[0] *= x; w[1] *= x; w[2] *= x; } } #endif // Local Variables: // mode: c++ // c-file-style: "ETS" // End: