1 | % emacs should use -*- KeyVal -*- mode
|
---|
2 | molecule<Molecule>: (
|
---|
3 | symmetry = auto
|
---|
4 | unit = angstrom
|
---|
5 | { atoms geometry } = {
|
---|
6 | Ne [ 0.00000000 0.00000000 0.00000000 ]
|
---|
7 | }
|
---|
8 | )
|
---|
9 |
|
---|
10 | basis<GaussianBasisSet>: (
|
---|
11 | molecule = $:molecule
|
---|
12 | name = "aug-cc-pVDZ"
|
---|
13 | )
|
---|
14 |
|
---|
15 | abasis<GaussianBasisSet>: (
|
---|
16 | molecule = $:molecule
|
---|
17 | puream = true
|
---|
18 | name = "K32s15f"
|
---|
19 | )
|
---|
20 |
|
---|
21 | mpqc: (
|
---|
22 | checkpoint = no
|
---|
23 | savestate = no
|
---|
24 | mole<MBPT2_R12>: (
|
---|
25 | molecule = $:molecule
|
---|
26 | basis = $:basis
|
---|
27 | aux_basis = $:abasis
|
---|
28 | abs_method = abs+
|
---|
29 | spinadapted = true
|
---|
30 | stdapprox = "a'"
|
---|
31 | ebc = true
|
---|
32 | gebc = true
|
---|
33 | memory = 10000000
|
---|
34 | r12ints = posix
|
---|
35 | nfzc = 1
|
---|
36 | integrals<IntegralCints>: ()
|
---|
37 | reference<CLHF>: (
|
---|
38 | molecule = $:molecule
|
---|
39 | basis = $:basis
|
---|
40 | memory = 24000000
|
---|
41 | integrals<IntegralCints>: ()
|
---|
42 | guess_wavefunction<HCoreWfn>: (
|
---|
43 | molecule = $:molecule
|
---|
44 | basis = $:basis
|
---|
45 | integrals<IntegralCints>: ()
|
---|
46 | )
|
---|
47 | )
|
---|
48 | )
|
---|
49 | )
|
---|
50 |
|
---|
51 | basis:neon:"K32s15f": [
|
---|
52 | ( type: [am = s]
|
---|
53 | {exp coef:0} = { 0.005 1.0 }
|
---|
54 | )
|
---|
55 | ( type: [am = s]
|
---|
56 | {exp coef:0} = { 0.00866025403784439 1.0 }
|
---|
57 | )
|
---|
58 | ( type: [am = s]
|
---|
59 | {exp coef:0} = { 0.015 1.0 }
|
---|
60 | )
|
---|
61 | ( type: [am = s]
|
---|
62 | {exp coef:0} = { 0.0259807621135332 1.0 }
|
---|
63 | )
|
---|
64 | ( type: [am = s]
|
---|
65 | {exp coef:0} = { 0.045 1.0 }
|
---|
66 | )
|
---|
67 | ( type: [am = s]
|
---|
68 | {exp coef:0} = { 0.0779422863405995 1.0 }
|
---|
69 | )
|
---|
70 | ( type: [am = s]
|
---|
71 | {exp coef:0} = { 0.135 1.0 }
|
---|
72 | )
|
---|
73 | ( type: [am = s]
|
---|
74 | {exp coef:0} = { 0.233826859021798 1.0 }
|
---|
75 | )
|
---|
76 | ( type: [am = s]
|
---|
77 | {exp coef:0} = { 0.405 1.0 }
|
---|
78 | )
|
---|
79 | ( type: [am = s]
|
---|
80 | {exp coef:0} = { 0.701480577065395 1.0 }
|
---|
81 | )
|
---|
82 | ( type: [am = s]
|
---|
83 | {exp coef:0} = { 1.215 1.0 }
|
---|
84 | )
|
---|
85 | ( type: [am = s]
|
---|
86 | {exp coef:0} = { 2.10444173119618 1.0 }
|
---|
87 | )
|
---|
88 | ( type: [am = s]
|
---|
89 | {exp coef:0} = { 3.645 1.0 }
|
---|
90 | )
|
---|
91 | ( type: [am = s]
|
---|
92 | {exp coef:0} = { 6.31332519358855 1.0 }
|
---|
93 | )
|
---|
94 | ( type: [am = s]
|
---|
95 | {exp coef:0} = { 10.935 1.0 }
|
---|
96 | )
|
---|
97 | ( type: [am = s]
|
---|
98 | {exp coef:0} = { 18.9399755807657 1.0 }
|
---|
99 | )
|
---|
100 | ( type: [am = s]
|
---|
101 | {exp coef:0} = { 32.805 1.0 }
|
---|
102 | )
|
---|
103 | ( type: [am = s]
|
---|
104 | {exp coef:0} = { 56.819926742297 1.0 }
|
---|
105 | )
|
---|
106 | ( type: [am = s]
|
---|
107 | {exp coef:0} = { 98.4149999999999 1.0 }
|
---|
108 | )
|
---|
109 | ( type: [am = s]
|
---|
110 | {exp coef:0} = { 170.459780226891 1.0 }
|
---|
111 | )
|
---|
112 | ( type: [am = s]
|
---|
113 | {exp coef:0} = { 295.245 1.0 }
|
---|
114 | )
|
---|
115 | ( type: [am = s]
|
---|
116 | {exp coef:0} = { 511.379340680673 1.0 }
|
---|
117 | )
|
---|
118 | ( type: [am = s]
|
---|
119 | {exp coef:0} = { 885.734999999999 1.0 }
|
---|
120 | )
|
---|
121 | ( type: [am = s]
|
---|
122 | {exp coef:0} = { 1534.13802204202 1.0 }
|
---|
123 | )
|
---|
124 | ( type: [am = s]
|
---|
125 | {exp coef:0} = { 2657.205 1.0 }
|
---|
126 | )
|
---|
127 | ( type: [am = s]
|
---|
128 | {exp coef:0} = { 4602.41406612605 1.0 }
|
---|
129 | )
|
---|
130 | ( type: [am = s]
|
---|
131 | {exp coef:0} = { 7971.61499999999 1.0 }
|
---|
132 | )
|
---|
133 | ( type: [am = s]
|
---|
134 | {exp coef:0} = { 13807.2421983782 1.0 }
|
---|
135 | )
|
---|
136 | ( type: [am = s]
|
---|
137 | {exp coef:0} = { 23914.845 1.0 }
|
---|
138 | )
|
---|
139 | ( type: [am = s]
|
---|
140 | {exp coef:0} = { 41421.7265951345 1.0 }
|
---|
141 | )
|
---|
142 | ( type: [am = s]
|
---|
143 | {exp coef:0} = { 71744.5349999999 1.0 }
|
---|
144 | )
|
---|
145 | ( type: [am = s]
|
---|
146 | {exp coef:0} = { 124265.179785403 1.0 }
|
---|
147 | )
|
---|
148 | ( type: [am = p]
|
---|
149 | {exp coef:0} = { 0.005 1.0 }
|
---|
150 | )
|
---|
151 | ( type: [am = p]
|
---|
152 | {exp coef:0} = { 0.00866025403784439 1.0 }
|
---|
153 | )
|
---|
154 | ( type: [am = p]
|
---|
155 | {exp coef:0} = { 0.015 1.0 }
|
---|
156 | )
|
---|
157 | ( type: [am = p]
|
---|
158 | {exp coef:0} = { 0.0259807621135332 1.0 }
|
---|
159 | )
|
---|
160 | ( type: [am = p]
|
---|
161 | {exp coef:0} = { 0.045 1.0 }
|
---|
162 | )
|
---|
163 | ( type: [am = p]
|
---|
164 | {exp coef:0} = { 0.0779422863405995 1.0 }
|
---|
165 | )
|
---|
166 | ( type: [am = p]
|
---|
167 | {exp coef:0} = { 0.135 1.0 }
|
---|
168 | )
|
---|
169 | ( type: [am = p]
|
---|
170 | {exp coef:0} = { 0.233826859021798 1.0 }
|
---|
171 | )
|
---|
172 | ( type: [am = p]
|
---|
173 | {exp coef:0} = { 0.405 1.0 }
|
---|
174 | )
|
---|
175 | ( type: [am = p]
|
---|
176 | {exp coef:0} = { 0.701480577065395 1.0 }
|
---|
177 | )
|
---|
178 | ( type: [am = p]
|
---|
179 | {exp coef:0} = { 1.215 1.0 }
|
---|
180 | )
|
---|
181 | ( type: [am = p]
|
---|
182 | {exp coef:0} = { 2.10444173119618 1.0 }
|
---|
183 | )
|
---|
184 | ( type: [am = p]
|
---|
185 | {exp coef:0} = { 3.645 1.0 }
|
---|
186 | )
|
---|
187 | ( type: [am = p]
|
---|
188 | {exp coef:0} = { 6.31332519358855 1.0 }
|
---|
189 | )
|
---|
190 | ( type: [am = p]
|
---|
191 | {exp coef:0} = { 10.935 1.0 }
|
---|
192 | )
|
---|
193 | ( type: [am = p]
|
---|
194 | {exp coef:0} = { 18.9399755807657 1.0 }
|
---|
195 | )
|
---|
196 | ( type: [am = p]
|
---|
197 | {exp coef:0} = { 32.805 1.0 }
|
---|
198 | )
|
---|
199 | ( type: [am = p]
|
---|
200 | {exp coef:0} = { 56.819926742297 1.0 }
|
---|
201 | )
|
---|
202 | ( type: [am = p]
|
---|
203 | {exp coef:0} = { 98.4149999999999 1.0 }
|
---|
204 | )
|
---|
205 | ( type: [am = p]
|
---|
206 | {exp coef:0} = { 170.459780226891 1.0 }
|
---|
207 | )
|
---|
208 | ( type: [am = p]
|
---|
209 | {exp coef:0} = { 295.245 1.0 }
|
---|
210 | )
|
---|
211 | ( type: [am = p]
|
---|
212 | {exp coef:0} = { 511.379340680673 1.0 }
|
---|
213 | )
|
---|
214 | ( type: [am = p]
|
---|
215 | {exp coef:0} = { 885.734999999999 1.0 }
|
---|
216 | )
|
---|
217 | ( type: [am = p]
|
---|
218 | {exp coef:0} = { 1534.13802204202 1.0 }
|
---|
219 | )
|
---|
220 | ( type: [am = d]
|
---|
221 | {exp coef:0} = { 0.021 1.0 }
|
---|
222 | )
|
---|
223 | ( type: [am = d]
|
---|
224 | {exp coef:0} = { 0.0363730669589464 1.0 }
|
---|
225 | )
|
---|
226 | ( type: [am = d]
|
---|
227 | {exp coef:0} = { 0.063 1.0 }
|
---|
228 | )
|
---|
229 | ( type: [am = d]
|
---|
230 | {exp coef:0} = { 0.109119200876839 1.0 }
|
---|
231 | )
|
---|
232 | ( type: [am = d]
|
---|
233 | {exp coef:0} = { 0.189 1.0 }
|
---|
234 | )
|
---|
235 | ( type: [am = d]
|
---|
236 | {exp coef:0} = { 0.327357602630518 1.0 }
|
---|
237 | )
|
---|
238 | ( type: [am = d]
|
---|
239 | {exp coef:0} = { 0.567 1.0 }
|
---|
240 | )
|
---|
241 | ( type: [am = d]
|
---|
242 | {exp coef:0} = { 0.982072807891553 1.0 }
|
---|
243 | )
|
---|
244 | ( type: [am = d]
|
---|
245 | {exp coef:0} = { 1.701 1.0 }
|
---|
246 | )
|
---|
247 | ( type: [am = d]
|
---|
248 | {exp coef:0} = { 2.94621842367466 1.0 }
|
---|
249 | )
|
---|
250 | ( type: [am = d]
|
---|
251 | {exp coef:0} = { 5.103 1.0 }
|
---|
252 | )
|
---|
253 | ( type: [am = d]
|
---|
254 | {exp coef:0} = { 8.83865527102397 1.0 }
|
---|
255 | )
|
---|
256 | ( type: [am = d]
|
---|
257 | {exp coef:0} = { 15.309 1.0 }
|
---|
258 | )
|
---|
259 | ( type: [am = d]
|
---|
260 | {exp coef:0} = { 26.5159658130719 1.0 }
|
---|
261 | )
|
---|
262 | ( type: [am = d]
|
---|
263 | {exp coef:0} = { 45.927 1.0 }
|
---|
264 | )
|
---|
265 | ( type: [am = d]
|
---|
266 | {exp coef:0} = { 79.5478974392158 1.0 }
|
---|
267 | )
|
---|
268 | ( type: [am = d]
|
---|
269 | {exp coef:0} = { 137.781 1.0 }
|
---|
270 | )
|
---|
271 | ( type: [am = d]
|
---|
272 | {exp coef:0} = { 238.643692317647 1.0 }
|
---|
273 | )
|
---|
274 | ( type: [am = f]
|
---|
275 | {exp coef:0} = { 0.0467653718043597 1.0 }
|
---|
276 | )
|
---|
277 | ( type: [am = f]
|
---|
278 | {exp coef:0} = { 0.081 1.0 }
|
---|
279 | )
|
---|
280 | ( type: [am = f]
|
---|
281 | {exp coef:0} = { 0.140296115413079 1.0 }
|
---|
282 | )
|
---|
283 | ( type: [am = f]
|
---|
284 | {exp coef:0} = { 0.243 1.0 }
|
---|
285 | )
|
---|
286 | ( type: [am = f]
|
---|
287 | {exp coef:0} = { 0.420888346239237 1.0 }
|
---|
288 | )
|
---|
289 | ( type: [am = f]
|
---|
290 | {exp coef:0} = { 0.729 1.0 }
|
---|
291 | )
|
---|
292 | ( type: [am = f]
|
---|
293 | {exp coef:0} = { 1.26266503871771 1.0 }
|
---|
294 | )
|
---|
295 | ( type: [am = f]
|
---|
296 | {exp coef:0} = { 2.187 1.0 }
|
---|
297 | )
|
---|
298 | ( type: [am = f]
|
---|
299 | {exp coef:0} = { 3.78799511615313 1.0 }
|
---|
300 | )
|
---|
301 | ( type: [am = f]
|
---|
302 | {exp coef:0} = { 6.561 1.0 }
|
---|
303 | )
|
---|
304 | ( type: [am = f]
|
---|
305 | {exp coef:0} = { 11.3639853484594 1.0 }
|
---|
306 | )
|
---|
307 | ( type: [am = f]
|
---|
308 | {exp coef:0} = { 19.683 1.0 }
|
---|
309 | )
|
---|
310 | ( type: [am = f]
|
---|
311 | {exp coef:0} = { 34.0919560453782 1.0 }
|
---|
312 | )
|
---|
313 | ( type: [am = f]
|
---|
314 | {exp coef:0} = { 59.0489999999999 1.0 }
|
---|
315 | )
|
---|
316 | ( type: [am = f]
|
---|
317 | {exp coef:0} = { 102.275868136135 1.0 }
|
---|
318 | )
|
---|
319 | ]
|
---|
320 |
|
---|