[0b990d] | 1 | % emacs should use -*- KeyVal -*- mode
|
---|
| 2 | molecule<Molecule>: (
|
---|
| 3 | symmetry = auto
|
---|
| 4 | unit = angstrom
|
---|
| 5 | { atoms geometry } = {
|
---|
| 6 | Ne [ 0.00000000 0.00000000 0.00000000 ]
|
---|
| 7 | }
|
---|
| 8 | )
|
---|
| 9 |
|
---|
| 10 | basis<GaussianBasisSet>: (
|
---|
| 11 | molecule = $:molecule
|
---|
| 12 | name = "aug-cc-pVDZ"
|
---|
| 13 | )
|
---|
| 14 |
|
---|
| 15 | abasis<GaussianBasisSet>: (
|
---|
| 16 | molecule = $:molecule
|
---|
| 17 | puream = true
|
---|
| 18 | name = "K32s15f"
|
---|
| 19 | )
|
---|
| 20 |
|
---|
| 21 | mpqc: (
|
---|
| 22 | checkpoint = no
|
---|
| 23 | savestate = no
|
---|
| 24 | mole<MBPT2_R12>: (
|
---|
| 25 | molecule = $:molecule
|
---|
| 26 | basis = $:basis
|
---|
| 27 | aux_basis = $:abasis
|
---|
| 28 | abs_method = abs+
|
---|
| 29 | spinadapted = true
|
---|
| 30 | stdapprox = "a'"
|
---|
| 31 | ebc = true
|
---|
| 32 | gebc = true
|
---|
| 33 | memory = 10000000
|
---|
| 34 | r12ints = posix
|
---|
| 35 | nfzc = 1
|
---|
| 36 | integrals<IntegralCints>: ()
|
---|
| 37 | reference<CLHF>: (
|
---|
| 38 | molecule = $:molecule
|
---|
| 39 | basis = $:basis
|
---|
| 40 | memory = 24000000
|
---|
| 41 | integrals<IntegralCints>: ()
|
---|
| 42 | guess_wavefunction<HCoreWfn>: (
|
---|
| 43 | molecule = $:molecule
|
---|
| 44 | basis = $:basis
|
---|
| 45 | integrals<IntegralCints>: ()
|
---|
| 46 | )
|
---|
| 47 | )
|
---|
| 48 | )
|
---|
| 49 | )
|
---|
| 50 |
|
---|
| 51 | basis:neon:"K32s15f": [
|
---|
| 52 | ( type: [am = s]
|
---|
| 53 | {exp coef:0} = { 0.005 1.0 }
|
---|
| 54 | )
|
---|
| 55 | ( type: [am = s]
|
---|
| 56 | {exp coef:0} = { 0.00866025403784439 1.0 }
|
---|
| 57 | )
|
---|
| 58 | ( type: [am = s]
|
---|
| 59 | {exp coef:0} = { 0.015 1.0 }
|
---|
| 60 | )
|
---|
| 61 | ( type: [am = s]
|
---|
| 62 | {exp coef:0} = { 0.0259807621135332 1.0 }
|
---|
| 63 | )
|
---|
| 64 | ( type: [am = s]
|
---|
| 65 | {exp coef:0} = { 0.045 1.0 }
|
---|
| 66 | )
|
---|
| 67 | ( type: [am = s]
|
---|
| 68 | {exp coef:0} = { 0.0779422863405995 1.0 }
|
---|
| 69 | )
|
---|
| 70 | ( type: [am = s]
|
---|
| 71 | {exp coef:0} = { 0.135 1.0 }
|
---|
| 72 | )
|
---|
| 73 | ( type: [am = s]
|
---|
| 74 | {exp coef:0} = { 0.233826859021798 1.0 }
|
---|
| 75 | )
|
---|
| 76 | ( type: [am = s]
|
---|
| 77 | {exp coef:0} = { 0.405 1.0 }
|
---|
| 78 | )
|
---|
| 79 | ( type: [am = s]
|
---|
| 80 | {exp coef:0} = { 0.701480577065395 1.0 }
|
---|
| 81 | )
|
---|
| 82 | ( type: [am = s]
|
---|
| 83 | {exp coef:0} = { 1.215 1.0 }
|
---|
| 84 | )
|
---|
| 85 | ( type: [am = s]
|
---|
| 86 | {exp coef:0} = { 2.10444173119618 1.0 }
|
---|
| 87 | )
|
---|
| 88 | ( type: [am = s]
|
---|
| 89 | {exp coef:0} = { 3.645 1.0 }
|
---|
| 90 | )
|
---|
| 91 | ( type: [am = s]
|
---|
| 92 | {exp coef:0} = { 6.31332519358855 1.0 }
|
---|
| 93 | )
|
---|
| 94 | ( type: [am = s]
|
---|
| 95 | {exp coef:0} = { 10.935 1.0 }
|
---|
| 96 | )
|
---|
| 97 | ( type: [am = s]
|
---|
| 98 | {exp coef:0} = { 18.9399755807657 1.0 }
|
---|
| 99 | )
|
---|
| 100 | ( type: [am = s]
|
---|
| 101 | {exp coef:0} = { 32.805 1.0 }
|
---|
| 102 | )
|
---|
| 103 | ( type: [am = s]
|
---|
| 104 | {exp coef:0} = { 56.819926742297 1.0 }
|
---|
| 105 | )
|
---|
| 106 | ( type: [am = s]
|
---|
| 107 | {exp coef:0} = { 98.4149999999999 1.0 }
|
---|
| 108 | )
|
---|
| 109 | ( type: [am = s]
|
---|
| 110 | {exp coef:0} = { 170.459780226891 1.0 }
|
---|
| 111 | )
|
---|
| 112 | ( type: [am = s]
|
---|
| 113 | {exp coef:0} = { 295.245 1.0 }
|
---|
| 114 | )
|
---|
| 115 | ( type: [am = s]
|
---|
| 116 | {exp coef:0} = { 511.379340680673 1.0 }
|
---|
| 117 | )
|
---|
| 118 | ( type: [am = s]
|
---|
| 119 | {exp coef:0} = { 885.734999999999 1.0 }
|
---|
| 120 | )
|
---|
| 121 | ( type: [am = s]
|
---|
| 122 | {exp coef:0} = { 1534.13802204202 1.0 }
|
---|
| 123 | )
|
---|
| 124 | ( type: [am = s]
|
---|
| 125 | {exp coef:0} = { 2657.205 1.0 }
|
---|
| 126 | )
|
---|
| 127 | ( type: [am = s]
|
---|
| 128 | {exp coef:0} = { 4602.41406612605 1.0 }
|
---|
| 129 | )
|
---|
| 130 | ( type: [am = s]
|
---|
| 131 | {exp coef:0} = { 7971.61499999999 1.0 }
|
---|
| 132 | )
|
---|
| 133 | ( type: [am = s]
|
---|
| 134 | {exp coef:0} = { 13807.2421983782 1.0 }
|
---|
| 135 | )
|
---|
| 136 | ( type: [am = s]
|
---|
| 137 | {exp coef:0} = { 23914.845 1.0 }
|
---|
| 138 | )
|
---|
| 139 | ( type: [am = s]
|
---|
| 140 | {exp coef:0} = { 41421.7265951345 1.0 }
|
---|
| 141 | )
|
---|
| 142 | ( type: [am = s]
|
---|
| 143 | {exp coef:0} = { 71744.5349999999 1.0 }
|
---|
| 144 | )
|
---|
| 145 | ( type: [am = s]
|
---|
| 146 | {exp coef:0} = { 124265.179785403 1.0 }
|
---|
| 147 | )
|
---|
| 148 | ( type: [am = p]
|
---|
| 149 | {exp coef:0} = { 0.005 1.0 }
|
---|
| 150 | )
|
---|
| 151 | ( type: [am = p]
|
---|
| 152 | {exp coef:0} = { 0.00866025403784439 1.0 }
|
---|
| 153 | )
|
---|
| 154 | ( type: [am = p]
|
---|
| 155 | {exp coef:0} = { 0.015 1.0 }
|
---|
| 156 | )
|
---|
| 157 | ( type: [am = p]
|
---|
| 158 | {exp coef:0} = { 0.0259807621135332 1.0 }
|
---|
| 159 | )
|
---|
| 160 | ( type: [am = p]
|
---|
| 161 | {exp coef:0} = { 0.045 1.0 }
|
---|
| 162 | )
|
---|
| 163 | ( type: [am = p]
|
---|
| 164 | {exp coef:0} = { 0.0779422863405995 1.0 }
|
---|
| 165 | )
|
---|
| 166 | ( type: [am = p]
|
---|
| 167 | {exp coef:0} = { 0.135 1.0 }
|
---|
| 168 | )
|
---|
| 169 | ( type: [am = p]
|
---|
| 170 | {exp coef:0} = { 0.233826859021798 1.0 }
|
---|
| 171 | )
|
---|
| 172 | ( type: [am = p]
|
---|
| 173 | {exp coef:0} = { 0.405 1.0 }
|
---|
| 174 | )
|
---|
| 175 | ( type: [am = p]
|
---|
| 176 | {exp coef:0} = { 0.701480577065395 1.0 }
|
---|
| 177 | )
|
---|
| 178 | ( type: [am = p]
|
---|
| 179 | {exp coef:0} = { 1.215 1.0 }
|
---|
| 180 | )
|
---|
| 181 | ( type: [am = p]
|
---|
| 182 | {exp coef:0} = { 2.10444173119618 1.0 }
|
---|
| 183 | )
|
---|
| 184 | ( type: [am = p]
|
---|
| 185 | {exp coef:0} = { 3.645 1.0 }
|
---|
| 186 | )
|
---|
| 187 | ( type: [am = p]
|
---|
| 188 | {exp coef:0} = { 6.31332519358855 1.0 }
|
---|
| 189 | )
|
---|
| 190 | ( type: [am = p]
|
---|
| 191 | {exp coef:0} = { 10.935 1.0 }
|
---|
| 192 | )
|
---|
| 193 | ( type: [am = p]
|
---|
| 194 | {exp coef:0} = { 18.9399755807657 1.0 }
|
---|
| 195 | )
|
---|
| 196 | ( type: [am = p]
|
---|
| 197 | {exp coef:0} = { 32.805 1.0 }
|
---|
| 198 | )
|
---|
| 199 | ( type: [am = p]
|
---|
| 200 | {exp coef:0} = { 56.819926742297 1.0 }
|
---|
| 201 | )
|
---|
| 202 | ( type: [am = p]
|
---|
| 203 | {exp coef:0} = { 98.4149999999999 1.0 }
|
---|
| 204 | )
|
---|
| 205 | ( type: [am = p]
|
---|
| 206 | {exp coef:0} = { 170.459780226891 1.0 }
|
---|
| 207 | )
|
---|
| 208 | ( type: [am = p]
|
---|
| 209 | {exp coef:0} = { 295.245 1.0 }
|
---|
| 210 | )
|
---|
| 211 | ( type: [am = p]
|
---|
| 212 | {exp coef:0} = { 511.379340680673 1.0 }
|
---|
| 213 | )
|
---|
| 214 | ( type: [am = p]
|
---|
| 215 | {exp coef:0} = { 885.734999999999 1.0 }
|
---|
| 216 | )
|
---|
| 217 | ( type: [am = p]
|
---|
| 218 | {exp coef:0} = { 1534.13802204202 1.0 }
|
---|
| 219 | )
|
---|
| 220 | ( type: [am = d]
|
---|
| 221 | {exp coef:0} = { 0.021 1.0 }
|
---|
| 222 | )
|
---|
| 223 | ( type: [am = d]
|
---|
| 224 | {exp coef:0} = { 0.0363730669589464 1.0 }
|
---|
| 225 | )
|
---|
| 226 | ( type: [am = d]
|
---|
| 227 | {exp coef:0} = { 0.063 1.0 }
|
---|
| 228 | )
|
---|
| 229 | ( type: [am = d]
|
---|
| 230 | {exp coef:0} = { 0.109119200876839 1.0 }
|
---|
| 231 | )
|
---|
| 232 | ( type: [am = d]
|
---|
| 233 | {exp coef:0} = { 0.189 1.0 }
|
---|
| 234 | )
|
---|
| 235 | ( type: [am = d]
|
---|
| 236 | {exp coef:0} = { 0.327357602630518 1.0 }
|
---|
| 237 | )
|
---|
| 238 | ( type: [am = d]
|
---|
| 239 | {exp coef:0} = { 0.567 1.0 }
|
---|
| 240 | )
|
---|
| 241 | ( type: [am = d]
|
---|
| 242 | {exp coef:0} = { 0.982072807891553 1.0 }
|
---|
| 243 | )
|
---|
| 244 | ( type: [am = d]
|
---|
| 245 | {exp coef:0} = { 1.701 1.0 }
|
---|
| 246 | )
|
---|
| 247 | ( type: [am = d]
|
---|
| 248 | {exp coef:0} = { 2.94621842367466 1.0 }
|
---|
| 249 | )
|
---|
| 250 | ( type: [am = d]
|
---|
| 251 | {exp coef:0} = { 5.103 1.0 }
|
---|
| 252 | )
|
---|
| 253 | ( type: [am = d]
|
---|
| 254 | {exp coef:0} = { 8.83865527102397 1.0 }
|
---|
| 255 | )
|
---|
| 256 | ( type: [am = d]
|
---|
| 257 | {exp coef:0} = { 15.309 1.0 }
|
---|
| 258 | )
|
---|
| 259 | ( type: [am = d]
|
---|
| 260 | {exp coef:0} = { 26.5159658130719 1.0 }
|
---|
| 261 | )
|
---|
| 262 | ( type: [am = d]
|
---|
| 263 | {exp coef:0} = { 45.927 1.0 }
|
---|
| 264 | )
|
---|
| 265 | ( type: [am = d]
|
---|
| 266 | {exp coef:0} = { 79.5478974392158 1.0 }
|
---|
| 267 | )
|
---|
| 268 | ( type: [am = d]
|
---|
| 269 | {exp coef:0} = { 137.781 1.0 }
|
---|
| 270 | )
|
---|
| 271 | ( type: [am = d]
|
---|
| 272 | {exp coef:0} = { 238.643692317647 1.0 }
|
---|
| 273 | )
|
---|
| 274 | ( type: [am = f]
|
---|
| 275 | {exp coef:0} = { 0.0467653718043597 1.0 }
|
---|
| 276 | )
|
---|
| 277 | ( type: [am = f]
|
---|
| 278 | {exp coef:0} = { 0.081 1.0 }
|
---|
| 279 | )
|
---|
| 280 | ( type: [am = f]
|
---|
| 281 | {exp coef:0} = { 0.140296115413079 1.0 }
|
---|
| 282 | )
|
---|
| 283 | ( type: [am = f]
|
---|
| 284 | {exp coef:0} = { 0.243 1.0 }
|
---|
| 285 | )
|
---|
| 286 | ( type: [am = f]
|
---|
| 287 | {exp coef:0} = { 0.420888346239237 1.0 }
|
---|
| 288 | )
|
---|
| 289 | ( type: [am = f]
|
---|
| 290 | {exp coef:0} = { 0.729 1.0 }
|
---|
| 291 | )
|
---|
| 292 | ( type: [am = f]
|
---|
| 293 | {exp coef:0} = { 1.26266503871771 1.0 }
|
---|
| 294 | )
|
---|
| 295 | ( type: [am = f]
|
---|
| 296 | {exp coef:0} = { 2.187 1.0 }
|
---|
| 297 | )
|
---|
| 298 | ( type: [am = f]
|
---|
| 299 | {exp coef:0} = { 3.78799511615313 1.0 }
|
---|
| 300 | )
|
---|
| 301 | ( type: [am = f]
|
---|
| 302 | {exp coef:0} = { 6.561 1.0 }
|
---|
| 303 | )
|
---|
| 304 | ( type: [am = f]
|
---|
| 305 | {exp coef:0} = { 11.3639853484594 1.0 }
|
---|
| 306 | )
|
---|
| 307 | ( type: [am = f]
|
---|
| 308 | {exp coef:0} = { 19.683 1.0 }
|
---|
| 309 | )
|
---|
| 310 | ( type: [am = f]
|
---|
| 311 | {exp coef:0} = { 34.0919560453782 1.0 }
|
---|
| 312 | )
|
---|
| 313 | ( type: [am = f]
|
---|
| 314 | {exp coef:0} = { 59.0489999999999 1.0 }
|
---|
| 315 | )
|
---|
| 316 | ( type: [am = f]
|
---|
| 317 | {exp coef:0} = { 102.275868136135 1.0 }
|
---|
| 318 | )
|
---|
| 319 | ]
|
---|
| 320 |
|
---|