1 |
|
---|
2 | /** \page mpqcoo Object-Oriented Input
|
---|
3 |
|
---|
4 | MPQC is an object-oriented program that directly allows the user to
|
---|
5 | specify objects that MPQC then manipulates to obtain energies,
|
---|
6 | properties, etc. This makes the input very flexible, but very complex.
|
---|
7 | However, most calculations should be quite similar to the one of the
|
---|
8 | examples given later in this chapter. The best way to get started is to
|
---|
9 | use one of the example input files and modify it to meet your needs.
|
---|
10 |
|
---|
11 | The object-oriented input format is described in the following
|
---|
12 | sections:
|
---|
13 |
|
---|
14 | <ul>
|
---|
15 | <li> \ref mpqcooover
|
---|
16 | <li> \ref mpqcoowalk
|
---|
17 | <li> \ref mpqcoosamp
|
---|
18 | </ul>
|
---|
19 |
|
---|
20 | \section mpqcooover Overview of the Object-Oriented Input
|
---|
21 |
|
---|
22 | MPQC starts off by creating a ParsedKeyVal object that parses the
|
---|
23 | input file specified on the command line. The format of the input file
|
---|
24 | is documented in the KeyVal documentation\if html (see \ref keyval)\endif. It is basically a free
|
---|
25 | format input that associates keywords and logical groupings of keywords
|
---|
26 | with values. The values can be scalars, arrays, or objects.
|
---|
27 |
|
---|
28 | The keywords recognized by MPQC begin with the mpqc prefix. That is, they
|
---|
29 | must be nested between an <tt>mpqc:(</tt> and a <tt>)</tt>. Alternately,
|
---|
30 | each keyword can be individually prefixed by <tt>mpqc:</tt>. The primary
|
---|
31 | keywords are given below. Some of the keywords specify objects, in which
|
---|
32 | case the object will require more ParsedKeyVal input. These objects are
|
---|
33 | created from the input by using their ParsedKeyVal constructors. These
|
---|
34 | constructors are documented with the source code documentation for the
|
---|
35 | class.
|
---|
36 |
|
---|
37 | <dl>
|
---|
38 |
|
---|
39 | <dt><tt>mole</tt><dd> This is the most important keyword for MPQC. It
|
---|
40 | specifies the MolecularEnergy object. This is an object that knows
|
---|
41 | how to compute the energy of a molecule. The specializations of
|
---|
42 | MolecularEnergy that are most commonly used are CLKS, HSOSKS, UKS,
|
---|
43 | CLHF, HSOSHF, UHF, and MBPT2.
|
---|
44 |
|
---|
45 | <dt><tt>opt</tt><dd> This keyword must be specified for optimizations. It
|
---|
46 | specifies an Optimize object. Usually, QNewtonOpt is best for
|
---|
47 | finding minima and EFCOpt is best for transition states.
|
---|
48 |
|
---|
49 | <dt><tt>freq</tt><dd> This keyword must be specified to compute
|
---|
50 | frequencies. It specifies a MolecularFrequencies object.
|
---|
51 |
|
---|
52 | <dt><tt>thread</tt><dd> This specifies an object of type ThreadGrp that can
|
---|
53 | be used to advantage on shared-memory multiprocessor machines for
|
---|
54 | certain types of calculations. This keyword can be overridden by
|
---|
55 | giving the ThreadGrp in the environment or command line. See the
|
---|
56 | section on running MPQC for more information.
|
---|
57 |
|
---|
58 | <dt><tt>integrals</tt><dd> This specifies an object of type Integral that
|
---|
59 | will be used as the default integral evaluator. If MP2-R12 is
|
---|
60 | used, then this should be set to use IntegralCints with a line
|
---|
61 | like <tt>integrals<IntegralCints>: ()</tt>.
|
---|
62 |
|
---|
63 | <dt><tt>checkpoint</tt> </dt> <dd> The value of this keyword is boolean.
|
---|
64 |
|
---|
65 | <ul>
|
---|
66 |
|
---|
67 | <li><tt>true</tt> and optimization is to be performed <br>
|
---|
68 |
|
---|
69 | <tt>opt</tt> object will be checkpointed after each iteration.
|
---|
70 | The checkpoint file suffix is ".ckpt".
|
---|
71 |
|
---|
72 | <li><tt>true</tt> and optimization is not performed <br>
|
---|
73 |
|
---|
74 | <tt>mole</tt> object will be checkpointed at intermediate points.
|
---|
75 | The manner in which
|
---|
76 | <tt>mole</tt> will be checkpointed depends on its particular type.
|
---|
77 | The checkpoint file suffix is usually ".wfn", however
|
---|
78 | in general it will depend on the particular specialization of
|
---|
79 | <tt>MolecularEnergy</tt>.
|
---|
80 |
|
---|
81 | </ul>
|
---|
82 |
|
---|
83 | The default is to not checkpoint.
|
---|
84 | </dd>
|
---|
85 |
|
---|
86 | <dt><tt>checkpoint_freq</tt><dd> This specifies how often to checkpoint
|
---|
87 | certain MolecularEnergy specializations which compute iteratively.
|
---|
88 | Currently, mole objects of SCF type can use this keyword.
|
---|
89 | The default is 1, which means to checkpoint after every iteration.
|
---|
90 |
|
---|
91 | <dt><tt>savestate</tt><dd> The value of this keyword is boolean. If true,
|
---|
92 | then the states of the Optimize and MolecularEnergy objects will be
|
---|
93 | saved after the calculation completes. The output file suffixes are
|
---|
94 | ".ckpt" and ".wfn", respectively. The default is to save state.
|
---|
95 |
|
---|
96 | <dt><tt>restart</tt><dd> The value of this keyword is boolean. If true,
|
---|
97 | mpqc will attempt to restart the calculation. If the checkpoint
|
---|
98 | file is not found, the calculation will continue as if the value
|
---|
99 | were false. The default is true.
|
---|
100 |
|
---|
101 | <dt><tt>restart_file</tt><dd> This gives the name of a file from which
|
---|
102 | restart information is read. If the file name ends with ".wfn"
|
---|
103 | then MPQC will try to restore a <tt>MolecularEnergy</tt> object from it
|
---|
104 | and query for the <tt>opt</tt> object in the input file.
|
---|
105 | If the file name ends with ".ckpt" MPQC will try to restore an <tt>Optimize</tt>
|
---|
106 | object from this file. The default file
|
---|
107 | name is formed by appending ".ckpt" to the input file name
|
---|
108 | with the extension removed.
|
---|
109 |
|
---|
110 | <dt><tt>do_energy</tt><dd> The value of this keyword is boolean. If true a
|
---|
111 | single point energy calculation will be done for the
|
---|
112 | MolecularEnergy object given with the mole keyword. The default is
|
---|
113 | true.
|
---|
114 |
|
---|
115 | <dt><tt>do_gradient</tt><dd> The value of this keyword is boolean. If true
|
---|
116 | a single point gradient calculation will be done for the
|
---|
117 | MolecularEnergy object given with the mole keyword. The default is
|
---|
118 | false.
|
---|
119 |
|
---|
120 | <dt><tt>do_cca</tt><dd> The value of this keywork is boolean. If true
|
---|
121 | the cca embedded framework will be initialized. The default is
|
---|
122 | false.
|
---|
123 |
|
---|
124 | <dt><tt>cca_path</tt><dd> The value of this keyword is a string that provides
|
---|
125 | a colon-separated list of directories in which CCA component libraries
|
---|
126 | may be found.
|
---|
127 |
|
---|
128 | <dt><tt>cca_load</tt><dd> The value of this keyword is a string that provides
|
---|
129 | a colon-separated list of sidl class names for CCA components which
|
---|
130 | will be instantiated from the libraries found in the path given by
|
---|
131 | <tt>cca_path</tt>.
|
---|
132 |
|
---|
133 | <dt><tt>optimize</tt><dd> The value of this keyword is boolean. If true
|
---|
134 | and the opt keyword was set to a valid value, then an optimization
|
---|
135 | will be performed. The default is true.
|
---|
136 |
|
---|
137 | <dt><tt>write_pdb</tt><dd> The value of this keyword is boolean. If true a
|
---|
138 | PDB file with the molecular coordinates will be written.
|
---|
139 |
|
---|
140 | <dt><tt>filename</tt><dd> The value of this keyword is a string that gives
|
---|
141 | a name from which checkpoint and other filenames are constructed.
|
---|
142 | The default is the basename of the input file.
|
---|
143 |
|
---|
144 | <dt><tt>print_timings</tt><dd> If this is true, timing information is
|
---|
145 | printed at the end of the run. The default is true.
|
---|
146 |
|
---|
147 | </dl>
|
---|
148 |
|
---|
149 | There are also some utility keywords that tell mpqc some technical
|
---|
150 | details about how to do the calculation:
|
---|
151 | <dl>
|
---|
152 | <dt><tt>debug</tt><dd> This optional keyword gives a Debugger
|
---|
153 | object which can be used to help find the problem
|
---|
154 | if MPQC encounters a catastrophic error.
|
---|
155 | <dt><tt>matrixkit</tt><dd>
|
---|
156 | This optional keyword gives a SCMatrixKit specialization
|
---|
157 | which is used to produce matrices of the desired type.
|
---|
158 | The default is a ReplSCMatrixKit which replicates
|
---|
159 | matrices on all of the nodes. Other choices are not thoroughly
|
---|
160 | tested.
|
---|
161 | </dl>
|
---|
162 |
|
---|
163 | \section mpqcoowalk A Walk-Through of an Object-Oriented Input File
|
---|
164 |
|
---|
165 | This example input does a Hartree-Fock calculation on water.
|
---|
166 | Following is the entire input, followed by a breakdown with
|
---|
167 | descriptions.
|
---|
168 |
|
---|
169 | <pre>
|
---|
170 | \% This input does a Hartree-Fock calculation on water.
|
---|
171 | molecule<Molecule>: (
|
---|
172 | symmetry = C2V
|
---|
173 | unit = angstrom
|
---|
174 | { atoms geometry } = {
|
---|
175 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
176 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
177 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
178 | }
|
---|
179 | )
|
---|
180 | basis<GaussianBasisSet>: (
|
---|
181 | name = "STO-3G"
|
---|
182 | molecule = $:molecule
|
---|
183 | )
|
---|
184 | mpqc: (
|
---|
185 | mole<CLHF>: (
|
---|
186 | molecule = $:molecule
|
---|
187 | basis = $:basis
|
---|
188 | )
|
---|
189 | )
|
---|
190 | </pre>
|
---|
191 | <br>
|
---|
192 |
|
---|
193 | We start with a descriptive comment. Comments begin with a <tt>%</tt>.
|
---|
194 | Everything from the <tt>%</tt> to the end of the line is ignored.
|
---|
195 |
|
---|
196 | <pre>
|
---|
197 | \% This input does a Hartree-Fock calculation on water.
|
---|
198 | </pre>
|
---|
199 | <br>
|
---|
200 |
|
---|
201 | Now lets set up a Molecule object. The name of the object comes first, it
|
---|
202 | is <tt>molecule</tt>. Then, in angle brackets, comes the type of the
|
---|
203 | molecule, which is the class Molecule. The keyword and class name are
|
---|
204 | followed by a <tt>:</tt> and then several pieces of input grouped between a
|
---|
205 | pair of matching parentheses. These parentheses contain the information
|
---|
206 | that will be given to Molecule KeyVal constructor.
|
---|
207 |
|
---|
208 | <pre>
|
---|
209 | molecule<Molecule>: (
|
---|
210 | </pre>
|
---|
211 | <br>
|
---|
212 |
|
---|
213 | The point group of the molecule is needed. This is done by assigning
|
---|
214 | <tt>symmetry</tt> to a case insensitive Schoenflies symbol that is used to
|
---|
215 | initialize a PointGroup object. An Abelian point group should be used.
|
---|
216 |
|
---|
217 | <pre>
|
---|
218 | symmetry = C2V
|
---|
219 | </pre>
|
---|
220 | <br>
|
---|
221 |
|
---|
222 | The default unit for the Cartesian coordinates is Bohr. You can
|
---|
223 | specify other units by assigned <tt>unit</tt> to a string that will be
|
---|
224 | used to initialize a Units object.
|
---|
225 |
|
---|
226 | <pre>
|
---|
227 | unit = angstrom
|
---|
228 | </pre>
|
---|
229 | <br>
|
---|
230 |
|
---|
231 | Finally, the atoms and coordinates are given. This can be given in the
|
---|
232 | shorthand table syntax shown below. The headings of the table are the
|
---|
233 | keywords between the first pair of brackets. These are followed by an <tt>=</tt>
|
---|
234 | and another pair of brackets that contain the data. The first datum is
|
---|
235 | assigned to the first element of the array that corresponds to the first
|
---|
236 | heading, <tt>atom</tt>. The second datum is assigned to the first element of the
|
---|
237 | array associated with the second heading, <tt>geometry</tt>, and so on. Here the
|
---|
238 | second datum is actually a vector: the x, y and z coordinates of the first
|
---|
239 | atom.
|
---|
240 |
|
---|
241 | <pre>
|
---|
242 | { atoms geometry } = {
|
---|
243 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
244 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
245 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
246 | }
|
---|
247 | )
|
---|
248 | </pre>
|
---|
249 | <br>
|
---|
250 |
|
---|
251 | Next, a basis set object is given.
|
---|
252 |
|
---|
253 | <pre>
|
---|
254 | basis<GaussianBasisSet>: (
|
---|
255 | name = "STO-3G"
|
---|
256 | molecule = $:molecule
|
---|
257 | )
|
---|
258 | </pre>
|
---|
259 | <br>
|
---|
260 |
|
---|
261 | Now we will give the main body of input. All the subsequent
|
---|
262 | keywords will be grouped in the <tt>mpqc</tt> section of the input
|
---|
263 | (that is, each keyword will be prefixed with <tt>mpqc:</tt>).
|
---|
264 |
|
---|
265 | <pre>
|
---|
266 | mpqc: (
|
---|
267 | </pre>
|
---|
268 | <br>
|
---|
269 |
|
---|
270 | Next we give the <tt>mole</tt> keyword which provides a specialization of
|
---|
271 | the MolecularEnergy class. In this case we will do a closed-shell
|
---|
272 | Hartree-Fock calculation. That is done with an object of type CLHF. The
|
---|
273 | keywords that CLHF accepts are given with the documentation for the CLHF
|
---|
274 | class, usually in the description of the <tt>const RefKeyVal&</tt>
|
---|
275 | constructor for the class. Also with the CLHF documentation is a list of
|
---|
276 | parent classes. Each of the parent classes may also have input. This
|
---|
277 | input is included with the rest of the input for the child class.
|
---|
278 |
|
---|
279 | <pre>
|
---|
280 | mole<CLHF>: (
|
---|
281 | </pre>
|
---|
282 | <br>
|
---|
283 |
|
---|
284 | The next line specifies the molecule to be used. There are two things to
|
---|
285 | note, first that this is actually a reference to complete molecule
|
---|
286 | specification elsewhere in the input file. The <tt>$</tt> indicates that this is
|
---|
287 | a reference and the keyword following the <tt>$</tt> is the actual location of the
|
---|
288 | molecule. The <tt>:</tt> in front of the keyword means that the keyword is not
|
---|
289 | relative to the current location in the input, but rather relative to the
|
---|
290 | root of the tree of keywords. Thus, this line grabs the molecule that was
|
---|
291 | specified above. The molecule object could have been placed here, but
|
---|
292 | frequently it is necessary that several objects refer to the exact same
|
---|
293 | object and this can only be done using references.
|
---|
294 |
|
---|
295 | The second point is that if you look at the documentation for CLHF,
|
---|
296 | you will see that it doesn't read <tt>molecule</tt> keyword. However, if you
|
---|
297 | follow its parent classes up to MolecularEnergy, you'll find that
|
---|
298 | <tt>molecule</tt> is indeed read.
|
---|
299 |
|
---|
300 | <pre>
|
---|
301 | molecule = $:molecule
|
---|
302 | </pre>
|
---|
303 | <br>
|
---|
304 |
|
---|
305 | Just as we gave <tt>molecule</tt>, specify the basis set with the <tt>basis</tt> keyword
|
---|
306 | as follows:
|
---|
307 |
|
---|
308 | <pre>
|
---|
309 | basis = $:basis
|
---|
310 | </pre>
|
---|
311 | <br>
|
---|
312 |
|
---|
313 | Now we close off the parentheses we opened above and we are finished.
|
---|
314 |
|
---|
315 | <pre>
|
---|
316 | )
|
---|
317 | )
|
---|
318 | </pre>
|
---|
319 | <br>
|
---|
320 |
|
---|
321 | \section mpqcoosamp Sample Object-Oriented Input Files
|
---|
322 |
|
---|
323 | The easiest way to get started with mpqc is to start with one of sample
|
---|
324 | inputs that most nearly matches your problem. The
|
---|
325 | <tt>src/bin/mpqc/samples</tt> contains all of the sample inputs below:
|
---|
326 |
|
---|
327 | <ul>
|
---|
328 | <li> \ref mpqcoosamphf
|
---|
329 | <li> \ref mpqcoosampmp2
|
---|
330 | <li> \ref mpqcoosampmp2r12
|
---|
331 | <li> \ref mpqcoosamphfopt
|
---|
332 | <li> \ref mpqcoosamphessopt
|
---|
333 | <li> \ref mpqcoosampoptnewt
|
---|
334 | <li> \ref mpqcoosamphffreq
|
---|
335 | <li> \ref mpqcoosampcoor
|
---|
336 | <li> \ref mpqcoosamphb
|
---|
337 | <li> \ref mpqcoosampfixopt
|
---|
338 | <li> \ref mpqcoosampts
|
---|
339 | <li> \ref mpqcoosamptshess
|
---|
340 | <li> \ref mpqcoosamphfckpt
|
---|
341 | <li> \ref mpqcoosampmp2r12ckpt
|
---|
342 | <li> \ref mpqcoosamphfgradfromwfn
|
---|
343 | <li> \ref mpqcoosampmp2usinghfwfn
|
---|
344 | <li> \ref mpqcoosamphfusingcca
|
---|
345 | </ul>
|
---|
346 |
|
---|
347 | \subsection mpqcoosamphf Hartree-Fock Energy
|
---|
348 |
|
---|
349 | The following input will compute the Hartree-Fock energy of water.
|
---|
350 |
|
---|
351 | <pre>
|
---|
352 | \% emacs should use -*- KeyVal -*- mode
|
---|
353 | \% molecule specification
|
---|
354 | molecule<Molecule>: (
|
---|
355 | symmetry = C2V
|
---|
356 | unit = angstrom
|
---|
357 | { atoms geometry } = {
|
---|
358 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
359 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
360 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
361 | }
|
---|
362 | )
|
---|
363 | \% basis set specification
|
---|
364 | basis<GaussianBasisSet>: (
|
---|
365 | name = "STO-3G"
|
---|
366 | molecule = $:molecule
|
---|
367 | )
|
---|
368 | mpqc: (
|
---|
369 | checkpoint = no
|
---|
370 | savestate = no
|
---|
371 | \% method for computing the molecule's energy
|
---|
372 | mole<CLHF>: (
|
---|
373 | molecule = $:molecule
|
---|
374 | basis = $:basis
|
---|
375 | memory = 16000000
|
---|
376 | )
|
---|
377 | )
|
---|
378 | </pre>
|
---|
379 | <br>
|
---|
380 |
|
---|
381 | \subsection mpqcoosampmp2 MP2 Energy
|
---|
382 |
|
---|
383 | The following input will compute the MP2 energy of water.
|
---|
384 |
|
---|
385 | <pre>
|
---|
386 | \% emacs should use -*- KeyVal -*- mode
|
---|
387 | \% molecule specification
|
---|
388 | molecule<Molecule>: (
|
---|
389 | symmetry = C2V
|
---|
390 | unit = angstrom
|
---|
391 | { atoms geometry } = {
|
---|
392 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
393 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
394 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
395 | }
|
---|
396 | )
|
---|
397 | \% basis set specification
|
---|
398 | basis<GaussianBasisSet>: (
|
---|
399 | name = "STO-3G"
|
---|
400 | molecule = $:molecule
|
---|
401 | )
|
---|
402 | mpqc: (
|
---|
403 | checkpoint = no
|
---|
404 | savestate = no
|
---|
405 | \% method for computing the molecule's energy
|
---|
406 | mole<MBPT2>: (
|
---|
407 | molecule = $:molecule
|
---|
408 | basis = $:basis
|
---|
409 | memory = 16000000
|
---|
410 | \% reference wavefunction
|
---|
411 | reference<CLHF>: (
|
---|
412 | molecule = $:molecule
|
---|
413 | basis = $:basis
|
---|
414 | memory = 16000000
|
---|
415 | )
|
---|
416 | )
|
---|
417 | )
|
---|
418 | </pre>
|
---|
419 | <br>
|
---|
420 |
|
---|
421 | \subsection mpqcoosampmp2r12 MP2-R12 energy
|
---|
422 |
|
---|
423 | The following will compute the MP2-R12 energy of water in standard approximation A'
|
---|
424 | (MP2-R12/A').
|
---|
425 |
|
---|
426 | <pre>
|
---|
427 | \% emacs should use -*- KeyVal -*- mode
|
---|
428 | \% molecule specification
|
---|
429 | molecule<Molecule>: (
|
---|
430 | symmetry = C2V
|
---|
431 | unit = angstrom
|
---|
432 | { atoms geometry } = {
|
---|
433 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
434 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
435 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
436 | }
|
---|
437 | )
|
---|
438 | \% basis set specification
|
---|
439 | basis<GaussianBasisSet>: (
|
---|
440 | name = "cc-pVDZ"
|
---|
441 | molecule = $:molecule
|
---|
442 | )
|
---|
443 | \% auxiliary basis set specification
|
---|
444 | abasis<GaussianBasisSet>: (
|
---|
445 | name = "aug-cc-pVDZ"
|
---|
446 | molecule = $:molecule
|
---|
447 | )
|
---|
448 | mpqc: (
|
---|
449 | checkpoint = no
|
---|
450 | savestate = no
|
---|
451 | \% method for computing the molecule's energy
|
---|
452 | mole<MBPT2_R12>: (
|
---|
453 | molecule = $:molecule
|
---|
454 | basis = $:basis
|
---|
455 | aux_basis = $:abasis
|
---|
456 | stdapprox = "A'"
|
---|
457 | nfzc = 1
|
---|
458 | memory = 16000000
|
---|
459 | integrals<IntegralCints>:()
|
---|
460 | \% reference wavefunction
|
---|
461 | reference<CLHF>: (
|
---|
462 | molecule = $:molecule
|
---|
463 | basis = $:basis
|
---|
464 | memory = 16000000
|
---|
465 | integrals<IntegralCints>:()
|
---|
466 | )
|
---|
467 | )
|
---|
468 | )
|
---|
469 | </pre>
|
---|
470 | <br>
|
---|
471 |
|
---|
472 | \subsection mpqcoosamphfopt Hartree-Fock Optimization
|
---|
473 |
|
---|
474 | The following input will optimize the geometry of water using
|
---|
475 | the quasi-Newton method.
|
---|
476 |
|
---|
477 | <pre>
|
---|
478 | \% emacs should use -*- KeyVal -*- mode
|
---|
479 | \% molecule specification
|
---|
480 | molecule<Molecule>: (
|
---|
481 | symmetry = C2V
|
---|
482 | unit = angstrom
|
---|
483 | { atoms geometry } = {
|
---|
484 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
485 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
486 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
487 | }
|
---|
488 | )
|
---|
489 | \% basis set specification
|
---|
490 | basis<GaussianBasisSet>: (
|
---|
491 | name = "6-31G*"
|
---|
492 | molecule = $:molecule
|
---|
493 | )
|
---|
494 | mpqc: (
|
---|
495 | checkpoint = no
|
---|
496 | savestate = no
|
---|
497 | \% molecular coordinates for optimization
|
---|
498 | coor<SymmMolecularCoor>: (
|
---|
499 | molecule = $:molecule
|
---|
500 | generator<IntCoorGen>: (
|
---|
501 | molecule = $:molecule
|
---|
502 | )
|
---|
503 | )
|
---|
504 | \% method for computing the molecule's energy
|
---|
505 | mole<CLHF>: (
|
---|
506 | molecule = $:molecule
|
---|
507 | basis = $:basis
|
---|
508 | coor = $..:coor
|
---|
509 | memory = 16000000
|
---|
510 | )
|
---|
511 | \% optimizer object for the molecular geometry
|
---|
512 | opt<QNewtonOpt>: (
|
---|
513 | function = $..:mole
|
---|
514 | update<BFGSUpdate>: ()
|
---|
515 | convergence<MolEnergyConvergence>: (
|
---|
516 | cartesian = yes
|
---|
517 | energy = $..:..:mole
|
---|
518 | )
|
---|
519 | )
|
---|
520 | )
|
---|
521 | </pre>
|
---|
522 | <br>
|
---|
523 |
|
---|
524 | \subsection mpqcoosamphessopt Optimization with a Computed Guess Hessian
|
---|
525 |
|
---|
526 | The following input will optimize the geometry of water using
|
---|
527 | the quasi-Newton method. The guess Hessian will be computed
|
---|
528 | at a lower level of theory.
|
---|
529 |
|
---|
530 | <pre>
|
---|
531 | \% emacs should use -*- KeyVal -*- mode
|
---|
532 | \% molecule specification
|
---|
533 | molecule<Molecule>: (
|
---|
534 | symmetry = C2V
|
---|
535 | unit = angstrom
|
---|
536 | { atoms geometry } = {
|
---|
537 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
538 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
539 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
540 | }
|
---|
541 | )
|
---|
542 | \% basis set specification
|
---|
543 | basis<GaussianBasisSet>: (
|
---|
544 | name = "6-31G*"
|
---|
545 | molecule = $:molecule
|
---|
546 | )
|
---|
547 | mpqc: (
|
---|
548 | checkpoint = no
|
---|
549 | savestate = no
|
---|
550 | \% molecular coordinates for optimization
|
---|
551 | coor<SymmMolecularCoor>: (
|
---|
552 | molecule = $:molecule
|
---|
553 | generator<IntCoorGen>: (
|
---|
554 | molecule = $:molecule
|
---|
555 | )
|
---|
556 | )
|
---|
557 | \% method for computing the molecule's energy
|
---|
558 | mole<CLHF>: (
|
---|
559 | molecule = $:molecule
|
---|
560 | basis = $:basis
|
---|
561 | coor = $..:coor
|
---|
562 | memory = 16000000
|
---|
563 | guess_hessian<FinDispMolecularHessian>: (
|
---|
564 | molecule = $:molecule
|
---|
565 | only_totally_symmetric = yes
|
---|
566 | eliminate_cubic_terms = no
|
---|
567 | checkpoint = no
|
---|
568 | energy<CLHF>: (
|
---|
569 | molecule = $:molecule
|
---|
570 | memory = 16000000
|
---|
571 | basis<GaussianBasisSet>: (
|
---|
572 | name = "3-21G"
|
---|
573 | molecule = $:molecule
|
---|
574 | )
|
---|
575 | )
|
---|
576 | )
|
---|
577 | )
|
---|
578 | \% optimizer object for the molecular geometry
|
---|
579 | opt<QNewtonOpt>: (
|
---|
580 | function = $..:mole
|
---|
581 | update<BFGSUpdate>: ()
|
---|
582 | convergence<MolEnergyConvergence>: (
|
---|
583 | cartesian = yes
|
---|
584 | energy = $..:..:mole
|
---|
585 | )
|
---|
586 | )
|
---|
587 | )
|
---|
588 | </pre>
|
---|
589 | <br>
|
---|
590 |
|
---|
591 | \subsection mpqcoosampoptnewt Optimization Using Newton's Method
|
---|
592 |
|
---|
593 | The following input will optimize the geometry of water using the Newton's
|
---|
594 | method. The Hessian will be computed at each step in the optimization.
|
---|
595 | However, Hessian recomputation is usually not worth the cost; try using the
|
---|
596 | computed Hessian as a guess Hessian for a quasi-Newton method before
|
---|
597 | resorting to a Newton optimization.
|
---|
598 |
|
---|
599 | <pre>
|
---|
600 | \% Emacs should use -*- KeyVal -*- mode
|
---|
601 | \% molecule specification
|
---|
602 | molecule<Molecule>: (
|
---|
603 | symmetry = c2v
|
---|
604 | unit = angstrom
|
---|
605 | { atoms geometry } = {
|
---|
606 | O [ 0.00000000 0.00000000 0.36937294 ]
|
---|
607 | H [ 0.78397590 0.00000000 -0.18468647 ]
|
---|
608 | H [ -0.78397590 0.00000000 -0.18468647 ]
|
---|
609 | }
|
---|
610 | )
|
---|
611 | \% basis set specification
|
---|
612 | basis<GaussianBasisSet>: (
|
---|
613 | name = "3-21G"
|
---|
614 | molecule = $:molecule
|
---|
615 | )
|
---|
616 | mpqc: (
|
---|
617 | checkpoint = no
|
---|
618 | savestate = no
|
---|
619 | restart = no
|
---|
620 | \% molecular coordinates for optimization
|
---|
621 | coor<SymmMolecularCoor>: (
|
---|
622 | molecule = $:molecule
|
---|
623 | generator<IntCoorGen>: (
|
---|
624 | molecule = $:molecule
|
---|
625 | )
|
---|
626 | )
|
---|
627 | do_energy = no
|
---|
628 | do_gradient = no
|
---|
629 | \% method for computing the molecule's energy
|
---|
630 | mole<CLHF>: (
|
---|
631 | molecule = $:molecule
|
---|
632 | basis = $:basis
|
---|
633 | memory = 16000000
|
---|
634 | coor = $..:coor
|
---|
635 | guess_wavefunction<CLHF>: (
|
---|
636 | molecule = $:molecule
|
---|
637 | total_charge = 0
|
---|
638 | basis<GaussianBasisSet>: (
|
---|
639 | molecule = $:molecule
|
---|
640 | name = "STO-3G"
|
---|
641 | )
|
---|
642 | memory = 16000000
|
---|
643 | )
|
---|
644 | hessian<FinDispMolecularHessian>: (
|
---|
645 | only_totally_symmetric = yes
|
---|
646 | eliminate_cubic_terms = no
|
---|
647 | checkpoint = no
|
---|
648 | )
|
---|
649 | )
|
---|
650 | optimize = yes
|
---|
651 | \% optimizer object for the molecular geometry
|
---|
652 | opt<NewtonOpt>: (
|
---|
653 | print_hessian = yes
|
---|
654 | max_iterations = 20
|
---|
655 | function = $..:mole
|
---|
656 | convergence<MolEnergyConvergence>: (
|
---|
657 | cartesian = yes
|
---|
658 | energy = $..:..:mole
|
---|
659 | )
|
---|
660 | )
|
---|
661 | )
|
---|
662 | </pre>
|
---|
663 | <br>
|
---|
664 |
|
---|
665 | \subsection mpqcoosamphffreq Hartree-Fock Frequencies
|
---|
666 |
|
---|
667 | The following input will compute Hartree-Fock frequencies by finite
|
---|
668 | displacements. A thermodynamic analysis will also be
|
---|
669 | performed. If optimization input is also provided, then the
|
---|
670 | optimization will be run first, then the frequencies.
|
---|
671 |
|
---|
672 | <pre>
|
---|
673 | \% emacs should use -*- KeyVal -*- mode
|
---|
674 | \% molecule specification
|
---|
675 | molecule<Molecule>: (
|
---|
676 | symmetry = C1
|
---|
677 | { atoms geometry } = {
|
---|
678 | O [ 0.0000000000 0.0000000000 0.8072934188 ]
|
---|
679 | H [ 1.4325589285 0.0000000000 -0.3941980761 ]
|
---|
680 | H [ -1.4325589285 0.0000000000 -0.3941980761 ]
|
---|
681 | }
|
---|
682 | )
|
---|
683 | \% basis set specification
|
---|
684 | basis<GaussianBasisSet>: (
|
---|
685 | name = "STO-3G"
|
---|
686 | molecule = $:molecule
|
---|
687 | )
|
---|
688 | mpqc: (
|
---|
689 | checkpoint = no
|
---|
690 | savestate = no
|
---|
691 | \% method for computing the molecule's energy
|
---|
692 | mole<CLHF>: (
|
---|
693 | molecule = $:molecule
|
---|
694 | basis = $:basis
|
---|
695 | memory = 16000000
|
---|
696 | )
|
---|
697 | \% vibrational frequency input
|
---|
698 | freq<MolecularFrequencies>: (
|
---|
699 | molecule = $:molecule
|
---|
700 | )
|
---|
701 | )
|
---|
702 | </pre>
|
---|
703 | <br>
|
---|
704 |
|
---|
705 | \subsection mpqcoosampcoor Giving Coordinates and a Guess Hessian
|
---|
706 |
|
---|
707 | The following example shows several features that are really independent.
|
---|
708 | The variable coordinates are explicitly given, rather than generated
|
---|
709 | automatically. This is especially useful when a guess Hessian is to be
|
---|
710 | provided, as it is here. This Hessian, as given by the user, is not
|
---|
711 | complete and the QNewtonOpt object will fill in the missing
|
---|
712 | values using a guess the Hessian provided by the MolecularEnergy
|
---|
713 | object. Also, fixed coordinates are given in this sample input.
|
---|
714 |
|
---|
715 | <pre>
|
---|
716 | \% emacs should use -*- KeyVal -*- mode
|
---|
717 | \% molecule specification
|
---|
718 | molecule<Molecule>: (
|
---|
719 | symmetry = C1
|
---|
720 | { atoms geometry } = {
|
---|
721 | H [ 0.088 2.006 1.438 ]
|
---|
722 | O [ 0.123 3.193 0.000 ]
|
---|
723 | H [ 0.088 2.006 -1.438 ]
|
---|
724 | O [ 4.502 5.955 -0.000 ]
|
---|
725 | H [ 2.917 4.963 -0.000 ]
|
---|
726 | H [ 3.812 7.691 -0.000 ]
|
---|
727 | }
|
---|
728 | )
|
---|
729 | \% basis set specification
|
---|
730 | basis<GaussianBasisSet>: (
|
---|
731 | name = "STO-3G"
|
---|
732 | molecule = $:molecule
|
---|
733 | )
|
---|
734 | mpqc: (
|
---|
735 | checkpoint = no
|
---|
736 | savestate = no
|
---|
737 | \% method for computing the molecule's energy
|
---|
738 | mole<CLHF>: (
|
---|
739 | molecule = $:molecule
|
---|
740 | basis = $:basis
|
---|
741 | coor = $..:coor
|
---|
742 | memory = 16000000
|
---|
743 | )
|
---|
744 | \% molecular coordinates for optimization
|
---|
745 | coor<SymmMolecularCoor>: (
|
---|
746 | molecule = $:molecule
|
---|
747 | generator<IntCoorGen>: (
|
---|
748 | molecule = $:molecule
|
---|
749 | extra_bonds = [ 2 5 ]
|
---|
750 | )
|
---|
751 | \% use these instead of generated coordinates
|
---|
752 | variable<SetIntCoor>: [
|
---|
753 | \<StreSimpleCo>:( atoms = [ 2 5 ] )
|
---|
754 | \<BendSimpleCo>:( atoms = [ 2 5 4 ] )
|
---|
755 | \<OutSimpleCo>: ( atoms = [ 5 2 1 3 ] )
|
---|
756 | \<SumIntCoor>: (
|
---|
757 | coor: [
|
---|
758 | \<StreSimpleCo>:( atoms = [ 1 2 ] )
|
---|
759 | \<StreSimpleCo>:( atoms = [ 2 3 ] )
|
---|
760 | ]
|
---|
761 | coef = [ 1.0 1.0 ]
|
---|
762 | )
|
---|
763 | \<SumIntCoor>: (
|
---|
764 | coor: [
|
---|
765 | \<StreSimpleCo>:( atoms = [ 4 5 ] )
|
---|
766 | \<StreSimpleCo>:( atoms = [ 4 6 ] )
|
---|
767 | ]
|
---|
768 | coef = [ 1.0 1.0 ]
|
---|
769 | )
|
---|
770 | \<BendSimpleCo>:( atoms = [ 1 2 3 ] )
|
---|
771 | \<BendSimpleCo>:( atoms = [ 5 4 6 ] )
|
---|
772 | ]
|
---|
773 | \% these are fixed by symmetry anyway,
|
---|
774 | fixed<SetIntCoor>: [
|
---|
775 | \<SumIntCoor>: (
|
---|
776 | coor: [
|
---|
777 | \<StreSimpleCo>:( atoms = [ 1 2 ] )
|
---|
778 | \<StreSimpleCo>:( atoms = [ 2 3 ] )
|
---|
779 | ]
|
---|
780 | coef = [ 1.0 -1.0 ]
|
---|
781 | )
|
---|
782 | \<SumIntCoor>: (
|
---|
783 | coor: [
|
---|
784 | \<StreSimpleCo>:( atoms = [ 4 5 ] )
|
---|
785 | \<StreSimpleCo>:( atoms = [ 4 6 ] )
|
---|
786 | ]
|
---|
787 | coef = [ 1.0 -1.0 ]
|
---|
788 | )
|
---|
789 | \<TorsSimpleCo>:( atoms = [ 2 5 4 6] )
|
---|
790 | \<OutSimpleCo>:( atoms = [ 3 2 6 4 ] )
|
---|
791 | \<OutSimpleCo>:( atoms = [ 1 2 6 4 ] )
|
---|
792 | ]
|
---|
793 | )
|
---|
794 | \% optimizer object for the molecular geometry
|
---|
795 | opt<QNewtonOpt>: (
|
---|
796 | function = $..:mole
|
---|
797 | update<BFGSUpdate>: ()
|
---|
798 | convergence<MolEnergyConvergence>: (
|
---|
799 | cartesian = yes
|
---|
800 | energy = $..:..:mole
|
---|
801 | )
|
---|
802 | \% give a partial guess hessian in internal coordinates
|
---|
803 | \% the missing elements will be filled in automatically
|
---|
804 | hessian = [
|
---|
805 | [ 0.0109261670 ]
|
---|
806 | [ -0.0004214845 0.0102746106 ]
|
---|
807 | [ -0.0008600592 0.0030051330 0.0043149957 ]
|
---|
808 | [ 0.0 0.0 0.0 ]
|
---|
809 | [ 0.0 0.0 0.0 ]
|
---|
810 | [ 0.0 0.0 0.0 ]
|
---|
811 | [ 0.0 0.0 0.0 ]
|
---|
812 | ]
|
---|
813 | )
|
---|
814 | )
|
---|
815 | </pre>
|
---|
816 | <br>
|
---|
817 |
|
---|
818 | \subsection mpqcoosamphb Optimization with a Hydrogen Bond
|
---|
819 |
|
---|
820 | The automatic internal coordinate generator will fail if it cannot find
|
---|
821 | enough redundant internal coordinates. In this case, the internal
|
---|
822 | coordinate generator must be explicitly created in the input and given
|
---|
823 | extra connectivity information, as is shown below.
|
---|
824 |
|
---|
825 | <pre>
|
---|
826 | \% emacs should use -*- KeyVal -*- mode
|
---|
827 | \% molecule specification
|
---|
828 | molecule<Molecule>: (
|
---|
829 | symmetry = C1
|
---|
830 | { atoms geometry } = {
|
---|
831 | H [ 0.088 2.006 1.438 ]
|
---|
832 | O [ 0.123 3.193 0.000 ]
|
---|
833 | H [ 0.088 2.006 -1.438 ]
|
---|
834 | O [ 4.502 5.955 -0.000 ]
|
---|
835 | H [ 2.917 4.963 -0.000 ]
|
---|
836 | H [ 3.812 7.691 -0.000 ]
|
---|
837 | }
|
---|
838 | )
|
---|
839 | \% basis set specification
|
---|
840 | basis<GaussianBasisSet>: (
|
---|
841 | name = "STO-3G"
|
---|
842 | molecule = $:molecule
|
---|
843 | )
|
---|
844 | mpqc: (
|
---|
845 | checkpoint = no
|
---|
846 | savestate = no
|
---|
847 | \% method for computing the molecule's energy
|
---|
848 | mole<CLHF>: (
|
---|
849 | molecule = $:molecule
|
---|
850 | basis = $:basis
|
---|
851 | coor = $..:coor
|
---|
852 | memory = 16000000
|
---|
853 | )
|
---|
854 | \% molecular coordinates for optimization
|
---|
855 | coor<SymmMolecularCoor>: (
|
---|
856 | molecule = $:molecule
|
---|
857 | \% give an internal coordinate generator that knows about the
|
---|
858 | \% hydrogen bond between atoms 2 and 5
|
---|
859 | generator<IntCoorGen>: (
|
---|
860 | molecule = $:molecule
|
---|
861 | extra_bonds = [ 2 5 ]
|
---|
862 | )
|
---|
863 | )
|
---|
864 | \% optimizer object for the molecular geometry
|
---|
865 | opt<QNewtonOpt>: (
|
---|
866 | function = $..:mole
|
---|
867 | update<BFGSUpdate>: ()
|
---|
868 | convergence<MolEnergyConvergence>: (
|
---|
869 | cartesian = yes
|
---|
870 | energy = $..:..:mole
|
---|
871 | )
|
---|
872 | )
|
---|
873 | )
|
---|
874 | </pre>
|
---|
875 | <br>
|
---|
876 |
|
---|
877 | \subsection mpqcoosampfixopt Fixed Coordinate Optimization
|
---|
878 |
|
---|
879 | This example shows how to selectively fix internal coordinates in an
|
---|
880 | optimization. Any number of linearly independent coordinates can be given.
|
---|
881 | These coordinates must remain linearly independent throughout the
|
---|
882 | optimization, a condition that might not hold since the coordinates can be
|
---|
883 | nonlinear.
|
---|
884 |
|
---|
885 | By default, the initial fixed coordinates' values are taken from the
|
---|
886 | cartesian geometry given by the Molecule object; however, the
|
---|
887 | molecule will be displaced to the internal coordinate values given with the
|
---|
888 | fixed internal coordinates if have_fixed_values keyword is set to
|
---|
889 | true, as shown in this example. In this case, the initial cartesian
|
---|
890 | geometry should be reasonably close to the desired initial geometry and all
|
---|
891 | of the variable coordinates will be frozen to their original values during
|
---|
892 | the initial displacement.
|
---|
893 |
|
---|
894 | <pre>
|
---|
895 | \% emacs should use -*- KeyVal -*- mode
|
---|
896 | \% molecule specification
|
---|
897 | molecule<Molecule>: (
|
---|
898 | symmetry = CS
|
---|
899 | { atoms geometry } = {
|
---|
900 | H [ 3.04 -0.69 -1.59 ]
|
---|
901 | H [ 3.04 -0.69 1.59 ]
|
---|
902 | N [ 2.09 -0.48 -0.00 ]
|
---|
903 | C [ -0.58 -0.15 0.00 ]
|
---|
904 | H [ -1.17 1.82 0.00 ]
|
---|
905 | H [ -1.41 -1.04 -1.64 ]
|
---|
906 | H [ -1.41 -1.04 1.64 ]
|
---|
907 | }
|
---|
908 | )
|
---|
909 | \% basis set specification
|
---|
910 | basis<GaussianBasisSet>: (
|
---|
911 | name = "3-21G*"
|
---|
912 | molecule = $:molecule
|
---|
913 | )
|
---|
914 | mpqc: (
|
---|
915 | checkpoint = no
|
---|
916 | savestate = no
|
---|
917 | \% molecular coordinates for optimization
|
---|
918 | coor<SymmMolecularCoor>: (
|
---|
919 | molecule = $:molecule
|
---|
920 | generator<IntCoorGen>: (
|
---|
921 | molecule = $:molecule
|
---|
922 | )
|
---|
923 | have_fixed_values = yes
|
---|
924 | fixed<SetIntCoor>: [
|
---|
925 | \<OutSimpleCo>: ( value = -0.1
|
---|
926 | label = "N-inversion"
|
---|
927 | atoms = [4 3 2 1] )
|
---|
928 | ]
|
---|
929 | )
|
---|
930 | \% method for computing the molecule's energy
|
---|
931 | mole<CLHF>: (
|
---|
932 | molecule = $:molecule
|
---|
933 | basis = $:basis
|
---|
934 | coor = $..:coor
|
---|
935 | memory = 16000000
|
---|
936 | )
|
---|
937 | \% optimizer object for the molecular geometry
|
---|
938 | opt<QNewtonOpt>: (
|
---|
939 | max_iterations = 20
|
---|
940 | function = $..:mole
|
---|
941 | update<BFGSUpdate>: ()
|
---|
942 | convergence<MolEnergyConvergence>: (
|
---|
943 | cartesian = yes
|
---|
944 | energy = $..:..:mole
|
---|
945 | )
|
---|
946 | )
|
---|
947 | )
|
---|
948 | </pre>
|
---|
949 | <br>
|
---|
950 |
|
---|
951 | \subsection mpqcoosampts Transition State Optimization
|
---|
952 |
|
---|
953 | This example shows a transition state optimization of the N-inversion in
|
---|
954 | \f$\mathrm{CH}_3\mathrm{NH}_2\f$ using mode following. The initial geometry
|
---|
955 | was obtained by doing a few fixed coordinate optimizations along the
|
---|
956 | inversion coordinate.
|
---|
957 |
|
---|
958 | <pre>
|
---|
959 | \% emacs should use -*- KeyVal -*- mode
|
---|
960 | \% molecule specification
|
---|
961 | molecule<Molecule>: (
|
---|
962 | symmetry = CS
|
---|
963 | { atoms geometry } = {
|
---|
964 | H [ 3.045436 -0.697438 -1.596748 ]
|
---|
965 | H [ 3.045436 -0.697438 1.596748 ]
|
---|
966 | N [ 2.098157 -0.482779 -0.000000 ]
|
---|
967 | C [ -0.582616 -0.151798 0.000000 ]
|
---|
968 | H [ -1.171620 1.822306 0.000000 ]
|
---|
969 | H [ -1.417337 -1.042238 -1.647529 ]
|
---|
970 | H [ -1.417337 -1.042238 1.647529 ]
|
---|
971 | }
|
---|
972 | )
|
---|
973 | \% basis set specification
|
---|
974 | basis<GaussianBasisSet>: (
|
---|
975 | name = "3-21G*"
|
---|
976 | molecule = $:molecule
|
---|
977 | )
|
---|
978 | mpqc: (
|
---|
979 | checkpoint = no
|
---|
980 | savestate = no
|
---|
981 | \% molecular coordinates for optimization
|
---|
982 | coor<SymmMolecularCoor>: (
|
---|
983 | molecule = $:molecule
|
---|
984 | generator<IntCoorGen>: (
|
---|
985 | molecule = $:molecule
|
---|
986 | )
|
---|
987 | followed<OutSimpleCo> = [ "N-inversion" 4 3 2 1 ]
|
---|
988 | )
|
---|
989 | \% method for computing the molecule's energy
|
---|
990 | mole<CLHF>: (
|
---|
991 | molecule = $:molecule
|
---|
992 | basis = $:basis
|
---|
993 | coor = $..:coor
|
---|
994 | memory = 16000000
|
---|
995 | )
|
---|
996 | \% optimizer object for the molecular geometry
|
---|
997 | opt<EFCOpt>: (
|
---|
998 | transition_state = yes
|
---|
999 | mode_following = yes
|
---|
1000 | max_iterations = 20
|
---|
1001 | function = $..:mole
|
---|
1002 | update<PowellUpdate>: ()
|
---|
1003 | convergence<MolEnergyConvergence>: (
|
---|
1004 | cartesian = yes
|
---|
1005 | energy = $..:..:mole
|
---|
1006 | )
|
---|
1007 | )
|
---|
1008 | )
|
---|
1009 | </pre>
|
---|
1010 | <br>
|
---|
1011 |
|
---|
1012 | \subsection mpqcoosamptshess Transition State Optimization with a Computed Guess Hessian
|
---|
1013 |
|
---|
1014 | This example shows a transition state optimization of the N-inversion in
|
---|
1015 | \f$\mathrm{CH}_3\mathrm{NH}_2\f$ using mode following. The initial geometry
|
---|
1016 | was obtained by doing a few fixed coordinate optimizations along the
|
---|
1017 | inversion coordinate. An approximate guess Hessian will be computed, which
|
---|
1018 | makes the optimiziation converge much faster in this case.
|
---|
1019 |
|
---|
1020 | <pre>
|
---|
1021 | \% emacs should use -*- KeyVal -*- mode
|
---|
1022 | \% molecule specification
|
---|
1023 | molecule<Molecule>: (
|
---|
1024 | symmetry = CS
|
---|
1025 | { atoms geometry } = {
|
---|
1026 | H [ 3.045436 -0.697438 -1.596748 ]
|
---|
1027 | H [ 3.045436 -0.697438 1.596748 ]
|
---|
1028 | N [ 2.098157 -0.482779 -0.000000 ]
|
---|
1029 | C [ -0.582616 -0.151798 0.000000 ]
|
---|
1030 | H [ -1.171620 1.822306 0.000000 ]
|
---|
1031 | H [ -1.417337 -1.042238 -1.647529 ]
|
---|
1032 | H [ -1.417337 -1.042238 1.647529 ]
|
---|
1033 | }
|
---|
1034 | )
|
---|
1035 | \% basis set specification
|
---|
1036 | basis<GaussianBasisSet>: (
|
---|
1037 | name = "3-21G*"
|
---|
1038 | molecule = $:molecule
|
---|
1039 | )
|
---|
1040 | mpqc: (
|
---|
1041 | checkpoint = no
|
---|
1042 | savestate = no
|
---|
1043 | \% molecular coordinates for optimization
|
---|
1044 | coor<SymmMolecularCoor>: (
|
---|
1045 | molecule = $:molecule
|
---|
1046 | generator<IntCoorGen>: (
|
---|
1047 | molecule = $:molecule
|
---|
1048 | )
|
---|
1049 | followed<OutSimpleCo> = [ "N-inversion" 4 3 2 1 ]
|
---|
1050 | )
|
---|
1051 | \% method for computing the molecule's energy
|
---|
1052 | mole<CLHF>: (
|
---|
1053 | molecule = $:molecule
|
---|
1054 | basis = $:basis
|
---|
1055 | coor = $..:coor
|
---|
1056 | memory = 16000000
|
---|
1057 | guess_hessian<FinDispMolecularHessian>: (
|
---|
1058 | molecule = $:molecule
|
---|
1059 | only_totally_symmetric = yes
|
---|
1060 | eliminate_cubic_terms = no
|
---|
1061 | checkpoint = no
|
---|
1062 | energy<CLHF>: (
|
---|
1063 | molecule = $:molecule
|
---|
1064 | memory = 16000000
|
---|
1065 | basis<GaussianBasisSet>: (
|
---|
1066 | name = "3-21G"
|
---|
1067 | molecule = $:molecule
|
---|
1068 | )
|
---|
1069 | )
|
---|
1070 | )
|
---|
1071 | )
|
---|
1072 | \% optimizer object for the molecular geometry
|
---|
1073 | opt<EFCOpt>: (
|
---|
1074 | transition_state = yes
|
---|
1075 | mode_following = yes
|
---|
1076 | max_iterations = 20
|
---|
1077 | function = $..:mole
|
---|
1078 | update<PowellUpdate>: ()
|
---|
1079 | convergence<MolEnergyConvergence>: (
|
---|
1080 | cartesian = yes
|
---|
1081 | energy = $..:..:mole
|
---|
1082 | )
|
---|
1083 | )
|
---|
1084 | )
|
---|
1085 | </pre>
|
---|
1086 | <br>
|
---|
1087 |
|
---|
1088 |
|
---|
1089 | \subsection mpqcoosamphfckpt Hartree-Fock energy with intermediate checkpointing
|
---|
1090 |
|
---|
1091 | The following two sections demonstrate how MPQC can be used to save the <tt>mole</tt> object
|
---|
1092 | periodically.
|
---|
1093 | This input will compute the Hartree-Fock energy of water while saving
|
---|
1094 | the <tt>mole</tt> object every 3 iterations.
|
---|
1095 |
|
---|
1096 | <pre>
|
---|
1097 | \% emacs should use -*- KeyVal -*- mode
|
---|
1098 | \% molecule specification
|
---|
1099 | molecule<Molecule>: (
|
---|
1100 | symmetry = C2V
|
---|
1101 | unit = angstrom
|
---|
1102 | { atoms geometry } = {
|
---|
1103 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
1104 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
1105 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
1106 | }
|
---|
1107 | )
|
---|
1108 | \% basis set specification
|
---|
1109 | basis<GaussianBasisSet>: (
|
---|
1110 | name = "STO-3G"
|
---|
1111 | molecule = $:molecule
|
---|
1112 | )
|
---|
1113 | mpqc: (
|
---|
1114 | checkpoint = yes
|
---|
1115 | filename = "h2o-rhf-STO3G"
|
---|
1116 | checkpoint_freq = 3
|
---|
1117 | savestate = no
|
---|
1118 | \% method for computing the molecule's energy
|
---|
1119 | mole<CLHF>: (
|
---|
1120 | molecule = $:molecule
|
---|
1121 | basis = $:basis
|
---|
1122 | memory = 16000000
|
---|
1123 | )
|
---|
1124 | )
|
---|
1125 | </pre>
|
---|
1126 | <br>
|
---|
1127 |
|
---|
1128 | The <tt>mole</tt> object will be saved to files named "h2o-rhf-STO3G.wfn.<iter#>.tmp"
|
---|
1129 | where <iter#> is the SCF iteration number (3, 6, etc.). Only the most recent file is kept,
|
---|
1130 | files from previous iterations are removed automatically. Keyword <tt>filename</tt>
|
---|
1131 | here is used to set the default file name prefix.
|
---|
1132 |
|
---|
1133 | \subsection mpqcoosampmp2r12ckpt MP2-R12 energy with intermediate checkpointing
|
---|
1134 |
|
---|
1135 | The following input will compute the MP2-R12 energy of water in standard approximation A'
|
---|
1136 | (MP2-R12/A') while saving the <tt>mole</tt> object at intermediate checkpoints.
|
---|
1137 |
|
---|
1138 | <pre>
|
---|
1139 | \% emacs should use -*- KeyVal -*- mode
|
---|
1140 | \% molecule specification
|
---|
1141 | molecule<Molecule>: (
|
---|
1142 | symmetry = C2V
|
---|
1143 | unit = angstrom
|
---|
1144 | { atoms geometry } = {
|
---|
1145 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
1146 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
1147 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
1148 | }
|
---|
1149 | )
|
---|
1150 | \% basis set specification
|
---|
1151 | basis<GaussianBasisSet>: (
|
---|
1152 | name = "cc-pVDZ"
|
---|
1153 | molecule = $:molecule
|
---|
1154 | )
|
---|
1155 | \% auxiliary basis set specification
|
---|
1156 | abasis<GaussianBasisSet>: (
|
---|
1157 | name = "aug-cc-pVDZ"
|
---|
1158 | molecule = $:molecule
|
---|
1159 | )
|
---|
1160 | mpqc: (
|
---|
1161 | checkpoint = yes
|
---|
1162 | filename = "h2o-mp2r12ap-vdz-avdz"
|
---|
1163 | savestate = no
|
---|
1164 | \% method for computing the molecule's energy
|
---|
1165 | mole<MBPT2_R12>: (
|
---|
1166 | molecule = $:molecule
|
---|
1167 | basis = $:basis
|
---|
1168 | aux_basis = $:abasis
|
---|
1169 | stdapprox = "A'"
|
---|
1170 | nfzc = 1
|
---|
1171 | memory = 16000000
|
---|
1172 | integrals<IntegralCints>:()
|
---|
1173 | \% reference wavefunction
|
---|
1174 | reference<CLHF>: (
|
---|
1175 | molecule = $:molecule
|
---|
1176 | basis = $:basis
|
---|
1177 | memory = 16000000
|
---|
1178 | integrals<IntegralCints>:()
|
---|
1179 | )
|
---|
1180 | )
|
---|
1181 | )
|
---|
1182 | </pre>
|
---|
1183 | <br>
|
---|
1184 |
|
---|
1185 | The <tt>mole</tt> object will be saved to a file named <tt>h2o-mp2r12ap-vdz-avdz.wfn"</tt>.
|
---|
1186 | Keyword <tt>filename</tt> here is used to set the default file name prefix.
|
---|
1187 | Objects of the <tt>MBPT2_R12</tt> type are checkpointed after the HF procedure,
|
---|
1188 | after the first integrals (SBS) transformation, and after the optional second (ABS)
|
---|
1189 | transformation.
|
---|
1190 |
|
---|
1191 | \subsection mpqcoosamphfgradfromwfn HF gradient computed from a previously computed HF wave funtion
|
---|
1192 |
|
---|
1193 | The following will illustrate how to reuse previously computed <tt>MolecularEnergy</tt> objects
|
---|
1194 | in subsequent computations. The first input computes Hartree-Fock energy for water
|
---|
1195 | and saves the <tt>mole</tt> object to file <tt>h2o-rhf-sto3g.wfn</tt>.
|
---|
1196 |
|
---|
1197 | <pre>
|
---|
1198 | \% emacs should use -*- KeyVal -*- mode
|
---|
1199 | \% molecule specification
|
---|
1200 | molecule<Molecule>: (
|
---|
1201 | symmetry = C2V
|
---|
1202 | unit = angstrom
|
---|
1203 | { atoms geometry } = {
|
---|
1204 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
1205 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
1206 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
1207 | }
|
---|
1208 | )
|
---|
1209 | \% basis set specification
|
---|
1210 | basis<GaussianBasisSet>: (
|
---|
1211 | name = "STO-3G"
|
---|
1212 | molecule = $:molecule
|
---|
1213 | )
|
---|
1214 | mpqc: (
|
---|
1215 | checkpoint = no
|
---|
1216 | savestate = yes
|
---|
1217 | filename = "h2o-rhf-sto3g"
|
---|
1218 | \% method for computing the molecule's energy
|
---|
1219 | mole<CLHF>: (
|
---|
1220 | molecule = $:molecule
|
---|
1221 | basis = $:basis
|
---|
1222 | memory = 16000000
|
---|
1223 | )
|
---|
1224 | )
|
---|
1225 | </pre>
|
---|
1226 | <br>
|
---|
1227 |
|
---|
1228 | The second input reuses the <tt>mole</tt> object from the previous run
|
---|
1229 | to compute the gradient of the Hartree-Fock energy.
|
---|
1230 |
|
---|
1231 | <pre>
|
---|
1232 | \% emacs should use -*- KeyVal -*- mode
|
---|
1233 | mpqc: (
|
---|
1234 | checkpoint = no
|
---|
1235 | savestate = no
|
---|
1236 | restart = yes
|
---|
1237 | restart_file = "h2o-rhf-sto3g.wfn"
|
---|
1238 | do_gradient = yes
|
---|
1239 | )
|
---|
1240 | </pre>
|
---|
1241 | <br>
|
---|
1242 |
|
---|
1243 | \subsection mpqcoosampmp2usinghfwfn MP2 Energy computed using precomputed Hartree-Fock wave function
|
---|
1244 |
|
---|
1245 | The following input will compute the MP2 energy of water using a saved Hartree-Fock wave function
|
---|
1246 | obtained using the first input from \ref mpqcoosamphfgradfromwfn.
|
---|
1247 |
|
---|
1248 | <pre>
|
---|
1249 | \% emacs should use -*- KeyVal -*- mode
|
---|
1250 | \% molecule specification
|
---|
1251 | molecule<Molecule>: (
|
---|
1252 | symmetry = C2V
|
---|
1253 | unit = angstrom
|
---|
1254 | { atoms geometry } = {
|
---|
1255 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
1256 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
1257 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
1258 | }
|
---|
1259 | )
|
---|
1260 | \% basis set specification
|
---|
1261 | basis<GaussianBasisSet>: (
|
---|
1262 | name = "STO-3G"
|
---|
1263 | molecule = $:molecule
|
---|
1264 | )
|
---|
1265 | \% wave function file object specification
|
---|
1266 | wfnfile<BcastStateInBin>:file = "h2o-rhf-sto3g.wfn"
|
---|
1267 | mpqc: (
|
---|
1268 | checkpoint = no
|
---|
1269 | savestate = no
|
---|
1270 | \% method for computing the molecule's energy
|
---|
1271 | mole<MBPT2>: (
|
---|
1272 | molecule = $:molecule
|
---|
1273 | basis = $:basis
|
---|
1274 | memory = 16000000
|
---|
1275 | \% reference wavefunction
|
---|
1276 | reference<SavableStateProxy>: (
|
---|
1277 | statein = $:wfnfile
|
---|
1278 | object = "CLHF"
|
---|
1279 | )
|
---|
1280 | )
|
---|
1281 | )
|
---|
1282 | </pre>
|
---|
1283 | <br>
|
---|
1284 |
|
---|
1285 | Note that now object <tt>reference</tt> is of type <tt>SavableStateProxy</tt>,
|
---|
1286 | rather than <tt>CLHF</tt>. <tt>SavableStateProxy</tt> is a special object type
|
---|
1287 | that can be converted at runtime into the desired type (in this case, <tt>CLHF</tt>,
|
---|
1288 | as indicated by <tt>object</tt>).
|
---|
1289 |
|
---|
1290 | \subsection mpqcoosamphfusingcca CLHF energy using a CCA integrals component
|
---|
1291 |
|
---|
1292 | The following input will compute the CLHF energy of water using a CCA integrals component
|
---|
1293 | via the IntegralCCA adaptor class.
|
---|
1294 |
|
---|
1295 | <pre>
|
---|
1296 | \% emacs should use -*- KeyVal -*- mode
|
---|
1297 | \% molecule specification
|
---|
1298 | molecule<Molecule>: (
|
---|
1299 | symmetry = C2V
|
---|
1300 | unit = angstrom
|
---|
1301 | { atoms geometry } = {
|
---|
1302 | O [ 0.00000000 0.00000000 0.37000000 ]
|
---|
1303 | H [ 0.78000000 0.00000000 -0.18000000 ]
|
---|
1304 | H [ -0.78000000 0.00000000 -0.18000000 ]
|
---|
1305 | }
|
---|
1306 | )
|
---|
1307 | \% basis set specification
|
---|
1308 | basis<GaussianBasisSet>: (
|
---|
1309 | name = "STO-3G"
|
---|
1310 | molecule = $:molecule
|
---|
1311 | )
|
---|
1312 | mpqc: (
|
---|
1313 | \% path to component libraries
|
---|
1314 | cca_path = /usr/local/lib/cca
|
---|
1315 | \% sidl class names of components which will be instantiated
|
---|
1316 | cca_load = MPQC.IntegralEvaluatorFactory
|
---|
1317 | do_cca = yes
|
---|
1318 | checkpoint = no
|
---|
1319 | savestate = no
|
---|
1320 | \% method for computing the molecule's energy
|
---|
1321 | mole<CLHF>: (
|
---|
1322 | molecule = $:molecule
|
---|
1323 | basis = $:basis
|
---|
1324 | \% cca integrals adaptor class
|
---|
1325 | integrals<IntegralCCA>: (
|
---|
1326 | molecule = $:molecule
|
---|
1327 | \% integral buffer type
|
---|
1328 | integral_buffer = opaque
|
---|
1329 | \% integral package
|
---|
1330 | integral_package = intv3
|
---|
1331 | \% factory component sidl class name
|
---|
1332 | evaluator_factory = MPQC.IntegralEvaluatorFactory
|
---|
1333 | )
|
---|
1334 | )
|
---|
1335 | )
|
---|
1336 | </pre>
|
---|
1337 | <br>
|
---|
1338 |
|
---|
1339 | */
|
---|