#include #ifdef HAVE_SSTREAM # include #else # include #endif #include #include using namespace std; using namespace sc; #undef yyFlexLexer #define yyFlexLexer MPQCInFlexLexer #include #include "mpqcin.h" #include "parse.h" int MPQCIn::checking_ = 0; MPQCIn::MPQCIn(): nirrep_(0), mult_(1), charge_(0), basis_(0), auxbasis_(0), method_(0), optimize_(0), gradient_(0), frequencies_(0), opt_type_(T_INTERNAL), redund_coor_(0), restart_(0), checkpoint_(1), atom_charge_(0), method_xc_(0), method_grid_(0), symmetry_(0), memory_(0), molecule_bohr_(0), alpha_(0), beta_(0), docc_(0), socc_(0), frozen_docc_(0), frozen_uocc_(0), method_absmethod_(0), method_ebc_(0), method_gbc_(0) { lexer_ = new MPQCInFlexLexer; } MPQCIn::~MPQCIn() { delete lexer_; if (basis_.val()) free(basis_.val()); if (auxbasis_.val()) free(auxbasis_.val()); if (method_.val()) free(method_.val()); if (method_xc_.val()) free(method_xc_.val()); if (method_grid_.val()) free(method_grid_.val()); if (symmetry_.val()) free(symmetry_.val()); if (memory_.val()) free(memory_.val()); if (alpha_.val()) free(alpha_.val()); if (beta_.val()) free(beta_.val()); if (docc_.val()) free(docc_.val()); if (socc_.val()) free(socc_.val()); if (frozen_docc_.val()) free(frozen_docc_.val()); if (frozen_uocc_.val()) free(frozen_uocc_.val()); } void MPQCIn::error(const char* s) { ExEnv::outn() << ExEnv::program_name() << ": error: " << s << endl; abort(); } void MPQCIn::error2(const char* s, const char *s2) { ExEnv::outn() << ExEnv::program_name() << ": error: " << s << "\"" << s2 << "\"" << endl; abort(); } void MPQCIn::yerror(const char* s) { ExEnv::outn() << ExEnv::program_name() << ": " << s << " at line " << lexer_->lineno()+1 << endl; abort(); } void MPQCIn::yerror2(const char* s, const char *s2) { ExEnv::outn() << ExEnv::program_name() << ": " << s << " \"" << s2 << "\" at line " << lexer_->lineno()+1 << endl; abort(); } int MPQCIn::ylex() { return lexer_->yylex(); } void MPQCIn::begin_molecule() { if (mol_.nonnull()) { ExEnv::outn() << ExEnv::program_name() << ": error: second molecule given at line " << lexer_->lineno()+1 << endl; abort(); } mol_ = new Molecule; } void MPQCIn::end_molecule() { //double symtol = 1e-4; //mol_->set_point_group(mol_->highest_point_group(symtol), symtol*10.0); } void MPQCIn::add_atom(char *sym, char *xs, char *ys, char *zs) { int Z = mol_->atominfo()->string_to_Z(sym, 0); if (Z == 0) yerror2("bad element", sym); free(sym); char *xse; double x = strtod(xs,&xse); if (xse == xs) yerror2("bad x coordinate", xs); free(xs); char *yse; double y = strtod(ys,&yse); if (yse == ys) yerror2("bad y coordinate", ys); free(ys); char *zse; double z = strtod(zs,&zse); if (zse == zs) yerror2("bad z coordinate", zs); free(zs); mol_->add_atom(Z, x, y, z, 0, 0, atom_charge_.set(), atom_charge_.val()); atom_charge_.reset(0); } void MPQCIn::set_charge(char *cs) { char *cse; int c = strtol(cs,&cse,10); if (cse == cs) yerror2("bad charge", cs); charge_ = c; free(cs); } void MPQCIn::set_atom_charge(char *cs) { char *cse; int c = strtol(cs,&cse,10); if (cse == cs) yerror2("bad atom charge", cs); atom_charge_ = c; free(cs); } void MPQCIn::set_method(char *m) { method_ = m; } void MPQCIn::set_method_xc(char *m) { method_xc_ = m; } void MPQCIn::set_method_grid(char *m) { method_grid_ = m; } void MPQCIn::set_molecule_bohr(int i) { molecule_bohr_ = i; } void MPQCIn::set_basis(char *b) { basis_ = b; } void MPQCIn::set_auxbasis(char *b) { auxbasis_ = b; } void MPQCIn::set_symmetry(char *s) { symmetry_ = s; if (strcmp(s,"auto")) { Ref p = new PointGroup(s); nirrep_ = p->char_table().nirrep(); } } void MPQCIn::set_memory(char *s) { memory_ = s; } void MPQCIn::set_multiplicity(char *ms) { char *mse; int m = strtol(ms,&mse,10); if (mse == ms || m <= 0) yerror2("bad multiplicity", ms); mult_ = m; free(ms); } void MPQCIn::set_optimize(int i) { optimize_ = i; } void MPQCIn::set_gradient(int i) { gradient_ = i; } void MPQCIn::set_frequencies(int i) { frequencies_ = i; } void MPQCIn::set_restart(int i) { restart_ = i; } void MPQCIn::set_checkpoint(int i) { checkpoint_ = i; } void MPQCIn::set_redund_coor(int i) { redund_coor_ = i; } void MPQCIn::set_opt_type(int i) { opt_type_ = i; } void MPQCIn::set_docc(std::vector *a) { docc_ = a; } void MPQCIn::set_socc(std::vector *a) { socc_ = a; } void MPQCIn::set_alpha(std::vector *a) { alpha_ = a; } void MPQCIn::set_beta(std::vector *a) { beta_ = a; } void MPQCIn::set_frozen_docc(std::vector *a) { frozen_docc_ = a; } void MPQCIn::set_frozen_uocc(std::vector *a) { frozen_uocc_ = a; } void MPQCIn::set_method_absmethod(const char *m) { method_absmethod_ = m; } void MPQCIn::set_method_ebc(const char *m) { method_ebc_ = m; } void MPQCIn::set_method_gbc(const char *m) { method_gbc_ = m; } std::vector * MPQCIn::make_nnivec(std::vector *a, char *ms) { if (ms == 0) return new std::vector; char *mse; int m = strtol(ms,&mse,10); if (mse == ms || m < 0) yerror2("bad positive integer", ms); free(ms); if (a == 0) a = new std::vector; a->push_back(m); return a; } int MPQCIn::check_string(const char *s) { checking_ = 1; #ifdef HAVE_SSTREAM istringstream in(s); #else istrstream in(s); #endif lexer_->switch_streams(&in, &ExEnv::outn()); int token; while ((token = ylex())) { if (token == T_OO_INPUT_KEYWORD) return 0; } checking_ = 0; return 1; } char * MPQCIn::parse_string(const char *s) { // read in easy input #ifdef HAVE_SSTREAM istringstream in(s); #else istrstream in(s); #endif lexer_->switch_streams(&in, &ExEnv::outn()); yparse(); // form the oo input #ifdef HAVE_SSTREAM ostringstream ostrs; #else ostrstream ostrs; #endif SCFormIO::init_ostream(ostrs); ostrs << decindent; if (mol_.null()) error("no molecule given"); if (symmetry_.set() && strcmp(symmetry_.val(),"auto") != 0) { mol_->symmetrize(new PointGroup(symmetry_.val())); } ostrs << indent << "molecule: (" << endl; ostrs << incindent; ostrs << indent << "symmetry = " << (symmetry_.set()?symmetry_.val():"auto") << endl; ostrs << indent << "unit = \"" << (molecule_bohr_.val()?"bohr":"angstrom") << "\"" << endl; mol_->print_parsedkeyval(ostrs, 0, 0, 0); ostrs << decindent; ostrs << indent << ")" << endl; write_basis_object(ostrs, "basis", basis_.val()); ostrs << indent << "mpqc: (" << endl; ostrs << incindent; ostrs << indent << "do_gradient = " << gradient_.val() << endl; ostrs << indent << "optimize = " << optimize_.val() << endl; ostrs << indent << "restart = " << restart_.val() << endl; ostrs << indent << "checkpoint = " << checkpoint_.val() << endl; ostrs << indent << "savestate = " << checkpoint_.val() << endl; bool need_cints = false; write_energy_object(ostrs, "mole", method_.val(), 0, optimize_.val(), need_cints); if (need_cints) ostrs << indent << "integrals: ()" << std::endl; if (optimize_.val()) { const char *coortype = "SymmMolecularCoor"; if (opt_type_.val() == T_CARTESIAN) coortype = "CartMolecularCoor"; else if (redund_coor_.val()) coortype = "RedundMolecularCoor"; ostrs << indent << "coor<" << coortype << ">: (" << endl; ostrs << indent << " molecule = $:molecule" << endl; if (opt_type_.val() == T_INTERNAL) { ostrs << indent << " generator: (" << endl; ostrs << indent << " molecule = $:molecule" << endl; ostrs << indent << " )" << endl; } ostrs << indent << ")" << endl; ostrs << indent << "opt: (" << endl; ostrs << indent << " function = $:mpqc:mole" << endl; ostrs << indent << " update: ()" << endl; ostrs << indent << " convergence: (" << endl; ostrs << indent << " cartesian = yes" << endl; ostrs << indent << " energy = $:mpqc:mole" << endl; ostrs << indent << " )" << endl; ostrs << indent << ")" << endl; } if (frequencies_.val()) { ostrs << indent << "freq: (" << endl; ostrs << indent << " molecule = $:molecule" << endl; ostrs << indent << ")" << endl; } ostrs << decindent; ostrs << indent << ")" << endl; ostrs << ends; #ifdef HAVE_SSTREAM int n = 1 + strlen(ostrs.str().c_str()); char *in_char_array = strcpy(new char[n],ostrs.str().c_str()); #else char *in_char_array = ostrs.str(); #endif return in_char_array; } void MPQCIn::write_vector(ostream &ostrs, const char *keyvalname, const char *name, MPQCInDatum *>&vec, int require_nirrep) { if (vec.set()) { ostrs << indent << keyvalname << " = "; if (!require_nirrep && vec.val()->size() == 1) { ostrs << (*vec.val())[0] << endl; } else if (nirrep_ && vec.val()->size() == nirrep_) { ostrs << "["; for (int i=0; inuclear_charge()+1e-6) - charge_.val(); if (nelectron < 0) { error("charge is impossibly large"); } if (nelectron%2 == 0 && mult_.val()%2 == 0 ||nelectron%2 == 1 && mult_.val()%2 == 1) { error("given multiplicity is not possible"); } const char *method_object = 0; const char *reference_method = 0; const char *guess_method = method; const char *auxbasis_key = 0; int dft = 0; int uscf = 0; ostringstream o_extra; SCFormIO::init_ostream(o_extra); o_extra << incindent; if (method) { // Hartree-Fock methods if (!strcmp(method, "HF")) { if (mult_.val() == 1) method_object = "CLHF"; else { uscf = 1; method_object = "UHF"; } } else if (!strcmp(method, "RHF")) { if (mult_.val() == 1) method_object = "CLHF"; else method_object = "HSOSHF"; } else if (!strcmp(method, "UHF")) { method_object = "UHF"; uscf = 1; } // Density Functional Methods else if (!strcmp(method, "KS")) { guess_method = "HF"; if (mult_.val() == 1) method_object = "CLKS"; else { uscf = 1; method_object = "UKS"; } dft = 1; } else if (!strcmp(method, "RKS")) { guess_method = "RHF"; if (mult_.val() == 1) method_object = "CLKS"; else method_object = "HSOSKS"; dft = 1; } else if (!strcmp(method, "UKS")) { guess_method = "UHF"; method_object = "UKS"; dft = 1; uscf = 1; } // Perturbation Theory else if (!strcmp(method, "MP2")) { guess_method = 0; method_object = "MBPT2"; reference_method = "HF"; if (mult_.val() != 1) { error("MP2 can only be used with multiplicity 1: try ZAPT2"); } } // Perturbation Theory else if (!strcmp(method, "MP2-R12/A")) { need_cints = true; auxbasis_key = "aux_basis"; guess_method = 0; method_object = "MBPT2_R12"; reference_method = "HF"; o_extra << indent << "stdapprox = \"A\"" << endl; if (method_absmethod_.val() != 0) o_extra << indent << "abs_method = " << method_absmethod_.val() << endl; if (method_ebc_.val() != 0) o_extra << indent << "ebc = " << method_ebc_.val() << endl; if (method_gbc_.val() != 0) o_extra << indent << "gbc = " << method_gbc_.val() << endl; if (mult_.val() != 1) { error("MP2-R12 can only be used with multiplicity 1"); } } // Perturbation Theory else if (!strcmp(method, "MP2-R12/A'")) { need_cints = true; auxbasis_key = "aux_basis"; guess_method = 0; method_object = "MBPT2_R12"; reference_method = "HF"; o_extra << indent << "stdapprox = \"A'\"" << endl; if (method_absmethod_.val() != 0) o_extra << indent << "abs_method = " << method_absmethod_.val() << endl; if (method_ebc_.val() != 0) o_extra << indent << "ebc = " << method_ebc_.val() << endl; if (method_gbc_.val() != 0) o_extra << indent << "gbc = " << method_gbc_.val() << endl; if (mult_.val() != 1) { error("MP2-R12 can only be used with multiplicity 1"); } } else if (!strcmp(method, "ZAPT2")) { guess_method = 0; method_object = "MBPT2"; reference_method = "RHF"; if (mult_.val() == 1) { error("ZAPT2 can only be used with multiplicity != 1: try MP2"); } if (optimize_.val() || gradient_.val() || frequencies_.val()) { error("cannot do a gradient or optimization with ZAPT2"); } } else error2("invalid method: ", method); } else error("no method given"); ostrs << indent << keyword << "<" << method_object << ">: (" << endl; ostrs << incindent; ostrs << o_extra.str(); if (auxbasis_key && auxbasis_.val() != 0 && strcmp(auxbasis_.val(),basis_.val()) != 0) write_basis_object(ostrs, auxbasis_key, auxbasis_.val()); if (need_cints) ostrs << indent << "integrals: ()" << endl; ostrs << indent << "total_charge = " << charge_.val() << endl; ostrs << indent << "multiplicity = " << mult_.val() << endl; ostrs << indent << "molecule = $:molecule" << endl; if (memory_.val()) ostrs << indent << "memory = " << memory_.val() << endl; if (!strcmp(keyword, "mole") && !reference_method) { ostrs << indent << "print_npa = 1" << endl; } if (reference_method) { write_vector(ostrs, "nfzc", "frozen_docc", frozen_docc_, 0); write_vector(ostrs, "nfzv", "frozen_uocc", frozen_uocc_, 0); } else { if (uscf && (docc_.set() || socc_.set())) { error("cannot set docc or socc for unrestricted methods" " (use alpha and beta)"); } else if (uscf) { write_vector(ostrs, "alpha", "alpha", alpha_, 1); write_vector(ostrs, "beta", "beta", beta_, 1); } else if (alpha_.set() || beta_.set()) { error("cannot set alpha or beta for restricted methods" " (use docc and socc)"); } else { write_vector(ostrs, "docc", "docc", docc_, 1); write_vector(ostrs, "socc", "socc", socc_, 1); } } if (coor) ostrs << indent << "coor = $:mpqc:coor" << endl; if (basis) { write_basis_object(ostrs, "basis", basis); } else { ostrs << indent << "basis = $:basis" << endl; } if (dft) { if (method_xc_.set()) { ostrs << indent << "functional: ( name = \"" << method_xc_.val() << "\" )" << endl; } else error("no exchange-correlation functional given"); if (method_grid_.set()) { ostrs << indent << "integrator: ( grid = \"" << method_grid_.val() << "\" )" << endl; } } if (dft || (!(basis && !strncmp("STO",basis,3)) && !(basis && !strncmp("DZ",basis,2)) && strncmp("STO",basis_.val(),3) && guess_method)) { if (frequencies_.val()) { ostrs << indent << "keep_guess_wavefunction = 1" << endl;; } const char *guess_basis; if (need_cints) guess_basis = "DZ (Dunning)"; else guess_basis = "STO-3G"; write_energy_object(ostrs, "guess_wavefunction", guess_method, guess_basis, 0, need_cints); } if (reference_method) { ostrs << indent << "nfzc = auto" << endl;; write_energy_object(ostrs, "reference", reference_method, 0, 0, need_cints); } ostrs << decindent; ostrs << indent << ")" << endl; } void MPQCIn::write_basis_object(ostream &ostrs, const char *keyword, const char *basis) { if (!basis) error("no basis given"); ostrs << indent << keyword << ": (" << endl; ostrs << incindent; ostrs << indent << "molecule = $:molecule" << endl; ostrs << indent << "name = \"" << basis << "\"" << endl; ostrs << decindent; ostrs << indent << ")" << endl; }