1 | %BASIS "cc-pV6Z" CARTESIAN
|
---|
2 | basis:(
|
---|
3 | %Elements References
|
---|
4 | %-------- ----------
|
---|
5 | %H: K.A. Peterson, D.E. Woon and T. H. Dunning, Jr., (to be published).
|
---|
6 | %B - Ne: A. K. Wilson, T. v. Mourik and T. H. Dunning, Jr., J. Mol. Struct.
|
---|
7 | % (THEOCHEM) 388, 339 (1997).
|
---|
8 | %
|
---|
9 | %
|
---|
10 | % BASIS SET: (10s,5p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
11 | hydrogen: "cc-pV6Z": [
|
---|
12 | (type: [am = s]
|
---|
13 | {exp coef:0} = {
|
---|
14 | 1776.7755600 0.44000000000E-04
|
---|
15 | 254.01771200 0.37200000000E-03
|
---|
16 | 54.698039000 0.20940000000E-02
|
---|
17 | 15.018344000 0.88630000000E-02
|
---|
18 | 4.9150780000 0.30540000000E-01
|
---|
19 | })
|
---|
20 | (type: [am = s]
|
---|
21 | {exp coef:0} = {
|
---|
22 | 1.7949240000 1.0000000000
|
---|
23 | })
|
---|
24 | (type: [am = s]
|
---|
25 | {exp coef:0} = {
|
---|
26 | 0.71071600000 1.0000000000
|
---|
27 | })
|
---|
28 | (type: [am = s]
|
---|
29 | {exp coef:0} = {
|
---|
30 | 0.30480200000 1.0000000000
|
---|
31 | })
|
---|
32 | (type: [am = s]
|
---|
33 | {exp coef:0} = {
|
---|
34 | 0.13804600000 1.0000000000
|
---|
35 | })
|
---|
36 | (type: [am = s]
|
---|
37 | {exp coef:0} = {
|
---|
38 | 0.62157000000E-01 1.0000000000
|
---|
39 | })
|
---|
40 | (type: [am = p]
|
---|
41 | {exp coef:0} = {
|
---|
42 | 8.6490000000 1.0000000000
|
---|
43 | })
|
---|
44 | (type: [am = p]
|
---|
45 | {exp coef:0} = {
|
---|
46 | 3.4300000000 1.0000000000
|
---|
47 | })
|
---|
48 | (type: [am = p]
|
---|
49 | {exp coef:0} = {
|
---|
50 | 1.3600000000 1.0000000000
|
---|
51 | })
|
---|
52 | (type: [am = p]
|
---|
53 | {exp coef:0} = {
|
---|
54 | 0.53900000000 1.0000000000
|
---|
55 | })
|
---|
56 | (type: [am = p]
|
---|
57 | {exp coef:0} = {
|
---|
58 | 0.21400000000 1.0000000000
|
---|
59 | })
|
---|
60 | (type: [(am = d puream = 1)]
|
---|
61 | {exp coef:0} = {
|
---|
62 | 4.4530000000 1.0000000000
|
---|
63 | })
|
---|
64 | (type: [(am = d puream = 1)]
|
---|
65 | {exp coef:0} = {
|
---|
66 | 1.9580000000 1.0000000000
|
---|
67 | })
|
---|
68 | (type: [(am = d puream = 1)]
|
---|
69 | {exp coef:0} = {
|
---|
70 | 0.86100000000 1.0000000000
|
---|
71 | })
|
---|
72 | (type: [(am = d puream = 1)]
|
---|
73 | {exp coef:0} = {
|
---|
74 | 0.37800000000 1.0000000000
|
---|
75 | })
|
---|
76 | (type: [(am = f puream = 1)]
|
---|
77 | {exp coef:0} = {
|
---|
78 | 4.1000000000 1.0000000000
|
---|
79 | })
|
---|
80 | (type: [(am = f puream = 1)]
|
---|
81 | {exp coef:0} = {
|
---|
82 | 1.7800000000 1.0000000000
|
---|
83 | })
|
---|
84 | (type: [(am = f puream = 1)]
|
---|
85 | {exp coef:0} = {
|
---|
86 | 0.77300000000 1.0000000000
|
---|
87 | })
|
---|
88 | (type: [(am = g puream = 1)]
|
---|
89 | {exp coef:0} = {
|
---|
90 | 3.1990000000 1.0000000000
|
---|
91 | })
|
---|
92 | (type: [(am = g puream = 1)]
|
---|
93 | {exp coef:0} = {
|
---|
94 | 1.3260000000 1.0000000000
|
---|
95 | })
|
---|
96 | (type: [(am = h puream = 1)]
|
---|
97 | {exp coef:0} = {
|
---|
98 | 2.6530000000 1.0000000000
|
---|
99 | })
|
---|
100 | ]
|
---|
101 | %
|
---|
102 | % BASIS SET: (10s,5p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
103 | helium: "cc-pV6Z": [
|
---|
104 | (type: [am = s]
|
---|
105 | {exp coef:0} = {
|
---|
106 | 4785.0000000 0.60000000000E-06
|
---|
107 | 717.00000000 0.47000000000E-05
|
---|
108 | 163.20000000 0.24400000000E-04
|
---|
109 | 46.260000000 0.10120000000E-03
|
---|
110 | 15.100000000 0.34860000000E-03
|
---|
111 | })
|
---|
112 | (type: [am = s]
|
---|
113 | {exp coef:0} = {
|
---|
114 | 5.4370000000 1.0000000000
|
---|
115 | })
|
---|
116 | (type: [am = s]
|
---|
117 | {exp coef:0} = {
|
---|
118 | 2.0880000000 1.0000000000
|
---|
119 | })
|
---|
120 | (type: [am = s]
|
---|
121 | {exp coef:0} = {
|
---|
122 | 0.82970000000 1.0000000000
|
---|
123 | })
|
---|
124 | (type: [am = s]
|
---|
125 | {exp coef:0} = {
|
---|
126 | 0.33660000000 1.0000000000
|
---|
127 | })
|
---|
128 | (type: [am = s]
|
---|
129 | {exp coef:0} = {
|
---|
130 | 0.13690000000 1.0000000000
|
---|
131 | })
|
---|
132 | (type: [am = p]
|
---|
133 | {exp coef:0} = {
|
---|
134 | 0.38700000000 1.0000000000
|
---|
135 | })
|
---|
136 | (type: [am = p]
|
---|
137 | {exp coef:0} = {
|
---|
138 | 0.98400000000 1.0000000000
|
---|
139 | })
|
---|
140 | (type: [am = p]
|
---|
141 | {exp coef:0} = {
|
---|
142 | 2.4980000000 1.0000000000
|
---|
143 | })
|
---|
144 | (type: [am = p]
|
---|
145 | {exp coef:0} = {
|
---|
146 | 6.3420000000 1.0000000000
|
---|
147 | })
|
---|
148 | (type: [am = p]
|
---|
149 | {exp coef:0} = {
|
---|
150 | 16.104000000 1.0000000000
|
---|
151 | })
|
---|
152 | (type: [(am = d puream = 1)]
|
---|
153 | {exp coef:0} = {
|
---|
154 | 0.74700000000 1.0000000000
|
---|
155 | })
|
---|
156 | (type: [(am = d puream = 1)]
|
---|
157 | {exp coef:0} = {
|
---|
158 | 1.9100000000 1.0000000000
|
---|
159 | })
|
---|
160 | (type: [(am = d puream = 1)]
|
---|
161 | {exp coef:0} = {
|
---|
162 | 4.8860000000 1.0000000000
|
---|
163 | })
|
---|
164 | (type: [(am = d puream = 1)]
|
---|
165 | {exp coef:0} = {
|
---|
166 | 12.498000000 1.0000000000
|
---|
167 | })
|
---|
168 | (type: [(am = f puream = 1)]
|
---|
169 | {exp coef:0} = {
|
---|
170 | 1.2920000000 1.0000000000
|
---|
171 | })
|
---|
172 | (type: [(am = f puream = 1)]
|
---|
173 | {exp coef:0} = {
|
---|
174 | 3.4620000000 1.0000000000
|
---|
175 | })
|
---|
176 | (type: [(am = f puream = 1)]
|
---|
177 | {exp coef:0} = {
|
---|
178 | 9.2760000000 1.0000000000
|
---|
179 | })
|
---|
180 | (type: [(am = g puream = 1)]
|
---|
181 | {exp coef:0} = {
|
---|
182 | 2.2360000000 1.0000000000
|
---|
183 | })
|
---|
184 | (type: [(am = g puream = 1)]
|
---|
185 | {exp coef:0} = {
|
---|
186 | 6.5860000000 1.0000000000
|
---|
187 | })
|
---|
188 | (type: [(am = h puream = 1)]
|
---|
189 | {exp coef:0} = {
|
---|
190 | 4.1590000000 1.0000000000
|
---|
191 | })
|
---|
192 | ]
|
---|
193 | %
|
---|
194 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
195 | boron: "cc-pV6Z": [
|
---|
196 | (type: [am = s am = s]
|
---|
197 | {exp coef:0 coef:1} = {
|
---|
198 | 210400.00000 0.58300000000E-05 -0.11800000000E-05
|
---|
199 | 31500.000000 0.45320000000E-04 -0.91500000000E-05
|
---|
200 | 7169.0000000 0.23838000000E-03 -0.48190000000E-04
|
---|
201 | 2030.0000000 0.10057000000E-02 -0.20306000000E-03
|
---|
202 | 662.50000000 0.36449600000E-02 -0.73917000000E-03
|
---|
203 | 239.20000000 0.11736280000E-01 -0.23860300000E-02
|
---|
204 | 93.260000000 0.33807020000E-01 -0.69865400000E-02
|
---|
205 | 38.640000000 0.85565930000E-01 -0.18115940000E-01
|
---|
206 | 16.780000000 0.18260322000 -0.41231290000E-01
|
---|
207 | 7.5410000000 0.30583760000 -0.77813530000E-01
|
---|
208 | 3.4820000000 0.34080347000 -0.12123181000
|
---|
209 | })
|
---|
210 | (type: [am = s]
|
---|
211 | {exp coef:0} = {
|
---|
212 | 1.6180000000 1.0000000000
|
---|
213 | })
|
---|
214 | (type: [am = s]
|
---|
215 | {exp coef:0} = {
|
---|
216 | 0.62700000000 1.0000000000
|
---|
217 | })
|
---|
218 | (type: [am = s]
|
---|
219 | {exp coef:0} = {
|
---|
220 | 0.29340000000 1.0000000000
|
---|
221 | })
|
---|
222 | (type: [am = s]
|
---|
223 | {exp coef:0} = {
|
---|
224 | 0.13100000000 1.0000000000
|
---|
225 | })
|
---|
226 | (type: [am = s]
|
---|
227 | {exp coef:0} = {
|
---|
228 | 0.58150000000E-01 1.0000000000
|
---|
229 | })
|
---|
230 | (type: [am = p]
|
---|
231 | {exp coef:0} = {
|
---|
232 | 192.50000000 0.13490000000E-03
|
---|
233 | 45.640000000 0.11474100000E-02
|
---|
234 | 14.750000000 0.58479300000E-02
|
---|
235 | 5.5030000000 0.21170910000E-01
|
---|
236 | 2.2220000000 0.62668720000E-01
|
---|
237 | })
|
---|
238 | (type: [am = p]
|
---|
239 | {exp coef:0} = {
|
---|
240 | 0.95900000000 1.0000000000
|
---|
241 | })
|
---|
242 | (type: [am = p]
|
---|
243 | {exp coef:0} = {
|
---|
244 | 0.43140000000 1.0000000000
|
---|
245 | })
|
---|
246 | (type: [am = p]
|
---|
247 | {exp coef:0} = {
|
---|
248 | 0.19690000000 1.0000000000
|
---|
249 | })
|
---|
250 | (type: [am = p]
|
---|
251 | {exp coef:0} = {
|
---|
252 | 0.90330000000E-01 1.0000000000
|
---|
253 | })
|
---|
254 | (type: [am = p]
|
---|
255 | {exp coef:0} = {
|
---|
256 | 0.40660000000E-01 1.0000000000
|
---|
257 | })
|
---|
258 | (type: [(am = d puream = 1)]
|
---|
259 | {exp coef:0} = {
|
---|
260 | 2.8860000000 1.0000000000
|
---|
261 | })
|
---|
262 | (type: [(am = d puream = 1)]
|
---|
263 | {exp coef:0} = {
|
---|
264 | 1.2670000000 1.0000000000
|
---|
265 | })
|
---|
266 | (type: [(am = d puream = 1)]
|
---|
267 | {exp coef:0} = {
|
---|
268 | 0.55600000000 1.0000000000
|
---|
269 | })
|
---|
270 | (type: [(am = d puream = 1)]
|
---|
271 | {exp coef:0} = {
|
---|
272 | 0.24400000000 1.0000000000
|
---|
273 | })
|
---|
274 | (type: [(am = d puream = 1)]
|
---|
275 | {exp coef:0} = {
|
---|
276 | 0.10700000000 1.0000000000
|
---|
277 | })
|
---|
278 | (type: [(am = f puream = 1)]
|
---|
279 | {exp coef:0} = {
|
---|
280 | 1.6510000000 1.0000000000
|
---|
281 | })
|
---|
282 | (type: [(am = f puream = 1)]
|
---|
283 | {exp coef:0} = {
|
---|
284 | 0.80020000000 1.0000000000
|
---|
285 | })
|
---|
286 | (type: [(am = f puream = 1)]
|
---|
287 | {exp coef:0} = {
|
---|
288 | 0.38780000000 1.0000000000
|
---|
289 | })
|
---|
290 | (type: [(am = f puream = 1)]
|
---|
291 | {exp coef:0} = {
|
---|
292 | 0.18800000000 1.0000000000
|
---|
293 | })
|
---|
294 | (type: [(am = g puream = 1)]
|
---|
295 | {exp coef:0} = {
|
---|
296 | 1.6469000000 1.0000000000
|
---|
297 | })
|
---|
298 | (type: [(am = g puream = 1)]
|
---|
299 | {exp coef:0} = {
|
---|
300 | 0.78890000000 1.0000000000
|
---|
301 | })
|
---|
302 | (type: [(am = g puream = 1)]
|
---|
303 | {exp coef:0} = {
|
---|
304 | 0.37790000000 1.0000000000
|
---|
305 | })
|
---|
306 | (type: [(am = h puream = 1)]
|
---|
307 | {exp coef:0} = {
|
---|
308 | 1.3120000000 1.0000000000
|
---|
309 | })
|
---|
310 | (type: [(am = h puream = 1)]
|
---|
311 | {exp coef:0} = {
|
---|
312 | 0.58060000000 1.0000000000
|
---|
313 | })
|
---|
314 | (type: [(am = i puream = 1)]
|
---|
315 | {exp coef:0} = {
|
---|
316 | 0.98470000000 1.0000000000
|
---|
317 | })
|
---|
318 | ]
|
---|
319 | %
|
---|
320 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
321 | carbon: "cc-pV6Z": [
|
---|
322 | (type: [am = s am = s]
|
---|
323 | {exp coef:0 coef:1} = {
|
---|
324 | 312100.00000 0.56700000000E-05 -0.12100000000E-05
|
---|
325 | 46740.000000 0.44100000000E-04 -0.93900000000E-05
|
---|
326 | 10640.000000 0.23190000000E-03 -0.49470000000E-04
|
---|
327 | 3013.0000000 0.97897000000E-03 -0.20857000000E-03
|
---|
328 | 982.80000000 0.35516300000E-02 -0.76015000000E-03
|
---|
329 | 354.80000000 0.11440610000E-01 -0.24546900000E-02
|
---|
330 | 138.40000000 0.32998550000E-01 -0.72015300000E-02
|
---|
331 | 57.350000000 0.84053470000E-01 -0.18807420000E-01
|
---|
332 | 24.920000000 0.18067613000 -0.43250010000E-01
|
---|
333 | 11.230000000 0.30491140000 -0.82597330000E-01
|
---|
334 | 5.2010000000 0.34141570000 -0.12857592000
|
---|
335 | })
|
---|
336 | (type: [am = s]
|
---|
337 | {exp coef:0} = {
|
---|
338 | 2.4260000000 1.0000000000
|
---|
339 | })
|
---|
340 | (type: [am = s]
|
---|
341 | {exp coef:0} = {
|
---|
342 | 0.96730000000 1.0000000000
|
---|
343 | })
|
---|
344 | (type: [am = s]
|
---|
345 | {exp coef:0} = {
|
---|
346 | 0.44560000000 1.0000000000
|
---|
347 | })
|
---|
348 | (type: [am = s]
|
---|
349 | {exp coef:0} = {
|
---|
350 | 0.19710000000 1.0000000000
|
---|
351 | })
|
---|
352 | (type: [am = s]
|
---|
353 | {exp coef:0} = {
|
---|
354 | 0.86350000000E-01 1.0000000000
|
---|
355 | })
|
---|
356 | (type: [am = p]
|
---|
357 | {exp coef:0} = {
|
---|
358 | 295.20000000 0.14249000000E-03
|
---|
359 | 69.980000000 0.12201000000E-02
|
---|
360 | 22.640000000 0.63369600000E-02
|
---|
361 | 8.4850000000 0.23518750000E-01
|
---|
362 | 3.4590000000 0.69904470000E-01
|
---|
363 | })
|
---|
364 | (type: [am = p]
|
---|
365 | {exp coef:0} = {
|
---|
366 | 1.5040000000 1.0000000000
|
---|
367 | })
|
---|
368 | (type: [am = p]
|
---|
369 | {exp coef:0} = {
|
---|
370 | 0.67830000000 1.0000000000
|
---|
371 | })
|
---|
372 | (type: [am = p]
|
---|
373 | {exp coef:0} = {
|
---|
374 | 0.30870000000 1.0000000000
|
---|
375 | })
|
---|
376 | (type: [am = p]
|
---|
377 | {exp coef:0} = {
|
---|
378 | 0.14000000000 1.0000000000
|
---|
379 | })
|
---|
380 | (type: [am = p]
|
---|
381 | {exp coef:0} = {
|
---|
382 | 0.61780000000E-01 1.0000000000
|
---|
383 | })
|
---|
384 | (type: [(am = d puream = 1)]
|
---|
385 | {exp coef:0} = {
|
---|
386 | 4.5420000000 1.0000000000
|
---|
387 | })
|
---|
388 | (type: [(am = d puream = 1)]
|
---|
389 | {exp coef:0} = {
|
---|
390 | 1.9790000000 1.0000000000
|
---|
391 | })
|
---|
392 | (type: [(am = d puream = 1)]
|
---|
393 | {exp coef:0} = {
|
---|
394 | 0.86210000000 1.0000000000
|
---|
395 | })
|
---|
396 | (type: [(am = d puream = 1)]
|
---|
397 | {exp coef:0} = {
|
---|
398 | 0.37560000000 1.0000000000
|
---|
399 | })
|
---|
400 | (type: [(am = d puream = 1)]
|
---|
401 | {exp coef:0} = {
|
---|
402 | 0.16360000000 1.0000000000
|
---|
403 | })
|
---|
404 | (type: [(am = f puream = 1)]
|
---|
405 | {exp coef:0} = {
|
---|
406 | 2.6310000000 1.0000000000
|
---|
407 | })
|
---|
408 | (type: [(am = f puream = 1)]
|
---|
409 | {exp coef:0} = {
|
---|
410 | 1.2550000000 1.0000000000
|
---|
411 | })
|
---|
412 | (type: [(am = f puream = 1)]
|
---|
413 | {exp coef:0} = {
|
---|
414 | 0.59880000000 1.0000000000
|
---|
415 | })
|
---|
416 | (type: [(am = f puream = 1)]
|
---|
417 | {exp coef:0} = {
|
---|
418 | 0.28570000000 1.0000000000
|
---|
419 | })
|
---|
420 | (type: [(am = g puream = 1)]
|
---|
421 | {exp coef:0} = {
|
---|
422 | 2.6520000000 1.0000000000
|
---|
423 | })
|
---|
424 | (type: [(am = g puream = 1)]
|
---|
425 | {exp coef:0} = {
|
---|
426 | 1.2040000000 1.0000000000
|
---|
427 | })
|
---|
428 | (type: [(am = g puream = 1)]
|
---|
429 | {exp coef:0} = {
|
---|
430 | 0.54700000000 1.0000000000
|
---|
431 | })
|
---|
432 | (type: [(am = h puream = 1)]
|
---|
433 | {exp coef:0} = {
|
---|
434 | 2.0300000000 1.0000000000
|
---|
435 | })
|
---|
436 | (type: [(am = h puream = 1)]
|
---|
437 | {exp coef:0} = {
|
---|
438 | 0.85110000000 1.0000000000
|
---|
439 | })
|
---|
440 | (type: [(am = i puream = 1)]
|
---|
441 | {exp coef:0} = {
|
---|
442 | 1.4910000000 1.0000000000
|
---|
443 | })
|
---|
444 | ]
|
---|
445 | %
|
---|
446 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
447 | nitrogen: "cc-pV6Z": [
|
---|
448 | (type: [am = s am = s]
|
---|
449 | {exp coef:0 coef:1} = {
|
---|
450 | 432300.00000 0.55900000000E-05 -0.12300000000E-05
|
---|
451 | 64700.000000 0.43510000000E-04 -0.95800000000E-05
|
---|
452 | 14720.000000 0.22893000000E-03 -0.50510000000E-04
|
---|
453 | 4170.0000000 0.96502000000E-03 -0.21264000000E-03
|
---|
454 | 1361.0000000 0.35021900000E-02 -0.77534000000E-03
|
---|
455 | 491.20000000 0.11292120000E-01 -0.25062400000E-02
|
---|
456 | 191.60000000 0.32612830000E-01 -0.73652900000E-02
|
---|
457 | 79.410000000 0.83297270000E-01 -0.19301670000E-01
|
---|
458 | 34.530000000 0.17998566000 -0.44717380000E-01
|
---|
459 | 15.580000000 0.30500351000 -0.86066470000E-01
|
---|
460 | 7.2320000000 0.34115932000 -0.13329627000
|
---|
461 | })
|
---|
462 | (type: [am = s]
|
---|
463 | {exp coef:0} = {
|
---|
464 | 3.3820000000 1.0000000000
|
---|
465 | })
|
---|
466 | (type: [am = s]
|
---|
467 | {exp coef:0} = {
|
---|
468 | 1.3690000000 1.0000000000
|
---|
469 | })
|
---|
470 | (type: [am = s]
|
---|
471 | {exp coef:0} = {
|
---|
472 | 0.62480000000 1.0000000000
|
---|
473 | })
|
---|
474 | (type: [am = s]
|
---|
475 | {exp coef:0} = {
|
---|
476 | 0.27470000000 1.0000000000
|
---|
477 | })
|
---|
478 | (type: [am = s]
|
---|
479 | {exp coef:0} = {
|
---|
480 | 0.11920000000 1.0000000000
|
---|
481 | })
|
---|
482 | (type: [am = p]
|
---|
483 | {exp coef:0} = {
|
---|
484 | 415.90000000 0.14841000000E-03
|
---|
485 | 98.610000000 0.12763400000E-02
|
---|
486 | 31.920000000 0.67024200000E-02
|
---|
487 | 12.000000000 0.25261700000E-01
|
---|
488 | 4.9190000000 0.75189430000E-01
|
---|
489 | })
|
---|
490 | (type: [am = p]
|
---|
491 | {exp coef:0} = {
|
---|
492 | 2.1480000000 1.0000000000
|
---|
493 | })
|
---|
494 | (type: [am = p]
|
---|
495 | {exp coef:0} = {
|
---|
496 | 0.96960000000 1.0000000000
|
---|
497 | })
|
---|
498 | (type: [am = p]
|
---|
499 | {exp coef:0} = {
|
---|
500 | 0.43990000000 1.0000000000
|
---|
501 | })
|
---|
502 | (type: [am = p]
|
---|
503 | {exp coef:0} = {
|
---|
504 | 0.19780000000 1.0000000000
|
---|
505 | })
|
---|
506 | (type: [am = p]
|
---|
507 | {exp coef:0} = {
|
---|
508 | 0.86030000000E-01 1.0000000000
|
---|
509 | })
|
---|
510 | (type: [(am = d puream = 1)]
|
---|
511 | {exp coef:0} = {
|
---|
512 | 6.7170000000 1.0000000000
|
---|
513 | })
|
---|
514 | (type: [(am = d puream = 1)]
|
---|
515 | {exp coef:0} = {
|
---|
516 | 2.8960000000 1.0000000000
|
---|
517 | })
|
---|
518 | (type: [(am = d puream = 1)]
|
---|
519 | {exp coef:0} = {
|
---|
520 | 1.2490000000 1.0000000000
|
---|
521 | })
|
---|
522 | (type: [(am = d puream = 1)]
|
---|
523 | {exp coef:0} = {
|
---|
524 | 0.53800000000 1.0000000000
|
---|
525 | })
|
---|
526 | (type: [(am = d puream = 1)]
|
---|
527 | {exp coef:0} = {
|
---|
528 | 0.23200000000 1.0000000000
|
---|
529 | })
|
---|
530 | (type: [(am = f puream = 1)]
|
---|
531 | {exp coef:0} = {
|
---|
532 | 3.8290000000 1.0000000000
|
---|
533 | })
|
---|
534 | (type: [(am = f puream = 1)]
|
---|
535 | {exp coef:0} = {
|
---|
536 | 1.7950000000 1.0000000000
|
---|
537 | })
|
---|
538 | (type: [(am = f puream = 1)]
|
---|
539 | {exp coef:0} = {
|
---|
540 | 0.84100000000 1.0000000000
|
---|
541 | })
|
---|
542 | (type: [(am = f puream = 1)]
|
---|
543 | {exp coef:0} = {
|
---|
544 | 0.39400000000 1.0000000000
|
---|
545 | })
|
---|
546 | (type: [(am = g puream = 1)]
|
---|
547 | {exp coef:0} = {
|
---|
548 | 3.8560000000 1.0000000000
|
---|
549 | })
|
---|
550 | (type: [(am = g puream = 1)]
|
---|
551 | {exp coef:0} = {
|
---|
552 | 1.7020000000 1.0000000000
|
---|
553 | })
|
---|
554 | (type: [(am = g puream = 1)]
|
---|
555 | {exp coef:0} = {
|
---|
556 | 0.75100000000 1.0000000000
|
---|
557 | })
|
---|
558 | (type: [(am = h puream = 1)]
|
---|
559 | {exp coef:0} = {
|
---|
560 | 2.8750000000 1.0000000000
|
---|
561 | })
|
---|
562 | (type: [(am = h puream = 1)]
|
---|
563 | {exp coef:0} = {
|
---|
564 | 1.1700000000 1.0000000000
|
---|
565 | })
|
---|
566 | (type: [(am = i puream = 1)]
|
---|
567 | {exp coef:0} = {
|
---|
568 | 2.0990000000 1.0000000000
|
---|
569 | })
|
---|
570 | ]
|
---|
571 | %
|
---|
572 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
573 | oxygen: "cc-pV6Z": [
|
---|
574 | (type: [am = s am = s]
|
---|
575 | {exp coef:0 coef:1} = {
|
---|
576 | 570800.00000 0.55500000000E-05 -0.12600000000E-05
|
---|
577 | 85480.000000 0.43110000000E-04 -0.97700000000E-05
|
---|
578 | 19460.000000 0.22667000000E-03 -0.51480000000E-04
|
---|
579 | 5512.0000000 0.95637000000E-03 -0.21696000000E-03
|
---|
580 | 1798.0000000 0.34732000000E-02 -0.79162000000E-03
|
---|
581 | 648.90000000 0.11197780000E-01 -0.25590000000E-02
|
---|
582 | 253.10000000 0.32387660000E-01 -0.75331300000E-02
|
---|
583 | 104.90000000 0.82859770000E-01 -0.19788970000E-01
|
---|
584 | 45.650000000 0.17958381000 -0.46062880000E-01
|
---|
585 | 20.620000000 0.30522110000 -0.89195600000E-01
|
---|
586 | 9.5870000000 0.34089349000 -0.13754216000
|
---|
587 | })
|
---|
588 | (type: [am = s]
|
---|
589 | {exp coef:0} = {
|
---|
590 | 4.4930000000 1.0000000000
|
---|
591 | })
|
---|
592 | (type: [am = s]
|
---|
593 | {exp coef:0} = {
|
---|
594 | 1.8370000000 1.0000000000
|
---|
595 | })
|
---|
596 | (type: [am = s]
|
---|
597 | {exp coef:0} = {
|
---|
598 | 0.83490000000 1.0000000000
|
---|
599 | })
|
---|
600 | (type: [am = s]
|
---|
601 | {exp coef:0} = {
|
---|
602 | 0.36580000000 1.0000000000
|
---|
603 | })
|
---|
604 | (type: [am = s]
|
---|
605 | {exp coef:0} = {
|
---|
606 | 0.15700000000 1.0000000000
|
---|
607 | })
|
---|
608 | (type: [am = p]
|
---|
609 | {exp coef:0} = {
|
---|
610 | 525.60000000 0.16664000000E-03
|
---|
611 | 124.60000000 0.14333600000E-02
|
---|
612 | 40.340000000 0.75476200000E-02
|
---|
613 | 15.180000000 0.28594560000E-01
|
---|
614 | 6.2450000000 0.84388580000E-01
|
---|
615 | })
|
---|
616 | (type: [am = p]
|
---|
617 | {exp coef:0} = {
|
---|
618 | 2.7320000000 1.0000000000
|
---|
619 | })
|
---|
620 | (type: [am = p]
|
---|
621 | {exp coef:0} = {
|
---|
622 | 1.2270000000 1.0000000000
|
---|
623 | })
|
---|
624 | (type: [am = p]
|
---|
625 | {exp coef:0} = {
|
---|
626 | 0.54920000000 1.0000000000
|
---|
627 | })
|
---|
628 | (type: [am = p]
|
---|
629 | {exp coef:0} = {
|
---|
630 | 0.24180000000 1.0000000000
|
---|
631 | })
|
---|
632 | (type: [am = p]
|
---|
633 | {exp coef:0} = {
|
---|
634 | 0.10250000000 1.0000000000
|
---|
635 | })
|
---|
636 | (type: [(am = d puream = 1)]
|
---|
637 | {exp coef:0} = {
|
---|
638 | 8.2530000000 1.0000000000
|
---|
639 | })
|
---|
640 | (type: [(am = d puream = 1)]
|
---|
641 | {exp coef:0} = {
|
---|
642 | 3.5970000000 1.0000000000
|
---|
643 | })
|
---|
644 | (type: [(am = d puream = 1)]
|
---|
645 | {exp coef:0} = {
|
---|
646 | 1.5680000000 1.0000000000
|
---|
647 | })
|
---|
648 | (type: [(am = d puream = 1)]
|
---|
649 | {exp coef:0} = {
|
---|
650 | 0.68400000000 1.0000000000
|
---|
651 | })
|
---|
652 | (type: [(am = d puream = 1)]
|
---|
653 | {exp coef:0} = {
|
---|
654 | 0.29800000000 1.0000000000
|
---|
655 | })
|
---|
656 | (type: [(am = f puream = 1)]
|
---|
657 | {exp coef:0} = {
|
---|
658 | 5.4300000000 1.0000000000
|
---|
659 | })
|
---|
660 | (type: [(am = f puream = 1)]
|
---|
661 | {exp coef:0} = {
|
---|
662 | 2.4160000000 1.0000000000
|
---|
663 | })
|
---|
664 | (type: [(am = f puream = 1)]
|
---|
665 | {exp coef:0} = {
|
---|
666 | 1.0750000000 1.0000000000
|
---|
667 | })
|
---|
668 | (type: [(am = f puream = 1)]
|
---|
669 | {exp coef:0} = {
|
---|
670 | 0.47800000000 1.0000000000
|
---|
671 | })
|
---|
672 | (type: [(am = g puream = 1)]
|
---|
673 | {exp coef:0} = {
|
---|
674 | 5.2110000000 1.0000000000
|
---|
675 | })
|
---|
676 | (type: [(am = g puream = 1)]
|
---|
677 | {exp coef:0} = {
|
---|
678 | 2.1900000000 1.0000000000
|
---|
679 | })
|
---|
680 | (type: [(am = g puream = 1)]
|
---|
681 | {exp coef:0} = {
|
---|
682 | 0.92000000000 1.0000000000
|
---|
683 | })
|
---|
684 | (type: [(am = h puream = 1)]
|
---|
685 | {exp coef:0} = {
|
---|
686 | 3.8720000000 1.0000000000
|
---|
687 | })
|
---|
688 | (type: [(am = h puream = 1)]
|
---|
689 | {exp coef:0} = {
|
---|
690 | 1.5050000000 1.0000000000
|
---|
691 | })
|
---|
692 | (type: [(am = i puream = 1)]
|
---|
693 | {exp coef:0} = {
|
---|
694 | 2.7730000000 1.0000000000
|
---|
695 | })
|
---|
696 | ]
|
---|
697 | %
|
---|
698 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
699 | fluorine: "cc-pV6Z": [
|
---|
700 | (type: [am = s am = s]
|
---|
701 | {exp coef:0 coef:1} = {
|
---|
702 | 723500.00000 0.55600000000E-05 -0.12900000000E-05
|
---|
703 | 108400.00000 0.43180000000E-04 -0.99900000000E-05
|
---|
704 | 24680.000000 0.22700000000E-03 -0.52600000000E-04
|
---|
705 | 6990.0000000 0.95803000000E-03 -0.22172000000E-03
|
---|
706 | 2282.0000000 0.34701500000E-02 -0.80692000000E-03
|
---|
707 | 824.60000000 0.11185260000E-01 -0.26081700000E-02
|
---|
708 | 321.80000000 0.32328800000E-01 -0.76740200000E-02
|
---|
709 | 133.50000000 0.82795450000E-01 -0.20193530000E-01
|
---|
710 | 58.110000000 0.17988024000 -0.47187520000E-01
|
---|
711 | 26.280000000 0.30557831000 -0.91580090000E-01
|
---|
712 | 12.240000000 0.34026839000 -0.14048558000
|
---|
713 | })
|
---|
714 | (type: [am = s]
|
---|
715 | {exp coef:0} = {
|
---|
716 | 5.7470000000 1.0000000000
|
---|
717 | })
|
---|
718 | (type: [am = s]
|
---|
719 | {exp coef:0} = {
|
---|
720 | 2.3650000000 1.0000000000
|
---|
721 | })
|
---|
722 | (type: [am = s]
|
---|
723 | {exp coef:0} = {
|
---|
724 | 1.0710000000 1.0000000000
|
---|
725 | })
|
---|
726 | (type: [am = s]
|
---|
727 | {exp coef:0} = {
|
---|
728 | 0.46810000000 1.0000000000
|
---|
729 | })
|
---|
730 | (type: [am = s]
|
---|
731 | {exp coef:0} = {
|
---|
732 | 0.19940000000 1.0000000000
|
---|
733 | })
|
---|
734 | (type: [am = p]
|
---|
735 | {exp coef:0} = {
|
---|
736 | 660.00000000 0.17721000000E-03
|
---|
737 | 156.40000000 0.15269100000E-02
|
---|
738 | 50.640000000 0.80720700000E-02
|
---|
739 | 19.080000000 0.30740210000E-01
|
---|
740 | 7.8720000000 0.90119140000E-01
|
---|
741 | })
|
---|
742 | (type: [am = p]
|
---|
743 | {exp coef:0} = {
|
---|
744 | 3.4490000000 1.0000000000
|
---|
745 | })
|
---|
746 | (type: [am = p]
|
---|
747 | {exp coef:0} = {
|
---|
748 | 1.5450000000 1.0000000000
|
---|
749 | })
|
---|
750 | (type: [am = p]
|
---|
751 | {exp coef:0} = {
|
---|
752 | 0.68640000000 1.0000000000
|
---|
753 | })
|
---|
754 | (type: [am = p]
|
---|
755 | {exp coef:0} = {
|
---|
756 | 0.29860000000 1.0000000000
|
---|
757 | })
|
---|
758 | (type: [am = p]
|
---|
759 | {exp coef:0} = {
|
---|
760 | 0.12450000000 1.0000000000
|
---|
761 | })
|
---|
762 | (type: [(am = d puream = 1)]
|
---|
763 | {exp coef:0} = {
|
---|
764 | 10.573000000 1.0000000000
|
---|
765 | })
|
---|
766 | (type: [(am = d puream = 1)]
|
---|
767 | {exp coef:0} = {
|
---|
768 | 4.6130000000 1.0000000000
|
---|
769 | })
|
---|
770 | (type: [(am = d puream = 1)]
|
---|
771 | {exp coef:0} = {
|
---|
772 | 2.0130000000 1.0000000000
|
---|
773 | })
|
---|
774 | (type: [(am = d puream = 1)]
|
---|
775 | {exp coef:0} = {
|
---|
776 | 0.87800000000 1.0000000000
|
---|
777 | })
|
---|
778 | (type: [(am = d puream = 1)]
|
---|
779 | {exp coef:0} = {
|
---|
780 | 0.38300000000 1.0000000000
|
---|
781 | })
|
---|
782 | (type: [(am = f puream = 1)]
|
---|
783 | {exp coef:0} = {
|
---|
784 | 7.5630000000 1.0000000000
|
---|
785 | })
|
---|
786 | (type: [(am = f puream = 1)]
|
---|
787 | {exp coef:0} = {
|
---|
788 | 3.3300000000 1.0000000000
|
---|
789 | })
|
---|
790 | (type: [(am = f puream = 1)]
|
---|
791 | {exp coef:0} = {
|
---|
792 | 1.4660000000 1.0000000000
|
---|
793 | })
|
---|
794 | (type: [(am = f puream = 1)]
|
---|
795 | {exp coef:0} = {
|
---|
796 | 0.64500000000 1.0000000000
|
---|
797 | })
|
---|
798 | (type: [(am = g puream = 1)]
|
---|
799 | {exp coef:0} = {
|
---|
800 | 6.7350000000 1.0000000000
|
---|
801 | })
|
---|
802 | (type: [(am = g puream = 1)]
|
---|
803 | {exp coef:0} = {
|
---|
804 | 2.7830000000 1.0000000000
|
---|
805 | })
|
---|
806 | (type: [(am = g puream = 1)]
|
---|
807 | {exp coef:0} = {
|
---|
808 | 1.1500000000 1.0000000000
|
---|
809 | })
|
---|
810 | (type: [(am = h puream = 1)]
|
---|
811 | {exp coef:0} = {
|
---|
812 | 5.0880000000 1.0000000000
|
---|
813 | })
|
---|
814 | (type: [(am = h puream = 1)]
|
---|
815 | {exp coef:0} = {
|
---|
816 | 1.9370000000 1.0000000000
|
---|
817 | })
|
---|
818 | (type: [(am = i puream = 1)]
|
---|
819 | {exp coef:0} = {
|
---|
820 | 3.5810000000 1.0000000000
|
---|
821 | })
|
---|
822 | ]
|
---|
823 | %
|
---|
824 | % BASIS SET: (16s,10p,5d,4f,3g,2h,1i) -> [7s,6p,5d,4f,3g,2h,1i]
|
---|
825 | neon: "cc-pV6Z": [
|
---|
826 | (type: [am = s am = s]
|
---|
827 | {exp coef:0 coef:1} = {
|
---|
828 | 902400.00000 0.55100000000E-05 -0.12900000000E-05
|
---|
829 | 135100.00000 0.42820000000E-04 -0.10050000000E-04
|
---|
830 | 30750.000000 0.22514000000E-03 -0.52930000000E-04
|
---|
831 | 8710.0000000 0.95016000000E-03 -0.22312000000E-03
|
---|
832 | 2842.0000000 0.34471900000E-02 -0.81338000000E-03
|
---|
833 | 1026.0000000 0.11125450000E-01 -0.26323000000E-02
|
---|
834 | 400.10000000 0.32205680000E-01 -0.77591000000E-02
|
---|
835 | 165.90000000 0.82598910000E-01 -0.20452770000E-01
|
---|
836 | 72.210000000 0.17990564000 -0.47975050000E-01
|
---|
837 | 32.660000000 0.30605208000 -0.93400860000E-01
|
---|
838 | 15.220000000 0.34012559000 -0.14277215000
|
---|
839 | })
|
---|
840 | (type: [am = s]
|
---|
841 | {exp coef:0} = {
|
---|
842 | 7.1490000000 1.0000000000
|
---|
843 | })
|
---|
844 | (type: [am = s]
|
---|
845 | {exp coef:0} = {
|
---|
846 | 2.9570000000 1.0000000000
|
---|
847 | })
|
---|
848 | (type: [am = s]
|
---|
849 | {exp coef:0} = {
|
---|
850 | 1.3350000000 1.0000000000
|
---|
851 | })
|
---|
852 | (type: [am = s]
|
---|
853 | {exp coef:0} = {
|
---|
854 | 0.58160000000 1.0000000000
|
---|
855 | })
|
---|
856 | (type: [am = s]
|
---|
857 | {exp coef:0} = {
|
---|
858 | 0.24630000000 1.0000000000
|
---|
859 | })
|
---|
860 | (type: [am = p]
|
---|
861 | {exp coef:0} = {
|
---|
862 | 815.60000000 0.18376000000E-03
|
---|
863 | 193.30000000 0.15850900000E-02
|
---|
864 | 62.600000000 0.84146400000E-02
|
---|
865 | 23.610000000 0.32200330000E-01
|
---|
866 | 9.7620000000 0.93963900000E-01
|
---|
867 | })
|
---|
868 | (type: [am = p]
|
---|
869 | {exp coef:0} = {
|
---|
870 | 4.2810000000 1.0000000000
|
---|
871 | })
|
---|
872 | (type: [am = p]
|
---|
873 | {exp coef:0} = {
|
---|
874 | 1.9150000000 1.0000000000
|
---|
875 | })
|
---|
876 | (type: [am = p]
|
---|
877 | {exp coef:0} = {
|
---|
878 | 0.84760000000 1.0000000000
|
---|
879 | })
|
---|
880 | (type: [am = p]
|
---|
881 | {exp coef:0} = {
|
---|
882 | 0.36600000000 1.0000000000
|
---|
883 | })
|
---|
884 | (type: [am = p]
|
---|
885 | {exp coef:0} = {
|
---|
886 | 0.15100000000 1.0000000000
|
---|
887 | })
|
---|
888 | (type: [(am = d puream = 1)]
|
---|
889 | {exp coef:0} = {
|
---|
890 | 13.317000000 1.0000000000
|
---|
891 | })
|
---|
892 | (type: [(am = d puream = 1)]
|
---|
893 | {exp coef:0} = {
|
---|
894 | 5.8030000000 1.0000000000
|
---|
895 | })
|
---|
896 | (type: [(am = d puream = 1)]
|
---|
897 | {exp coef:0} = {
|
---|
898 | 2.5290000000 1.0000000000
|
---|
899 | })
|
---|
900 | (type: [(am = d puream = 1)]
|
---|
901 | {exp coef:0} = {
|
---|
902 | 1.1020000000 1.0000000000
|
---|
903 | })
|
---|
904 | (type: [(am = d puream = 1)]
|
---|
905 | {exp coef:0} = {
|
---|
906 | 0.48000000000 1.0000000000
|
---|
907 | })
|
---|
908 | (type: [(am = f puream = 1)]
|
---|
909 | {exp coef:0} = {
|
---|
910 | 10.356000000 1.0000000000
|
---|
911 | })
|
---|
912 | (type: [(am = f puream = 1)]
|
---|
913 | {exp coef:0} = {
|
---|
914 | 4.5380000000 1.0000000000
|
---|
915 | })
|
---|
916 | (type: [(am = f puream = 1)]
|
---|
917 | {exp coef:0} = {
|
---|
918 | 1.9890000000 1.0000000000
|
---|
919 | })
|
---|
920 | (type: [(am = f puream = 1)]
|
---|
921 | {exp coef:0} = {
|
---|
922 | 0.87100000000 1.0000000000
|
---|
923 | })
|
---|
924 | (type: [(am = g puream = 1)]
|
---|
925 | {exp coef:0} = {
|
---|
926 | 8.3450000000 1.0000000000
|
---|
927 | })
|
---|
928 | (type: [(am = g puream = 1)]
|
---|
929 | {exp coef:0} = {
|
---|
930 | 3.4170000000 1.0000000000
|
---|
931 | })
|
---|
932 | (type: [(am = g puream = 1)]
|
---|
933 | {exp coef:0} = {
|
---|
934 | 1.3990000000 1.0000000000
|
---|
935 | })
|
---|
936 | (type: [(am = h puream = 1)]
|
---|
937 | {exp coef:0} = {
|
---|
938 | 6.5190000000 1.0000000000
|
---|
939 | })
|
---|
940 | (type: [(am = h puream = 1)]
|
---|
941 | {exp coef:0} = {
|
---|
942 | 2.4470000000 1.0000000000
|
---|
943 | })
|
---|
944 | (type: [(am = i puream = 1)]
|
---|
945 | {exp coef:0} = {
|
---|
946 | 4.4890000000 1.0000000000
|
---|
947 | })
|
---|
948 | ]
|
---|
949 | aluminum: "cc-pV6Z": [
|
---|
950 | (type: [am = s am = s am = s]
|
---|
951 | {exp coef:0 coef:1 coef:2} = {
|
---|
952 | 3652000.0000 0.19000000000E-05 -0.50000000000E-06 0.10000000000E-06
|
---|
953 | 546800.00000 0.14500000000E-04 -0.38000000000E-05 0.90000000000E-06
|
---|
954 | 124500.00000 0.76200000000E-04 -0.19800000000E-04 0.46000000000E-05
|
---|
955 | 35440.000000 0.31580000000E-03 -0.82100000000E-04 0.19000000000E-04
|
---|
956 | 11840.000000 0.10974000000E-02 -0.28580000000E-03 0.65900000000E-04
|
---|
957 | 4434.0000000 0.33697000000E-02 -0.87850000000E-03 0.20310000000E-03
|
---|
958 | 1812.0000000 0.93222000000E-02 -0.24482000000E-02 0.56470000000E-03
|
---|
959 | 791.50000000 0.23799200000E-01 -0.63100000000E-02 0.14620000000E-02
|
---|
960 | 361.00000000 0.56819100000E-01 -0.15485400000E-01 0.35794000000E-02
|
---|
961 | 169.50000000 0.12246800000 -0.34958900000E-01 0.81516000000E-02
|
---|
962 | 81.680000000 0.22389700000 -0.70772900000E-01 0.16527600000E-01
|
---|
963 | 40.280000000 0.31344600000 -0.11942300000 0.28546700000E-01
|
---|
964 | 20.250000000 0.27497500000 -0.14884200000 0.36148400000E-01
|
---|
965 | 10.230000000 0.11056400000 -0.59046500000E-01 0.15380400000E-01
|
---|
966 | 4.8020000000 0.11921500000E-01 0.21669300000 -0.61214100000E-01
|
---|
967 | 2.3390000000 0.65280000000E-03 0.47655700000 -0.15126300000
|
---|
968 | })
|
---|
969 | (type: [am = s]
|
---|
970 | {exp coef:0} = {
|
---|
971 | 1.1630000000 1.0000000000
|
---|
972 | })
|
---|
973 | (type: [am = s]
|
---|
974 | {exp coef:0} = {
|
---|
975 | 0.58820000000 1.0000000000
|
---|
976 | })
|
---|
977 | (type: [am = s]
|
---|
978 | {exp coef:0} = {
|
---|
979 | 0.23110000000 1.0000000000
|
---|
980 | })
|
---|
981 | (type: [am = s]
|
---|
982 | {exp coef:0} = {
|
---|
983 | 0.10270000000 1.0000000000
|
---|
984 | })
|
---|
985 | (type: [am = s]
|
---|
986 | {exp coef:0} = {
|
---|
987 | 0.45210000000E-01 1.0000000000
|
---|
988 | })
|
---|
989 | (type: [am = p am = p]
|
---|
990 | {exp coef:0 coef:1} = {
|
---|
991 | 2884.0000000 0.63800000000E-04 -0.80000000000E-05
|
---|
992 | 683.20000000 0.56310000000E-03 -0.65100000000E-04
|
---|
993 | 222.00000000 0.31691000000E-02 -0.39990000000E-03
|
---|
994 | 84.820000000 0.13240100000E-01 -0.15369000000E-02
|
---|
995 | 35.810000000 0.43340300000E-01 -0.55644000000E-02
|
---|
996 | 16.220000000 0.11195000000 -0.13110600000E-01
|
---|
997 | 7.7020000000 0.21779600000 -0.29720000000E-01
|
---|
998 | 3.7410000000 0.31167500000 -0.34719500000E-01
|
---|
999 | 1.8310000000 0.31672200000 -0.55162100000E-01
|
---|
1000 | })
|
---|
1001 | (type: [am = p]
|
---|
1002 | {exp coef:0} = {
|
---|
1003 | 0.88780000000 1.0000000000
|
---|
1004 | })
|
---|
1005 | (type: [am = p]
|
---|
1006 | {exp coef:0} = {
|
---|
1007 | 0.39890000000 1.0000000000
|
---|
1008 | })
|
---|
1009 | (type: [am = p]
|
---|
1010 | {exp coef:0} = {
|
---|
1011 | 0.17180000000 1.0000000000
|
---|
1012 | })
|
---|
1013 | (type: [am = p]
|
---|
1014 | {exp coef:0} = {
|
---|
1015 | 0.72980000000E-01 1.0000000000
|
---|
1016 | })
|
---|
1017 | (type: [am = p]
|
---|
1018 | {exp coef:0} = {
|
---|
1019 | 0.30690000000E-01 1.0000000000
|
---|
1020 | })
|
---|
1021 | (type: [(am = d puream = 1)]
|
---|
1022 | {exp coef:0} = {
|
---|
1023 | 2.2143000000 1.0000000000
|
---|
1024 | })
|
---|
1025 | (type: [(am = d puream = 1)]
|
---|
1026 | {exp coef:0} = {
|
---|
1027 | 0.94490000000 1.0000000000
|
---|
1028 | })
|
---|
1029 | (type: [(am = d puream = 1)]
|
---|
1030 | {exp coef:0} = {
|
---|
1031 | 0.40320000000 1.0000000000
|
---|
1032 | })
|
---|
1033 | (type: [(am = d puream = 1)]
|
---|
1034 | {exp coef:0} = {
|
---|
1035 | 0.17210000000 1.0000000000
|
---|
1036 | })
|
---|
1037 | (type: [(am = d puream = 1)]
|
---|
1038 | {exp coef:0} = {
|
---|
1039 | 0.73430000000E-01 1.0000000000
|
---|
1040 | })
|
---|
1041 | (type: [(am = f puream = 1)]
|
---|
1042 | {exp coef:0} = {
|
---|
1043 | 0.87560000000 1.0000000000
|
---|
1044 | })
|
---|
1045 | (type: [(am = f puream = 1)]
|
---|
1046 | {exp coef:0} = {
|
---|
1047 | 0.44720000000 1.0000000000
|
---|
1048 | })
|
---|
1049 | (type: [(am = f puream = 1)]
|
---|
1050 | {exp coef:0} = {
|
---|
1051 | 0.22840000000 1.0000000000
|
---|
1052 | })
|
---|
1053 | (type: [(am = f puream = 1)]
|
---|
1054 | {exp coef:0} = {
|
---|
1055 | 0.11670000000 1.0000000000
|
---|
1056 | })
|
---|
1057 | (type: [(am = g puream = 1)]
|
---|
1058 | {exp coef:0} = {
|
---|
1059 | 0.69520000000 1.0000000000
|
---|
1060 | })
|
---|
1061 | (type: [(am = g puream = 1)]
|
---|
1062 | {exp coef:0} = {
|
---|
1063 | 0.37710000000 1.0000000000
|
---|
1064 | })
|
---|
1065 | (type: [(am = g puream = 1)]
|
---|
1066 | {exp coef:0} = {
|
---|
1067 | 0.20460000000 1.0000000000
|
---|
1068 | })
|
---|
1069 | (type: [(am = h puream = 1)]
|
---|
1070 | {exp coef:0} = {
|
---|
1071 | 0.65600000000 1.0000000000
|
---|
1072 | })
|
---|
1073 | (type: [(am = h puream = 1)]
|
---|
1074 | {exp coef:0} = {
|
---|
1075 | 0.33000000000 1.0000000000
|
---|
1076 | })
|
---|
1077 | (type: [(am = i puream = 1)]
|
---|
1078 | {exp coef:0} = {
|
---|
1079 | 0.53020000000 1.0000000000
|
---|
1080 | })
|
---|
1081 | ]
|
---|
1082 | %
|
---|
1083 | % BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
|
---|
1084 | silicon: "cc-pV6Z": [
|
---|
1085 | (type: [am = s am = s am = s]
|
---|
1086 | {exp coef:0 coef:1 coef:2} = {
|
---|
1087 | 4465000.0000 0.17000000000E-05 -0.50000000000E-06 0.10000000000E-06
|
---|
1088 | 668500.00000 0.13600000000E-04 -0.36000000000E-05 0.90000000000E-06
|
---|
1089 | 152200.00000 0.71400000000E-04 -0.19000000000E-04 0.49000000000E-05
|
---|
1090 | 43300.000000 0.29730000000E-03 -0.79100000000E-04 0.20300000000E-04
|
---|
1091 | 14410.000000 0.10383000000E-02 -0.27690000000E-03 0.70900000000E-04
|
---|
1092 | 5394.0000000 0.31747000000E-02 -0.84720000000E-03 0.21720000000E-03
|
---|
1093 | 2212.0000000 0.87324000000E-02 -0.23478000000E-02 0.60130000000E-03
|
---|
1094 | 968.10000000 0.22383000000E-01 -0.60705000000E-02 0.15591000000E-02
|
---|
1095 | 441.20000000 0.53727300000E-01 -0.14971100000E-01 0.38443000000E-02
|
---|
1096 | 207.10000000 0.11664900000 -0.33972900000E-01 0.87797000000E-02
|
---|
1097 | 99.800000000 0.21597800000 -0.69458400000E-01 0.18038800000E-01
|
---|
1098 | 49.240000000 0.30956600000 -0.11900100000 0.31522400000E-01
|
---|
1099 | 24.740000000 0.28394500000 -0.15364500000 0.41690500000E-01
|
---|
1100 | 12.470000000 0.12223200000 -0.70468400000E-01 0.20097300000E-01
|
---|
1101 | 5.7950000000 0.14195200000E-01 0.21314900000 -0.66748400000E-01
|
---|
1102 | 2.8300000000 0.31210000000E-03 0.49159600000 -0.18190600000
|
---|
1103 | })
|
---|
1104 | (type: [am = s]
|
---|
1105 | {exp coef:0} = {
|
---|
1106 | 1.4070000000 1.0000000000
|
---|
1107 | })
|
---|
1108 | (type: [am = s]
|
---|
1109 | {exp coef:0} = {
|
---|
1110 | 0.69950000000 1.0000000000
|
---|
1111 | })
|
---|
1112 | (type: [am = s]
|
---|
1113 | {exp coef:0} = {
|
---|
1114 | 0.30830000000 1.0000000000
|
---|
1115 | })
|
---|
1116 | (type: [am = s]
|
---|
1117 | {exp coef:0} = {
|
---|
1118 | 0.13850000000 1.0000000000
|
---|
1119 | })
|
---|
1120 | (type: [am = s]
|
---|
1121 | {exp coef:0} = {
|
---|
1122 | 0.61450000000E-01 1.0000000000
|
---|
1123 | })
|
---|
1124 | (type: [am = p am = p]
|
---|
1125 | {exp coef:0 coef:1} = {
|
---|
1126 | 3572.0000000 0.59900000000E-04 -0.12800000000E-04
|
---|
1127 | 846.00000000 0.52960000000E-03 -0.11260000000E-03
|
---|
1128 | 274.80000000 0.29958000000E-02 -0.64020000000E-03
|
---|
1129 | 105.00000000 0.12633500000E-01 -0.27029000000E-02
|
---|
1130 | 44.350000000 0.41904400000E-01 -0.90789000000E-02
|
---|
1131 | 20.080000000 0.11025900000 -0.24234800000E-01
|
---|
1132 | 9.5300000000 0.21883100000 -0.49346000000E-01
|
---|
1133 | 4.6340000000 0.31782800000 -0.72585900000E-01
|
---|
1134 | 2.2800000000 0.31942500000 -0.80425800000E-01
|
---|
1135 | })
|
---|
1136 | (type: [am = p]
|
---|
1137 | {exp coef:0} = {
|
---|
1138 | 1.1160000000 1.0000000000
|
---|
1139 | })
|
---|
1140 | (type: [am = p]
|
---|
1141 | {exp coef:0} = {
|
---|
1142 | 0.49910000000 1.0000000000
|
---|
1143 | })
|
---|
1144 | (type: [am = p]
|
---|
1145 | {exp coef:0} = {
|
---|
1146 | 0.22540000000 1.0000000000
|
---|
1147 | })
|
---|
1148 | (type: [am = p]
|
---|
1149 | {exp coef:0} = {
|
---|
1150 | 0.10010000000 1.0000000000
|
---|
1151 | })
|
---|
1152 | (type: [am = p]
|
---|
1153 | {exp coef:0} = {
|
---|
1154 | 0.43320000000E-01 1.0000000000
|
---|
1155 | })
|
---|
1156 | (type: [(am = d puream = 1)]
|
---|
1157 | {exp coef:0} = {
|
---|
1158 | 3.2386000000 1.0000000000
|
---|
1159 | })
|
---|
1160 | (type: [(am = d puream = 1)]
|
---|
1161 | {exp coef:0} = {
|
---|
1162 | 1.3767000000 1.0000000000
|
---|
1163 | })
|
---|
1164 | (type: [(am = d puream = 1)]
|
---|
1165 | {exp coef:0} = {
|
---|
1166 | 0.58530000000 1.0000000000
|
---|
1167 | })
|
---|
1168 | (type: [(am = d puream = 1)]
|
---|
1169 | {exp coef:0} = {
|
---|
1170 | 0.24880000000 1.0000000000
|
---|
1171 | })
|
---|
1172 | (type: [(am = d puream = 1)]
|
---|
1173 | {exp coef:0} = {
|
---|
1174 | 0.10580000000 1.0000000000
|
---|
1175 | })
|
---|
1176 | (type: [(am = f puream = 1)]
|
---|
1177 | {exp coef:0} = {
|
---|
1178 | 1.3510000000 1.0000000000
|
---|
1179 | })
|
---|
1180 | (type: [(am = f puream = 1)]
|
---|
1181 | {exp coef:0} = {
|
---|
1182 | 0.66000000000 1.0000000000
|
---|
1183 | })
|
---|
1184 | (type: [(am = f puream = 1)]
|
---|
1185 | {exp coef:0} = {
|
---|
1186 | 0.32250000000 1.0000000000
|
---|
1187 | })
|
---|
1188 | (type: [(am = f puream = 1)]
|
---|
1189 | {exp coef:0} = {
|
---|
1190 | 0.15750000000 1.0000000000
|
---|
1191 | })
|
---|
1192 | (type: [(am = g puream = 1)]
|
---|
1193 | {exp coef:0} = {
|
---|
1194 | 0.85280000000 1.0000000000
|
---|
1195 | })
|
---|
1196 | (type: [(am = g puream = 1)]
|
---|
1197 | {exp coef:0} = {
|
---|
1198 | 0.46310000000 1.0000000000
|
---|
1199 | })
|
---|
1200 | (type: [(am = g puream = 1)]
|
---|
1201 | {exp coef:0} = {
|
---|
1202 | 0.25150000000 1.0000000000
|
---|
1203 | })
|
---|
1204 | (type: [(am = h puream = 1)]
|
---|
1205 | {exp coef:0} = {
|
---|
1206 | 0.85570000000 1.0000000000
|
---|
1207 | })
|
---|
1208 | (type: [(am = h puream = 1)]
|
---|
1209 | {exp coef:0} = {
|
---|
1210 | 0.42310000000 1.0000000000
|
---|
1211 | })
|
---|
1212 | (type: [(am = i puream = 1)]
|
---|
1213 | {exp coef:0} = {
|
---|
1214 | 0.69460000000 1.0000000000
|
---|
1215 | })
|
---|
1216 | ]
|
---|
1217 | %
|
---|
1218 | % BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
|
---|
1219 | phosphorus: "cc-pV6Z": [
|
---|
1220 | (type: [am = s am = s am = s]
|
---|
1221 | {exp coef:0 coef:1 coef:2} = {
|
---|
1222 | 5384000.0000 0.16000000000E-05 -0.40000000000E-06 0.10000000000E-06
|
---|
1223 | 806200.00000 0.12800000000E-04 -0.35000000000E-05 0.10000000000E-05
|
---|
1224 | 183600.00000 0.67200000000E-04 -0.18300000000E-04 0.50000000000E-05
|
---|
1225 | 52250.000000 0.27970000000E-03 -0.75900000000E-04 0.20900000000E-04
|
---|
1226 | 17390.000000 0.97670000000E-03 -0.26570000000E-03 0.73000000000E-04
|
---|
1227 | 6523.0000000 0.29684000000E-02 -0.80800000000E-03 0.22210000000E-03
|
---|
1228 | 2687.0000000 0.81240000000E-02 -0.22273000000E-02 0.61220000000E-03
|
---|
1229 | 1178.0000000 0.20920000000E-01 -0.57833000000E-02 0.15918000000E-02
|
---|
1230 | 536.20000000 0.50559000000E-01 -0.14343800000E-01 0.39534000000E-02
|
---|
1231 | 251.50000000 0.11047900000 -0.32706100000E-01 0.90572000000E-02
|
---|
1232 | 121.30000000 0.20695700000 -0.67371600000E-01 0.18790900000E-01
|
---|
1233 | 59.880000000 0.30473700000 -0.11764700000 0.33383100000E-01
|
---|
1234 | 30.050000000 0.29295200000 -0.15728000000 0.45948400000E-01
|
---|
1235 | 15.120000000 0.13556100000 -0.83854400000E-01 0.25524000000E-01
|
---|
1236 | 7.0100000000 0.17320800000E-01 0.19971800000 -0.66949600000E-01
|
---|
1237 | 3.4410000000 -0.35200000000E-04 0.49860500000 -0.20364500000
|
---|
1238 | })
|
---|
1239 | (type: [am = s]
|
---|
1240 | {exp coef:0} = {
|
---|
1241 | 1.7120000000 1.0000000000
|
---|
1242 | })
|
---|
1243 | (type: [am = s]
|
---|
1244 | {exp coef:0} = {
|
---|
1245 | 0.83370000000 1.0000000000
|
---|
1246 | })
|
---|
1247 | (type: [am = s]
|
---|
1248 | {exp coef:0} = {
|
---|
1249 | 0.39120000000 1.0000000000
|
---|
1250 | })
|
---|
1251 | (type: [am = s]
|
---|
1252 | {exp coef:0} = {
|
---|
1253 | 0.17770000000 1.0000000000
|
---|
1254 | })
|
---|
1255 | (type: [am = s]
|
---|
1256 | {exp coef:0} = {
|
---|
1257 | 0.79390000000E-01 1.0000000000
|
---|
1258 | })
|
---|
1259 | (type: [am = p am = p]
|
---|
1260 | {exp coef:0 coef:1} = {
|
---|
1261 | 4552.0000000 0.52000000000E-04 -0.12400000000E-04
|
---|
1262 | 1078.0000000 0.46040000000E-03 -0.10940000000E-03
|
---|
1263 | 350.10000000 0.26208000000E-02 -0.62560000000E-03
|
---|
1264 | 133.80000000 0.11187300000E-01 -0.26734000000E-02
|
---|
1265 | 56.520000000 0.37822900000E-01 -0.91552000000E-02
|
---|
1266 | 25.580000000 0.10211600000 -0.25099300000E-01
|
---|
1267 | 12.140000000 0.21031400000 -0.53181000000E-01
|
---|
1268 | 5.9020000000 0.31738300000 -0.81588800000E-01
|
---|
1269 | 2.9100000000 0.32716500000 -0.91972500000E-01
|
---|
1270 | })
|
---|
1271 | (type: [am = p]
|
---|
1272 | {exp coef:0} = {
|
---|
1273 | 1.4350000000 1.0000000000
|
---|
1274 | })
|
---|
1275 | (type: [am = p]
|
---|
1276 | {exp coef:0} = {
|
---|
1277 | 0.65700000000 1.0000000000
|
---|
1278 | })
|
---|
1279 | (type: [am = p]
|
---|
1280 | {exp coef:0} = {
|
---|
1281 | 0.30050000000 1.0000000000
|
---|
1282 | })
|
---|
1283 | (type: [am = p]
|
---|
1284 | {exp coef:0} = {
|
---|
1285 | 0.13400000000 1.0000000000
|
---|
1286 | })
|
---|
1287 | (type: [am = p]
|
---|
1288 | {exp coef:0} = {
|
---|
1289 | 0.57830000000E-01 1.0000000000
|
---|
1290 | })
|
---|
1291 | (type: [(am = d puream = 1)]
|
---|
1292 | {exp coef:0} = {
|
---|
1293 | 4.3008000000 1.0000000000
|
---|
1294 | })
|
---|
1295 | (type: [(am = d puream = 1)]
|
---|
1296 | {exp coef:0} = {
|
---|
1297 | 1.8346000000 1.0000000000
|
---|
1298 | })
|
---|
1299 | (type: [(am = d puream = 1)]
|
---|
1300 | {exp coef:0} = {
|
---|
1301 | 0.78260000000 1.0000000000
|
---|
1302 | })
|
---|
1303 | (type: [(am = d puream = 1)]
|
---|
1304 | {exp coef:0} = {
|
---|
1305 | 0.33390000000 1.0000000000
|
---|
1306 | })
|
---|
1307 | (type: [(am = d puream = 1)]
|
---|
1308 | {exp coef:0} = {
|
---|
1309 | 0.14240000000 1.0000000000
|
---|
1310 | })
|
---|
1311 | (type: [(am = f puream = 1)]
|
---|
1312 | {exp coef:0} = {
|
---|
1313 | 1.8160000000 1.0000000000
|
---|
1314 | })
|
---|
1315 | (type: [(am = f puream = 1)]
|
---|
1316 | {exp coef:0} = {
|
---|
1317 | 0.88060000000 1.0000000000
|
---|
1318 | })
|
---|
1319 | (type: [(am = f puream = 1)]
|
---|
1320 | {exp coef:0} = {
|
---|
1321 | 0.42700000000 1.0000000000
|
---|
1322 | })
|
---|
1323 | (type: [(am = f puream = 1)]
|
---|
1324 | {exp coef:0} = {
|
---|
1325 | 0.20700000000 1.0000000000
|
---|
1326 | })
|
---|
1327 | (type: [(am = g puream = 1)]
|
---|
1328 | {exp coef:0} = {
|
---|
1329 | 1.0616000000 1.0000000000
|
---|
1330 | })
|
---|
1331 | (type: [(am = g puream = 1)]
|
---|
1332 | {exp coef:0} = {
|
---|
1333 | 0.57910000000 1.0000000000
|
---|
1334 | })
|
---|
1335 | (type: [(am = g puream = 1)]
|
---|
1336 | {exp coef:0} = {
|
---|
1337 | 0.31590000000 1.0000000000
|
---|
1338 | })
|
---|
1339 | (type: [(am = h puream = 1)]
|
---|
1340 | {exp coef:0} = {
|
---|
1341 | 1.0850000000 1.0000000000
|
---|
1342 | })
|
---|
1343 | (type: [(am = h puream = 1)]
|
---|
1344 | {exp coef:0} = {
|
---|
1345 | 0.52770000000 1.0000000000
|
---|
1346 | })
|
---|
1347 | (type: [(am = i puream = 1)]
|
---|
1348 | {exp coef:0} = {
|
---|
1349 | 0.88900000000 1.0000000000
|
---|
1350 | })
|
---|
1351 | ]
|
---|
1352 | %
|
---|
1353 | % BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
|
---|
1354 | sulfur: "cc-pV6Z": [
|
---|
1355 | (type: [am = s am = s am = s]
|
---|
1356 | {exp coef:0 coef:1 coef:2} = {
|
---|
1357 | 6297000.0000 0.16000000000E-05 -0.40000000000E-06 0.10000000000E-06
|
---|
1358 | 943100.00000 0.12400000000E-04 -0.34000000000E-05 0.10000000000E-05
|
---|
1359 | 214900.00000 0.64900000000E-04 -0.17900000000E-04 0.52000000000E-05
|
---|
1360 | 61250.000000 0.26930000000E-03 -0.74400000000E-04 0.21600000000E-04
|
---|
1361 | 20450.000000 0.93470000000E-03 -0.25870000000E-03 0.75100000000E-04
|
---|
1362 | 7719.0000000 0.28083000000E-02 -0.77770000000E-03 0.22580000000E-03
|
---|
1363 | 3198.0000000 0.76740000000E-02 -0.21396000000E-02 0.62170000000E-03
|
---|
1364 | 1402.0000000 0.19889800000E-01 -0.55906000000E-02 0.16251000000E-02
|
---|
1365 | 637.20000000 0.48258900000E-01 -0.13907600000E-01 0.40535000000E-02
|
---|
1366 | 298.90000000 0.10575700000 -0.31768900000E-01 0.92902000000E-02
|
---|
1367 | 144.30000000 0.20022300000 -0.65930200000E-01 0.19456100000E-01
|
---|
1368 | 71.210000000 0.30072800000 -0.11683200000 0.35004000000E-01
|
---|
1369 | 35.730000000 0.29868800000 -0.15978700000 0.49489700000E-01
|
---|
1370 | 17.970000000 0.14634700000 -0.94532200000E-01 0.30344300000E-01
|
---|
1371 | 8.3410000000 0.20115900000E-01 0.18782800000 -0.66366100000E-01
|
---|
1372 | 4.1120000000 -0.24880000000E-03 0.50468300000 -0.22315400000
|
---|
1373 | })
|
---|
1374 | (type: [am = s]
|
---|
1375 | {exp coef:0} = {
|
---|
1376 | 2.0450000000 1.0000000000
|
---|
1377 | })
|
---|
1378 | (type: [am = s]
|
---|
1379 | {exp coef:0} = {
|
---|
1380 | 0.97700000000 1.0000000000
|
---|
1381 | })
|
---|
1382 | (type: [am = s]
|
---|
1383 | {exp coef:0} = {
|
---|
1384 | 0.47660000000 1.0000000000
|
---|
1385 | })
|
---|
1386 | (type: [am = s]
|
---|
1387 | {exp coef:0} = {
|
---|
1388 | 0.21850000000 1.0000000000
|
---|
1389 | })
|
---|
1390 | (type: [am = s]
|
---|
1391 | {exp coef:0} = {
|
---|
1392 | 0.97590000000E-01 1.0000000000
|
---|
1393 | })
|
---|
1394 | (type: [am = p am = p]
|
---|
1395 | {exp coef:0 coef:1} = {
|
---|
1396 | 5266.0000000 0.52300000000E-04 -0.13300000000E-04
|
---|
1397 | 1247.0000000 0.46350000000E-03 -0.11790000000E-03
|
---|
1398 | 405.00000000 0.26410000000E-02 -0.67590000000E-03
|
---|
1399 | 154.80000000 0.11316900000E-01 -0.28973000000E-02
|
---|
1400 | 65.380000000 0.38470400000E-01 -0.99980000000E-02
|
---|
1401 | 29.590000000 0.10433900000 -0.27541600000E-01
|
---|
1402 | 14.040000000 0.21568400000 -0.58794300000E-01
|
---|
1403 | 6.8240000000 0.32526000000 -0.90376100000E-01
|
---|
1404 | 3.3690000000 0.32617800000 -0.99989100000E-01
|
---|
1405 | })
|
---|
1406 | (type: [am = p]
|
---|
1407 | {exp coef:0} = {
|
---|
1408 | 1.6660000000 1.0000000000
|
---|
1409 | })
|
---|
1410 | (type: [am = p]
|
---|
1411 | {exp coef:0} = {
|
---|
1412 | 0.76810000000 1.0000000000
|
---|
1413 | })
|
---|
1414 | (type: [am = p]
|
---|
1415 | {exp coef:0} = {
|
---|
1416 | 0.35040000000 1.0000000000
|
---|
1417 | })
|
---|
1418 | (type: [am = p]
|
---|
1419 | {exp coef:0} = {
|
---|
1420 | 0.15560000000 1.0000000000
|
---|
1421 | })
|
---|
1422 | (type: [am = p]
|
---|
1423 | {exp coef:0} = {
|
---|
1424 | 0.66810000000E-01 1.0000000000
|
---|
1425 | })
|
---|
1426 | (type: [(am = d puream = 1)]
|
---|
1427 | {exp coef:0} = {
|
---|
1428 | 5.0755000000 1.0000000000
|
---|
1429 | })
|
---|
1430 | (type: [(am = d puream = 1)]
|
---|
1431 | {exp coef:0} = {
|
---|
1432 | 2.1833000000 1.0000000000
|
---|
1433 | })
|
---|
1434 | (type: [(am = d puream = 1)]
|
---|
1435 | {exp coef:0} = {
|
---|
1436 | 0.93920000000 1.0000000000
|
---|
1437 | })
|
---|
1438 | (type: [(am = d puream = 1)]
|
---|
1439 | {exp coef:0} = {
|
---|
1440 | 0.40400000000 1.0000000000
|
---|
1441 | })
|
---|
1442 | (type: [(am = d puream = 1)]
|
---|
1443 | {exp coef:0} = {
|
---|
1444 | 0.17380000000 1.0000000000
|
---|
1445 | })
|
---|
1446 | (type: [(am = f puream = 1)]
|
---|
1447 | {exp coef:0} = {
|
---|
1448 | 1.3222000000 1.0000000000
|
---|
1449 | })
|
---|
1450 | (type: [(am = f puream = 1)]
|
---|
1451 | {exp coef:0} = {
|
---|
1452 | 0.73190000000 1.0000000000
|
---|
1453 | })
|
---|
1454 | (type: [(am = f puream = 1)]
|
---|
1455 | {exp coef:0} = {
|
---|
1456 | 0.40510000000 1.0000000000
|
---|
1457 | })
|
---|
1458 | (type: [(am = f puream = 1)]
|
---|
1459 | {exp coef:0} = {
|
---|
1460 | 0.22430000000 1.0000000000
|
---|
1461 | })
|
---|
1462 | (type: [(am = g puream = 1)]
|
---|
1463 | {exp coef:0} = {
|
---|
1464 | 1.3473000000 1.0000000000
|
---|
1465 | })
|
---|
1466 | (type: [(am = g puream = 1)]
|
---|
1467 | {exp coef:0} = {
|
---|
1468 | 0.70090000000 1.0000000000
|
---|
1469 | })
|
---|
1470 | (type: [(am = g puream = 1)]
|
---|
1471 | {exp coef:0} = {
|
---|
1472 | 0.36470000000 1.0000000000
|
---|
1473 | })
|
---|
1474 | (type: [(am = h puream = 1)]
|
---|
1475 | {exp coef:0} = {
|
---|
1476 | 1.2861000000 1.0000000000
|
---|
1477 | })
|
---|
1478 | (type: [(am = h puream = 1)]
|
---|
1479 | {exp coef:0} = {
|
---|
1480 | 0.61150000000 1.0000000000
|
---|
1481 | })
|
---|
1482 | (type: [(am = i puream = 1)]
|
---|
1483 | {exp coef:0} = {
|
---|
1484 | 1.0409000000 1.0000000000
|
---|
1485 | })
|
---|
1486 | ]
|
---|
1487 | %
|
---|
1488 | % BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
|
---|
1489 | chlorine: "cc-pV6Z": [
|
---|
1490 | (type: [am = s am = s am = s]
|
---|
1491 | {exp coef:0 coef:1 coef:2} = {
|
---|
1492 | 7733000.0000 0.14347400000E-05 -0.40222700000E-06 0.12169600000E-06
|
---|
1493 | 1158000.0000 0.11148600000E-04 -0.31244800000E-05 0.94514100000E-06
|
---|
1494 | 263700.00000 0.58586500000E-04 -0.16429000000E-04 0.49711900000E-05
|
---|
1495 | 75010.000000 0.24451800000E-03 -0.68542100000E-04 0.20732300000E-04
|
---|
1496 | 24890.000000 0.85828700000E-03 -0.24100100000E-03 0.72940200000E-04
|
---|
1497 | 9318.0000000 0.26101900000E-02 -0.73353800000E-03 0.22189900000E-03
|
---|
1498 | 3840.0000000 0.71378400000E-02 -0.20183000000E-02 0.61135500000E-03
|
---|
1499 | 1684.0000000 0.18456400000E-01 -0.52610700000E-02 0.15933700000E-02
|
---|
1500 | 766.30000000 0.44894400000E-01 -0.13098600000E-01 0.39800100000E-02
|
---|
1501 | 359.50000000 0.99382200000E-01 -0.30179400000E-01 0.91937500000E-02
|
---|
1502 | 173.40000000 0.19078200000 -0.63188800000E-01 0.19439900000E-01
|
---|
1503 | 85.610000000 0.29356500000 -0.11385900000 0.35518700000E-01
|
---|
1504 | 42.930000000 0.30647700000 -0.16125100000 0.52067400000E-01
|
---|
1505 | 21.550000000 0.16220900000 -0.10923400000 0.36564400000E-01
|
---|
1506 | 10.050000000 0.24938300000E-01 0.16299900000 -0.59750000000E-01
|
---|
1507 | 4.9780000000 -0.51314200000E-03 0.50141300000 -0.23164100000
|
---|
1508 | })
|
---|
1509 | (type: [am = s]
|
---|
1510 | {exp coef:0} = {
|
---|
1511 | 2.4780000000 1.0000000000
|
---|
1512 | })
|
---|
1513 | (type: [am = s]
|
---|
1514 | {exp coef:0} = {
|
---|
1515 | 1.1800000000 1.0000000000
|
---|
1516 | })
|
---|
1517 | (type: [am = s]
|
---|
1518 | {exp coef:0} = {
|
---|
1519 | 0.58280000000 1.0000000000
|
---|
1520 | })
|
---|
1521 | (type: [am = s]
|
---|
1522 | {exp coef:0} = {
|
---|
1523 | 0.26680000000 1.0000000000
|
---|
1524 | })
|
---|
1525 | (type: [am = s]
|
---|
1526 | {exp coef:0} = {
|
---|
1527 | 0.11830000000 1.0000000000
|
---|
1528 | })
|
---|
1529 | (type: [am = p am = p]
|
---|
1530 | {exp coef:0 coef:1} = {
|
---|
1531 | 6091.0000000 0.51619400000E-04 -0.13925900000E-04
|
---|
1532 | 1442.0000000 0.45846800000E-03 -0.12332400000E-03
|
---|
1533 | 468.30000000 0.26150900000E-02 -0.70755100000E-03
|
---|
1534 | 179.00000000 0.11255400000E-01 -0.30493900000E-02
|
---|
1535 | 75.610000000 0.38457700000E-01 -0.10575200000E-01
|
---|
1536 | 34.220000000 0.10508100000 -0.29409400000E-01
|
---|
1537 | 16.230000000 0.21860300000 -0.63229600000E-01
|
---|
1538 | 7.8900000000 0.33087400000 -0.98187000000E-01
|
---|
1539 | 3.8980000000 0.32587900000 -0.10587000000
|
---|
1540 | })
|
---|
1541 | (type: [am = p]
|
---|
1542 | {exp coef:0} = {
|
---|
1543 | 1.9330000000 1.0000000000
|
---|
1544 | })
|
---|
1545 | (type: [am = p]
|
---|
1546 | {exp coef:0} = {
|
---|
1547 | 0.90570000000 1.0000000000
|
---|
1548 | })
|
---|
1549 | (type: [am = p]
|
---|
1550 | {exp coef:0} = {
|
---|
1551 | 0.41400000000 1.0000000000
|
---|
1552 | })
|
---|
1553 | (type: [am = p]
|
---|
1554 | {exp coef:0} = {
|
---|
1555 | 0.18360000000 1.0000000000
|
---|
1556 | })
|
---|
1557 | (type: [am = p]
|
---|
1558 | {exp coef:0} = {
|
---|
1559 | 0.78590000000E-01 1.0000000000
|
---|
1560 | })
|
---|
1561 | (type: [(am = d puream = 1)]
|
---|
1562 | {exp coef:0} = {
|
---|
1563 | 6.2428000000 1.0000000000
|
---|
1564 | })
|
---|
1565 | (type: [(am = d puream = 1)]
|
---|
1566 | {exp coef:0} = {
|
---|
1567 | 2.6906000000 1.0000000000
|
---|
1568 | })
|
---|
1569 | (type: [(am = d puream = 1)]
|
---|
1570 | {exp coef:0} = {
|
---|
1571 | 1.1596000000 1.0000000000
|
---|
1572 | })
|
---|
1573 | (type: [(am = d puream = 1)]
|
---|
1574 | {exp coef:0} = {
|
---|
1575 | 0.49980000000 1.0000000000
|
---|
1576 | })
|
---|
1577 | (type: [(am = d puream = 1)]
|
---|
1578 | {exp coef:0} = {
|
---|
1579 | 0.21540000000 1.0000000000
|
---|
1580 | })
|
---|
1581 | (type: [(am = f puream = 1)]
|
---|
1582 | {exp coef:0} = {
|
---|
1583 | 2.5327000000 1.0000000000
|
---|
1584 | })
|
---|
1585 | (type: [(am = f puream = 1)]
|
---|
1586 | {exp coef:0} = {
|
---|
1587 | 1.2406000000 1.0000000000
|
---|
1588 | })
|
---|
1589 | (type: [(am = f puream = 1)]
|
---|
1590 | {exp coef:0} = {
|
---|
1591 | 0.60770000000 1.0000000000
|
---|
1592 | })
|
---|
1593 | (type: [(am = f puream = 1)]
|
---|
1594 | {exp coef:0} = {
|
---|
1595 | 0.29770000000 1.0000000000
|
---|
1596 | })
|
---|
1597 | (type: [(am = g puream = 1)]
|
---|
1598 | {exp coef:0} = {
|
---|
1599 | 1.5388000000 1.0000000000
|
---|
1600 | })
|
---|
1601 | (type: [(am = g puream = 1)]
|
---|
1602 | {exp coef:0} = {
|
---|
1603 | 0.80500000000 1.0000000000
|
---|
1604 | })
|
---|
1605 | (type: [(am = g puream = 1)]
|
---|
1606 | {exp coef:0} = {
|
---|
1607 | 0.42120000000 1.0000000000
|
---|
1608 | })
|
---|
1609 | (type: [(am = h puream = 1)]
|
---|
1610 | {exp coef:0} = {
|
---|
1611 | 1.5613000000 1.0000000000
|
---|
1612 | })
|
---|
1613 | (type: [(am = h puream = 1)]
|
---|
1614 | {exp coef:0} = {
|
---|
1615 | 0.73970000000 1.0000000000
|
---|
1616 | })
|
---|
1617 | (type: [(am = i puream = 1)]
|
---|
1618 | {exp coef:0} = {
|
---|
1619 | 1.2572000000 1.0000000000
|
---|
1620 | })
|
---|
1621 | ]
|
---|
1622 | %
|
---|
1623 | % BASIS SET: (21s,14p,5d,4f,3g,2h,1i) -> [8s,7p,5d,4f,3g,2h,1i]
|
---|
1624 | argon: "cc-pV6Z": [
|
---|
1625 | (type: [am = s am = s am = s]
|
---|
1626 | {exp coef:0 coef:1 coef:2} = {
|
---|
1627 | 9149000.0000 0.13000000000E-05 -0.40000000000E-06 0.10000000000E-06
|
---|
1628 | 1370000.0000 0.10400000000E-04 -0.30000000000E-05 0.90000000000E-06
|
---|
1629 | 311900.00000 0.54900000000E-04 -0.15600000000E-04 0.49000000000E-05
|
---|
1630 | 88650.000000 0.22960000000E-03 -0.65200000000E-04 0.20400000000E-04
|
---|
1631 | 29330.000000 0.81030000000E-03 -0.23040000000E-03 0.72000000000E-04
|
---|
1632 | 10930.000000 0.24853000000E-02 -0.70750000000E-03 0.22100000000E-03
|
---|
1633 | 4480.0000000 0.68369000000E-02 -0.19573000000E-02 0.61250000000E-03
|
---|
1634 | 1962.0000000 0.17619900000E-01 -0.50856000000E-02 0.15908000000E-02
|
---|
1635 | 894.10000000 0.42875200000E-01 -0.12652800000E-01 0.39722000000E-02
|
---|
1636 | 419.60000000 0.95485300000E-01 -0.29306500000E-01 0.92204000000E-02
|
---|
1637 | 202.30000000 0.18506400000 -0.61771200000E-01 0.19636700000E-01
|
---|
1638 | 99.840000000 0.28904200000 -0.11254100000 0.36257000000E-01
|
---|
1639 | 50.070000000 0.31016600000 -0.16229300000 0.54172500000E-01
|
---|
1640 | 25.140000000 0.17218300000 -0.11841200000 0.40999600000E-01
|
---|
1641 | 11.810000000 0.28522700000E-01 0.14614800000 -0.55174400000E-01
|
---|
1642 | 5.8820000000 -0.57570000000E-03 0.49775200000 -0.23875400000
|
---|
1643 | })
|
---|
1644 | (type: [am = s]
|
---|
1645 | {exp coef:0} = {
|
---|
1646 | 2.9390000000 1.0000000000
|
---|
1647 | })
|
---|
1648 | (type: [am = s]
|
---|
1649 | {exp coef:0} = {
|
---|
1650 | 1.4050000000 1.0000000000
|
---|
1651 | })
|
---|
1652 | (type: [am = s]
|
---|
1653 | {exp coef:0} = {
|
---|
1654 | 0.69630000000 1.0000000000
|
---|
1655 | })
|
---|
1656 | (type: [am = s]
|
---|
1657 | {exp coef:0} = {
|
---|
1658 | 0.31880000000 1.0000000000
|
---|
1659 | })
|
---|
1660 | (type: [am = s]
|
---|
1661 | {exp coef:0} = {
|
---|
1662 | 0.14100000000 1.0000000000
|
---|
1663 | })
|
---|
1664 | (type: [am = p am = p]
|
---|
1665 | {exp coef:0 coef:1} = {
|
---|
1666 | 7050.0000000 0.50200000000E-04 -0.14000000000E-04
|
---|
1667 | 1669.0000000 0.44540000000E-03 -0.12430000000E-03
|
---|
1668 | 542.10000000 0.25480000000E-02 -0.71470000000E-03
|
---|
1669 | 207.10000000 0.11015500000E-01 -0.30968000000E-02
|
---|
1670 | 87.520000000 0.37849000000E-01 -0.10796100000E-01
|
---|
1671 | 39.610000000 0.10435500000 -0.30353600000E-01
|
---|
1672 | 18.780000000 0.21933500000 -0.65978500000E-01
|
---|
1673 | 9.1300000000 0.33461500000 -0.10387700000
|
---|
1674 | 4.5160000000 0.32677100000 -0.10995600000
|
---|
1675 | })
|
---|
1676 | (type: [am = p]
|
---|
1677 | {exp coef:0} = {
|
---|
1678 | 2.2450000000 1.0000000000
|
---|
1679 | })
|
---|
1680 | (type: [am = p]
|
---|
1681 | {exp coef:0} = {
|
---|
1682 | 1.0650000000 1.0000000000
|
---|
1683 | })
|
---|
1684 | (type: [am = p]
|
---|
1685 | {exp coef:0} = {
|
---|
1686 | 0.48850000000 1.0000000000
|
---|
1687 | })
|
---|
1688 | (type: [am = p]
|
---|
1689 | {exp coef:0} = {
|
---|
1690 | 0.21660000000 1.0000000000
|
---|
1691 | })
|
---|
1692 | (type: [am = p]
|
---|
1693 | {exp coef:0} = {
|
---|
1694 | 0.92550000000E-01 1.0000000000
|
---|
1695 | })
|
---|
1696 | (type: [(am = d puream = 1)]
|
---|
1697 | {exp coef:0} = {
|
---|
1698 | 7.6327000000 1.0000000000
|
---|
1699 | })
|
---|
1700 | (type: [(am = d puream = 1)]
|
---|
1701 | {exp coef:0} = {
|
---|
1702 | 3.2876000000 1.0000000000
|
---|
1703 | })
|
---|
1704 | (type: [(am = d puream = 1)]
|
---|
1705 | {exp coef:0} = {
|
---|
1706 | 1.4160000000 1.0000000000
|
---|
1707 | })
|
---|
1708 | (type: [(am = d puream = 1)]
|
---|
1709 | {exp coef:0} = {
|
---|
1710 | 0.60990000000 1.0000000000
|
---|
1711 | })
|
---|
1712 | (type: [(am = d puream = 1)]
|
---|
1713 | {exp coef:0} = {
|
---|
1714 | 0.26270000000 1.0000000000
|
---|
1715 | })
|
---|
1716 | (type: [(am = f puream = 1)]
|
---|
1717 | {exp coef:0} = {
|
---|
1718 | 3.0582000000 1.0000000000
|
---|
1719 | })
|
---|
1720 | (type: [(am = f puream = 1)]
|
---|
1721 | {exp coef:0} = {
|
---|
1722 | 1.5292000000 1.0000000000
|
---|
1723 | })
|
---|
1724 | (type: [(am = f puream = 1)]
|
---|
1725 | {exp coef:0} = {
|
---|
1726 | 0.76470000000 1.0000000000
|
---|
1727 | })
|
---|
1728 | (type: [(am = f puream = 1)]
|
---|
1729 | {exp coef:0} = {
|
---|
1730 | 0.38240000000 1.0000000000
|
---|
1731 | })
|
---|
1732 | (type: [(am = g puream = 1)]
|
---|
1733 | {exp coef:0} = {
|
---|
1734 | 1.8450000000 1.0000000000
|
---|
1735 | })
|
---|
1736 | (type: [(am = g puream = 1)]
|
---|
1737 | {exp coef:0} = {
|
---|
1738 | 0.96570000000 1.0000000000
|
---|
1739 | })
|
---|
1740 | (type: [(am = g puream = 1)]
|
---|
1741 | {exp coef:0} = {
|
---|
1742 | 0.50550000000 1.0000000000
|
---|
1743 | })
|
---|
1744 | (type: [(am = h puream = 1)]
|
---|
1745 | {exp coef:0} = {
|
---|
1746 | 1.8743000000 1.0000000000
|
---|
1747 | })
|
---|
1748 | (type: [(am = h puream = 1)]
|
---|
1749 | {exp coef:0} = {
|
---|
1750 | 0.88710000000 1.0000000000
|
---|
1751 | })
|
---|
1752 | (type: [(am = i puream = 1)]
|
---|
1753 | {exp coef:0} = {
|
---|
1754 | 1.5066000000 1.0000000000
|
---|
1755 | })
|
---|
1756 | ]
|
---|
1757 | )
|
---|