| 1 | %BASIS "cc-pCVQZ" CARTESIAN | 
|---|
| 2 | basis:( | 
|---|
| 3 | %Elements                             References | 
|---|
| 4 | %--------                             ---------- | 
|---|
| 5 | % H     : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). | 
|---|
| 6 | % He    : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994). | 
|---|
| 7 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). | 
|---|
| 8 | %Na - Mg: D.E. Woon and T.H. Dunning, Jr.  (to be published) | 
|---|
| 9 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr.  J. Chem. Phys. 98, 1358 (1993). | 
|---|
| 10 | %Ca     : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). | 
|---|
| 11 | %Elements                             References | 
|---|
| 12 | %--------                             ---------- | 
|---|
| 13 | % H     : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989). | 
|---|
| 14 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and | 
|---|
| 15 | %         T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995). | 
|---|
| 16 | %Al - Ar: K.A. Peterson and T.H. Dunning, Jr. J. Chem. Phys. 117, 10548 (2002) | 
|---|
| 17 | %Ca     : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002). | 
|---|
| 18 | % | 
|---|
| 19 | % | 
|---|
| 20 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
| 21 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f) | 
|---|
| 22 | lithium: "cc-pCVQZ": [ | 
|---|
| 23 | (type: [am = s am = s] | 
|---|
| 24 | {exp coef:0 coef:1} = { | 
|---|
| 25 | 6601.0000000      0.11700000000E-03 -0.18000000000E-04 | 
|---|
| 26 | 989.70000000      0.91100000000E-03 -0.14200000000E-03 | 
|---|
| 27 | 225.70000000      0.47280000000E-02 -0.74100000000E-03 | 
|---|
| 28 | 64.290000000      0.19197000000E-01 -0.30200000000E-02 | 
|---|
| 29 | 21.180000000      0.63047000000E-01 -0.10123000000E-01 | 
|---|
| 30 | 7.7240000000      0.16320800000     -0.27094000000E-01 | 
|---|
| 31 | 3.0030000000      0.31482700000     -0.57359000000E-01 | 
|---|
| 32 | 1.2120000000      0.39393600000     -0.93895000000E-01 | 
|---|
| 33 | 0.49300000000      0.19691800000     -0.12109100000 | 
|---|
| 34 | }) | 
|---|
| 35 | (type: [am = s] | 
|---|
| 36 | {exp coef:0} = { | 
|---|
| 37 | 0.95150000000E-01   1.0000000000 | 
|---|
| 38 | }) | 
|---|
| 39 | (type: [am = s] | 
|---|
| 40 | {exp coef:0} = { | 
|---|
| 41 | 0.47910000000E-01   1.0000000000 | 
|---|
| 42 | }) | 
|---|
| 43 | (type: [am = s] | 
|---|
| 44 | {exp coef:0} = { | 
|---|
| 45 | 0.22200000000E-01   1.0000000000 | 
|---|
| 46 | }) | 
|---|
| 47 | (type: [am = s] | 
|---|
| 48 | {exp coef:0} = { | 
|---|
| 49 | 5.6140000000       1.0000000000 | 
|---|
| 50 | }) | 
|---|
| 51 | (type: [am = s] | 
|---|
| 52 | {exp coef:0} = { | 
|---|
| 53 | 1.8600000000       1.0000000000 | 
|---|
| 54 | }) | 
|---|
| 55 | (type: [am = s] | 
|---|
| 56 | {exp coef:0} = { | 
|---|
| 57 | 0.61600000000       1.0000000000 | 
|---|
| 58 | }) | 
|---|
| 59 | (type: [am = p] | 
|---|
| 60 | {exp coef:0} = { | 
|---|
| 61 | 6.2500000000      0.33880000000E-02 | 
|---|
| 62 | 1.3700000000      0.19316000000E-01 | 
|---|
| 63 | 0.36720000000      0.79104000000E-01 | 
|---|
| 64 | }) | 
|---|
| 65 | (type: [am = p] | 
|---|
| 66 | {exp coef:0} = { | 
|---|
| 67 | 0.11920000000       1.0000000000 | 
|---|
| 68 | }) | 
|---|
| 69 | (type: [am = p] | 
|---|
| 70 | {exp coef:0} = { | 
|---|
| 71 | 0.44740000000E-01   1.0000000000 | 
|---|
| 72 | }) | 
|---|
| 73 | (type: [am = p] | 
|---|
| 74 | {exp coef:0} = { | 
|---|
| 75 | 0.17950000000E-01   1.0000000000 | 
|---|
| 76 | }) | 
|---|
| 77 | (type: [am = p] | 
|---|
| 78 | {exp coef:0} = { | 
|---|
| 79 | 9.7850000000       1.0000000000 | 
|---|
| 80 | }) | 
|---|
| 81 | (type: [am = p] | 
|---|
| 82 | {exp coef:0} = { | 
|---|
| 83 | 2.5930000000       1.0000000000 | 
|---|
| 84 | }) | 
|---|
| 85 | (type: [am = p] | 
|---|
| 86 | {exp coef:0} = { | 
|---|
| 87 | 0.68700000000       1.0000000000 | 
|---|
| 88 | }) | 
|---|
| 89 | (type: [(am = d puream = 1)] | 
|---|
| 90 | {exp coef:0} = { | 
|---|
| 91 | 0.34400000000       1.0000000000 | 
|---|
| 92 | }) | 
|---|
| 93 | (type: [(am = d puream = 1)] | 
|---|
| 94 | {exp coef:0} = { | 
|---|
| 95 | 0.15300000000       1.0000000000 | 
|---|
| 96 | }) | 
|---|
| 97 | (type: [(am = d puream = 1)] | 
|---|
| 98 | {exp coef:0} = { | 
|---|
| 99 | 0.68000000000E-01   1.0000000000 | 
|---|
| 100 | }) | 
|---|
| 101 | (type: [(am = d puream = 1)] | 
|---|
| 102 | {exp coef:0} = { | 
|---|
| 103 | 10.602000000       1.0000000000 | 
|---|
| 104 | }) | 
|---|
| 105 | (type: [(am = d puream = 1)] | 
|---|
| 106 | {exp coef:0} = { | 
|---|
| 107 | 3.0660000000       1.0000000000 | 
|---|
| 108 | }) | 
|---|
| 109 | (type: [(am = f puream = 1)] | 
|---|
| 110 | {exp coef:0} = { | 
|---|
| 111 | 0.24600000000       1.0000000000 | 
|---|
| 112 | }) | 
|---|
| 113 | (type: [(am = f puream = 1)] | 
|---|
| 114 | {exp coef:0} = { | 
|---|
| 115 | 0.12920000000       1.0000000000 | 
|---|
| 116 | }) | 
|---|
| 117 | (type: [(am = f puream = 1)] | 
|---|
| 118 | {exp coef:0} = { | 
|---|
| 119 | 6.6830000000       1.0000000000 | 
|---|
| 120 | }) | 
|---|
| 121 | (type: [(am = g puream = 1)] | 
|---|
| 122 | {exp coef:0} = { | 
|---|
| 123 | 0.23800000000       1.0000000000 | 
|---|
| 124 | }) | 
|---|
| 125 | ] | 
|---|
| 126 | % | 
|---|
| 127 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
| 128 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f) | 
|---|
| 129 | boron: "cc-pCVQZ": [ | 
|---|
| 130 | (type: [am = s am = s] | 
|---|
| 131 | {exp coef:0 coef:1} = { | 
|---|
| 132 | 23870.000000      0.88000000000E-04 -0.18000000000E-04 | 
|---|
| 133 | 3575.0000000      0.68700000000E-03 -0.13900000000E-03 | 
|---|
| 134 | 812.80000000      0.36000000000E-02 -0.72500000000E-03 | 
|---|
| 135 | 229.70000000      0.14949000000E-01 -0.30630000000E-02 | 
|---|
| 136 | 74.690000000      0.51435000000E-01 -0.10581000000E-01 | 
|---|
| 137 | 26.810000000      0.14330200000     -0.31365000000E-01 | 
|---|
| 138 | 10.320000000      0.30093500000     -0.71012000000E-01 | 
|---|
| 139 | 4.1780000000      0.40352600000     -0.13210300000 | 
|---|
| 140 | 1.7270000000      0.22534000000     -0.12307200000 | 
|---|
| 141 | }) | 
|---|
| 142 | (type: [am = s] | 
|---|
| 143 | {exp coef:0} = { | 
|---|
| 144 | 0.47040000000       1.0000000000 | 
|---|
| 145 | }) | 
|---|
| 146 | (type: [am = s] | 
|---|
| 147 | {exp coef:0} = { | 
|---|
| 148 | 0.18960000000       1.0000000000 | 
|---|
| 149 | }) | 
|---|
| 150 | (type: [am = s] | 
|---|
| 151 | {exp coef:0} = { | 
|---|
| 152 | 0.73940000000E-01   1.0000000000 | 
|---|
| 153 | }) | 
|---|
| 154 | (type: [am = s] | 
|---|
| 155 | {exp coef:0} = { | 
|---|
| 156 | 4.8640000000       1.0000000000 | 
|---|
| 157 | }) | 
|---|
| 158 | (type: [am = s] | 
|---|
| 159 | {exp coef:0} = { | 
|---|
| 160 | 13.288000000       1.0000000000 | 
|---|
| 161 | }) | 
|---|
| 162 | (type: [am = s] | 
|---|
| 163 | {exp coef:0} = { | 
|---|
| 164 | 36.304000000       1.0000000000 | 
|---|
| 165 | }) | 
|---|
| 166 | (type: [am = p] | 
|---|
| 167 | {exp coef:0} = { | 
|---|
| 168 | 22.260000000      0.50950000000E-02 | 
|---|
| 169 | 5.0580000000      0.33206000000E-01 | 
|---|
| 170 | 1.4870000000      0.13231400000 | 
|---|
| 171 | }) | 
|---|
| 172 | (type: [am = p] | 
|---|
| 173 | {exp coef:0} = { | 
|---|
| 174 | 0.50710000000       1.0000000000 | 
|---|
| 175 | }) | 
|---|
| 176 | (type: [am = p] | 
|---|
| 177 | {exp coef:0} = { | 
|---|
| 178 | 0.18120000000       1.0000000000 | 
|---|
| 179 | }) | 
|---|
| 180 | (type: [am = p] | 
|---|
| 181 | {exp coef:0} = { | 
|---|
| 182 | 0.64630000000E-01   1.0000000000 | 
|---|
| 183 | }) | 
|---|
| 184 | (type: [am = p] | 
|---|
| 185 | {exp coef:0} = { | 
|---|
| 186 | 5.4890000000       1.0000000000 | 
|---|
| 187 | }) | 
|---|
| 188 | (type: [am = p] | 
|---|
| 189 | {exp coef:0} = { | 
|---|
| 190 | 16.302000000       1.0000000000 | 
|---|
| 191 | }) | 
|---|
| 192 | (type: [am = p] | 
|---|
| 193 | {exp coef:0} = { | 
|---|
| 194 | 48.418000000       1.0000000000 | 
|---|
| 195 | }) | 
|---|
| 196 | (type: [(am = d puream = 1)] | 
|---|
| 197 | {exp coef:0} = { | 
|---|
| 198 | 1.1100000000       1.0000000000 | 
|---|
| 199 | }) | 
|---|
| 200 | (type: [(am = d puream = 1)] | 
|---|
| 201 | {exp coef:0} = { | 
|---|
| 202 | 0.40200000000       1.0000000000 | 
|---|
| 203 | }) | 
|---|
| 204 | (type: [(am = d puream = 1)] | 
|---|
| 205 | {exp coef:0} = { | 
|---|
| 206 | 0.14500000000       1.0000000000 | 
|---|
| 207 | }) | 
|---|
| 208 | (type: [(am = d puream = 1)] | 
|---|
| 209 | {exp coef:0} = { | 
|---|
| 210 | 6.6400000000       1.0000000000 | 
|---|
| 211 | }) | 
|---|
| 212 | (type: [(am = d puream = 1)] | 
|---|
| 213 | {exp coef:0} = { | 
|---|
| 214 | 24.462000000       1.0000000000 | 
|---|
| 215 | }) | 
|---|
| 216 | (type: [(am = f puream = 1)] | 
|---|
| 217 | {exp coef:0} = { | 
|---|
| 218 | 0.88200000000       1.0000000000 | 
|---|
| 219 | }) | 
|---|
| 220 | (type: [(am = f puream = 1)] | 
|---|
| 221 | {exp coef:0} = { | 
|---|
| 222 | 0.31100000000       1.0000000000 | 
|---|
| 223 | }) | 
|---|
| 224 | (type: [(am = f puream = 1)] | 
|---|
| 225 | {exp coef:0} = { | 
|---|
| 226 | 18.794000000       1.0000000000 | 
|---|
| 227 | }) | 
|---|
| 228 | (type: [(am = g puream = 1)] | 
|---|
| 229 | {exp coef:0} = { | 
|---|
| 230 | 0.67300000000       1.0000000000 | 
|---|
| 231 | }) | 
|---|
| 232 | ] | 
|---|
| 233 | % | 
|---|
| 234 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
| 235 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f) | 
|---|
| 236 | carbon: "cc-pCVQZ": [ | 
|---|
| 237 | (type: [am = s am = s] | 
|---|
| 238 | {exp coef:0 coef:1} = { | 
|---|
| 239 | 33980.000000      0.91000000000E-04 -0.19000000000E-04 | 
|---|
| 240 | 5089.0000000      0.70400000000E-03 -0.15100000000E-03 | 
|---|
| 241 | 1157.0000000      0.36930000000E-02 -0.78500000000E-03 | 
|---|
| 242 | 326.60000000      0.15360000000E-01 -0.33240000000E-02 | 
|---|
| 243 | 106.10000000      0.52929000000E-01 -0.11512000000E-01 | 
|---|
| 244 | 38.110000000      0.14704300000     -0.34160000000E-01 | 
|---|
| 245 | 14.750000000      0.30563100000     -0.77173000000E-01 | 
|---|
| 246 | 6.0350000000      0.39934500000     -0.14149300000 | 
|---|
| 247 | 2.5300000000      0.21705100000     -0.11801900000 | 
|---|
| 248 | }) | 
|---|
| 249 | (type: [am = s] | 
|---|
| 250 | {exp coef:0} = { | 
|---|
| 251 | 0.73550000000       1.0000000000 | 
|---|
| 252 | }) | 
|---|
| 253 | (type: [am = s] | 
|---|
| 254 | {exp coef:0} = { | 
|---|
| 255 | 0.29050000000       1.0000000000 | 
|---|
| 256 | }) | 
|---|
| 257 | (type: [am = s] | 
|---|
| 258 | {exp coef:0} = { | 
|---|
| 259 | 0.11110000000       1.0000000000 | 
|---|
| 260 | }) | 
|---|
| 261 | (type: [am = s] | 
|---|
| 262 | {exp coef:0} = { | 
|---|
| 263 | 7.2160000000       1.0000000000 | 
|---|
| 264 | }) | 
|---|
| 265 | (type: [am = s] | 
|---|
| 266 | {exp coef:0} = { | 
|---|
| 267 | 19.570000000       1.0000000000 | 
|---|
| 268 | }) | 
|---|
| 269 | (type: [am = s] | 
|---|
| 270 | {exp coef:0} = { | 
|---|
| 271 | 53.073000000       1.0000000000 | 
|---|
| 272 | }) | 
|---|
| 273 | (type: [am = p] | 
|---|
| 274 | {exp coef:0} = { | 
|---|
| 275 | 34.510000000      0.53780000000E-02 | 
|---|
| 276 | 7.9150000000      0.36132000000E-01 | 
|---|
| 277 | 2.3680000000      0.14249300000 | 
|---|
| 278 | }) | 
|---|
| 279 | (type: [am = p] | 
|---|
| 280 | {exp coef:0} = { | 
|---|
| 281 | 0.81320000000       1.0000000000 | 
|---|
| 282 | }) | 
|---|
| 283 | (type: [am = p] | 
|---|
| 284 | {exp coef:0} = { | 
|---|
| 285 | 0.28900000000       1.0000000000 | 
|---|
| 286 | }) | 
|---|
| 287 | (type: [am = p] | 
|---|
| 288 | {exp coef:0} = { | 
|---|
| 289 | 0.10070000000       1.0000000000 | 
|---|
| 290 | }) | 
|---|
| 291 | (type: [am = p] | 
|---|
| 292 | {exp coef:0} = { | 
|---|
| 293 | 8.1820000000       1.0000000000 | 
|---|
| 294 | }) | 
|---|
| 295 | (type: [am = p] | 
|---|
| 296 | {exp coef:0} = { | 
|---|
| 297 | 24.186000000       1.0000000000 | 
|---|
| 298 | }) | 
|---|
| 299 | (type: [am = p] | 
|---|
| 300 | {exp coef:0} = { | 
|---|
| 301 | 71.494000000       1.0000000000 | 
|---|
| 302 | }) | 
|---|
| 303 | (type: [(am = d puream = 1)] | 
|---|
| 304 | {exp coef:0} = { | 
|---|
| 305 | 1.8480000000       1.0000000000 | 
|---|
| 306 | }) | 
|---|
| 307 | (type: [(am = d puream = 1)] | 
|---|
| 308 | {exp coef:0} = { | 
|---|
| 309 | 0.64900000000       1.0000000000 | 
|---|
| 310 | }) | 
|---|
| 311 | (type: [(am = d puream = 1)] | 
|---|
| 312 | {exp coef:0} = { | 
|---|
| 313 | 0.22800000000       1.0000000000 | 
|---|
| 314 | }) | 
|---|
| 315 | (type: [(am = d puream = 1)] | 
|---|
| 316 | {exp coef:0} = { | 
|---|
| 317 | 8.6560000000       1.0000000000 | 
|---|
| 318 | }) | 
|---|
| 319 | (type: [(am = d puream = 1)] | 
|---|
| 320 | {exp coef:0} = { | 
|---|
| 321 | 33.213000000       1.0000000000 | 
|---|
| 322 | }) | 
|---|
| 323 | (type: [(am = f puream = 1)] | 
|---|
| 324 | {exp coef:0} = { | 
|---|
| 325 | 1.4190000000       1.0000000000 | 
|---|
| 326 | }) | 
|---|
| 327 | (type: [(am = f puream = 1)] | 
|---|
| 328 | {exp coef:0} = { | 
|---|
| 329 | 0.48500000000       1.0000000000 | 
|---|
| 330 | }) | 
|---|
| 331 | (type: [(am = f puream = 1)] | 
|---|
| 332 | {exp coef:0} = { | 
|---|
| 333 | 24.694000000       1.0000000000 | 
|---|
| 334 | }) | 
|---|
| 335 | (type: [(am = g puream = 1)] | 
|---|
| 336 | {exp coef:0} = { | 
|---|
| 337 | 1.0110000000       1.0000000000 | 
|---|
| 338 | }) | 
|---|
| 339 | ] | 
|---|
| 340 | % | 
|---|
| 341 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
| 342 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f) | 
|---|
| 343 | nitrogen: "cc-pCVQZ": [ | 
|---|
| 344 | (type: [am = s am = s] | 
|---|
| 345 | {exp coef:0 coef:1} = { | 
|---|
| 346 | 45840.000000      0.92000000000E-04 -0.20000000000E-04 | 
|---|
| 347 | 6868.0000000      0.71700000000E-03 -0.15900000000E-03 | 
|---|
| 348 | 1563.0000000      0.37490000000E-02 -0.82400000000E-03 | 
|---|
| 349 | 442.40000000      0.15532000000E-01 -0.34780000000E-02 | 
|---|
| 350 | 144.30000000      0.53146000000E-01 -0.11966000000E-01 | 
|---|
| 351 | 52.180000000      0.14678700000     -0.35388000000E-01 | 
|---|
| 352 | 20.340000000      0.30466300000     -0.80077000000E-01 | 
|---|
| 353 | 8.3810000000      0.39768400000     -0.14672200000 | 
|---|
| 354 | 3.5290000000      0.21764100000     -0.11636000000 | 
|---|
| 355 | }) | 
|---|
| 356 | (type: [am = s] | 
|---|
| 357 | {exp coef:0} = { | 
|---|
| 358 | 1.0540000000       1.0000000000 | 
|---|
| 359 | }) | 
|---|
| 360 | (type: [am = s] | 
|---|
| 361 | {exp coef:0} = { | 
|---|
| 362 | 0.41180000000       1.0000000000 | 
|---|
| 363 | }) | 
|---|
| 364 | (type: [am = s] | 
|---|
| 365 | {exp coef:0} = { | 
|---|
| 366 | 0.15520000000       1.0000000000 | 
|---|
| 367 | }) | 
|---|
| 368 | (type: [am = s] | 
|---|
| 369 | {exp coef:0} = { | 
|---|
| 370 | 9.8620000000       1.0000000000 | 
|---|
| 371 | }) | 
|---|
| 372 | (type: [am = s] | 
|---|
| 373 | {exp coef:0} = { | 
|---|
| 374 | 26.627000000       1.0000000000 | 
|---|
| 375 | }) | 
|---|
| 376 | (type: [am = s] | 
|---|
| 377 | {exp coef:0} = { | 
|---|
| 378 | 71.894000000       1.0000000000 | 
|---|
| 379 | }) | 
|---|
| 380 | (type: [am = p] | 
|---|
| 381 | {exp coef:0} = { | 
|---|
| 382 | 49.330000000      0.55330000000E-02 | 
|---|
| 383 | 11.370000000      0.37962000000E-01 | 
|---|
| 384 | 3.4350000000      0.14902800000 | 
|---|
| 385 | }) | 
|---|
| 386 | (type: [am = p] | 
|---|
| 387 | {exp coef:0} = { | 
|---|
| 388 | 1.1820000000       1.0000000000 | 
|---|
| 389 | }) | 
|---|
| 390 | (type: [am = p] | 
|---|
| 391 | {exp coef:0} = { | 
|---|
| 392 | 0.41730000000       1.0000000000 | 
|---|
| 393 | }) | 
|---|
| 394 | (type: [am = p] | 
|---|
| 395 | {exp coef:0} = { | 
|---|
| 396 | 0.14280000000       1.0000000000 | 
|---|
| 397 | }) | 
|---|
| 398 | (type: [am = p] | 
|---|
| 399 | {exp coef:0} = { | 
|---|
| 400 | 11.320000000       1.0000000000 | 
|---|
| 401 | }) | 
|---|
| 402 | (type: [am = p] | 
|---|
| 403 | {exp coef:0} = { | 
|---|
| 404 | 33.349000000       1.0000000000 | 
|---|
| 405 | }) | 
|---|
| 406 | (type: [am = p] | 
|---|
| 407 | {exp coef:0} = { | 
|---|
| 408 | 98.245000000       1.0000000000 | 
|---|
| 409 | }) | 
|---|
| 410 | (type: [(am = d puream = 1)] | 
|---|
| 411 | {exp coef:0} = { | 
|---|
| 412 | 2.8370000000       1.0000000000 | 
|---|
| 413 | }) | 
|---|
| 414 | (type: [(am = d puream = 1)] | 
|---|
| 415 | {exp coef:0} = { | 
|---|
| 416 | 0.96800000000       1.0000000000 | 
|---|
| 417 | }) | 
|---|
| 418 | (type: [(am = d puream = 1)] | 
|---|
| 419 | {exp coef:0} = { | 
|---|
| 420 | 0.33500000000       1.0000000000 | 
|---|
| 421 | }) | 
|---|
| 422 | (type: [(am = d puream = 1)] | 
|---|
| 423 | {exp coef:0} = { | 
|---|
| 424 | 11.828000000       1.0000000000 | 
|---|
| 425 | }) | 
|---|
| 426 | (type: [(am = d puream = 1)] | 
|---|
| 427 | {exp coef:0} = { | 
|---|
| 428 | 45.218000000       1.0000000000 | 
|---|
| 429 | }) | 
|---|
| 430 | (type: [(am = f puream = 1)] | 
|---|
| 431 | {exp coef:0} = { | 
|---|
| 432 | 2.0270000000       1.0000000000 | 
|---|
| 433 | }) | 
|---|
| 434 | (type: [(am = f puream = 1)] | 
|---|
| 435 | {exp coef:0} = { | 
|---|
| 436 | 0.68500000000       1.0000000000 | 
|---|
| 437 | }) | 
|---|
| 438 | (type: [(am = f puream = 1)] | 
|---|
| 439 | {exp coef:0} = { | 
|---|
| 440 | 28.364000000       1.0000000000 | 
|---|
| 441 | }) | 
|---|
| 442 | (type: [(am = g puream = 1)] | 
|---|
| 443 | {exp coef:0} = { | 
|---|
| 444 | 1.4270000000       1.0000000000 | 
|---|
| 445 | }) | 
|---|
| 446 | ] | 
|---|
| 447 | % | 
|---|
| 448 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
| 449 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f) | 
|---|
| 450 | oxygen: "cc-pCVQZ": [ | 
|---|
| 451 | (type: [am = s am = s] | 
|---|
| 452 | {exp coef:0 coef:1} = { | 
|---|
| 453 | 61420.000000      0.90000000000E-04 -0.20000000000E-04 | 
|---|
| 454 | 9199.0000000      0.69800000000E-03 -0.15900000000E-03 | 
|---|
| 455 | 2091.0000000      0.36640000000E-02 -0.82900000000E-03 | 
|---|
| 456 | 590.90000000      0.15218000000E-01 -0.35080000000E-02 | 
|---|
| 457 | 192.30000000      0.52423000000E-01 -0.12156000000E-01 | 
|---|
| 458 | 69.320000000      0.14592100000     -0.36261000000E-01 | 
|---|
| 459 | 26.970000000      0.30525800000     -0.82992000000E-01 | 
|---|
| 460 | 11.100000000      0.39850800000     -0.15209000000 | 
|---|
| 461 | 4.6820000000      0.21698000000     -0.11533100000 | 
|---|
| 462 | }) | 
|---|
| 463 | (type: [am = s] | 
|---|
| 464 | {exp coef:0} = { | 
|---|
| 465 | 1.4280000000       1.0000000000 | 
|---|
| 466 | }) | 
|---|
| 467 | (type: [am = s] | 
|---|
| 468 | {exp coef:0} = { | 
|---|
| 469 | 0.55470000000       1.0000000000 | 
|---|
| 470 | }) | 
|---|
| 471 | (type: [am = s] | 
|---|
| 472 | {exp coef:0} = { | 
|---|
| 473 | 0.20670000000       1.0000000000 | 
|---|
| 474 | }) | 
|---|
| 475 | (type: [am = s] | 
|---|
| 476 | {exp coef:0} = { | 
|---|
| 477 | 12.974000000       1.0000000000 | 
|---|
| 478 | }) | 
|---|
| 479 | (type: [am = s] | 
|---|
| 480 | {exp coef:0} = { | 
|---|
| 481 | 34.900000000       1.0000000000 | 
|---|
| 482 | }) | 
|---|
| 483 | (type: [am = s] | 
|---|
| 484 | {exp coef:0} = { | 
|---|
| 485 | 93.881000000       1.0000000000 | 
|---|
| 486 | }) | 
|---|
| 487 | (type: [am = p] | 
|---|
| 488 | {exp coef:0} = { | 
|---|
| 489 | 63.420000000      0.60440000000E-02 | 
|---|
| 490 | 14.660000000      0.41799000000E-01 | 
|---|
| 491 | 4.4590000000      0.16114300000 | 
|---|
| 492 | }) | 
|---|
| 493 | (type: [am = p] | 
|---|
| 494 | {exp coef:0} = { | 
|---|
| 495 | 1.5310000000       1.0000000000 | 
|---|
| 496 | }) | 
|---|
| 497 | (type: [am = p] | 
|---|
| 498 | {exp coef:0} = { | 
|---|
| 499 | 0.53020000000       1.0000000000 | 
|---|
| 500 | }) | 
|---|
| 501 | (type: [am = p] | 
|---|
| 502 | {exp coef:0} = { | 
|---|
| 503 | 0.17500000000       1.0000000000 | 
|---|
| 504 | }) | 
|---|
| 505 | (type: [am = p] | 
|---|
| 506 | {exp coef:0} = { | 
|---|
| 507 | 14.475000000       1.0000000000 | 
|---|
| 508 | }) | 
|---|
| 509 | (type: [am = p] | 
|---|
| 510 | {exp coef:0} = { | 
|---|
| 511 | 42.730000000       1.0000000000 | 
|---|
| 512 | }) | 
|---|
| 513 | (type: [am = p] | 
|---|
| 514 | {exp coef:0} = { | 
|---|
| 515 | 126.14000000       1.0000000000 | 
|---|
| 516 | }) | 
|---|
| 517 | (type: [(am = d puream = 1)] | 
|---|
| 518 | {exp coef:0} = { | 
|---|
| 519 | 3.7750000000       1.0000000000 | 
|---|
| 520 | }) | 
|---|
| 521 | (type: [(am = d puream = 1)] | 
|---|
| 522 | {exp coef:0} = { | 
|---|
| 523 | 1.3000000000       1.0000000000 | 
|---|
| 524 | }) | 
|---|
| 525 | (type: [(am = d puream = 1)] | 
|---|
| 526 | {exp coef:0} = { | 
|---|
| 527 | 0.44400000000       1.0000000000 | 
|---|
| 528 | }) | 
|---|
| 529 | (type: [(am = d puream = 1)] | 
|---|
| 530 | {exp coef:0} = { | 
|---|
| 531 | 14.927000000       1.0000000000 | 
|---|
| 532 | }) | 
|---|
| 533 | (type: [(am = d puream = 1)] | 
|---|
| 534 | {exp coef:0} = { | 
|---|
| 535 | 57.544000000       1.0000000000 | 
|---|
| 536 | }) | 
|---|
| 537 | (type: [(am = f puream = 1)] | 
|---|
| 538 | {exp coef:0} = { | 
|---|
| 539 | 2.6660000000       1.0000000000 | 
|---|
| 540 | }) | 
|---|
| 541 | (type: [(am = f puream = 1)] | 
|---|
| 542 | {exp coef:0} = { | 
|---|
| 543 | 0.85900000000       1.0000000000 | 
|---|
| 544 | }) | 
|---|
| 545 | (type: [(am = f puream = 1)] | 
|---|
| 546 | {exp coef:0} = { | 
|---|
| 547 | 26.483000000       1.0000000000 | 
|---|
| 548 | }) | 
|---|
| 549 | (type: [(am = g puream = 1)] | 
|---|
| 550 | {exp coef:0} = { | 
|---|
| 551 | 1.8460000000       1.0000000000 | 
|---|
| 552 | }) | 
|---|
| 553 | ] | 
|---|
| 554 | % | 
|---|
| 555 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
| 556 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f) | 
|---|
| 557 | fluorine: "cc-pCVQZ": [ | 
|---|
| 558 | (type: [am = s am = s] | 
|---|
| 559 | {exp coef:0 coef:1} = { | 
|---|
| 560 | 74530.000000      0.95000000000E-04 -0.22000000000E-04 | 
|---|
| 561 | 11170.000000      0.73800000000E-03 -0.17200000000E-03 | 
|---|
| 562 | 2543.0000000      0.38580000000E-02 -0.89100000000E-03 | 
|---|
| 563 | 721.00000000      0.15926000000E-01 -0.37480000000E-02 | 
|---|
| 564 | 235.90000000      0.54289000000E-01 -0.12862000000E-01 | 
|---|
| 565 | 85.600000000      0.14951300000     -0.38061000000E-01 | 
|---|
| 566 | 33.550000000      0.30825200000     -0.86239000000E-01 | 
|---|
| 567 | 13.930000000      0.39485300000     -0.15586500000 | 
|---|
| 568 | 5.9150000000      0.21103100000     -0.11091400000 | 
|---|
| 569 | }) | 
|---|
| 570 | (type: [am = s] | 
|---|
| 571 | {exp coef:0} = { | 
|---|
| 572 | 1.8430000000       1.0000000000 | 
|---|
| 573 | }) | 
|---|
| 574 | (type: [am = s] | 
|---|
| 575 | {exp coef:0} = { | 
|---|
| 576 | 0.71240000000       1.0000000000 | 
|---|
| 577 | }) | 
|---|
| 578 | (type: [am = s] | 
|---|
| 579 | {exp coef:0} = { | 
|---|
| 580 | 0.26370000000       1.0000000000 | 
|---|
| 581 | }) | 
|---|
| 582 | (type: [am = s] | 
|---|
| 583 | {exp coef:0} = { | 
|---|
| 584 | 16.319000000       1.0000000000 | 
|---|
| 585 | }) | 
|---|
| 586 | (type: [am = s] | 
|---|
| 587 | {exp coef:0} = { | 
|---|
| 588 | 43.784000000       1.0000000000 | 
|---|
| 589 | }) | 
|---|
| 590 | (type: [am = s] | 
|---|
| 591 | {exp coef:0} = { | 
|---|
| 592 | 117.47200000       1.0000000000 | 
|---|
| 593 | }) | 
|---|
| 594 | (type: [am = p] | 
|---|
| 595 | {exp coef:0} = { | 
|---|
| 596 | 80.390000000      0.63470000000E-02 | 
|---|
| 597 | 18.630000000      0.44204000000E-01 | 
|---|
| 598 | 5.6940000000      0.16851400000 | 
|---|
| 599 | }) | 
|---|
| 600 | (type: [am = p] | 
|---|
| 601 | {exp coef:0} = { | 
|---|
| 602 | 1.9530000000       1.0000000000 | 
|---|
| 603 | }) | 
|---|
| 604 | (type: [am = p] | 
|---|
| 605 | {exp coef:0} = { | 
|---|
| 606 | 0.67020000000       1.0000000000 | 
|---|
| 607 | }) | 
|---|
| 608 | (type: [am = p] | 
|---|
| 609 | {exp coef:0} = { | 
|---|
| 610 | 0.21660000000       1.0000000000 | 
|---|
| 611 | }) | 
|---|
| 612 | (type: [am = p] | 
|---|
| 613 | {exp coef:0} = { | 
|---|
| 614 | 18.119000000       1.0000000000 | 
|---|
| 615 | }) | 
|---|
| 616 | (type: [am = p] | 
|---|
| 617 | {exp coef:0} = { | 
|---|
| 618 | 53.505000000       1.0000000000 | 
|---|
| 619 | }) | 
|---|
| 620 | (type: [am = p] | 
|---|
| 621 | {exp coef:0} = { | 
|---|
| 622 | 158.00100000       1.0000000000 | 
|---|
| 623 | }) | 
|---|
| 624 | (type: [(am = d puream = 1)] | 
|---|
| 625 | {exp coef:0} = { | 
|---|
| 626 | 5.0140000000       1.0000000000 | 
|---|
| 627 | }) | 
|---|
| 628 | (type: [(am = d puream = 1)] | 
|---|
| 629 | {exp coef:0} = { | 
|---|
| 630 | 1.7250000000       1.0000000000 | 
|---|
| 631 | }) | 
|---|
| 632 | (type: [(am = d puream = 1)] | 
|---|
| 633 | {exp coef:0} = { | 
|---|
| 634 | 0.58600000000       1.0000000000 | 
|---|
| 635 | }) | 
|---|
| 636 | (type: [(am = d puream = 1)] | 
|---|
| 637 | {exp coef:0} = { | 
|---|
| 638 | 18.943000000       1.0000000000 | 
|---|
| 639 | }) | 
|---|
| 640 | (type: [(am = d puream = 1)] | 
|---|
| 641 | {exp coef:0} = { | 
|---|
| 642 | 72.798000000       1.0000000000 | 
|---|
| 643 | }) | 
|---|
| 644 | (type: [(am = f puream = 1)] | 
|---|
| 645 | {exp coef:0} = { | 
|---|
| 646 | 3.5620000000       1.0000000000 | 
|---|
| 647 | }) | 
|---|
| 648 | (type: [(am = f puream = 1)] | 
|---|
| 649 | {exp coef:0} = { | 
|---|
| 650 | 1.1480000000       1.0000000000 | 
|---|
| 651 | }) | 
|---|
| 652 | (type: [(am = f puream = 1)] | 
|---|
| 653 | {exp coef:0} = { | 
|---|
| 654 | 25.161000000       1.0000000000 | 
|---|
| 655 | }) | 
|---|
| 656 | (type: [(am = g puream = 1)] | 
|---|
| 657 | {exp coef:0} = { | 
|---|
| 658 | 2.3760000000       1.0000000000 | 
|---|
| 659 | }) | 
|---|
| 660 | ] | 
|---|
| 661 | % | 
|---|
| 662 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g] | 
|---|
| 663 | % AUGMENTING FUNCTIONS: Tight (s,p,d) | 
|---|
| 664 | neon: "cc-pCVQZ": [ | 
|---|
| 665 | (type: [am = s am = s] | 
|---|
| 666 | {exp coef:0 coef:1} = { | 
|---|
| 667 | 99920.000000      0.86000000000E-04 -0.20000000000E-04 | 
|---|
| 668 | 14960.000000      0.66900000000E-03 -0.15800000000E-03 | 
|---|
| 669 | 3399.0000000      0.35180000000E-02 -0.82400000000E-03 | 
|---|
| 670 | 958.90000000      0.14667000000E-01 -0.35000000000E-02 | 
|---|
| 671 | 311.20000000      0.50962000000E-01 -0.12233000000E-01 | 
|---|
| 672 | 111.70000000      0.14374400000     -0.37017000000E-01 | 
|---|
| 673 | 43.320000000      0.30456200000     -0.86113000000E-01 | 
|---|
| 674 | 17.800000000      0.40010500000     -0.15838100000 | 
|---|
| 675 | 7.5030000000      0.21864400000     -0.11428800000 | 
|---|
| 676 | }) | 
|---|
| 677 | (type: [am = s] | 
|---|
| 678 | {exp coef:0} = { | 
|---|
| 679 | 2.3370000000       1.0000000000 | 
|---|
| 680 | }) | 
|---|
| 681 | (type: [am = s] | 
|---|
| 682 | {exp coef:0} = { | 
|---|
| 683 | 0.90010000000       1.0000000000 | 
|---|
| 684 | }) | 
|---|
| 685 | (type: [am = s] | 
|---|
| 686 | {exp coef:0} = { | 
|---|
| 687 | 0.33010000000       1.0000000000 | 
|---|
| 688 | }) | 
|---|
| 689 | (type: [am = s] | 
|---|
| 690 | {exp coef:0} = { | 
|---|
| 691 | 20.180000000       1.0000000000 | 
|---|
| 692 | }) | 
|---|
| 693 | (type: [am = s] | 
|---|
| 694 | {exp coef:0} = { | 
|---|
| 695 | 54.042000000       1.0000000000 | 
|---|
| 696 | }) | 
|---|
| 697 | (type: [am = s] | 
|---|
| 698 | {exp coef:0} = { | 
|---|
| 699 | 144.72500000       1.0000000000 | 
|---|
| 700 | }) | 
|---|
| 701 | (type: [am = p] | 
|---|
| 702 | {exp coef:0} = { | 
|---|
| 703 | 99.680000000      0.65660000000E-02 | 
|---|
| 704 | 23.150000000      0.45979000000E-01 | 
|---|
| 705 | 7.1080000000      0.17341900000 | 
|---|
| 706 | }) | 
|---|
| 707 | (type: [am = p] | 
|---|
| 708 | {exp coef:0} = { | 
|---|
| 709 | 2.4410000000       1.0000000000 | 
|---|
| 710 | }) | 
|---|
| 711 | (type: [am = p] | 
|---|
| 712 | {exp coef:0} = { | 
|---|
| 713 | 0.83390000000       1.0000000000 | 
|---|
| 714 | }) | 
|---|
| 715 | (type: [am = p] | 
|---|
| 716 | {exp coef:0} = { | 
|---|
| 717 | 0.26620000000       1.0000000000 | 
|---|
| 718 | }) | 
|---|
| 719 | (type: [am = p] | 
|---|
| 720 | {exp coef:0} = { | 
|---|
| 721 | 22.222000000       1.0000000000 | 
|---|
| 722 | }) | 
|---|
| 723 | (type: [am = p] | 
|---|
| 724 | {exp coef:0} = { | 
|---|
| 725 | 65.622000000       1.0000000000 | 
|---|
| 726 | }) | 
|---|
| 727 | (type: [am = p] | 
|---|
| 728 | {exp coef:0} = { | 
|---|
| 729 | 193.78000000       1.0000000000 | 
|---|
| 730 | }) | 
|---|
| 731 | (type: [(am = d puream = 1)] | 
|---|
| 732 | {exp coef:0} = { | 
|---|
| 733 | 6.4710000000       1.0000000000 | 
|---|
| 734 | }) | 
|---|
| 735 | (type: [(am = d puream = 1)] | 
|---|
| 736 | {exp coef:0} = { | 
|---|
| 737 | 2.2130000000       1.0000000000 | 
|---|
| 738 | }) | 
|---|
| 739 | (type: [(am = d puream = 1)] | 
|---|
| 740 | {exp coef:0} = { | 
|---|
| 741 | 0.74700000000       1.0000000000 | 
|---|
| 742 | }) | 
|---|
| 743 | (type: [(am = d puream = 1)] | 
|---|
| 744 | {exp coef:0} = { | 
|---|
| 745 | 23.613000000       1.0000000000 | 
|---|
| 746 | }) | 
|---|
| 747 | (type: [(am = d puream = 1)] | 
|---|
| 748 | {exp coef:0} = { | 
|---|
| 749 | 90.107000000       1.0000000000 | 
|---|
| 750 | }) | 
|---|
| 751 | (type: [(am = f puream = 1)] | 
|---|
| 752 | {exp coef:0} = { | 
|---|
| 753 | 4.6570000000       1.0000000000 | 
|---|
| 754 | }) | 
|---|
| 755 | (type: [(am = f puream = 1)] | 
|---|
| 756 | {exp coef:0} = { | 
|---|
| 757 | 1.5240000000       1.0000000000 | 
|---|
| 758 | }) | 
|---|
| 759 | (type: [(am = f puream = 1)] | 
|---|
| 760 | {exp coef:0} = { | 
|---|
| 761 | 28.830000000       1.0000000000 | 
|---|
| 762 | }) | 
|---|
| 763 | (type: [(am = g puream = 1)] | 
|---|
| 764 | {exp coef:0} = { | 
|---|
| 765 | 2.9830000000       1.0000000000 | 
|---|
| 766 | }) | 
|---|
| 767 | ] | 
|---|
| 768 | % | 
|---|
| 769 | % BASIS SET: (19s,12p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
| 770 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
| 771 | sodium: "cc-pCVQZ": [ | 
|---|
| 772 | (type: [am = s am = s am = s] | 
|---|
| 773 | {exp coef:0 coef:1 coef:2} = { | 
|---|
| 774 | 1224000.0000      0.47889400000E-05 -0.11695800000E-05  0.17587100000E-06 | 
|---|
| 775 | 183200.00000      0.37239500000E-04 -0.90911000000E-05  0.13659400000E-05 | 
|---|
| 776 | 41700.000000      0.19583100000E-03 -0.47849900000E-04  0.71979500000E-05 | 
|---|
| 777 | 11810.000000      0.82669800000E-03 -0.20196200000E-03  0.30334900000E-04 | 
|---|
| 778 | 3853.0000000      0.30025100000E-02 -0.73583700000E-03  0.11075200000E-03 | 
|---|
| 779 | 1391.0000000      0.97031000000E-02 -0.23874600000E-02  0.35859600000E-03 | 
|---|
| 780 | 542.50000000      0.28233700000E-01 -0.70496900000E-02  0.10627200000E-02 | 
|---|
| 781 | 224.90000000      0.73205800000E-01 -0.18785600000E-01  0.28268700000E-02 | 
|---|
| 782 | 97.930000000      0.16289700000     -0.44615300000E-01  0.67674200000E-02 | 
|---|
| 783 | 44.310000000      0.28870800000     -0.89774100000E-01  0.13648000000E-01 | 
|---|
| 784 | 20.650000000      0.34682900000     -0.14294000000      0.22281400000E-01 | 
|---|
| 785 | 9.7290000000      0.20686500000     -0.12431500000      0.19601100000E-01 | 
|---|
| 786 | 4.2280000000      0.32800900000E-01  0.99964800000E-01 -0.16770800000E-01 | 
|---|
| 787 | 1.9690000000     -0.64773600000E-03  0.41708000000     -0.77373400000E-01 | 
|---|
| 788 | 0.88900000000      0.14587800000E-02  0.47512300000     -0.11350100000 | 
|---|
| 789 | 0.39640000000     -0.17834600000E-03  0.16326800000     -0.13913000000 | 
|---|
| 790 | }) | 
|---|
| 791 | (type: [am = s] | 
|---|
| 792 | {exp coef:0} = { | 
|---|
| 793 | 0.69930000000E-01   1.0000000000 | 
|---|
| 794 | }) | 
|---|
| 795 | (type: [am = s] | 
|---|
| 796 | {exp coef:0} = { | 
|---|
| 797 | 0.32890000000E-01   1.0000000000 | 
|---|
| 798 | }) | 
|---|
| 799 | (type: [am = s] | 
|---|
| 800 | {exp coef:0} = { | 
|---|
| 801 | 0.16120000000E-01   1.0000000000 | 
|---|
| 802 | }) | 
|---|
| 803 | (type: [am = s] | 
|---|
| 804 | {exp coef:0} = { | 
|---|
| 805 | 24.282000000       1.0000000000 | 
|---|
| 806 | }) | 
|---|
| 807 | (type: [am = s] | 
|---|
| 808 | {exp coef:0} = { | 
|---|
| 809 | 4.8740000000       1.0000000000 | 
|---|
| 810 | }) | 
|---|
| 811 | (type: [am = s] | 
|---|
| 812 | {exp coef:0} = { | 
|---|
| 813 | 0.97800000000       1.0000000000 | 
|---|
| 814 | }) | 
|---|
| 815 | (type: [am = p am = p] | 
|---|
| 816 | {exp coef:0 coef:1} = { | 
|---|
| 817 | 413.40000000      0.90819600000E-03 -0.90174100000E-04 | 
|---|
| 818 | 97.980000000      0.74177300000E-02 -0.73934200000E-03 | 
|---|
| 819 | 31.370000000      0.35746400000E-01 -0.35730900000E-02 | 
|---|
| 820 | 11.620000000      0.11852000000     -0.12014200000E-01 | 
|---|
| 821 | 4.6710000000      0.26140300000     -0.26717800000E-01 | 
|---|
| 822 | 1.9180000000      0.37839500000     -0.39275300000E-01 | 
|---|
| 823 | 0.77750000000      0.33463200000     -0.37608300000E-01 | 
|---|
| 824 | 0.30130000000      0.12684400000     -0.43322800000E-01 | 
|---|
| 825 | 0.22750000000     -0.14711700000E-01  0.51800300000E-01 | 
|---|
| 826 | }) | 
|---|
| 827 | (type: [am = p] | 
|---|
| 828 | {exp coef:0} = { | 
|---|
| 829 | 0.75270000000E-01   1.0000000000 | 
|---|
| 830 | }) | 
|---|
| 831 | (type: [am = p] | 
|---|
| 832 | {exp coef:0} = { | 
|---|
| 833 | 0.31260000000E-01   1.0000000000 | 
|---|
| 834 | }) | 
|---|
| 835 | (type: [am = p] | 
|---|
| 836 | {exp coef:0} = { | 
|---|
| 837 | 0.13420000000E-01   1.0000000000 | 
|---|
| 838 | }) | 
|---|
| 839 | (type: [am = p] | 
|---|
| 840 | {exp coef:0} = { | 
|---|
| 841 | 4.4660000000       1.0000000000 | 
|---|
| 842 | }) | 
|---|
| 843 | (type: [am = p] | 
|---|
| 844 | {exp coef:0} = { | 
|---|
| 845 | 1.6890000000       1.0000000000 | 
|---|
| 846 | }) | 
|---|
| 847 | (type: [am = p] | 
|---|
| 848 | {exp coef:0} = { | 
|---|
| 849 | 0.63800000000       1.0000000000 | 
|---|
| 850 | }) | 
|---|
| 851 | (type: [(am = d puream = 1)] | 
|---|
| 852 | {exp coef:0} = { | 
|---|
| 853 | 0.15380000000       1.0000000000 | 
|---|
| 854 | }) | 
|---|
| 855 | (type: [(am = d puream = 1)] | 
|---|
| 856 | {exp coef:0} = { | 
|---|
| 857 | 0.86500000000E-01   1.0000000000 | 
|---|
| 858 | }) | 
|---|
| 859 | (type: [(am = d puream = 1)] | 
|---|
| 860 | {exp coef:0} = { | 
|---|
| 861 | 0.48700000000E-01   1.0000000000 | 
|---|
| 862 | }) | 
|---|
| 863 | (type: [(am = d puream = 1)] | 
|---|
| 864 | {exp coef:0} = { | 
|---|
| 865 | 8.6060000000       1.0000000000 | 
|---|
| 866 | }) | 
|---|
| 867 | (type: [(am = d puream = 1)] | 
|---|
| 868 | {exp coef:0} = { | 
|---|
| 869 | 3.1370000000       1.0000000000 | 
|---|
| 870 | }) | 
|---|
| 871 | (type: [(am = d puream = 1)] | 
|---|
| 872 | {exp coef:0} = { | 
|---|
| 873 | 1.1440000000       1.0000000000 | 
|---|
| 874 | }) | 
|---|
| 875 | (type: [(am = f puream = 1)] | 
|---|
| 876 | {exp coef:0} = { | 
|---|
| 877 | 0.19120000000       1.0000000000 | 
|---|
| 878 | }) | 
|---|
| 879 | (type: [(am = f puream = 1)] | 
|---|
| 880 | {exp coef:0} = { | 
|---|
| 881 | 0.10360000000       1.0000000000 | 
|---|
| 882 | }) | 
|---|
| 883 | (type: [(am = f puream = 1)] | 
|---|
| 884 | {exp coef:0} = { | 
|---|
| 885 | 6.2580000000       1.0000000000 | 
|---|
| 886 | }) | 
|---|
| 887 | (type: [(am = f puream = 1)] | 
|---|
| 888 | {exp coef:0} = { | 
|---|
| 889 | 2.1730000000       1.0000000000 | 
|---|
| 890 | }) | 
|---|
| 891 | (type: [(am = g puream = 1)] | 
|---|
| 892 | {exp coef:0} = { | 
|---|
| 893 | 0.17220000000       1.0000000000 | 
|---|
| 894 | }) | 
|---|
| 895 | (type: [(am = g puream = 1)] | 
|---|
| 896 | {exp coef:0} = { | 
|---|
| 897 | 4.0970000000       1.0000000000 | 
|---|
| 898 | }) | 
|---|
| 899 | ] | 
|---|
| 900 | % | 
|---|
| 901 | % BASIS SET: (16s,12p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
| 902 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
| 903 | magnesium: "cc-pCVQZ": [ | 
|---|
| 904 | (type: [am = s am = s am = s] | 
|---|
| 905 | {exp coef:0 coef:1 coef:2} = { | 
|---|
| 906 | 327600.00000      0.30960800000E-04 -0.78317300000E-05  0.15090800000E-05 | 
|---|
| 907 | 49050.000000      0.24095400000E-03 -0.60793500000E-04  0.11713400000E-04 | 
|---|
| 908 | 11150.000000      0.12666000000E-02 -0.32119700000E-03  0.61898000000E-04 | 
|---|
| 909 | 3152.0000000      0.53335900000E-02 -0.13495500000E-02  0.26008800000E-03 | 
|---|
| 910 | 1025.0000000      0.19077000000E-01 -0.49057000000E-02  0.94621800000E-03 | 
|---|
| 911 | 368.80000000      0.58805800000E-01 -0.15356100000E-01  0.29659500000E-02 | 
|---|
| 912 | 143.20000000      0.15145400000     -0.42340900000E-01  0.82124500000E-02 | 
|---|
| 913 | 58.960000000      0.30071600000     -0.94060300000E-01  0.18397700000E-01 | 
|---|
| 914 | 25.400000000      0.38114900000     -0.16342500000      0.32665700000E-01 | 
|---|
| 915 | 11.150000000      0.21358400000     -0.12475400000      0.25731500000E-01 | 
|---|
| 916 | 4.0040000000      0.23121000000E-01  0.23562300000     -0.53535100000E-01 | 
|---|
| 917 | 1.7010000000     -0.23075700000E-02  0.57756300000     -0.15689500000 | 
|---|
| 918 | 0.70600000000      0.12890000000E-02  0.33523200000     -0.20665900000 | 
|---|
| 919 | }) | 
|---|
| 920 | (type: [am = s] | 
|---|
| 921 | {exp coef:0} = { | 
|---|
| 922 | 0.14100000000       1.0000000000 | 
|---|
| 923 | }) | 
|---|
| 924 | (type: [am = s] | 
|---|
| 925 | {exp coef:0} = { | 
|---|
| 926 | 0.68080000000E-01   1.0000000000 | 
|---|
| 927 | }) | 
|---|
| 928 | (type: [am = s] | 
|---|
| 929 | {exp coef:0} = { | 
|---|
| 930 | 0.30630000000E-01   1.0000000000 | 
|---|
| 931 | }) | 
|---|
| 932 | (type: [am = s] | 
|---|
| 933 | {exp coef:0} = { | 
|---|
| 934 | 23.243000000       1.0000000000 | 
|---|
| 935 | }) | 
|---|
| 936 | (type: [am = s] | 
|---|
| 937 | {exp coef:0} = { | 
|---|
| 938 | 9.5610000000       1.0000000000 | 
|---|
| 939 | }) | 
|---|
| 940 | (type: [am = s] | 
|---|
| 941 | {exp coef:0} = { | 
|---|
| 942 | 3.9330000000       1.0000000000 | 
|---|
| 943 | }) | 
|---|
| 944 | (type: [am = p am = p] | 
|---|
| 945 | {exp coef:0 coef:1} = { | 
|---|
| 946 | 539.60000000      0.83396900000E-03 -0.13207600000E-03 | 
|---|
| 947 | 127.90000000      0.68921500000E-02 -0.10953800000E-02 | 
|---|
| 948 | 41.020000000      0.33787400000E-01 -0.53949500000E-02 | 
|---|
| 949 | 15.250000000      0.11440100000     -0.18557200000E-01 | 
|---|
| 950 | 6.1660000000      0.25951400000     -0.42737500000E-01 | 
|---|
| 951 | 2.5610000000      0.38509500000     -0.64768400000E-01 | 
|---|
| 952 | 1.0600000000      0.33537300000     -0.62781800000E-01 | 
|---|
| 953 | 0.41760000000      0.11064100000     -0.24491200000E-01 | 
|---|
| 954 | 0.26900000000     -0.12131500000E-01  0.10476100000 | 
|---|
| 955 | }) | 
|---|
| 956 | (type: [am = p] | 
|---|
| 957 | {exp coef:0} = { | 
|---|
| 958 | 0.12230000000       1.0000000000 | 
|---|
| 959 | }) | 
|---|
| 960 | (type: [am = p] | 
|---|
| 961 | {exp coef:0} = { | 
|---|
| 962 | 0.54760000000E-01   1.0000000000 | 
|---|
| 963 | }) | 
|---|
| 964 | (type: [am = p] | 
|---|
| 965 | {exp coef:0} = { | 
|---|
| 966 | 0.23880000000E-01   1.0000000000 | 
|---|
| 967 | }) | 
|---|
| 968 | (type: [am = p] | 
|---|
| 969 | {exp coef:0} = { | 
|---|
| 970 | 39.536000000       1.0000000000 | 
|---|
| 971 | }) | 
|---|
| 972 | (type: [am = p] | 
|---|
| 973 | {exp coef:0} = { | 
|---|
| 974 | 12.778000000       1.0000000000 | 
|---|
| 975 | }) | 
|---|
| 976 | (type: [am = p] | 
|---|
| 977 | {exp coef:0} = { | 
|---|
| 978 | 4.1300000000       1.0000000000 | 
|---|
| 979 | }) | 
|---|
| 980 | (type: [(am = d puream = 1)] | 
|---|
| 981 | {exp coef:0} = { | 
|---|
| 982 | 0.10600000000       1.0000000000 | 
|---|
| 983 | }) | 
|---|
| 984 | (type: [(am = d puream = 1)] | 
|---|
| 985 | {exp coef:0} = { | 
|---|
| 986 | 0.19440000000       1.0000000000 | 
|---|
| 987 | }) | 
|---|
| 988 | (type: [(am = d puream = 1)] | 
|---|
| 989 | {exp coef:0} = { | 
|---|
| 990 | 0.35700000000       1.0000000000 | 
|---|
| 991 | }) | 
|---|
| 992 | (type: [(am = d puream = 1)] | 
|---|
| 993 | {exp coef:0} = { | 
|---|
| 994 | 12.533000000       1.0000000000 | 
|---|
| 995 | }) | 
|---|
| 996 | (type: [(am = d puream = 1)] | 
|---|
| 997 | {exp coef:0} = { | 
|---|
| 998 | 4.6770000000       1.0000000000 | 
|---|
| 999 | }) | 
|---|
| 1000 | (type: [(am = d puream = 1)] | 
|---|
| 1001 | {exp coef:0} = { | 
|---|
| 1002 | 1.7450000000       1.0000000000 | 
|---|
| 1003 | }) | 
|---|
| 1004 | (type: [(am = f puream = 1)] | 
|---|
| 1005 | {exp coef:0} = { | 
|---|
| 1006 | 0.18100000000       1.0000000000 | 
|---|
| 1007 | }) | 
|---|
| 1008 | (type: [(am = f puream = 1)] | 
|---|
| 1009 | {exp coef:0} = { | 
|---|
| 1010 | 0.35900000000       1.0000000000 | 
|---|
| 1011 | }) | 
|---|
| 1012 | (type: [(am = f puream = 1)] | 
|---|
| 1013 | {exp coef:0} = { | 
|---|
| 1014 | 7.8760000000       1.0000000000 | 
|---|
| 1015 | }) | 
|---|
| 1016 | (type: [(am = f puream = 1)] | 
|---|
| 1017 | {exp coef:0} = { | 
|---|
| 1018 | 2.8050000000       1.0000000000 | 
|---|
| 1019 | }) | 
|---|
| 1020 | (type: [(am = g puream = 1)] | 
|---|
| 1021 | {exp coef:0} = { | 
|---|
| 1022 | 0.30700000000       1.0000000000 | 
|---|
| 1023 | }) | 
|---|
| 1024 | (type: [(am = g puream = 1)] | 
|---|
| 1025 | {exp coef:0} = { | 
|---|
| 1026 | 5.3940000000       1.0000000000 | 
|---|
| 1027 | }) | 
|---|
| 1028 | ] | 
|---|
| 1029 | % | 
|---|
| 1030 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
| 1031 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
| 1032 | aluminum: "cc-pCVQZ": [ | 
|---|
| 1033 | (type: [am = s am = s am = s] | 
|---|
| 1034 | {exp coef:0 coef:1 coef:2} = { | 
|---|
| 1035 | 419600.00000      0.27821900000E-04 -0.72375400000E-05  0.16715000000E-05 | 
|---|
| 1036 | 62830.000000      0.21633000000E-03 -0.56173300000E-04  0.12964100000E-04 | 
|---|
| 1037 | 14290.000000      0.11375400000E-02 -0.29652800000E-03  0.68510100000E-04 | 
|---|
| 1038 | 4038.0000000      0.47963500000E-02 -0.12491300000E-02  0.28827400000E-03 | 
|---|
| 1039 | 1312.0000000      0.17238900000E-01 -0.45510100000E-02  0.10527600000E-02 | 
|---|
| 1040 | 470.50000000      0.53806600000E-01 -0.14439300000E-01  0.33387800000E-02 | 
|---|
| 1041 | 181.80000000      0.14132600000     -0.40346400000E-01  0.93921700000E-02 | 
|---|
| 1042 | 74.460000000      0.28926800000     -0.92261800000E-01  0.21604700000E-01 | 
|---|
| 1043 | 31.900000000      0.38482500000     -0.16451000000      0.39587300000E-01 | 
|---|
| 1044 | 13.960000000      0.23285200000     -0.14129600000      0.34918000000E-01 | 
|---|
| 1045 | 5.1800000000      0.29333000000E-01  0.19536500000     -0.52841500000E-01 | 
|---|
| 1046 | 2.2650000000     -0.30057400000E-02  0.57247500000     -0.19187800000 | 
|---|
| 1047 | 0.96640000000      0.16667300000E-02  0.37404100000     -0.25411500000 | 
|---|
| 1048 | }) | 
|---|
| 1049 | (type: [am = s] | 
|---|
| 1050 | {exp coef:0} = { | 
|---|
| 1051 | 0.24470000000       1.0000000000 | 
|---|
| 1052 | }) | 
|---|
| 1053 | (type: [am = s] | 
|---|
| 1054 | {exp coef:0} = { | 
|---|
| 1055 | 0.11840000000       1.0000000000 | 
|---|
| 1056 | }) | 
|---|
| 1057 | (type: [am = s] | 
|---|
| 1058 | {exp coef:0} = { | 
|---|
| 1059 | 0.50210000000E-01   1.0000000000 | 
|---|
| 1060 | }) | 
|---|
| 1061 | (type: [am = s] | 
|---|
| 1062 | {exp coef:0} = { | 
|---|
| 1063 | 9.7290000000       1.0000000000 | 
|---|
| 1064 | }) | 
|---|
| 1065 | (type: [am = s] | 
|---|
| 1066 | {exp coef:0} = { | 
|---|
| 1067 | 4.8700000000       1.0000000000 | 
|---|
| 1068 | }) | 
|---|
| 1069 | (type: [am = s] | 
|---|
| 1070 | {exp coef:0} = { | 
|---|
| 1071 | 2.4370000000       1.0000000000 | 
|---|
| 1072 | }) | 
|---|
| 1073 | (type: [am = p am = p] | 
|---|
| 1074 | {exp coef:0 coef:1} = { | 
|---|
| 1075 | 891.30000000      0.49175500000E-03 -0.88869500000E-04 | 
|---|
| 1076 | 211.30000000      0.41584300000E-02 -0.74582300000E-03 | 
|---|
| 1077 | 68.280000000      0.21253800000E-01 -0.38702500000E-02 | 
|---|
| 1078 | 25.700000000      0.76405800000E-01 -0.13935000000E-01 | 
|---|
| 1079 | 10.630000000      0.19427700000     -0.36686000000E-01 | 
|---|
| 1080 | 4.6020000000      0.33442800000     -0.62779700000E-01 | 
|---|
| 1081 | 2.0150000000      0.37502600000     -0.78960200000E-01 | 
|---|
| 1082 | 0.87060000000      0.20404100000     -0.28858900000E-01 | 
|---|
| 1083 | }) | 
|---|
| 1084 | (type: [am = p] | 
|---|
| 1085 | {exp coef:0} = { | 
|---|
| 1086 | 0.29720000000       1.0000000000 | 
|---|
| 1087 | }) | 
|---|
| 1088 | (type: [am = p] | 
|---|
| 1089 | {exp coef:0} = { | 
|---|
| 1090 | 0.11000000000       1.0000000000 | 
|---|
| 1091 | }) | 
|---|
| 1092 | (type: [am = p] | 
|---|
| 1093 | {exp coef:0} = { | 
|---|
| 1094 | 0.39890000000E-01   1.0000000000 | 
|---|
| 1095 | }) | 
|---|
| 1096 | (type: [am = p] | 
|---|
| 1097 | {exp coef:0} = { | 
|---|
| 1098 | 10.000000000       1.0000000000 | 
|---|
| 1099 | }) | 
|---|
| 1100 | (type: [am = p] | 
|---|
| 1101 | {exp coef:0} = { | 
|---|
| 1102 | 4.5140000000       1.0000000000 | 
|---|
| 1103 | }) | 
|---|
| 1104 | (type: [am = p] | 
|---|
| 1105 | {exp coef:0} = { | 
|---|
| 1106 | 2.0380000000       1.0000000000 | 
|---|
| 1107 | }) | 
|---|
| 1108 | (type: [(am = d puream = 1)] | 
|---|
| 1109 | {exp coef:0} = { | 
|---|
| 1110 | 0.80400000000E-01   1.0000000000 | 
|---|
| 1111 | }) | 
|---|
| 1112 | (type: [(am = d puream = 1)] | 
|---|
| 1113 | {exp coef:0} = { | 
|---|
| 1114 | 0.19900000000       1.0000000000 | 
|---|
| 1115 | }) | 
|---|
| 1116 | (type: [(am = d puream = 1)] | 
|---|
| 1117 | {exp coef:0} = { | 
|---|
| 1118 | 0.49400000000       1.0000000000 | 
|---|
| 1119 | }) | 
|---|
| 1120 | (type: [(am = d puream = 1)] | 
|---|
| 1121 | {exp coef:0} = { | 
|---|
| 1122 | 14.835000000       1.0000000000 | 
|---|
| 1123 | }) | 
|---|
| 1124 | (type: [(am = d puream = 1)] | 
|---|
| 1125 | {exp coef:0} = { | 
|---|
| 1126 | 5.6370000000       1.0000000000 | 
|---|
| 1127 | }) | 
|---|
| 1128 | (type: [(am = d puream = 1)] | 
|---|
| 1129 | {exp coef:0} = { | 
|---|
| 1130 | 2.1420000000       1.0000000000 | 
|---|
| 1131 | }) | 
|---|
| 1132 | (type: [(am = f puream = 1)] | 
|---|
| 1133 | {exp coef:0} = { | 
|---|
| 1134 | 0.15400000000       1.0000000000 | 
|---|
| 1135 | }) | 
|---|
| 1136 | (type: [(am = f puream = 1)] | 
|---|
| 1137 | {exp coef:0} = { | 
|---|
| 1138 | 0.40100000000       1.0000000000 | 
|---|
| 1139 | }) | 
|---|
| 1140 | (type: [(am = f puream = 1)] | 
|---|
| 1141 | {exp coef:0} = { | 
|---|
| 1142 | 9.8530000000       1.0000000000 | 
|---|
| 1143 | }) | 
|---|
| 1144 | (type: [(am = f puream = 1)] | 
|---|
| 1145 | {exp coef:0} = { | 
|---|
| 1146 | 3.5250000000       1.0000000000 | 
|---|
| 1147 | }) | 
|---|
| 1148 | (type: [(am = g puream = 1)] | 
|---|
| 1149 | {exp coef:0} = { | 
|---|
| 1150 | 0.35700000000       1.0000000000 | 
|---|
| 1151 | }) | 
|---|
| 1152 | (type: [(am = g puream = 1)] | 
|---|
| 1153 | {exp coef:0} = { | 
|---|
| 1154 | 6.8940000000       1.0000000000 | 
|---|
| 1155 | }) | 
|---|
| 1156 | ] | 
|---|
| 1157 | % | 
|---|
| 1158 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
| 1159 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
| 1160 | silicon: "cc-pCVQZ": [ | 
|---|
| 1161 | (type: [am = s am = s am = s] | 
|---|
| 1162 | {exp coef:0 coef:1 coef:2} = { | 
|---|
| 1163 | 513000.00000      0.26092000000E-04 -0.69488000000E-05  0.17806800000E-05 | 
|---|
| 1164 | 76820.000000      0.20290500000E-03 -0.53964100000E-04  0.13814800000E-04 | 
|---|
| 1165 | 17470.000000      0.10671500000E-02 -0.28471600000E-03  0.73000500000E-04 | 
|---|
| 1166 | 4935.0000000      0.45059700000E-02 -0.12020300000E-02  0.30766600000E-03 | 
|---|
| 1167 | 1602.0000000      0.16235900000E-01 -0.43839700000E-02  0.11256300000E-02 | 
|---|
| 1168 | 574.10000000      0.50891300000E-01 -0.13977600000E-01  0.35843500000E-02 | 
|---|
| 1169 | 221.50000000      0.13515500000     -0.39351600000E-01  0.10172800000E-01 | 
|---|
| 1170 | 90.540000000      0.28129200000     -0.91428300000E-01  0.23752000000E-01 | 
|---|
| 1171 | 38.740000000      0.38533600000     -0.16560900000      0.44348300000E-01 | 
|---|
| 1172 | 16.950000000      0.24565100000     -0.15250500000      0.41904100000E-01 | 
|---|
| 1173 | 6.4520000000      0.34314500000E-01  0.16852400000     -0.50250400000E-01 | 
|---|
| 1174 | 2.8740000000     -0.33488400000E-02  0.56928400000     -0.21657800000 | 
|---|
| 1175 | 1.2500000000      0.18762500000E-02  0.39805600000     -0.28644800000 | 
|---|
| 1176 | }) | 
|---|
| 1177 | (type: [am = s] | 
|---|
| 1178 | {exp coef:0} = { | 
|---|
| 1179 | 0.35990000000       1.0000000000 | 
|---|
| 1180 | }) | 
|---|
| 1181 | (type: [am = s] | 
|---|
| 1182 | {exp coef:0} = { | 
|---|
| 1183 | 0.16990000000       1.0000000000 | 
|---|
| 1184 | }) | 
|---|
| 1185 | (type: [am = s] | 
|---|
| 1186 | {exp coef:0} = { | 
|---|
| 1187 | 0.70660000000E-01   1.0000000000 | 
|---|
| 1188 | }) | 
|---|
| 1189 | (type: [am = s] | 
|---|
| 1190 | {exp coef:0} = { | 
|---|
| 1191 | 12.164000000       1.0000000000 | 
|---|
| 1192 | }) | 
|---|
| 1193 | (type: [am = s] | 
|---|
| 1194 | {exp coef:0} = { | 
|---|
| 1195 | 6.1870000000       1.0000000000 | 
|---|
| 1196 | }) | 
|---|
| 1197 | (type: [am = s] | 
|---|
| 1198 | {exp coef:0} = { | 
|---|
| 1199 | 3.1470000000       1.0000000000 | 
|---|
| 1200 | }) | 
|---|
| 1201 | (type: [am = p am = p] | 
|---|
| 1202 | {exp coef:0 coef:1} = { | 
|---|
| 1203 | 1122.0000000      0.44814300000E-03 -0.96488300000E-04 | 
|---|
| 1204 | 266.00000000      0.38163900000E-02 -0.81197100000E-03 | 
|---|
| 1205 | 85.920000000      0.19810500000E-01 -0.43008700000E-02 | 
|---|
| 1206 | 32.330000000      0.72701700000E-01 -0.15750200000E-01 | 
|---|
| 1207 | 13.370000000      0.18983900000     -0.42954100000E-01 | 
|---|
| 1208 | 5.8000000000      0.33567200000     -0.75257400000E-01 | 
|---|
| 1209 | 2.5590000000      0.37936500000     -0.97144600000E-01 | 
|---|
| 1210 | 1.1240000000      0.20119300000     -0.22750700000E-01 | 
|---|
| 1211 | }) | 
|---|
| 1212 | (type: [am = p] | 
|---|
| 1213 | {exp coef:0} = { | 
|---|
| 1214 | 0.39880000000       1.0000000000 | 
|---|
| 1215 | }) | 
|---|
| 1216 | (type: [am = p] | 
|---|
| 1217 | {exp coef:0} = { | 
|---|
| 1218 | 0.15330000000       1.0000000000 | 
|---|
| 1219 | }) | 
|---|
| 1220 | (type: [am = p] | 
|---|
| 1221 | {exp coef:0} = { | 
|---|
| 1222 | 0.57280000000E-01   1.0000000000 | 
|---|
| 1223 | }) | 
|---|
| 1224 | (type: [am = p] | 
|---|
| 1225 | {exp coef:0} = { | 
|---|
| 1226 | 12.646000000       1.0000000000 | 
|---|
| 1227 | }) | 
|---|
| 1228 | (type: [am = p] | 
|---|
| 1229 | {exp coef:0} = { | 
|---|
| 1230 | 5.7470000000       1.0000000000 | 
|---|
| 1231 | }) | 
|---|
| 1232 | (type: [am = p] | 
|---|
| 1233 | {exp coef:0} = { | 
|---|
| 1234 | 2.6120000000       1.0000000000 | 
|---|
| 1235 | }) | 
|---|
| 1236 | (type: [(am = d puream = 1)] | 
|---|
| 1237 | {exp coef:0} = { | 
|---|
| 1238 | 0.12000000000       1.0000000000 | 
|---|
| 1239 | }) | 
|---|
| 1240 | (type: [(am = d puream = 1)] | 
|---|
| 1241 | {exp coef:0} = { | 
|---|
| 1242 | 0.30200000000       1.0000000000 | 
|---|
| 1243 | }) | 
|---|
| 1244 | (type: [(am = d puream = 1)] | 
|---|
| 1245 | {exp coef:0} = { | 
|---|
| 1246 | 0.76000000000       1.0000000000 | 
|---|
| 1247 | }) | 
|---|
| 1248 | (type: [(am = d puream = 1)] | 
|---|
| 1249 | {exp coef:0} = { | 
|---|
| 1250 | 19.015000000       1.0000000000 | 
|---|
| 1251 | }) | 
|---|
| 1252 | (type: [(am = d puream = 1)] | 
|---|
| 1253 | {exp coef:0} = { | 
|---|
| 1254 | 7.4010000000       1.0000000000 | 
|---|
| 1255 | }) | 
|---|
| 1256 | (type: [(am = d puream = 1)] | 
|---|
| 1257 | {exp coef:0} = { | 
|---|
| 1258 | 2.8810000000       1.0000000000 | 
|---|
| 1259 | }) | 
|---|
| 1260 | (type: [(am = f puream = 1)] | 
|---|
| 1261 | {exp coef:0} = { | 
|---|
| 1262 | 0.21200000000       1.0000000000 | 
|---|
| 1263 | }) | 
|---|
| 1264 | (type: [(am = f puream = 1)] | 
|---|
| 1265 | {exp coef:0} = { | 
|---|
| 1266 | 0.54100000000       1.0000000000 | 
|---|
| 1267 | }) | 
|---|
| 1268 | (type: [(am = f puream = 1)] | 
|---|
| 1269 | {exp coef:0} = { | 
|---|
| 1270 | 11.925000000       1.0000000000 | 
|---|
| 1271 | }) | 
|---|
| 1272 | (type: [(am = f puream = 1)] | 
|---|
| 1273 | {exp coef:0} = { | 
|---|
| 1274 | 4.3040000000       1.0000000000 | 
|---|
| 1275 | }) | 
|---|
| 1276 | (type: [(am = g puream = 1)] | 
|---|
| 1277 | {exp coef:0} = { | 
|---|
| 1278 | 0.46100000000       1.0000000000 | 
|---|
| 1279 | }) | 
|---|
| 1280 | (type: [(am = g puream = 1)] | 
|---|
| 1281 | {exp coef:0} = { | 
|---|
| 1282 | 8.5770000000       1.0000000000 | 
|---|
| 1283 | }) | 
|---|
| 1284 | ] | 
|---|
| 1285 | % | 
|---|
| 1286 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
| 1287 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
| 1288 | phosphorus: "cc-pCVQZ": [ | 
|---|
| 1289 | (type: [am = s am = s am = s] | 
|---|
| 1290 | {exp coef:0 coef:1 coef:2} = { | 
|---|
| 1291 | 615200.00000      0.24745000000E-04 -0.67220500000E-05  0.18474000000E-05 | 
|---|
| 1292 | 92120.000000      0.19246500000E-03 -0.52231100000E-04  0.14338000000E-04 | 
|---|
| 1293 | 20950.000000      0.10120200000E-02 -0.27536100000E-03  0.75722800000E-04 | 
|---|
| 1294 | 5920.0000000      0.42726100000E-02 -0.11630700000E-02  0.31920500000E-03 | 
|---|
| 1295 | 1922.0000000      0.15416100000E-01 -0.42428100000E-02  0.11685100000E-02 | 
|---|
| 1296 | 688.00000000      0.48597600000E-01 -0.13611400000E-01  0.37426700000E-02 | 
|---|
| 1297 | 265.00000000      0.13006000000     -0.38511400000E-01  0.10681700000E-01 | 
|---|
| 1298 | 108.20000000      0.27451400000     -0.90664300000E-01  0.25265700000E-01 | 
|---|
| 1299 | 46.220000000      0.38540200000     -0.16658400000      0.47928300000E-01 | 
|---|
| 1300 | 20.230000000      0.25593400000     -0.16144700000      0.47709600000E-01 | 
|---|
| 1301 | 7.8590000000      0.39123700000E-01  0.14678100000     -0.46652500000E-01 | 
|---|
| 1302 | 3.5470000000     -0.36801000000E-02  0.56668200000     -0.23496800000 | 
|---|
| 1303 | 1.5640000000      0.20821100000E-02  0.41643300000     -0.31133700000 | 
|---|
| 1304 | }) | 
|---|
| 1305 | (type: [am = s] | 
|---|
| 1306 | {exp coef:0} = { | 
|---|
| 1307 | 0.48880000000       1.0000000000 | 
|---|
| 1308 | }) | 
|---|
| 1309 | (type: [am = s] | 
|---|
| 1310 | {exp coef:0} = { | 
|---|
| 1311 | 0.22660000000       1.0000000000 | 
|---|
| 1312 | }) | 
|---|
| 1313 | (type: [am = s] | 
|---|
| 1314 | {exp coef:0} = { | 
|---|
| 1315 | 0.93310000000E-01   1.0000000000 | 
|---|
| 1316 | }) | 
|---|
| 1317 | (type: [am = s] | 
|---|
| 1318 | {exp coef:0} = { | 
|---|
| 1319 | 14.831000000       1.0000000000 | 
|---|
| 1320 | }) | 
|---|
| 1321 | (type: [am = s] | 
|---|
| 1322 | {exp coef:0} = { | 
|---|
| 1323 | 7.6400000000       1.0000000000 | 
|---|
| 1324 | }) | 
|---|
| 1325 | (type: [am = s] | 
|---|
| 1326 | {exp coef:0} = { | 
|---|
| 1327 | 3.9350000000       1.0000000000 | 
|---|
| 1328 | }) | 
|---|
| 1329 | (type: [am = p am = p] | 
|---|
| 1330 | {exp coef:0 coef:1} = { | 
|---|
| 1331 | 1367.0000000      0.42101500000E-03 -0.10082700000E-03 | 
|---|
| 1332 | 324.00000000      0.36098500000E-02 -0.85449900000E-03 | 
|---|
| 1333 | 104.60000000      0.18921700000E-01 -0.45711600000E-02 | 
|---|
| 1334 | 39.370000000      0.70556000000E-01 -0.17032700000E-01 | 
|---|
| 1335 | 16.260000000      0.18815700000     -0.47520400000E-01 | 
|---|
| 1336 | 7.0560000000      0.33870900000     -0.85278600000E-01 | 
|---|
| 1337 | 3.1300000000      0.38194300000     -0.10967600000 | 
|---|
| 1338 | 1.3940000000      0.19526100000     -0.16118100000E-01 | 
|---|
| 1339 | }) | 
|---|
| 1340 | (type: [am = p] | 
|---|
| 1341 | {exp coef:0} = { | 
|---|
| 1342 | 0.51790000000       1.0000000000 | 
|---|
| 1343 | }) | 
|---|
| 1344 | (type: [am = p] | 
|---|
| 1345 | {exp coef:0} = { | 
|---|
| 1346 | 0.20320000000       1.0000000000 | 
|---|
| 1347 | }) | 
|---|
| 1348 | (type: [am = p] | 
|---|
| 1349 | {exp coef:0} = { | 
|---|
| 1350 | 0.76980000000E-01   1.0000000000 | 
|---|
| 1351 | }) | 
|---|
| 1352 | (type: [am = p] | 
|---|
| 1353 | {exp coef:0} = { | 
|---|
| 1354 | 15.523000000       1.0000000000 | 
|---|
| 1355 | }) | 
|---|
| 1356 | (type: [am = p] | 
|---|
| 1357 | {exp coef:0} = { | 
|---|
| 1358 | 7.0730000000       1.0000000000 | 
|---|
| 1359 | }) | 
|---|
| 1360 | (type: [am = p] | 
|---|
| 1361 | {exp coef:0} = { | 
|---|
| 1362 | 3.2230000000       1.0000000000 | 
|---|
| 1363 | }) | 
|---|
| 1364 | (type: [(am = d puream = 1)] | 
|---|
| 1365 | {exp coef:0} = { | 
|---|
| 1366 | 0.16500000000       1.0000000000 | 
|---|
| 1367 | }) | 
|---|
| 1368 | (type: [(am = d puream = 1)] | 
|---|
| 1369 | {exp coef:0} = { | 
|---|
| 1370 | 0.41300000000       1.0000000000 | 
|---|
| 1371 | }) | 
|---|
| 1372 | (type: [(am = d puream = 1)] | 
|---|
| 1373 | {exp coef:0} = { | 
|---|
| 1374 | 1.0360000000       1.0000000000 | 
|---|
| 1375 | }) | 
|---|
| 1376 | (type: [(am = d puream = 1)] | 
|---|
| 1377 | {exp coef:0} = { | 
|---|
| 1378 | 23.417000000       1.0000000000 | 
|---|
| 1379 | }) | 
|---|
| 1380 | (type: [(am = d puream = 1)] | 
|---|
| 1381 | {exp coef:0} = { | 
|---|
| 1382 | 9.2500000000       1.0000000000 | 
|---|
| 1383 | }) | 
|---|
| 1384 | (type: [(am = d puream = 1)] | 
|---|
| 1385 | {exp coef:0} = { | 
|---|
| 1386 | 3.6540000000       1.0000000000 | 
|---|
| 1387 | }) | 
|---|
| 1388 | (type: [(am = f puream = 1)] | 
|---|
| 1389 | {exp coef:0} = { | 
|---|
| 1390 | 0.28000000000       1.0000000000 | 
|---|
| 1391 | }) | 
|---|
| 1392 | (type: [(am = f puream = 1)] | 
|---|
| 1393 | {exp coef:0} = { | 
|---|
| 1394 | 0.70300000000       1.0000000000 | 
|---|
| 1395 | }) | 
|---|
| 1396 | (type: [(am = f puream = 1)] | 
|---|
| 1397 | {exp coef:0} = { | 
|---|
| 1398 | 14.207000000       1.0000000000 | 
|---|
| 1399 | }) | 
|---|
| 1400 | (type: [(am = f puream = 1)] | 
|---|
| 1401 | {exp coef:0} = { | 
|---|
| 1402 | 5.1610000000       1.0000000000 | 
|---|
| 1403 | }) | 
|---|
| 1404 | (type: [(am = g puream = 1)] | 
|---|
| 1405 | {exp coef:0} = { | 
|---|
| 1406 | 0.59700000000       1.0000000000 | 
|---|
| 1407 | }) | 
|---|
| 1408 | (type: [(am = g puream = 1)] | 
|---|
| 1409 | {exp coef:0} = { | 
|---|
| 1410 | 10.448000000       1.0000000000 | 
|---|
| 1411 | }) | 
|---|
| 1412 | ] | 
|---|
| 1413 | % | 
|---|
| 1414 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
| 1415 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
| 1416 | sulfur: "cc-pCVQZ": [ | 
|---|
| 1417 | (type: [am = s am = s am = s] | 
|---|
| 1418 | {exp coef:0 coef:1 coef:2} = { | 
|---|
| 1419 | 727800.00000      0.23602500000E-04 -0.65217900000E-05  0.18940600000E-05 | 
|---|
| 1420 | 109000.00000      0.18348200000E-03 -0.50663100000E-04  0.14694800000E-04 | 
|---|
| 1421 | 24800.000000      0.96427800000E-03 -0.26683300000E-03  0.77546000000E-04 | 
|---|
| 1422 | 7014.0000000      0.40653700000E-02 -0.11260100000E-02  0.32650900000E-03 | 
|---|
| 1423 | 2278.0000000      0.14697300000E-01 -0.41118600000E-02  0.11968600000E-02 | 
|---|
| 1424 | 814.70000000      0.46508100000E-01 -0.13245400000E-01  0.38479900000E-02 | 
|---|
| 1425 | 313.40000000      0.12550800000     -0.37700400000E-01  0.11053900000E-01 | 
|---|
| 1426 | 127.70000000      0.26843300000     -0.89855400000E-01  0.26464500000E-01 | 
|---|
| 1427 | 54.480000000      0.38480900000     -0.16709800000      0.50877100000E-01 | 
|---|
| 1428 | 23.850000000      0.26537200000     -0.16935400000      0.53003000000E-01 | 
|---|
| 1429 | 9.4280000000      0.43732600000E-01  0.12782400000     -0.42551800000E-01 | 
|---|
| 1430 | 4.2900000000     -0.37880700000E-02  0.56486200000     -0.25085300000 | 
|---|
| 1431 | 1.9090000000      0.21808300000E-02  0.43176700000     -0.33315200000 | 
|---|
| 1432 | }) | 
|---|
| 1433 | (type: [am = s] | 
|---|
| 1434 | {exp coef:0} = { | 
|---|
| 1435 | 0.62700000000       1.0000000000 | 
|---|
| 1436 | }) | 
|---|
| 1437 | (type: [am = s] | 
|---|
| 1438 | {exp coef:0} = { | 
|---|
| 1439 | 0.28730000000       1.0000000000 | 
|---|
| 1440 | }) | 
|---|
| 1441 | (type: [am = s] | 
|---|
| 1442 | {exp coef:0} = { | 
|---|
| 1443 | 0.11720000000       1.0000000000 | 
|---|
| 1444 | }) | 
|---|
| 1445 | (type: [am = s] | 
|---|
| 1446 | {exp coef:0} = { | 
|---|
| 1447 | 17.599000000       1.0000000000 | 
|---|
| 1448 | }) | 
|---|
| 1449 | (type: [am = s] | 
|---|
| 1450 | {exp coef:0} = { | 
|---|
| 1451 | 9.1860000000       1.0000000000 | 
|---|
| 1452 | }) | 
|---|
| 1453 | (type: [am = s] | 
|---|
| 1454 | {exp coef:0} = { | 
|---|
| 1455 | 4.7950000000       1.0000000000 | 
|---|
| 1456 | }) | 
|---|
| 1457 | (type: [am = p am = p] | 
|---|
| 1458 | {exp coef:0 coef:1} = { | 
|---|
| 1459 | 1546.0000000      0.44118300000E-03 -0.11311000000E-03 | 
|---|
| 1460 | 366.40000000      0.37757100000E-02 -0.95858100000E-03 | 
|---|
| 1461 | 118.40000000      0.19836000000E-01 -0.51347100000E-02 | 
|---|
| 1462 | 44.530000000      0.74206300000E-01 -0.19264100000E-01 | 
|---|
| 1463 | 18.380000000      0.19732700000     -0.53598000000E-01 | 
|---|
| 1464 | 7.9650000000      0.35185100000     -0.96033300000E-01 | 
|---|
| 1465 | 3.5410000000      0.37868700000     -0.11818300000 | 
|---|
| 1466 | 1.5910000000      0.17093100000      0.92319400000E-02 | 
|---|
| 1467 | }) | 
|---|
| 1468 | (type: [am = p] | 
|---|
| 1469 | {exp coef:0} = { | 
|---|
| 1470 | 0.62050000000       1.0000000000 | 
|---|
| 1471 | }) | 
|---|
| 1472 | (type: [am = p] | 
|---|
| 1473 | {exp coef:0} = { | 
|---|
| 1474 | 0.24200000000       1.0000000000 | 
|---|
| 1475 | }) | 
|---|
| 1476 | (type: [am = p] | 
|---|
| 1477 | {exp coef:0} = { | 
|---|
| 1478 | 0.90140000000E-01   1.0000000000 | 
|---|
| 1479 | }) | 
|---|
| 1480 | (type: [am = p] | 
|---|
| 1481 | {exp coef:0} = { | 
|---|
| 1482 | 18.127000000       1.0000000000 | 
|---|
| 1483 | }) | 
|---|
| 1484 | (type: [am = p] | 
|---|
| 1485 | {exp coef:0} = { | 
|---|
| 1486 | 8.2190000000       1.0000000000 | 
|---|
| 1487 | }) | 
|---|
| 1488 | (type: [am = p] | 
|---|
| 1489 | {exp coef:0} = { | 
|---|
| 1490 | 3.7260000000       1.0000000000 | 
|---|
| 1491 | }) | 
|---|
| 1492 | (type: [(am = d puream = 1)] | 
|---|
| 1493 | {exp coef:0} = { | 
|---|
| 1494 | 0.20300000000       1.0000000000 | 
|---|
| 1495 | }) | 
|---|
| 1496 | (type: [(am = d puream = 1)] | 
|---|
| 1497 | {exp coef:0} = { | 
|---|
| 1498 | 0.50400000000       1.0000000000 | 
|---|
| 1499 | }) | 
|---|
| 1500 | (type: [(am = d puream = 1)] | 
|---|
| 1501 | {exp coef:0} = { | 
|---|
| 1502 | 1.2500000000       1.0000000000 | 
|---|
| 1503 | }) | 
|---|
| 1504 | (type: [(am = d puream = 1)] | 
|---|
| 1505 | {exp coef:0} = { | 
|---|
| 1506 | 27.417000000       1.0000000000 | 
|---|
| 1507 | }) | 
|---|
| 1508 | (type: [(am = d puream = 1)] | 
|---|
| 1509 | {exp coef:0} = { | 
|---|
| 1510 | 10.893000000       1.0000000000 | 
|---|
| 1511 | }) | 
|---|
| 1512 | (type: [(am = d puream = 1)] | 
|---|
| 1513 | {exp coef:0} = { | 
|---|
| 1514 | 4.3190000000       1.0000000000 | 
|---|
| 1515 | }) | 
|---|
| 1516 | (type: [(am = f puream = 1)] | 
|---|
| 1517 | {exp coef:0} = { | 
|---|
| 1518 | 0.33500000000       1.0000000000 | 
|---|
| 1519 | }) | 
|---|
| 1520 | (type: [(am = f puream = 1)] | 
|---|
| 1521 | {exp coef:0} = { | 
|---|
| 1522 | 0.86900000000       1.0000000000 | 
|---|
| 1523 | }) | 
|---|
| 1524 | (type: [(am = f puream = 1)] | 
|---|
| 1525 | {exp coef:0} = { | 
|---|
| 1526 | 16.535000000       1.0000000000 | 
|---|
| 1527 | }) | 
|---|
| 1528 | (type: [(am = f puream = 1)] | 
|---|
| 1529 | {exp coef:0} = { | 
|---|
| 1530 | 6.0080000000       1.0000000000 | 
|---|
| 1531 | }) | 
|---|
| 1532 | (type: [(am = g puream = 1)] | 
|---|
| 1533 | {exp coef:0} = { | 
|---|
| 1534 | 0.68300000000       1.0000000000 | 
|---|
| 1535 | }) | 
|---|
| 1536 | (type: [(am = g puream = 1)] | 
|---|
| 1537 | {exp coef:0} = { | 
|---|
| 1538 | 12.518000000       1.0000000000 | 
|---|
| 1539 | }) | 
|---|
| 1540 | ] | 
|---|
| 1541 | % | 
|---|
| 1542 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
| 1543 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
| 1544 | chlorine: "cc-pCVQZ": [ | 
|---|
| 1545 | (type: [am = s am = s am = s] | 
|---|
| 1546 | {exp coef:0 coef:1 coef:2} = { | 
|---|
| 1547 | 834900.00000      0.23168800000E-04 -0.64964900000E-05  0.19664500000E-05 | 
|---|
| 1548 | 125000.00000      0.18015400000E-03 -0.50489500000E-04  0.15262000000E-04 | 
|---|
| 1549 | 28430.000000      0.94778200000E-03 -0.26611300000E-03  0.80608600000E-04 | 
|---|
| 1550 | 8033.0000000      0.40013900000E-02 -0.11249900000E-02  0.33996000000E-03 | 
|---|
| 1551 | 2608.0000000      0.14462900000E-01 -0.41049700000E-02  0.12455100000E-02 | 
|---|
| 1552 | 933.90000000      0.45658600000E-01 -0.13198700000E-01  0.39961200000E-02 | 
|---|
| 1553 | 360.00000000      0.12324800000     -0.37534200000E-01  0.11475100000E-01 | 
|---|
| 1554 | 147.00000000      0.26436900000     -0.89723300000E-01  0.27550400000E-01 | 
|---|
| 1555 | 62.880000000      0.38298900000     -0.16767100000      0.53291700000E-01 | 
|---|
| 1556 | 27.600000000      0.27093400000     -0.17476300000      0.57124600000E-01 | 
|---|
| 1557 | 11.080000000      0.47140400000E-01  0.11490900000     -0.39520100000E-01 | 
|---|
| 1558 | 5.0750000000     -0.37176600000E-02  0.56361800000     -0.26434300000 | 
|---|
| 1559 | 2.2780000000      0.21915800000E-02  0.44160600000     -0.34929100000 | 
|---|
| 1560 | }) | 
|---|
| 1561 | (type: [am = s] | 
|---|
| 1562 | {exp coef:0} = { | 
|---|
| 1563 | 0.77750000000       1.0000000000 | 
|---|
| 1564 | }) | 
|---|
| 1565 | (type: [am = s] | 
|---|
| 1566 | {exp coef:0} = { | 
|---|
| 1567 | 0.35270000000       1.0000000000 | 
|---|
| 1568 | }) | 
|---|
| 1569 | (type: [am = s] | 
|---|
| 1570 | {exp coef:0} = { | 
|---|
| 1571 | 0.14310000000       1.0000000000 | 
|---|
| 1572 | }) | 
|---|
| 1573 | (type: [am = s] | 
|---|
| 1574 | {exp coef:0} = { | 
|---|
| 1575 | 20.689000000       1.0000000000 | 
|---|
| 1576 | }) | 
|---|
| 1577 | (type: [am = s] | 
|---|
| 1578 | {exp coef:0} = { | 
|---|
| 1579 | 10.880000000       1.0000000000 | 
|---|
| 1580 | }) | 
|---|
| 1581 | (type: [am = s] | 
|---|
| 1582 | {exp coef:0} = { | 
|---|
| 1583 | 5.7220000000       1.0000000000 | 
|---|
| 1584 | }) | 
|---|
| 1585 | (type: [am = p am = p] | 
|---|
| 1586 | {exp coef:0 coef:1} = { | 
|---|
| 1587 | 1703.0000000      0.47403900000E-03 -0.12826600000E-03 | 
|---|
| 1588 | 403.60000000      0.40641200000E-02 -0.10935600000E-02 | 
|---|
| 1589 | 130.30000000      0.21335500000E-01 -0.58342900000E-02 | 
|---|
| 1590 | 49.050000000      0.79461100000E-01 -0.21925800000E-01 | 
|---|
| 1591 | 20.260000000      0.20892700000     -0.60138500000E-01 | 
|---|
| 1592 | 8.7870000000      0.36494500000     -0.10692900000 | 
|---|
| 1593 | 3.9190000000      0.37172500000     -0.12245400000 | 
|---|
| 1594 | 1.7650000000      0.14629200000      0.38361900000E-01 | 
|---|
| 1595 | }) | 
|---|
| 1596 | (type: [am = p] | 
|---|
| 1597 | {exp coef:0} = { | 
|---|
| 1598 | 0.72070000000       1.0000000000 | 
|---|
| 1599 | }) | 
|---|
| 1600 | (type: [am = p] | 
|---|
| 1601 | {exp coef:0} = { | 
|---|
| 1602 | 0.28390000000       1.0000000000 | 
|---|
| 1603 | }) | 
|---|
| 1604 | (type: [am = p] | 
|---|
| 1605 | {exp coef:0} = { | 
|---|
| 1606 | 0.10600000000       1.0000000000 | 
|---|
| 1607 | }) | 
|---|
| 1608 | (type: [am = p] | 
|---|
| 1609 | {exp coef:0} = { | 
|---|
| 1610 | 20.784000000       1.0000000000 | 
|---|
| 1611 | }) | 
|---|
| 1612 | (type: [am = p] | 
|---|
| 1613 | {exp coef:0} = { | 
|---|
| 1614 | 9.3790000000       1.0000000000 | 
|---|
| 1615 | }) | 
|---|
| 1616 | (type: [am = p] | 
|---|
| 1617 | {exp coef:0} = { | 
|---|
| 1618 | 4.2320000000       1.0000000000 | 
|---|
| 1619 | }) | 
|---|
| 1620 | (type: [(am = d puream = 1)] | 
|---|
| 1621 | {exp coef:0} = { | 
|---|
| 1622 | 0.25400000000       1.0000000000 | 
|---|
| 1623 | }) | 
|---|
| 1624 | (type: [(am = d puream = 1)] | 
|---|
| 1625 | {exp coef:0} = { | 
|---|
| 1626 | 0.62800000000       1.0000000000 | 
|---|
| 1627 | }) | 
|---|
| 1628 | (type: [(am = d puream = 1)] | 
|---|
| 1629 | {exp coef:0} = { | 
|---|
| 1630 | 1.5510000000       1.0000000000 | 
|---|
| 1631 | }) | 
|---|
| 1632 | (type: [(am = d puream = 1)] | 
|---|
| 1633 | {exp coef:0} = { | 
|---|
| 1634 | 32.255000000       1.0000000000 | 
|---|
| 1635 | }) | 
|---|
| 1636 | (type: [(am = d puream = 1)] | 
|---|
| 1637 | {exp coef:0} = { | 
|---|
| 1638 | 12.888000000       1.0000000000 | 
|---|
| 1639 | }) | 
|---|
| 1640 | (type: [(am = d puream = 1)] | 
|---|
| 1641 | {exp coef:0} = { | 
|---|
| 1642 | 5.1490000000       1.0000000000 | 
|---|
| 1643 | }) | 
|---|
| 1644 | (type: [(am = f puream = 1)] | 
|---|
| 1645 | {exp coef:0} = { | 
|---|
| 1646 | 0.42300000000       1.0000000000 | 
|---|
| 1647 | }) | 
|---|
| 1648 | (type: [(am = f puream = 1)] | 
|---|
| 1649 | {exp coef:0} = { | 
|---|
| 1650 | 1.0890000000       1.0000000000 | 
|---|
| 1651 | }) | 
|---|
| 1652 | (type: [(am = f puream = 1)] | 
|---|
| 1653 | {exp coef:0} = { | 
|---|
| 1654 | 19.107000000       1.0000000000 | 
|---|
| 1655 | }) | 
|---|
| 1656 | (type: [(am = f puream = 1)] | 
|---|
| 1657 | {exp coef:0} = { | 
|---|
| 1658 | 6.9500000000       1.0000000000 | 
|---|
| 1659 | }) | 
|---|
| 1660 | (type: [(am = g puream = 1)] | 
|---|
| 1661 | {exp coef:0} = { | 
|---|
| 1662 | 0.82700000000       1.0000000000 | 
|---|
| 1663 | }) | 
|---|
| 1664 | (type: [(am = g puream = 1)] | 
|---|
| 1665 | {exp coef:0} = { | 
|---|
| 1666 | 14.782000000       1.0000000000 | 
|---|
| 1667 | }) | 
|---|
| 1668 | ] | 
|---|
| 1669 | % | 
|---|
| 1670 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g] | 
|---|
| 1671 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g) | 
|---|
| 1672 | argon: "cc-pCVQZ": [ | 
|---|
| 1673 | (type: [am = s am = s am = s] | 
|---|
| 1674 | {exp coef:0 coef:1 coef:2} = { | 
|---|
| 1675 | 950600.00000      0.22754500000E-04 -0.64620100000E-05  0.20205600000E-05 | 
|---|
| 1676 | 142300.00000      0.17694500000E-03 -0.50234600000E-04  0.15685100000E-04 | 
|---|
| 1677 | 32360.000000      0.93128200000E-03 -0.26480400000E-03  0.82861700000E-04 | 
|---|
| 1678 | 9145.0000000      0.39286000000E-02 -0.11189500000E-02  0.34926400000E-03 | 
|---|
| 1679 | 2970.0000000      0.14206400000E-01 -0.40827600000E-02  0.12797600000E-02 | 
|---|
| 1680 | 1064.0000000      0.44811400000E-01 -0.13121600000E-01  0.41036500000E-02 | 
|---|
| 1681 | 410.80000000      0.12100100000     -0.37285500000E-01  0.11778900000E-01 | 
|---|
| 1682 | 168.00000000      0.26057900000     -0.89470900000E-01  0.28386800000E-01 | 
|---|
| 1683 | 71.990000000      0.38136400000     -0.16805400000      0.55240600000E-01 | 
|---|
| 1684 | 31.670000000      0.27605800000     -0.17959400000      0.60749200000E-01 | 
|---|
| 1685 | 12.890000000      0.50517900000E-01  0.10295300000     -0.36201200000E-01 | 
|---|
| 1686 | 5.9290000000     -0.35986600000E-02  0.56263000000     -0.27539800000 | 
|---|
| 1687 | 2.6780000000      0.21879800000E-02  0.45035500000     -0.36284500000 | 
|---|
| 1688 | }) | 
|---|
| 1689 | (type: [am = s] | 
|---|
| 1690 | {exp coef:0} = { | 
|---|
| 1691 | 0.94160000000       1.0000000000 | 
|---|
| 1692 | }) | 
|---|
| 1693 | (type: [am = s] | 
|---|
| 1694 | {exp coef:0} = { | 
|---|
| 1695 | 0.42390000000       1.0000000000 | 
|---|
| 1696 | }) | 
|---|
| 1697 | (type: [am = s] | 
|---|
| 1698 | {exp coef:0} = { | 
|---|
| 1699 | 0.17140000000       1.0000000000 | 
|---|
| 1700 | }) | 
|---|
| 1701 | (type: [am = s] | 
|---|
| 1702 | {exp coef:0} = { | 
|---|
| 1703 | 24.024000000       1.0000000000 | 
|---|
| 1704 | }) | 
|---|
| 1705 | (type: [am = s] | 
|---|
| 1706 | {exp coef:0} = { | 
|---|
| 1707 | 12.706000000       1.0000000000 | 
|---|
| 1708 | }) | 
|---|
| 1709 | (type: [am = s] | 
|---|
| 1710 | {exp coef:0} = { | 
|---|
| 1711 | 6.7200000000       1.0000000000 | 
|---|
| 1712 | }) | 
|---|
| 1713 | (type: [am = p am = p] | 
|---|
| 1714 | {exp coef:0 coef:1} = { | 
|---|
| 1715 | 1890.0000000      0.49575200000E-03 -0.13886300000E-03 | 
|---|
| 1716 | 447.80000000      0.42517200000E-02 -0.11887000000E-02 | 
|---|
| 1717 | 144.60000000      0.22327700000E-01 -0.63255300000E-02 | 
|---|
| 1718 | 54.460000000      0.83087800000E-01 -0.23881300000E-01 | 
|---|
| 1719 | 22.510000000      0.21711000000     -0.64923800000E-01 | 
|---|
| 1720 | 9.7740000000      0.37450700000     -0.11544400000 | 
|---|
| 1721 | 4.3680000000      0.36644500000     -0.12365100000 | 
|---|
| 1722 | 1.9590000000      0.12924500000      0.64905500000E-01 | 
|---|
| 1723 | }) | 
|---|
| 1724 | (type: [am = p] | 
|---|
| 1725 | {exp coef:0} = { | 
|---|
| 1726 | 0.82600000000       1.0000000000 | 
|---|
| 1727 | }) | 
|---|
| 1728 | (type: [am = p] | 
|---|
| 1729 | {exp coef:0} = { | 
|---|
| 1730 | 0.32970000000       1.0000000000 | 
|---|
| 1731 | }) | 
|---|
| 1732 | (type: [am = p] | 
|---|
| 1733 | {exp coef:0} = { | 
|---|
| 1734 | 0.12420000000       1.0000000000 | 
|---|
| 1735 | }) | 
|---|
| 1736 | (type: [am = p] | 
|---|
| 1737 | {exp coef:0} = { | 
|---|
| 1738 | 23.627000000       1.0000000000 | 
|---|
| 1739 | }) | 
|---|
| 1740 | (type: [am = p] | 
|---|
| 1741 | {exp coef:0} = { | 
|---|
| 1742 | 10.654000000       1.0000000000 | 
|---|
| 1743 | }) | 
|---|
| 1744 | (type: [am = p] | 
|---|
| 1745 | {exp coef:0} = { | 
|---|
| 1746 | 4.8040000000       1.0000000000 | 
|---|
| 1747 | }) | 
|---|
| 1748 | (type: [(am = d puream = 1)] | 
|---|
| 1749 | {exp coef:0} = { | 
|---|
| 1750 | 0.31100000000       1.0000000000 | 
|---|
| 1751 | }) | 
|---|
| 1752 | (type: [(am = d puream = 1)] | 
|---|
| 1753 | {exp coef:0} = { | 
|---|
| 1754 | 0.76300000000       1.0000000000 | 
|---|
| 1755 | }) | 
|---|
| 1756 | (type: [(am = d puream = 1)] | 
|---|
| 1757 | {exp coef:0} = { | 
|---|
| 1758 | 1.8730000000       1.0000000000 | 
|---|
| 1759 | }) | 
|---|
| 1760 | (type: [(am = d puream = 1)] | 
|---|
| 1761 | {exp coef:0} = { | 
|---|
| 1762 | 37.364000000       1.0000000000 | 
|---|
| 1763 | }) | 
|---|
| 1764 | (type: [(am = d puream = 1)] | 
|---|
| 1765 | {exp coef:0} = { | 
|---|
| 1766 | 15.013000000       1.0000000000 | 
|---|
| 1767 | }) | 
|---|
| 1768 | (type: [(am = d puream = 1)] | 
|---|
| 1769 | {exp coef:0} = { | 
|---|
| 1770 | 6.0320000000       1.0000000000 | 
|---|
| 1771 | }) | 
|---|
| 1772 | (type: [(am = f puream = 1)] | 
|---|
| 1773 | {exp coef:0} = { | 
|---|
| 1774 | 0.54300000000       1.0000000000 | 
|---|
| 1775 | }) | 
|---|
| 1776 | (type: [(am = f puream = 1)] | 
|---|
| 1777 | {exp coef:0} = { | 
|---|
| 1778 | 1.3250000000       1.0000000000 | 
|---|
| 1779 | }) | 
|---|
| 1780 | (type: [(am = f puream = 1)] | 
|---|
| 1781 | {exp coef:0} = { | 
|---|
| 1782 | 21.884000000       1.0000000000 | 
|---|
| 1783 | }) | 
|---|
| 1784 | (type: [(am = f puream = 1)] | 
|---|
| 1785 | {exp coef:0} = { | 
|---|
| 1786 | 7.9680000000       1.0000000000 | 
|---|
| 1787 | }) | 
|---|
| 1788 | (type: [(am = g puream = 1)] | 
|---|
| 1789 | {exp coef:0} = { | 
|---|
| 1790 | 1.0070000000       1.0000000000 | 
|---|
| 1791 | }) | 
|---|
| 1792 | (type: [(am = g puream = 1)] | 
|---|
| 1793 | {exp coef:0} = { | 
|---|
| 1794 | 17.243000000       1.0000000000 | 
|---|
| 1795 | }) | 
|---|
| 1796 | ] | 
|---|
| 1797 | ) | 
|---|