1 | %BASIS "cc-pCVQZ" CARTESIAN
|
---|
2 | basis:(
|
---|
3 | %Elements References
|
---|
4 | %-------- ----------
|
---|
5 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
6 | % He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
|
---|
7 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
8 | %Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published)
|
---|
9 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
10 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
11 | %Elements References
|
---|
12 | %-------- ----------
|
---|
13 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
14 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and
|
---|
15 | % T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995).
|
---|
16 | %Al - Ar: K.A. Peterson and T.H. Dunning, Jr. J. Chem. Phys. 117, 10548 (2002)
|
---|
17 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
18 | %
|
---|
19 | %
|
---|
20 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
21 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
22 | lithium: "cc-pCVQZ": [
|
---|
23 | (type: [am = s am = s]
|
---|
24 | {exp coef:0 coef:1} = {
|
---|
25 | 6601.0000000 0.11700000000E-03 -0.18000000000E-04
|
---|
26 | 989.70000000 0.91100000000E-03 -0.14200000000E-03
|
---|
27 | 225.70000000 0.47280000000E-02 -0.74100000000E-03
|
---|
28 | 64.290000000 0.19197000000E-01 -0.30200000000E-02
|
---|
29 | 21.180000000 0.63047000000E-01 -0.10123000000E-01
|
---|
30 | 7.7240000000 0.16320800000 -0.27094000000E-01
|
---|
31 | 3.0030000000 0.31482700000 -0.57359000000E-01
|
---|
32 | 1.2120000000 0.39393600000 -0.93895000000E-01
|
---|
33 | 0.49300000000 0.19691800000 -0.12109100000
|
---|
34 | })
|
---|
35 | (type: [am = s]
|
---|
36 | {exp coef:0} = {
|
---|
37 | 0.95150000000E-01 1.0000000000
|
---|
38 | })
|
---|
39 | (type: [am = s]
|
---|
40 | {exp coef:0} = {
|
---|
41 | 0.47910000000E-01 1.0000000000
|
---|
42 | })
|
---|
43 | (type: [am = s]
|
---|
44 | {exp coef:0} = {
|
---|
45 | 0.22200000000E-01 1.0000000000
|
---|
46 | })
|
---|
47 | (type: [am = s]
|
---|
48 | {exp coef:0} = {
|
---|
49 | 5.6140000000 1.0000000000
|
---|
50 | })
|
---|
51 | (type: [am = s]
|
---|
52 | {exp coef:0} = {
|
---|
53 | 1.8600000000 1.0000000000
|
---|
54 | })
|
---|
55 | (type: [am = s]
|
---|
56 | {exp coef:0} = {
|
---|
57 | 0.61600000000 1.0000000000
|
---|
58 | })
|
---|
59 | (type: [am = p]
|
---|
60 | {exp coef:0} = {
|
---|
61 | 6.2500000000 0.33880000000E-02
|
---|
62 | 1.3700000000 0.19316000000E-01
|
---|
63 | 0.36720000000 0.79104000000E-01
|
---|
64 | })
|
---|
65 | (type: [am = p]
|
---|
66 | {exp coef:0} = {
|
---|
67 | 0.11920000000 1.0000000000
|
---|
68 | })
|
---|
69 | (type: [am = p]
|
---|
70 | {exp coef:0} = {
|
---|
71 | 0.44740000000E-01 1.0000000000
|
---|
72 | })
|
---|
73 | (type: [am = p]
|
---|
74 | {exp coef:0} = {
|
---|
75 | 0.17950000000E-01 1.0000000000
|
---|
76 | })
|
---|
77 | (type: [am = p]
|
---|
78 | {exp coef:0} = {
|
---|
79 | 9.7850000000 1.0000000000
|
---|
80 | })
|
---|
81 | (type: [am = p]
|
---|
82 | {exp coef:0} = {
|
---|
83 | 2.5930000000 1.0000000000
|
---|
84 | })
|
---|
85 | (type: [am = p]
|
---|
86 | {exp coef:0} = {
|
---|
87 | 0.68700000000 1.0000000000
|
---|
88 | })
|
---|
89 | (type: [(am = d puream = 1)]
|
---|
90 | {exp coef:0} = {
|
---|
91 | 0.34400000000 1.0000000000
|
---|
92 | })
|
---|
93 | (type: [(am = d puream = 1)]
|
---|
94 | {exp coef:0} = {
|
---|
95 | 0.15300000000 1.0000000000
|
---|
96 | })
|
---|
97 | (type: [(am = d puream = 1)]
|
---|
98 | {exp coef:0} = {
|
---|
99 | 0.68000000000E-01 1.0000000000
|
---|
100 | })
|
---|
101 | (type: [(am = d puream = 1)]
|
---|
102 | {exp coef:0} = {
|
---|
103 | 10.602000000 1.0000000000
|
---|
104 | })
|
---|
105 | (type: [(am = d puream = 1)]
|
---|
106 | {exp coef:0} = {
|
---|
107 | 3.0660000000 1.0000000000
|
---|
108 | })
|
---|
109 | (type: [(am = f puream = 1)]
|
---|
110 | {exp coef:0} = {
|
---|
111 | 0.24600000000 1.0000000000
|
---|
112 | })
|
---|
113 | (type: [(am = f puream = 1)]
|
---|
114 | {exp coef:0} = {
|
---|
115 | 0.12920000000 1.0000000000
|
---|
116 | })
|
---|
117 | (type: [(am = f puream = 1)]
|
---|
118 | {exp coef:0} = {
|
---|
119 | 6.6830000000 1.0000000000
|
---|
120 | })
|
---|
121 | (type: [(am = g puream = 1)]
|
---|
122 | {exp coef:0} = {
|
---|
123 | 0.23800000000 1.0000000000
|
---|
124 | })
|
---|
125 | ]
|
---|
126 | %
|
---|
127 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
128 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
129 | boron: "cc-pCVQZ": [
|
---|
130 | (type: [am = s am = s]
|
---|
131 | {exp coef:0 coef:1} = {
|
---|
132 | 23870.000000 0.88000000000E-04 -0.18000000000E-04
|
---|
133 | 3575.0000000 0.68700000000E-03 -0.13900000000E-03
|
---|
134 | 812.80000000 0.36000000000E-02 -0.72500000000E-03
|
---|
135 | 229.70000000 0.14949000000E-01 -0.30630000000E-02
|
---|
136 | 74.690000000 0.51435000000E-01 -0.10581000000E-01
|
---|
137 | 26.810000000 0.14330200000 -0.31365000000E-01
|
---|
138 | 10.320000000 0.30093500000 -0.71012000000E-01
|
---|
139 | 4.1780000000 0.40352600000 -0.13210300000
|
---|
140 | 1.7270000000 0.22534000000 -0.12307200000
|
---|
141 | })
|
---|
142 | (type: [am = s]
|
---|
143 | {exp coef:0} = {
|
---|
144 | 0.47040000000 1.0000000000
|
---|
145 | })
|
---|
146 | (type: [am = s]
|
---|
147 | {exp coef:0} = {
|
---|
148 | 0.18960000000 1.0000000000
|
---|
149 | })
|
---|
150 | (type: [am = s]
|
---|
151 | {exp coef:0} = {
|
---|
152 | 0.73940000000E-01 1.0000000000
|
---|
153 | })
|
---|
154 | (type: [am = s]
|
---|
155 | {exp coef:0} = {
|
---|
156 | 4.8640000000 1.0000000000
|
---|
157 | })
|
---|
158 | (type: [am = s]
|
---|
159 | {exp coef:0} = {
|
---|
160 | 13.288000000 1.0000000000
|
---|
161 | })
|
---|
162 | (type: [am = s]
|
---|
163 | {exp coef:0} = {
|
---|
164 | 36.304000000 1.0000000000
|
---|
165 | })
|
---|
166 | (type: [am = p]
|
---|
167 | {exp coef:0} = {
|
---|
168 | 22.260000000 0.50950000000E-02
|
---|
169 | 5.0580000000 0.33206000000E-01
|
---|
170 | 1.4870000000 0.13231400000
|
---|
171 | })
|
---|
172 | (type: [am = p]
|
---|
173 | {exp coef:0} = {
|
---|
174 | 0.50710000000 1.0000000000
|
---|
175 | })
|
---|
176 | (type: [am = p]
|
---|
177 | {exp coef:0} = {
|
---|
178 | 0.18120000000 1.0000000000
|
---|
179 | })
|
---|
180 | (type: [am = p]
|
---|
181 | {exp coef:0} = {
|
---|
182 | 0.64630000000E-01 1.0000000000
|
---|
183 | })
|
---|
184 | (type: [am = p]
|
---|
185 | {exp coef:0} = {
|
---|
186 | 5.4890000000 1.0000000000
|
---|
187 | })
|
---|
188 | (type: [am = p]
|
---|
189 | {exp coef:0} = {
|
---|
190 | 16.302000000 1.0000000000
|
---|
191 | })
|
---|
192 | (type: [am = p]
|
---|
193 | {exp coef:0} = {
|
---|
194 | 48.418000000 1.0000000000
|
---|
195 | })
|
---|
196 | (type: [(am = d puream = 1)]
|
---|
197 | {exp coef:0} = {
|
---|
198 | 1.1100000000 1.0000000000
|
---|
199 | })
|
---|
200 | (type: [(am = d puream = 1)]
|
---|
201 | {exp coef:0} = {
|
---|
202 | 0.40200000000 1.0000000000
|
---|
203 | })
|
---|
204 | (type: [(am = d puream = 1)]
|
---|
205 | {exp coef:0} = {
|
---|
206 | 0.14500000000 1.0000000000
|
---|
207 | })
|
---|
208 | (type: [(am = d puream = 1)]
|
---|
209 | {exp coef:0} = {
|
---|
210 | 6.6400000000 1.0000000000
|
---|
211 | })
|
---|
212 | (type: [(am = d puream = 1)]
|
---|
213 | {exp coef:0} = {
|
---|
214 | 24.462000000 1.0000000000
|
---|
215 | })
|
---|
216 | (type: [(am = f puream = 1)]
|
---|
217 | {exp coef:0} = {
|
---|
218 | 0.88200000000 1.0000000000
|
---|
219 | })
|
---|
220 | (type: [(am = f puream = 1)]
|
---|
221 | {exp coef:0} = {
|
---|
222 | 0.31100000000 1.0000000000
|
---|
223 | })
|
---|
224 | (type: [(am = f puream = 1)]
|
---|
225 | {exp coef:0} = {
|
---|
226 | 18.794000000 1.0000000000
|
---|
227 | })
|
---|
228 | (type: [(am = g puream = 1)]
|
---|
229 | {exp coef:0} = {
|
---|
230 | 0.67300000000 1.0000000000
|
---|
231 | })
|
---|
232 | ]
|
---|
233 | %
|
---|
234 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
235 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
236 | carbon: "cc-pCVQZ": [
|
---|
237 | (type: [am = s am = s]
|
---|
238 | {exp coef:0 coef:1} = {
|
---|
239 | 33980.000000 0.91000000000E-04 -0.19000000000E-04
|
---|
240 | 5089.0000000 0.70400000000E-03 -0.15100000000E-03
|
---|
241 | 1157.0000000 0.36930000000E-02 -0.78500000000E-03
|
---|
242 | 326.60000000 0.15360000000E-01 -0.33240000000E-02
|
---|
243 | 106.10000000 0.52929000000E-01 -0.11512000000E-01
|
---|
244 | 38.110000000 0.14704300000 -0.34160000000E-01
|
---|
245 | 14.750000000 0.30563100000 -0.77173000000E-01
|
---|
246 | 6.0350000000 0.39934500000 -0.14149300000
|
---|
247 | 2.5300000000 0.21705100000 -0.11801900000
|
---|
248 | })
|
---|
249 | (type: [am = s]
|
---|
250 | {exp coef:0} = {
|
---|
251 | 0.73550000000 1.0000000000
|
---|
252 | })
|
---|
253 | (type: [am = s]
|
---|
254 | {exp coef:0} = {
|
---|
255 | 0.29050000000 1.0000000000
|
---|
256 | })
|
---|
257 | (type: [am = s]
|
---|
258 | {exp coef:0} = {
|
---|
259 | 0.11110000000 1.0000000000
|
---|
260 | })
|
---|
261 | (type: [am = s]
|
---|
262 | {exp coef:0} = {
|
---|
263 | 7.2160000000 1.0000000000
|
---|
264 | })
|
---|
265 | (type: [am = s]
|
---|
266 | {exp coef:0} = {
|
---|
267 | 19.570000000 1.0000000000
|
---|
268 | })
|
---|
269 | (type: [am = s]
|
---|
270 | {exp coef:0} = {
|
---|
271 | 53.073000000 1.0000000000
|
---|
272 | })
|
---|
273 | (type: [am = p]
|
---|
274 | {exp coef:0} = {
|
---|
275 | 34.510000000 0.53780000000E-02
|
---|
276 | 7.9150000000 0.36132000000E-01
|
---|
277 | 2.3680000000 0.14249300000
|
---|
278 | })
|
---|
279 | (type: [am = p]
|
---|
280 | {exp coef:0} = {
|
---|
281 | 0.81320000000 1.0000000000
|
---|
282 | })
|
---|
283 | (type: [am = p]
|
---|
284 | {exp coef:0} = {
|
---|
285 | 0.28900000000 1.0000000000
|
---|
286 | })
|
---|
287 | (type: [am = p]
|
---|
288 | {exp coef:0} = {
|
---|
289 | 0.10070000000 1.0000000000
|
---|
290 | })
|
---|
291 | (type: [am = p]
|
---|
292 | {exp coef:0} = {
|
---|
293 | 8.1820000000 1.0000000000
|
---|
294 | })
|
---|
295 | (type: [am = p]
|
---|
296 | {exp coef:0} = {
|
---|
297 | 24.186000000 1.0000000000
|
---|
298 | })
|
---|
299 | (type: [am = p]
|
---|
300 | {exp coef:0} = {
|
---|
301 | 71.494000000 1.0000000000
|
---|
302 | })
|
---|
303 | (type: [(am = d puream = 1)]
|
---|
304 | {exp coef:0} = {
|
---|
305 | 1.8480000000 1.0000000000
|
---|
306 | })
|
---|
307 | (type: [(am = d puream = 1)]
|
---|
308 | {exp coef:0} = {
|
---|
309 | 0.64900000000 1.0000000000
|
---|
310 | })
|
---|
311 | (type: [(am = d puream = 1)]
|
---|
312 | {exp coef:0} = {
|
---|
313 | 0.22800000000 1.0000000000
|
---|
314 | })
|
---|
315 | (type: [(am = d puream = 1)]
|
---|
316 | {exp coef:0} = {
|
---|
317 | 8.6560000000 1.0000000000
|
---|
318 | })
|
---|
319 | (type: [(am = d puream = 1)]
|
---|
320 | {exp coef:0} = {
|
---|
321 | 33.213000000 1.0000000000
|
---|
322 | })
|
---|
323 | (type: [(am = f puream = 1)]
|
---|
324 | {exp coef:0} = {
|
---|
325 | 1.4190000000 1.0000000000
|
---|
326 | })
|
---|
327 | (type: [(am = f puream = 1)]
|
---|
328 | {exp coef:0} = {
|
---|
329 | 0.48500000000 1.0000000000
|
---|
330 | })
|
---|
331 | (type: [(am = f puream = 1)]
|
---|
332 | {exp coef:0} = {
|
---|
333 | 24.694000000 1.0000000000
|
---|
334 | })
|
---|
335 | (type: [(am = g puream = 1)]
|
---|
336 | {exp coef:0} = {
|
---|
337 | 1.0110000000 1.0000000000
|
---|
338 | })
|
---|
339 | ]
|
---|
340 | %
|
---|
341 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
342 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
343 | nitrogen: "cc-pCVQZ": [
|
---|
344 | (type: [am = s am = s]
|
---|
345 | {exp coef:0 coef:1} = {
|
---|
346 | 45840.000000 0.92000000000E-04 -0.20000000000E-04
|
---|
347 | 6868.0000000 0.71700000000E-03 -0.15900000000E-03
|
---|
348 | 1563.0000000 0.37490000000E-02 -0.82400000000E-03
|
---|
349 | 442.40000000 0.15532000000E-01 -0.34780000000E-02
|
---|
350 | 144.30000000 0.53146000000E-01 -0.11966000000E-01
|
---|
351 | 52.180000000 0.14678700000 -0.35388000000E-01
|
---|
352 | 20.340000000 0.30466300000 -0.80077000000E-01
|
---|
353 | 8.3810000000 0.39768400000 -0.14672200000
|
---|
354 | 3.5290000000 0.21764100000 -0.11636000000
|
---|
355 | })
|
---|
356 | (type: [am = s]
|
---|
357 | {exp coef:0} = {
|
---|
358 | 1.0540000000 1.0000000000
|
---|
359 | })
|
---|
360 | (type: [am = s]
|
---|
361 | {exp coef:0} = {
|
---|
362 | 0.41180000000 1.0000000000
|
---|
363 | })
|
---|
364 | (type: [am = s]
|
---|
365 | {exp coef:0} = {
|
---|
366 | 0.15520000000 1.0000000000
|
---|
367 | })
|
---|
368 | (type: [am = s]
|
---|
369 | {exp coef:0} = {
|
---|
370 | 9.8620000000 1.0000000000
|
---|
371 | })
|
---|
372 | (type: [am = s]
|
---|
373 | {exp coef:0} = {
|
---|
374 | 26.627000000 1.0000000000
|
---|
375 | })
|
---|
376 | (type: [am = s]
|
---|
377 | {exp coef:0} = {
|
---|
378 | 71.894000000 1.0000000000
|
---|
379 | })
|
---|
380 | (type: [am = p]
|
---|
381 | {exp coef:0} = {
|
---|
382 | 49.330000000 0.55330000000E-02
|
---|
383 | 11.370000000 0.37962000000E-01
|
---|
384 | 3.4350000000 0.14902800000
|
---|
385 | })
|
---|
386 | (type: [am = p]
|
---|
387 | {exp coef:0} = {
|
---|
388 | 1.1820000000 1.0000000000
|
---|
389 | })
|
---|
390 | (type: [am = p]
|
---|
391 | {exp coef:0} = {
|
---|
392 | 0.41730000000 1.0000000000
|
---|
393 | })
|
---|
394 | (type: [am = p]
|
---|
395 | {exp coef:0} = {
|
---|
396 | 0.14280000000 1.0000000000
|
---|
397 | })
|
---|
398 | (type: [am = p]
|
---|
399 | {exp coef:0} = {
|
---|
400 | 11.320000000 1.0000000000
|
---|
401 | })
|
---|
402 | (type: [am = p]
|
---|
403 | {exp coef:0} = {
|
---|
404 | 33.349000000 1.0000000000
|
---|
405 | })
|
---|
406 | (type: [am = p]
|
---|
407 | {exp coef:0} = {
|
---|
408 | 98.245000000 1.0000000000
|
---|
409 | })
|
---|
410 | (type: [(am = d puream = 1)]
|
---|
411 | {exp coef:0} = {
|
---|
412 | 2.8370000000 1.0000000000
|
---|
413 | })
|
---|
414 | (type: [(am = d puream = 1)]
|
---|
415 | {exp coef:0} = {
|
---|
416 | 0.96800000000 1.0000000000
|
---|
417 | })
|
---|
418 | (type: [(am = d puream = 1)]
|
---|
419 | {exp coef:0} = {
|
---|
420 | 0.33500000000 1.0000000000
|
---|
421 | })
|
---|
422 | (type: [(am = d puream = 1)]
|
---|
423 | {exp coef:0} = {
|
---|
424 | 11.828000000 1.0000000000
|
---|
425 | })
|
---|
426 | (type: [(am = d puream = 1)]
|
---|
427 | {exp coef:0} = {
|
---|
428 | 45.218000000 1.0000000000
|
---|
429 | })
|
---|
430 | (type: [(am = f puream = 1)]
|
---|
431 | {exp coef:0} = {
|
---|
432 | 2.0270000000 1.0000000000
|
---|
433 | })
|
---|
434 | (type: [(am = f puream = 1)]
|
---|
435 | {exp coef:0} = {
|
---|
436 | 0.68500000000 1.0000000000
|
---|
437 | })
|
---|
438 | (type: [(am = f puream = 1)]
|
---|
439 | {exp coef:0} = {
|
---|
440 | 28.364000000 1.0000000000
|
---|
441 | })
|
---|
442 | (type: [(am = g puream = 1)]
|
---|
443 | {exp coef:0} = {
|
---|
444 | 1.4270000000 1.0000000000
|
---|
445 | })
|
---|
446 | ]
|
---|
447 | %
|
---|
448 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
449 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
450 | oxygen: "cc-pCVQZ": [
|
---|
451 | (type: [am = s am = s]
|
---|
452 | {exp coef:0 coef:1} = {
|
---|
453 | 61420.000000 0.90000000000E-04 -0.20000000000E-04
|
---|
454 | 9199.0000000 0.69800000000E-03 -0.15900000000E-03
|
---|
455 | 2091.0000000 0.36640000000E-02 -0.82900000000E-03
|
---|
456 | 590.90000000 0.15218000000E-01 -0.35080000000E-02
|
---|
457 | 192.30000000 0.52423000000E-01 -0.12156000000E-01
|
---|
458 | 69.320000000 0.14592100000 -0.36261000000E-01
|
---|
459 | 26.970000000 0.30525800000 -0.82992000000E-01
|
---|
460 | 11.100000000 0.39850800000 -0.15209000000
|
---|
461 | 4.6820000000 0.21698000000 -0.11533100000
|
---|
462 | })
|
---|
463 | (type: [am = s]
|
---|
464 | {exp coef:0} = {
|
---|
465 | 1.4280000000 1.0000000000
|
---|
466 | })
|
---|
467 | (type: [am = s]
|
---|
468 | {exp coef:0} = {
|
---|
469 | 0.55470000000 1.0000000000
|
---|
470 | })
|
---|
471 | (type: [am = s]
|
---|
472 | {exp coef:0} = {
|
---|
473 | 0.20670000000 1.0000000000
|
---|
474 | })
|
---|
475 | (type: [am = s]
|
---|
476 | {exp coef:0} = {
|
---|
477 | 12.974000000 1.0000000000
|
---|
478 | })
|
---|
479 | (type: [am = s]
|
---|
480 | {exp coef:0} = {
|
---|
481 | 34.900000000 1.0000000000
|
---|
482 | })
|
---|
483 | (type: [am = s]
|
---|
484 | {exp coef:0} = {
|
---|
485 | 93.881000000 1.0000000000
|
---|
486 | })
|
---|
487 | (type: [am = p]
|
---|
488 | {exp coef:0} = {
|
---|
489 | 63.420000000 0.60440000000E-02
|
---|
490 | 14.660000000 0.41799000000E-01
|
---|
491 | 4.4590000000 0.16114300000
|
---|
492 | })
|
---|
493 | (type: [am = p]
|
---|
494 | {exp coef:0} = {
|
---|
495 | 1.5310000000 1.0000000000
|
---|
496 | })
|
---|
497 | (type: [am = p]
|
---|
498 | {exp coef:0} = {
|
---|
499 | 0.53020000000 1.0000000000
|
---|
500 | })
|
---|
501 | (type: [am = p]
|
---|
502 | {exp coef:0} = {
|
---|
503 | 0.17500000000 1.0000000000
|
---|
504 | })
|
---|
505 | (type: [am = p]
|
---|
506 | {exp coef:0} = {
|
---|
507 | 14.475000000 1.0000000000
|
---|
508 | })
|
---|
509 | (type: [am = p]
|
---|
510 | {exp coef:0} = {
|
---|
511 | 42.730000000 1.0000000000
|
---|
512 | })
|
---|
513 | (type: [am = p]
|
---|
514 | {exp coef:0} = {
|
---|
515 | 126.14000000 1.0000000000
|
---|
516 | })
|
---|
517 | (type: [(am = d puream = 1)]
|
---|
518 | {exp coef:0} = {
|
---|
519 | 3.7750000000 1.0000000000
|
---|
520 | })
|
---|
521 | (type: [(am = d puream = 1)]
|
---|
522 | {exp coef:0} = {
|
---|
523 | 1.3000000000 1.0000000000
|
---|
524 | })
|
---|
525 | (type: [(am = d puream = 1)]
|
---|
526 | {exp coef:0} = {
|
---|
527 | 0.44400000000 1.0000000000
|
---|
528 | })
|
---|
529 | (type: [(am = d puream = 1)]
|
---|
530 | {exp coef:0} = {
|
---|
531 | 14.927000000 1.0000000000
|
---|
532 | })
|
---|
533 | (type: [(am = d puream = 1)]
|
---|
534 | {exp coef:0} = {
|
---|
535 | 57.544000000 1.0000000000
|
---|
536 | })
|
---|
537 | (type: [(am = f puream = 1)]
|
---|
538 | {exp coef:0} = {
|
---|
539 | 2.6660000000 1.0000000000
|
---|
540 | })
|
---|
541 | (type: [(am = f puream = 1)]
|
---|
542 | {exp coef:0} = {
|
---|
543 | 0.85900000000 1.0000000000
|
---|
544 | })
|
---|
545 | (type: [(am = f puream = 1)]
|
---|
546 | {exp coef:0} = {
|
---|
547 | 26.483000000 1.0000000000
|
---|
548 | })
|
---|
549 | (type: [(am = g puream = 1)]
|
---|
550 | {exp coef:0} = {
|
---|
551 | 1.8460000000 1.0000000000
|
---|
552 | })
|
---|
553 | ]
|
---|
554 | %
|
---|
555 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
556 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
557 | fluorine: "cc-pCVQZ": [
|
---|
558 | (type: [am = s am = s]
|
---|
559 | {exp coef:0 coef:1} = {
|
---|
560 | 74530.000000 0.95000000000E-04 -0.22000000000E-04
|
---|
561 | 11170.000000 0.73800000000E-03 -0.17200000000E-03
|
---|
562 | 2543.0000000 0.38580000000E-02 -0.89100000000E-03
|
---|
563 | 721.00000000 0.15926000000E-01 -0.37480000000E-02
|
---|
564 | 235.90000000 0.54289000000E-01 -0.12862000000E-01
|
---|
565 | 85.600000000 0.14951300000 -0.38061000000E-01
|
---|
566 | 33.550000000 0.30825200000 -0.86239000000E-01
|
---|
567 | 13.930000000 0.39485300000 -0.15586500000
|
---|
568 | 5.9150000000 0.21103100000 -0.11091400000
|
---|
569 | })
|
---|
570 | (type: [am = s]
|
---|
571 | {exp coef:0} = {
|
---|
572 | 1.8430000000 1.0000000000
|
---|
573 | })
|
---|
574 | (type: [am = s]
|
---|
575 | {exp coef:0} = {
|
---|
576 | 0.71240000000 1.0000000000
|
---|
577 | })
|
---|
578 | (type: [am = s]
|
---|
579 | {exp coef:0} = {
|
---|
580 | 0.26370000000 1.0000000000
|
---|
581 | })
|
---|
582 | (type: [am = s]
|
---|
583 | {exp coef:0} = {
|
---|
584 | 16.319000000 1.0000000000
|
---|
585 | })
|
---|
586 | (type: [am = s]
|
---|
587 | {exp coef:0} = {
|
---|
588 | 43.784000000 1.0000000000
|
---|
589 | })
|
---|
590 | (type: [am = s]
|
---|
591 | {exp coef:0} = {
|
---|
592 | 117.47200000 1.0000000000
|
---|
593 | })
|
---|
594 | (type: [am = p]
|
---|
595 | {exp coef:0} = {
|
---|
596 | 80.390000000 0.63470000000E-02
|
---|
597 | 18.630000000 0.44204000000E-01
|
---|
598 | 5.6940000000 0.16851400000
|
---|
599 | })
|
---|
600 | (type: [am = p]
|
---|
601 | {exp coef:0} = {
|
---|
602 | 1.9530000000 1.0000000000
|
---|
603 | })
|
---|
604 | (type: [am = p]
|
---|
605 | {exp coef:0} = {
|
---|
606 | 0.67020000000 1.0000000000
|
---|
607 | })
|
---|
608 | (type: [am = p]
|
---|
609 | {exp coef:0} = {
|
---|
610 | 0.21660000000 1.0000000000
|
---|
611 | })
|
---|
612 | (type: [am = p]
|
---|
613 | {exp coef:0} = {
|
---|
614 | 18.119000000 1.0000000000
|
---|
615 | })
|
---|
616 | (type: [am = p]
|
---|
617 | {exp coef:0} = {
|
---|
618 | 53.505000000 1.0000000000
|
---|
619 | })
|
---|
620 | (type: [am = p]
|
---|
621 | {exp coef:0} = {
|
---|
622 | 158.00100000 1.0000000000
|
---|
623 | })
|
---|
624 | (type: [(am = d puream = 1)]
|
---|
625 | {exp coef:0} = {
|
---|
626 | 5.0140000000 1.0000000000
|
---|
627 | })
|
---|
628 | (type: [(am = d puream = 1)]
|
---|
629 | {exp coef:0} = {
|
---|
630 | 1.7250000000 1.0000000000
|
---|
631 | })
|
---|
632 | (type: [(am = d puream = 1)]
|
---|
633 | {exp coef:0} = {
|
---|
634 | 0.58600000000 1.0000000000
|
---|
635 | })
|
---|
636 | (type: [(am = d puream = 1)]
|
---|
637 | {exp coef:0} = {
|
---|
638 | 18.943000000 1.0000000000
|
---|
639 | })
|
---|
640 | (type: [(am = d puream = 1)]
|
---|
641 | {exp coef:0} = {
|
---|
642 | 72.798000000 1.0000000000
|
---|
643 | })
|
---|
644 | (type: [(am = f puream = 1)]
|
---|
645 | {exp coef:0} = {
|
---|
646 | 3.5620000000 1.0000000000
|
---|
647 | })
|
---|
648 | (type: [(am = f puream = 1)]
|
---|
649 | {exp coef:0} = {
|
---|
650 | 1.1480000000 1.0000000000
|
---|
651 | })
|
---|
652 | (type: [(am = f puream = 1)]
|
---|
653 | {exp coef:0} = {
|
---|
654 | 25.161000000 1.0000000000
|
---|
655 | })
|
---|
656 | (type: [(am = g puream = 1)]
|
---|
657 | {exp coef:0} = {
|
---|
658 | 2.3760000000 1.0000000000
|
---|
659 | })
|
---|
660 | ]
|
---|
661 | %
|
---|
662 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
663 | % AUGMENTING FUNCTIONS: Tight (s,p,d)
|
---|
664 | neon: "cc-pCVQZ": [
|
---|
665 | (type: [am = s am = s]
|
---|
666 | {exp coef:0 coef:1} = {
|
---|
667 | 99920.000000 0.86000000000E-04 -0.20000000000E-04
|
---|
668 | 14960.000000 0.66900000000E-03 -0.15800000000E-03
|
---|
669 | 3399.0000000 0.35180000000E-02 -0.82400000000E-03
|
---|
670 | 958.90000000 0.14667000000E-01 -0.35000000000E-02
|
---|
671 | 311.20000000 0.50962000000E-01 -0.12233000000E-01
|
---|
672 | 111.70000000 0.14374400000 -0.37017000000E-01
|
---|
673 | 43.320000000 0.30456200000 -0.86113000000E-01
|
---|
674 | 17.800000000 0.40010500000 -0.15838100000
|
---|
675 | 7.5030000000 0.21864400000 -0.11428800000
|
---|
676 | })
|
---|
677 | (type: [am = s]
|
---|
678 | {exp coef:0} = {
|
---|
679 | 2.3370000000 1.0000000000
|
---|
680 | })
|
---|
681 | (type: [am = s]
|
---|
682 | {exp coef:0} = {
|
---|
683 | 0.90010000000 1.0000000000
|
---|
684 | })
|
---|
685 | (type: [am = s]
|
---|
686 | {exp coef:0} = {
|
---|
687 | 0.33010000000 1.0000000000
|
---|
688 | })
|
---|
689 | (type: [am = s]
|
---|
690 | {exp coef:0} = {
|
---|
691 | 20.180000000 1.0000000000
|
---|
692 | })
|
---|
693 | (type: [am = s]
|
---|
694 | {exp coef:0} = {
|
---|
695 | 54.042000000 1.0000000000
|
---|
696 | })
|
---|
697 | (type: [am = s]
|
---|
698 | {exp coef:0} = {
|
---|
699 | 144.72500000 1.0000000000
|
---|
700 | })
|
---|
701 | (type: [am = p]
|
---|
702 | {exp coef:0} = {
|
---|
703 | 99.680000000 0.65660000000E-02
|
---|
704 | 23.150000000 0.45979000000E-01
|
---|
705 | 7.1080000000 0.17341900000
|
---|
706 | })
|
---|
707 | (type: [am = p]
|
---|
708 | {exp coef:0} = {
|
---|
709 | 2.4410000000 1.0000000000
|
---|
710 | })
|
---|
711 | (type: [am = p]
|
---|
712 | {exp coef:0} = {
|
---|
713 | 0.83390000000 1.0000000000
|
---|
714 | })
|
---|
715 | (type: [am = p]
|
---|
716 | {exp coef:0} = {
|
---|
717 | 0.26620000000 1.0000000000
|
---|
718 | })
|
---|
719 | (type: [am = p]
|
---|
720 | {exp coef:0} = {
|
---|
721 | 22.222000000 1.0000000000
|
---|
722 | })
|
---|
723 | (type: [am = p]
|
---|
724 | {exp coef:0} = {
|
---|
725 | 65.622000000 1.0000000000
|
---|
726 | })
|
---|
727 | (type: [am = p]
|
---|
728 | {exp coef:0} = {
|
---|
729 | 193.78000000 1.0000000000
|
---|
730 | })
|
---|
731 | (type: [(am = d puream = 1)]
|
---|
732 | {exp coef:0} = {
|
---|
733 | 6.4710000000 1.0000000000
|
---|
734 | })
|
---|
735 | (type: [(am = d puream = 1)]
|
---|
736 | {exp coef:0} = {
|
---|
737 | 2.2130000000 1.0000000000
|
---|
738 | })
|
---|
739 | (type: [(am = d puream = 1)]
|
---|
740 | {exp coef:0} = {
|
---|
741 | 0.74700000000 1.0000000000
|
---|
742 | })
|
---|
743 | (type: [(am = d puream = 1)]
|
---|
744 | {exp coef:0} = {
|
---|
745 | 23.613000000 1.0000000000
|
---|
746 | })
|
---|
747 | (type: [(am = d puream = 1)]
|
---|
748 | {exp coef:0} = {
|
---|
749 | 90.107000000 1.0000000000
|
---|
750 | })
|
---|
751 | (type: [(am = f puream = 1)]
|
---|
752 | {exp coef:0} = {
|
---|
753 | 4.6570000000 1.0000000000
|
---|
754 | })
|
---|
755 | (type: [(am = f puream = 1)]
|
---|
756 | {exp coef:0} = {
|
---|
757 | 1.5240000000 1.0000000000
|
---|
758 | })
|
---|
759 | (type: [(am = f puream = 1)]
|
---|
760 | {exp coef:0} = {
|
---|
761 | 28.830000000 1.0000000000
|
---|
762 | })
|
---|
763 | (type: [(am = g puream = 1)]
|
---|
764 | {exp coef:0} = {
|
---|
765 | 2.9830000000 1.0000000000
|
---|
766 | })
|
---|
767 | ]
|
---|
768 | %
|
---|
769 | % BASIS SET: (19s,12p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
770 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
771 | sodium: "cc-pCVQZ": [
|
---|
772 | (type: [am = s am = s am = s]
|
---|
773 | {exp coef:0 coef:1 coef:2} = {
|
---|
774 | 1224000.0000 0.47889400000E-05 -0.11695800000E-05 0.17587100000E-06
|
---|
775 | 183200.00000 0.37239500000E-04 -0.90911000000E-05 0.13659400000E-05
|
---|
776 | 41700.000000 0.19583100000E-03 -0.47849900000E-04 0.71979500000E-05
|
---|
777 | 11810.000000 0.82669800000E-03 -0.20196200000E-03 0.30334900000E-04
|
---|
778 | 3853.0000000 0.30025100000E-02 -0.73583700000E-03 0.11075200000E-03
|
---|
779 | 1391.0000000 0.97031000000E-02 -0.23874600000E-02 0.35859600000E-03
|
---|
780 | 542.50000000 0.28233700000E-01 -0.70496900000E-02 0.10627200000E-02
|
---|
781 | 224.90000000 0.73205800000E-01 -0.18785600000E-01 0.28268700000E-02
|
---|
782 | 97.930000000 0.16289700000 -0.44615300000E-01 0.67674200000E-02
|
---|
783 | 44.310000000 0.28870800000 -0.89774100000E-01 0.13648000000E-01
|
---|
784 | 20.650000000 0.34682900000 -0.14294000000 0.22281400000E-01
|
---|
785 | 9.7290000000 0.20686500000 -0.12431500000 0.19601100000E-01
|
---|
786 | 4.2280000000 0.32800900000E-01 0.99964800000E-01 -0.16770800000E-01
|
---|
787 | 1.9690000000 -0.64773600000E-03 0.41708000000 -0.77373400000E-01
|
---|
788 | 0.88900000000 0.14587800000E-02 0.47512300000 -0.11350100000
|
---|
789 | 0.39640000000 -0.17834600000E-03 0.16326800000 -0.13913000000
|
---|
790 | })
|
---|
791 | (type: [am = s]
|
---|
792 | {exp coef:0} = {
|
---|
793 | 0.69930000000E-01 1.0000000000
|
---|
794 | })
|
---|
795 | (type: [am = s]
|
---|
796 | {exp coef:0} = {
|
---|
797 | 0.32890000000E-01 1.0000000000
|
---|
798 | })
|
---|
799 | (type: [am = s]
|
---|
800 | {exp coef:0} = {
|
---|
801 | 0.16120000000E-01 1.0000000000
|
---|
802 | })
|
---|
803 | (type: [am = s]
|
---|
804 | {exp coef:0} = {
|
---|
805 | 24.282000000 1.0000000000
|
---|
806 | })
|
---|
807 | (type: [am = s]
|
---|
808 | {exp coef:0} = {
|
---|
809 | 4.8740000000 1.0000000000
|
---|
810 | })
|
---|
811 | (type: [am = s]
|
---|
812 | {exp coef:0} = {
|
---|
813 | 0.97800000000 1.0000000000
|
---|
814 | })
|
---|
815 | (type: [am = p am = p]
|
---|
816 | {exp coef:0 coef:1} = {
|
---|
817 | 413.40000000 0.90819600000E-03 -0.90174100000E-04
|
---|
818 | 97.980000000 0.74177300000E-02 -0.73934200000E-03
|
---|
819 | 31.370000000 0.35746400000E-01 -0.35730900000E-02
|
---|
820 | 11.620000000 0.11852000000 -0.12014200000E-01
|
---|
821 | 4.6710000000 0.26140300000 -0.26717800000E-01
|
---|
822 | 1.9180000000 0.37839500000 -0.39275300000E-01
|
---|
823 | 0.77750000000 0.33463200000 -0.37608300000E-01
|
---|
824 | 0.30130000000 0.12684400000 -0.43322800000E-01
|
---|
825 | 0.22750000000 -0.14711700000E-01 0.51800300000E-01
|
---|
826 | })
|
---|
827 | (type: [am = p]
|
---|
828 | {exp coef:0} = {
|
---|
829 | 0.75270000000E-01 1.0000000000
|
---|
830 | })
|
---|
831 | (type: [am = p]
|
---|
832 | {exp coef:0} = {
|
---|
833 | 0.31260000000E-01 1.0000000000
|
---|
834 | })
|
---|
835 | (type: [am = p]
|
---|
836 | {exp coef:0} = {
|
---|
837 | 0.13420000000E-01 1.0000000000
|
---|
838 | })
|
---|
839 | (type: [am = p]
|
---|
840 | {exp coef:0} = {
|
---|
841 | 4.4660000000 1.0000000000
|
---|
842 | })
|
---|
843 | (type: [am = p]
|
---|
844 | {exp coef:0} = {
|
---|
845 | 1.6890000000 1.0000000000
|
---|
846 | })
|
---|
847 | (type: [am = p]
|
---|
848 | {exp coef:0} = {
|
---|
849 | 0.63800000000 1.0000000000
|
---|
850 | })
|
---|
851 | (type: [(am = d puream = 1)]
|
---|
852 | {exp coef:0} = {
|
---|
853 | 0.15380000000 1.0000000000
|
---|
854 | })
|
---|
855 | (type: [(am = d puream = 1)]
|
---|
856 | {exp coef:0} = {
|
---|
857 | 0.86500000000E-01 1.0000000000
|
---|
858 | })
|
---|
859 | (type: [(am = d puream = 1)]
|
---|
860 | {exp coef:0} = {
|
---|
861 | 0.48700000000E-01 1.0000000000
|
---|
862 | })
|
---|
863 | (type: [(am = d puream = 1)]
|
---|
864 | {exp coef:0} = {
|
---|
865 | 8.6060000000 1.0000000000
|
---|
866 | })
|
---|
867 | (type: [(am = d puream = 1)]
|
---|
868 | {exp coef:0} = {
|
---|
869 | 3.1370000000 1.0000000000
|
---|
870 | })
|
---|
871 | (type: [(am = d puream = 1)]
|
---|
872 | {exp coef:0} = {
|
---|
873 | 1.1440000000 1.0000000000
|
---|
874 | })
|
---|
875 | (type: [(am = f puream = 1)]
|
---|
876 | {exp coef:0} = {
|
---|
877 | 0.19120000000 1.0000000000
|
---|
878 | })
|
---|
879 | (type: [(am = f puream = 1)]
|
---|
880 | {exp coef:0} = {
|
---|
881 | 0.10360000000 1.0000000000
|
---|
882 | })
|
---|
883 | (type: [(am = f puream = 1)]
|
---|
884 | {exp coef:0} = {
|
---|
885 | 6.2580000000 1.0000000000
|
---|
886 | })
|
---|
887 | (type: [(am = f puream = 1)]
|
---|
888 | {exp coef:0} = {
|
---|
889 | 2.1730000000 1.0000000000
|
---|
890 | })
|
---|
891 | (type: [(am = g puream = 1)]
|
---|
892 | {exp coef:0} = {
|
---|
893 | 0.17220000000 1.0000000000
|
---|
894 | })
|
---|
895 | (type: [(am = g puream = 1)]
|
---|
896 | {exp coef:0} = {
|
---|
897 | 4.0970000000 1.0000000000
|
---|
898 | })
|
---|
899 | ]
|
---|
900 | %
|
---|
901 | % BASIS SET: (16s,12p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
902 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
903 | magnesium: "cc-pCVQZ": [
|
---|
904 | (type: [am = s am = s am = s]
|
---|
905 | {exp coef:0 coef:1 coef:2} = {
|
---|
906 | 327600.00000 0.30960800000E-04 -0.78317300000E-05 0.15090800000E-05
|
---|
907 | 49050.000000 0.24095400000E-03 -0.60793500000E-04 0.11713400000E-04
|
---|
908 | 11150.000000 0.12666000000E-02 -0.32119700000E-03 0.61898000000E-04
|
---|
909 | 3152.0000000 0.53335900000E-02 -0.13495500000E-02 0.26008800000E-03
|
---|
910 | 1025.0000000 0.19077000000E-01 -0.49057000000E-02 0.94621800000E-03
|
---|
911 | 368.80000000 0.58805800000E-01 -0.15356100000E-01 0.29659500000E-02
|
---|
912 | 143.20000000 0.15145400000 -0.42340900000E-01 0.82124500000E-02
|
---|
913 | 58.960000000 0.30071600000 -0.94060300000E-01 0.18397700000E-01
|
---|
914 | 25.400000000 0.38114900000 -0.16342500000 0.32665700000E-01
|
---|
915 | 11.150000000 0.21358400000 -0.12475400000 0.25731500000E-01
|
---|
916 | 4.0040000000 0.23121000000E-01 0.23562300000 -0.53535100000E-01
|
---|
917 | 1.7010000000 -0.23075700000E-02 0.57756300000 -0.15689500000
|
---|
918 | 0.70600000000 0.12890000000E-02 0.33523200000 -0.20665900000
|
---|
919 | })
|
---|
920 | (type: [am = s]
|
---|
921 | {exp coef:0} = {
|
---|
922 | 0.14100000000 1.0000000000
|
---|
923 | })
|
---|
924 | (type: [am = s]
|
---|
925 | {exp coef:0} = {
|
---|
926 | 0.68080000000E-01 1.0000000000
|
---|
927 | })
|
---|
928 | (type: [am = s]
|
---|
929 | {exp coef:0} = {
|
---|
930 | 0.30630000000E-01 1.0000000000
|
---|
931 | })
|
---|
932 | (type: [am = s]
|
---|
933 | {exp coef:0} = {
|
---|
934 | 23.243000000 1.0000000000
|
---|
935 | })
|
---|
936 | (type: [am = s]
|
---|
937 | {exp coef:0} = {
|
---|
938 | 9.5610000000 1.0000000000
|
---|
939 | })
|
---|
940 | (type: [am = s]
|
---|
941 | {exp coef:0} = {
|
---|
942 | 3.9330000000 1.0000000000
|
---|
943 | })
|
---|
944 | (type: [am = p am = p]
|
---|
945 | {exp coef:0 coef:1} = {
|
---|
946 | 539.60000000 0.83396900000E-03 -0.13207600000E-03
|
---|
947 | 127.90000000 0.68921500000E-02 -0.10953800000E-02
|
---|
948 | 41.020000000 0.33787400000E-01 -0.53949500000E-02
|
---|
949 | 15.250000000 0.11440100000 -0.18557200000E-01
|
---|
950 | 6.1660000000 0.25951400000 -0.42737500000E-01
|
---|
951 | 2.5610000000 0.38509500000 -0.64768400000E-01
|
---|
952 | 1.0600000000 0.33537300000 -0.62781800000E-01
|
---|
953 | 0.41760000000 0.11064100000 -0.24491200000E-01
|
---|
954 | 0.26900000000 -0.12131500000E-01 0.10476100000
|
---|
955 | })
|
---|
956 | (type: [am = p]
|
---|
957 | {exp coef:0} = {
|
---|
958 | 0.12230000000 1.0000000000
|
---|
959 | })
|
---|
960 | (type: [am = p]
|
---|
961 | {exp coef:0} = {
|
---|
962 | 0.54760000000E-01 1.0000000000
|
---|
963 | })
|
---|
964 | (type: [am = p]
|
---|
965 | {exp coef:0} = {
|
---|
966 | 0.23880000000E-01 1.0000000000
|
---|
967 | })
|
---|
968 | (type: [am = p]
|
---|
969 | {exp coef:0} = {
|
---|
970 | 39.536000000 1.0000000000
|
---|
971 | })
|
---|
972 | (type: [am = p]
|
---|
973 | {exp coef:0} = {
|
---|
974 | 12.778000000 1.0000000000
|
---|
975 | })
|
---|
976 | (type: [am = p]
|
---|
977 | {exp coef:0} = {
|
---|
978 | 4.1300000000 1.0000000000
|
---|
979 | })
|
---|
980 | (type: [(am = d puream = 1)]
|
---|
981 | {exp coef:0} = {
|
---|
982 | 0.10600000000 1.0000000000
|
---|
983 | })
|
---|
984 | (type: [(am = d puream = 1)]
|
---|
985 | {exp coef:0} = {
|
---|
986 | 0.19440000000 1.0000000000
|
---|
987 | })
|
---|
988 | (type: [(am = d puream = 1)]
|
---|
989 | {exp coef:0} = {
|
---|
990 | 0.35700000000 1.0000000000
|
---|
991 | })
|
---|
992 | (type: [(am = d puream = 1)]
|
---|
993 | {exp coef:0} = {
|
---|
994 | 12.533000000 1.0000000000
|
---|
995 | })
|
---|
996 | (type: [(am = d puream = 1)]
|
---|
997 | {exp coef:0} = {
|
---|
998 | 4.6770000000 1.0000000000
|
---|
999 | })
|
---|
1000 | (type: [(am = d puream = 1)]
|
---|
1001 | {exp coef:0} = {
|
---|
1002 | 1.7450000000 1.0000000000
|
---|
1003 | })
|
---|
1004 | (type: [(am = f puream = 1)]
|
---|
1005 | {exp coef:0} = {
|
---|
1006 | 0.18100000000 1.0000000000
|
---|
1007 | })
|
---|
1008 | (type: [(am = f puream = 1)]
|
---|
1009 | {exp coef:0} = {
|
---|
1010 | 0.35900000000 1.0000000000
|
---|
1011 | })
|
---|
1012 | (type: [(am = f puream = 1)]
|
---|
1013 | {exp coef:0} = {
|
---|
1014 | 7.8760000000 1.0000000000
|
---|
1015 | })
|
---|
1016 | (type: [(am = f puream = 1)]
|
---|
1017 | {exp coef:0} = {
|
---|
1018 | 2.8050000000 1.0000000000
|
---|
1019 | })
|
---|
1020 | (type: [(am = g puream = 1)]
|
---|
1021 | {exp coef:0} = {
|
---|
1022 | 0.30700000000 1.0000000000
|
---|
1023 | })
|
---|
1024 | (type: [(am = g puream = 1)]
|
---|
1025 | {exp coef:0} = {
|
---|
1026 | 5.3940000000 1.0000000000
|
---|
1027 | })
|
---|
1028 | ]
|
---|
1029 | %
|
---|
1030 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1031 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
1032 | aluminum: "cc-pCVQZ": [
|
---|
1033 | (type: [am = s am = s am = s]
|
---|
1034 | {exp coef:0 coef:1 coef:2} = {
|
---|
1035 | 419600.00000 0.27821900000E-04 -0.72375400000E-05 0.16715000000E-05
|
---|
1036 | 62830.000000 0.21633000000E-03 -0.56173300000E-04 0.12964100000E-04
|
---|
1037 | 14290.000000 0.11375400000E-02 -0.29652800000E-03 0.68510100000E-04
|
---|
1038 | 4038.0000000 0.47963500000E-02 -0.12491300000E-02 0.28827400000E-03
|
---|
1039 | 1312.0000000 0.17238900000E-01 -0.45510100000E-02 0.10527600000E-02
|
---|
1040 | 470.50000000 0.53806600000E-01 -0.14439300000E-01 0.33387800000E-02
|
---|
1041 | 181.80000000 0.14132600000 -0.40346400000E-01 0.93921700000E-02
|
---|
1042 | 74.460000000 0.28926800000 -0.92261800000E-01 0.21604700000E-01
|
---|
1043 | 31.900000000 0.38482500000 -0.16451000000 0.39587300000E-01
|
---|
1044 | 13.960000000 0.23285200000 -0.14129600000 0.34918000000E-01
|
---|
1045 | 5.1800000000 0.29333000000E-01 0.19536500000 -0.52841500000E-01
|
---|
1046 | 2.2650000000 -0.30057400000E-02 0.57247500000 -0.19187800000
|
---|
1047 | 0.96640000000 0.16667300000E-02 0.37404100000 -0.25411500000
|
---|
1048 | })
|
---|
1049 | (type: [am = s]
|
---|
1050 | {exp coef:0} = {
|
---|
1051 | 0.24470000000 1.0000000000
|
---|
1052 | })
|
---|
1053 | (type: [am = s]
|
---|
1054 | {exp coef:0} = {
|
---|
1055 | 0.11840000000 1.0000000000
|
---|
1056 | })
|
---|
1057 | (type: [am = s]
|
---|
1058 | {exp coef:0} = {
|
---|
1059 | 0.50210000000E-01 1.0000000000
|
---|
1060 | })
|
---|
1061 | (type: [am = s]
|
---|
1062 | {exp coef:0} = {
|
---|
1063 | 9.7290000000 1.0000000000
|
---|
1064 | })
|
---|
1065 | (type: [am = s]
|
---|
1066 | {exp coef:0} = {
|
---|
1067 | 4.8700000000 1.0000000000
|
---|
1068 | })
|
---|
1069 | (type: [am = s]
|
---|
1070 | {exp coef:0} = {
|
---|
1071 | 2.4370000000 1.0000000000
|
---|
1072 | })
|
---|
1073 | (type: [am = p am = p]
|
---|
1074 | {exp coef:0 coef:1} = {
|
---|
1075 | 891.30000000 0.49175500000E-03 -0.88869500000E-04
|
---|
1076 | 211.30000000 0.41584300000E-02 -0.74582300000E-03
|
---|
1077 | 68.280000000 0.21253800000E-01 -0.38702500000E-02
|
---|
1078 | 25.700000000 0.76405800000E-01 -0.13935000000E-01
|
---|
1079 | 10.630000000 0.19427700000 -0.36686000000E-01
|
---|
1080 | 4.6020000000 0.33442800000 -0.62779700000E-01
|
---|
1081 | 2.0150000000 0.37502600000 -0.78960200000E-01
|
---|
1082 | 0.87060000000 0.20404100000 -0.28858900000E-01
|
---|
1083 | })
|
---|
1084 | (type: [am = p]
|
---|
1085 | {exp coef:0} = {
|
---|
1086 | 0.29720000000 1.0000000000
|
---|
1087 | })
|
---|
1088 | (type: [am = p]
|
---|
1089 | {exp coef:0} = {
|
---|
1090 | 0.11000000000 1.0000000000
|
---|
1091 | })
|
---|
1092 | (type: [am = p]
|
---|
1093 | {exp coef:0} = {
|
---|
1094 | 0.39890000000E-01 1.0000000000
|
---|
1095 | })
|
---|
1096 | (type: [am = p]
|
---|
1097 | {exp coef:0} = {
|
---|
1098 | 10.000000000 1.0000000000
|
---|
1099 | })
|
---|
1100 | (type: [am = p]
|
---|
1101 | {exp coef:0} = {
|
---|
1102 | 4.5140000000 1.0000000000
|
---|
1103 | })
|
---|
1104 | (type: [am = p]
|
---|
1105 | {exp coef:0} = {
|
---|
1106 | 2.0380000000 1.0000000000
|
---|
1107 | })
|
---|
1108 | (type: [(am = d puream = 1)]
|
---|
1109 | {exp coef:0} = {
|
---|
1110 | 0.80400000000E-01 1.0000000000
|
---|
1111 | })
|
---|
1112 | (type: [(am = d puream = 1)]
|
---|
1113 | {exp coef:0} = {
|
---|
1114 | 0.19900000000 1.0000000000
|
---|
1115 | })
|
---|
1116 | (type: [(am = d puream = 1)]
|
---|
1117 | {exp coef:0} = {
|
---|
1118 | 0.49400000000 1.0000000000
|
---|
1119 | })
|
---|
1120 | (type: [(am = d puream = 1)]
|
---|
1121 | {exp coef:0} = {
|
---|
1122 | 14.835000000 1.0000000000
|
---|
1123 | })
|
---|
1124 | (type: [(am = d puream = 1)]
|
---|
1125 | {exp coef:0} = {
|
---|
1126 | 5.6370000000 1.0000000000
|
---|
1127 | })
|
---|
1128 | (type: [(am = d puream = 1)]
|
---|
1129 | {exp coef:0} = {
|
---|
1130 | 2.1420000000 1.0000000000
|
---|
1131 | })
|
---|
1132 | (type: [(am = f puream = 1)]
|
---|
1133 | {exp coef:0} = {
|
---|
1134 | 0.15400000000 1.0000000000
|
---|
1135 | })
|
---|
1136 | (type: [(am = f puream = 1)]
|
---|
1137 | {exp coef:0} = {
|
---|
1138 | 0.40100000000 1.0000000000
|
---|
1139 | })
|
---|
1140 | (type: [(am = f puream = 1)]
|
---|
1141 | {exp coef:0} = {
|
---|
1142 | 9.8530000000 1.0000000000
|
---|
1143 | })
|
---|
1144 | (type: [(am = f puream = 1)]
|
---|
1145 | {exp coef:0} = {
|
---|
1146 | 3.5250000000 1.0000000000
|
---|
1147 | })
|
---|
1148 | (type: [(am = g puream = 1)]
|
---|
1149 | {exp coef:0} = {
|
---|
1150 | 0.35700000000 1.0000000000
|
---|
1151 | })
|
---|
1152 | (type: [(am = g puream = 1)]
|
---|
1153 | {exp coef:0} = {
|
---|
1154 | 6.8940000000 1.0000000000
|
---|
1155 | })
|
---|
1156 | ]
|
---|
1157 | %
|
---|
1158 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1159 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
1160 | silicon: "cc-pCVQZ": [
|
---|
1161 | (type: [am = s am = s am = s]
|
---|
1162 | {exp coef:0 coef:1 coef:2} = {
|
---|
1163 | 513000.00000 0.26092000000E-04 -0.69488000000E-05 0.17806800000E-05
|
---|
1164 | 76820.000000 0.20290500000E-03 -0.53964100000E-04 0.13814800000E-04
|
---|
1165 | 17470.000000 0.10671500000E-02 -0.28471600000E-03 0.73000500000E-04
|
---|
1166 | 4935.0000000 0.45059700000E-02 -0.12020300000E-02 0.30766600000E-03
|
---|
1167 | 1602.0000000 0.16235900000E-01 -0.43839700000E-02 0.11256300000E-02
|
---|
1168 | 574.10000000 0.50891300000E-01 -0.13977600000E-01 0.35843500000E-02
|
---|
1169 | 221.50000000 0.13515500000 -0.39351600000E-01 0.10172800000E-01
|
---|
1170 | 90.540000000 0.28129200000 -0.91428300000E-01 0.23752000000E-01
|
---|
1171 | 38.740000000 0.38533600000 -0.16560900000 0.44348300000E-01
|
---|
1172 | 16.950000000 0.24565100000 -0.15250500000 0.41904100000E-01
|
---|
1173 | 6.4520000000 0.34314500000E-01 0.16852400000 -0.50250400000E-01
|
---|
1174 | 2.8740000000 -0.33488400000E-02 0.56928400000 -0.21657800000
|
---|
1175 | 1.2500000000 0.18762500000E-02 0.39805600000 -0.28644800000
|
---|
1176 | })
|
---|
1177 | (type: [am = s]
|
---|
1178 | {exp coef:0} = {
|
---|
1179 | 0.35990000000 1.0000000000
|
---|
1180 | })
|
---|
1181 | (type: [am = s]
|
---|
1182 | {exp coef:0} = {
|
---|
1183 | 0.16990000000 1.0000000000
|
---|
1184 | })
|
---|
1185 | (type: [am = s]
|
---|
1186 | {exp coef:0} = {
|
---|
1187 | 0.70660000000E-01 1.0000000000
|
---|
1188 | })
|
---|
1189 | (type: [am = s]
|
---|
1190 | {exp coef:0} = {
|
---|
1191 | 12.164000000 1.0000000000
|
---|
1192 | })
|
---|
1193 | (type: [am = s]
|
---|
1194 | {exp coef:0} = {
|
---|
1195 | 6.1870000000 1.0000000000
|
---|
1196 | })
|
---|
1197 | (type: [am = s]
|
---|
1198 | {exp coef:0} = {
|
---|
1199 | 3.1470000000 1.0000000000
|
---|
1200 | })
|
---|
1201 | (type: [am = p am = p]
|
---|
1202 | {exp coef:0 coef:1} = {
|
---|
1203 | 1122.0000000 0.44814300000E-03 -0.96488300000E-04
|
---|
1204 | 266.00000000 0.38163900000E-02 -0.81197100000E-03
|
---|
1205 | 85.920000000 0.19810500000E-01 -0.43008700000E-02
|
---|
1206 | 32.330000000 0.72701700000E-01 -0.15750200000E-01
|
---|
1207 | 13.370000000 0.18983900000 -0.42954100000E-01
|
---|
1208 | 5.8000000000 0.33567200000 -0.75257400000E-01
|
---|
1209 | 2.5590000000 0.37936500000 -0.97144600000E-01
|
---|
1210 | 1.1240000000 0.20119300000 -0.22750700000E-01
|
---|
1211 | })
|
---|
1212 | (type: [am = p]
|
---|
1213 | {exp coef:0} = {
|
---|
1214 | 0.39880000000 1.0000000000
|
---|
1215 | })
|
---|
1216 | (type: [am = p]
|
---|
1217 | {exp coef:0} = {
|
---|
1218 | 0.15330000000 1.0000000000
|
---|
1219 | })
|
---|
1220 | (type: [am = p]
|
---|
1221 | {exp coef:0} = {
|
---|
1222 | 0.57280000000E-01 1.0000000000
|
---|
1223 | })
|
---|
1224 | (type: [am = p]
|
---|
1225 | {exp coef:0} = {
|
---|
1226 | 12.646000000 1.0000000000
|
---|
1227 | })
|
---|
1228 | (type: [am = p]
|
---|
1229 | {exp coef:0} = {
|
---|
1230 | 5.7470000000 1.0000000000
|
---|
1231 | })
|
---|
1232 | (type: [am = p]
|
---|
1233 | {exp coef:0} = {
|
---|
1234 | 2.6120000000 1.0000000000
|
---|
1235 | })
|
---|
1236 | (type: [(am = d puream = 1)]
|
---|
1237 | {exp coef:0} = {
|
---|
1238 | 0.12000000000 1.0000000000
|
---|
1239 | })
|
---|
1240 | (type: [(am = d puream = 1)]
|
---|
1241 | {exp coef:0} = {
|
---|
1242 | 0.30200000000 1.0000000000
|
---|
1243 | })
|
---|
1244 | (type: [(am = d puream = 1)]
|
---|
1245 | {exp coef:0} = {
|
---|
1246 | 0.76000000000 1.0000000000
|
---|
1247 | })
|
---|
1248 | (type: [(am = d puream = 1)]
|
---|
1249 | {exp coef:0} = {
|
---|
1250 | 19.015000000 1.0000000000
|
---|
1251 | })
|
---|
1252 | (type: [(am = d puream = 1)]
|
---|
1253 | {exp coef:0} = {
|
---|
1254 | 7.4010000000 1.0000000000
|
---|
1255 | })
|
---|
1256 | (type: [(am = d puream = 1)]
|
---|
1257 | {exp coef:0} = {
|
---|
1258 | 2.8810000000 1.0000000000
|
---|
1259 | })
|
---|
1260 | (type: [(am = f puream = 1)]
|
---|
1261 | {exp coef:0} = {
|
---|
1262 | 0.21200000000 1.0000000000
|
---|
1263 | })
|
---|
1264 | (type: [(am = f puream = 1)]
|
---|
1265 | {exp coef:0} = {
|
---|
1266 | 0.54100000000 1.0000000000
|
---|
1267 | })
|
---|
1268 | (type: [(am = f puream = 1)]
|
---|
1269 | {exp coef:0} = {
|
---|
1270 | 11.925000000 1.0000000000
|
---|
1271 | })
|
---|
1272 | (type: [(am = f puream = 1)]
|
---|
1273 | {exp coef:0} = {
|
---|
1274 | 4.3040000000 1.0000000000
|
---|
1275 | })
|
---|
1276 | (type: [(am = g puream = 1)]
|
---|
1277 | {exp coef:0} = {
|
---|
1278 | 0.46100000000 1.0000000000
|
---|
1279 | })
|
---|
1280 | (type: [(am = g puream = 1)]
|
---|
1281 | {exp coef:0} = {
|
---|
1282 | 8.5770000000 1.0000000000
|
---|
1283 | })
|
---|
1284 | ]
|
---|
1285 | %
|
---|
1286 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1287 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
1288 | phosphorus: "cc-pCVQZ": [
|
---|
1289 | (type: [am = s am = s am = s]
|
---|
1290 | {exp coef:0 coef:1 coef:2} = {
|
---|
1291 | 615200.00000 0.24745000000E-04 -0.67220500000E-05 0.18474000000E-05
|
---|
1292 | 92120.000000 0.19246500000E-03 -0.52231100000E-04 0.14338000000E-04
|
---|
1293 | 20950.000000 0.10120200000E-02 -0.27536100000E-03 0.75722800000E-04
|
---|
1294 | 5920.0000000 0.42726100000E-02 -0.11630700000E-02 0.31920500000E-03
|
---|
1295 | 1922.0000000 0.15416100000E-01 -0.42428100000E-02 0.11685100000E-02
|
---|
1296 | 688.00000000 0.48597600000E-01 -0.13611400000E-01 0.37426700000E-02
|
---|
1297 | 265.00000000 0.13006000000 -0.38511400000E-01 0.10681700000E-01
|
---|
1298 | 108.20000000 0.27451400000 -0.90664300000E-01 0.25265700000E-01
|
---|
1299 | 46.220000000 0.38540200000 -0.16658400000 0.47928300000E-01
|
---|
1300 | 20.230000000 0.25593400000 -0.16144700000 0.47709600000E-01
|
---|
1301 | 7.8590000000 0.39123700000E-01 0.14678100000 -0.46652500000E-01
|
---|
1302 | 3.5470000000 -0.36801000000E-02 0.56668200000 -0.23496800000
|
---|
1303 | 1.5640000000 0.20821100000E-02 0.41643300000 -0.31133700000
|
---|
1304 | })
|
---|
1305 | (type: [am = s]
|
---|
1306 | {exp coef:0} = {
|
---|
1307 | 0.48880000000 1.0000000000
|
---|
1308 | })
|
---|
1309 | (type: [am = s]
|
---|
1310 | {exp coef:0} = {
|
---|
1311 | 0.22660000000 1.0000000000
|
---|
1312 | })
|
---|
1313 | (type: [am = s]
|
---|
1314 | {exp coef:0} = {
|
---|
1315 | 0.93310000000E-01 1.0000000000
|
---|
1316 | })
|
---|
1317 | (type: [am = s]
|
---|
1318 | {exp coef:0} = {
|
---|
1319 | 14.831000000 1.0000000000
|
---|
1320 | })
|
---|
1321 | (type: [am = s]
|
---|
1322 | {exp coef:0} = {
|
---|
1323 | 7.6400000000 1.0000000000
|
---|
1324 | })
|
---|
1325 | (type: [am = s]
|
---|
1326 | {exp coef:0} = {
|
---|
1327 | 3.9350000000 1.0000000000
|
---|
1328 | })
|
---|
1329 | (type: [am = p am = p]
|
---|
1330 | {exp coef:0 coef:1} = {
|
---|
1331 | 1367.0000000 0.42101500000E-03 -0.10082700000E-03
|
---|
1332 | 324.00000000 0.36098500000E-02 -0.85449900000E-03
|
---|
1333 | 104.60000000 0.18921700000E-01 -0.45711600000E-02
|
---|
1334 | 39.370000000 0.70556000000E-01 -0.17032700000E-01
|
---|
1335 | 16.260000000 0.18815700000 -0.47520400000E-01
|
---|
1336 | 7.0560000000 0.33870900000 -0.85278600000E-01
|
---|
1337 | 3.1300000000 0.38194300000 -0.10967600000
|
---|
1338 | 1.3940000000 0.19526100000 -0.16118100000E-01
|
---|
1339 | })
|
---|
1340 | (type: [am = p]
|
---|
1341 | {exp coef:0} = {
|
---|
1342 | 0.51790000000 1.0000000000
|
---|
1343 | })
|
---|
1344 | (type: [am = p]
|
---|
1345 | {exp coef:0} = {
|
---|
1346 | 0.20320000000 1.0000000000
|
---|
1347 | })
|
---|
1348 | (type: [am = p]
|
---|
1349 | {exp coef:0} = {
|
---|
1350 | 0.76980000000E-01 1.0000000000
|
---|
1351 | })
|
---|
1352 | (type: [am = p]
|
---|
1353 | {exp coef:0} = {
|
---|
1354 | 15.523000000 1.0000000000
|
---|
1355 | })
|
---|
1356 | (type: [am = p]
|
---|
1357 | {exp coef:0} = {
|
---|
1358 | 7.0730000000 1.0000000000
|
---|
1359 | })
|
---|
1360 | (type: [am = p]
|
---|
1361 | {exp coef:0} = {
|
---|
1362 | 3.2230000000 1.0000000000
|
---|
1363 | })
|
---|
1364 | (type: [(am = d puream = 1)]
|
---|
1365 | {exp coef:0} = {
|
---|
1366 | 0.16500000000 1.0000000000
|
---|
1367 | })
|
---|
1368 | (type: [(am = d puream = 1)]
|
---|
1369 | {exp coef:0} = {
|
---|
1370 | 0.41300000000 1.0000000000
|
---|
1371 | })
|
---|
1372 | (type: [(am = d puream = 1)]
|
---|
1373 | {exp coef:0} = {
|
---|
1374 | 1.0360000000 1.0000000000
|
---|
1375 | })
|
---|
1376 | (type: [(am = d puream = 1)]
|
---|
1377 | {exp coef:0} = {
|
---|
1378 | 23.417000000 1.0000000000
|
---|
1379 | })
|
---|
1380 | (type: [(am = d puream = 1)]
|
---|
1381 | {exp coef:0} = {
|
---|
1382 | 9.2500000000 1.0000000000
|
---|
1383 | })
|
---|
1384 | (type: [(am = d puream = 1)]
|
---|
1385 | {exp coef:0} = {
|
---|
1386 | 3.6540000000 1.0000000000
|
---|
1387 | })
|
---|
1388 | (type: [(am = f puream = 1)]
|
---|
1389 | {exp coef:0} = {
|
---|
1390 | 0.28000000000 1.0000000000
|
---|
1391 | })
|
---|
1392 | (type: [(am = f puream = 1)]
|
---|
1393 | {exp coef:0} = {
|
---|
1394 | 0.70300000000 1.0000000000
|
---|
1395 | })
|
---|
1396 | (type: [(am = f puream = 1)]
|
---|
1397 | {exp coef:0} = {
|
---|
1398 | 14.207000000 1.0000000000
|
---|
1399 | })
|
---|
1400 | (type: [(am = f puream = 1)]
|
---|
1401 | {exp coef:0} = {
|
---|
1402 | 5.1610000000 1.0000000000
|
---|
1403 | })
|
---|
1404 | (type: [(am = g puream = 1)]
|
---|
1405 | {exp coef:0} = {
|
---|
1406 | 0.59700000000 1.0000000000
|
---|
1407 | })
|
---|
1408 | (type: [(am = g puream = 1)]
|
---|
1409 | {exp coef:0} = {
|
---|
1410 | 10.448000000 1.0000000000
|
---|
1411 | })
|
---|
1412 | ]
|
---|
1413 | %
|
---|
1414 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1415 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
1416 | sulfur: "cc-pCVQZ": [
|
---|
1417 | (type: [am = s am = s am = s]
|
---|
1418 | {exp coef:0 coef:1 coef:2} = {
|
---|
1419 | 727800.00000 0.23602500000E-04 -0.65217900000E-05 0.18940600000E-05
|
---|
1420 | 109000.00000 0.18348200000E-03 -0.50663100000E-04 0.14694800000E-04
|
---|
1421 | 24800.000000 0.96427800000E-03 -0.26683300000E-03 0.77546000000E-04
|
---|
1422 | 7014.0000000 0.40653700000E-02 -0.11260100000E-02 0.32650900000E-03
|
---|
1423 | 2278.0000000 0.14697300000E-01 -0.41118600000E-02 0.11968600000E-02
|
---|
1424 | 814.70000000 0.46508100000E-01 -0.13245400000E-01 0.38479900000E-02
|
---|
1425 | 313.40000000 0.12550800000 -0.37700400000E-01 0.11053900000E-01
|
---|
1426 | 127.70000000 0.26843300000 -0.89855400000E-01 0.26464500000E-01
|
---|
1427 | 54.480000000 0.38480900000 -0.16709800000 0.50877100000E-01
|
---|
1428 | 23.850000000 0.26537200000 -0.16935400000 0.53003000000E-01
|
---|
1429 | 9.4280000000 0.43732600000E-01 0.12782400000 -0.42551800000E-01
|
---|
1430 | 4.2900000000 -0.37880700000E-02 0.56486200000 -0.25085300000
|
---|
1431 | 1.9090000000 0.21808300000E-02 0.43176700000 -0.33315200000
|
---|
1432 | })
|
---|
1433 | (type: [am = s]
|
---|
1434 | {exp coef:0} = {
|
---|
1435 | 0.62700000000 1.0000000000
|
---|
1436 | })
|
---|
1437 | (type: [am = s]
|
---|
1438 | {exp coef:0} = {
|
---|
1439 | 0.28730000000 1.0000000000
|
---|
1440 | })
|
---|
1441 | (type: [am = s]
|
---|
1442 | {exp coef:0} = {
|
---|
1443 | 0.11720000000 1.0000000000
|
---|
1444 | })
|
---|
1445 | (type: [am = s]
|
---|
1446 | {exp coef:0} = {
|
---|
1447 | 17.599000000 1.0000000000
|
---|
1448 | })
|
---|
1449 | (type: [am = s]
|
---|
1450 | {exp coef:0} = {
|
---|
1451 | 9.1860000000 1.0000000000
|
---|
1452 | })
|
---|
1453 | (type: [am = s]
|
---|
1454 | {exp coef:0} = {
|
---|
1455 | 4.7950000000 1.0000000000
|
---|
1456 | })
|
---|
1457 | (type: [am = p am = p]
|
---|
1458 | {exp coef:0 coef:1} = {
|
---|
1459 | 1546.0000000 0.44118300000E-03 -0.11311000000E-03
|
---|
1460 | 366.40000000 0.37757100000E-02 -0.95858100000E-03
|
---|
1461 | 118.40000000 0.19836000000E-01 -0.51347100000E-02
|
---|
1462 | 44.530000000 0.74206300000E-01 -0.19264100000E-01
|
---|
1463 | 18.380000000 0.19732700000 -0.53598000000E-01
|
---|
1464 | 7.9650000000 0.35185100000 -0.96033300000E-01
|
---|
1465 | 3.5410000000 0.37868700000 -0.11818300000
|
---|
1466 | 1.5910000000 0.17093100000 0.92319400000E-02
|
---|
1467 | })
|
---|
1468 | (type: [am = p]
|
---|
1469 | {exp coef:0} = {
|
---|
1470 | 0.62050000000 1.0000000000
|
---|
1471 | })
|
---|
1472 | (type: [am = p]
|
---|
1473 | {exp coef:0} = {
|
---|
1474 | 0.24200000000 1.0000000000
|
---|
1475 | })
|
---|
1476 | (type: [am = p]
|
---|
1477 | {exp coef:0} = {
|
---|
1478 | 0.90140000000E-01 1.0000000000
|
---|
1479 | })
|
---|
1480 | (type: [am = p]
|
---|
1481 | {exp coef:0} = {
|
---|
1482 | 18.127000000 1.0000000000
|
---|
1483 | })
|
---|
1484 | (type: [am = p]
|
---|
1485 | {exp coef:0} = {
|
---|
1486 | 8.2190000000 1.0000000000
|
---|
1487 | })
|
---|
1488 | (type: [am = p]
|
---|
1489 | {exp coef:0} = {
|
---|
1490 | 3.7260000000 1.0000000000
|
---|
1491 | })
|
---|
1492 | (type: [(am = d puream = 1)]
|
---|
1493 | {exp coef:0} = {
|
---|
1494 | 0.20300000000 1.0000000000
|
---|
1495 | })
|
---|
1496 | (type: [(am = d puream = 1)]
|
---|
1497 | {exp coef:0} = {
|
---|
1498 | 0.50400000000 1.0000000000
|
---|
1499 | })
|
---|
1500 | (type: [(am = d puream = 1)]
|
---|
1501 | {exp coef:0} = {
|
---|
1502 | 1.2500000000 1.0000000000
|
---|
1503 | })
|
---|
1504 | (type: [(am = d puream = 1)]
|
---|
1505 | {exp coef:0} = {
|
---|
1506 | 27.417000000 1.0000000000
|
---|
1507 | })
|
---|
1508 | (type: [(am = d puream = 1)]
|
---|
1509 | {exp coef:0} = {
|
---|
1510 | 10.893000000 1.0000000000
|
---|
1511 | })
|
---|
1512 | (type: [(am = d puream = 1)]
|
---|
1513 | {exp coef:0} = {
|
---|
1514 | 4.3190000000 1.0000000000
|
---|
1515 | })
|
---|
1516 | (type: [(am = f puream = 1)]
|
---|
1517 | {exp coef:0} = {
|
---|
1518 | 0.33500000000 1.0000000000
|
---|
1519 | })
|
---|
1520 | (type: [(am = f puream = 1)]
|
---|
1521 | {exp coef:0} = {
|
---|
1522 | 0.86900000000 1.0000000000
|
---|
1523 | })
|
---|
1524 | (type: [(am = f puream = 1)]
|
---|
1525 | {exp coef:0} = {
|
---|
1526 | 16.535000000 1.0000000000
|
---|
1527 | })
|
---|
1528 | (type: [(am = f puream = 1)]
|
---|
1529 | {exp coef:0} = {
|
---|
1530 | 6.0080000000 1.0000000000
|
---|
1531 | })
|
---|
1532 | (type: [(am = g puream = 1)]
|
---|
1533 | {exp coef:0} = {
|
---|
1534 | 0.68300000000 1.0000000000
|
---|
1535 | })
|
---|
1536 | (type: [(am = g puream = 1)]
|
---|
1537 | {exp coef:0} = {
|
---|
1538 | 12.518000000 1.0000000000
|
---|
1539 | })
|
---|
1540 | ]
|
---|
1541 | %
|
---|
1542 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1543 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
1544 | chlorine: "cc-pCVQZ": [
|
---|
1545 | (type: [am = s am = s am = s]
|
---|
1546 | {exp coef:0 coef:1 coef:2} = {
|
---|
1547 | 834900.00000 0.23168800000E-04 -0.64964900000E-05 0.19664500000E-05
|
---|
1548 | 125000.00000 0.18015400000E-03 -0.50489500000E-04 0.15262000000E-04
|
---|
1549 | 28430.000000 0.94778200000E-03 -0.26611300000E-03 0.80608600000E-04
|
---|
1550 | 8033.0000000 0.40013900000E-02 -0.11249900000E-02 0.33996000000E-03
|
---|
1551 | 2608.0000000 0.14462900000E-01 -0.41049700000E-02 0.12455100000E-02
|
---|
1552 | 933.90000000 0.45658600000E-01 -0.13198700000E-01 0.39961200000E-02
|
---|
1553 | 360.00000000 0.12324800000 -0.37534200000E-01 0.11475100000E-01
|
---|
1554 | 147.00000000 0.26436900000 -0.89723300000E-01 0.27550400000E-01
|
---|
1555 | 62.880000000 0.38298900000 -0.16767100000 0.53291700000E-01
|
---|
1556 | 27.600000000 0.27093400000 -0.17476300000 0.57124600000E-01
|
---|
1557 | 11.080000000 0.47140400000E-01 0.11490900000 -0.39520100000E-01
|
---|
1558 | 5.0750000000 -0.37176600000E-02 0.56361800000 -0.26434300000
|
---|
1559 | 2.2780000000 0.21915800000E-02 0.44160600000 -0.34929100000
|
---|
1560 | })
|
---|
1561 | (type: [am = s]
|
---|
1562 | {exp coef:0} = {
|
---|
1563 | 0.77750000000 1.0000000000
|
---|
1564 | })
|
---|
1565 | (type: [am = s]
|
---|
1566 | {exp coef:0} = {
|
---|
1567 | 0.35270000000 1.0000000000
|
---|
1568 | })
|
---|
1569 | (type: [am = s]
|
---|
1570 | {exp coef:0} = {
|
---|
1571 | 0.14310000000 1.0000000000
|
---|
1572 | })
|
---|
1573 | (type: [am = s]
|
---|
1574 | {exp coef:0} = {
|
---|
1575 | 20.689000000 1.0000000000
|
---|
1576 | })
|
---|
1577 | (type: [am = s]
|
---|
1578 | {exp coef:0} = {
|
---|
1579 | 10.880000000 1.0000000000
|
---|
1580 | })
|
---|
1581 | (type: [am = s]
|
---|
1582 | {exp coef:0} = {
|
---|
1583 | 5.7220000000 1.0000000000
|
---|
1584 | })
|
---|
1585 | (type: [am = p am = p]
|
---|
1586 | {exp coef:0 coef:1} = {
|
---|
1587 | 1703.0000000 0.47403900000E-03 -0.12826600000E-03
|
---|
1588 | 403.60000000 0.40641200000E-02 -0.10935600000E-02
|
---|
1589 | 130.30000000 0.21335500000E-01 -0.58342900000E-02
|
---|
1590 | 49.050000000 0.79461100000E-01 -0.21925800000E-01
|
---|
1591 | 20.260000000 0.20892700000 -0.60138500000E-01
|
---|
1592 | 8.7870000000 0.36494500000 -0.10692900000
|
---|
1593 | 3.9190000000 0.37172500000 -0.12245400000
|
---|
1594 | 1.7650000000 0.14629200000 0.38361900000E-01
|
---|
1595 | })
|
---|
1596 | (type: [am = p]
|
---|
1597 | {exp coef:0} = {
|
---|
1598 | 0.72070000000 1.0000000000
|
---|
1599 | })
|
---|
1600 | (type: [am = p]
|
---|
1601 | {exp coef:0} = {
|
---|
1602 | 0.28390000000 1.0000000000
|
---|
1603 | })
|
---|
1604 | (type: [am = p]
|
---|
1605 | {exp coef:0} = {
|
---|
1606 | 0.10600000000 1.0000000000
|
---|
1607 | })
|
---|
1608 | (type: [am = p]
|
---|
1609 | {exp coef:0} = {
|
---|
1610 | 20.784000000 1.0000000000
|
---|
1611 | })
|
---|
1612 | (type: [am = p]
|
---|
1613 | {exp coef:0} = {
|
---|
1614 | 9.3790000000 1.0000000000
|
---|
1615 | })
|
---|
1616 | (type: [am = p]
|
---|
1617 | {exp coef:0} = {
|
---|
1618 | 4.2320000000 1.0000000000
|
---|
1619 | })
|
---|
1620 | (type: [(am = d puream = 1)]
|
---|
1621 | {exp coef:0} = {
|
---|
1622 | 0.25400000000 1.0000000000
|
---|
1623 | })
|
---|
1624 | (type: [(am = d puream = 1)]
|
---|
1625 | {exp coef:0} = {
|
---|
1626 | 0.62800000000 1.0000000000
|
---|
1627 | })
|
---|
1628 | (type: [(am = d puream = 1)]
|
---|
1629 | {exp coef:0} = {
|
---|
1630 | 1.5510000000 1.0000000000
|
---|
1631 | })
|
---|
1632 | (type: [(am = d puream = 1)]
|
---|
1633 | {exp coef:0} = {
|
---|
1634 | 32.255000000 1.0000000000
|
---|
1635 | })
|
---|
1636 | (type: [(am = d puream = 1)]
|
---|
1637 | {exp coef:0} = {
|
---|
1638 | 12.888000000 1.0000000000
|
---|
1639 | })
|
---|
1640 | (type: [(am = d puream = 1)]
|
---|
1641 | {exp coef:0} = {
|
---|
1642 | 5.1490000000 1.0000000000
|
---|
1643 | })
|
---|
1644 | (type: [(am = f puream = 1)]
|
---|
1645 | {exp coef:0} = {
|
---|
1646 | 0.42300000000 1.0000000000
|
---|
1647 | })
|
---|
1648 | (type: [(am = f puream = 1)]
|
---|
1649 | {exp coef:0} = {
|
---|
1650 | 1.0890000000 1.0000000000
|
---|
1651 | })
|
---|
1652 | (type: [(am = f puream = 1)]
|
---|
1653 | {exp coef:0} = {
|
---|
1654 | 19.107000000 1.0000000000
|
---|
1655 | })
|
---|
1656 | (type: [(am = f puream = 1)]
|
---|
1657 | {exp coef:0} = {
|
---|
1658 | 6.9500000000 1.0000000000
|
---|
1659 | })
|
---|
1660 | (type: [(am = g puream = 1)]
|
---|
1661 | {exp coef:0} = {
|
---|
1662 | 0.82700000000 1.0000000000
|
---|
1663 | })
|
---|
1664 | (type: [(am = g puream = 1)]
|
---|
1665 | {exp coef:0} = {
|
---|
1666 | 14.782000000 1.0000000000
|
---|
1667 | })
|
---|
1668 | ]
|
---|
1669 | %
|
---|
1670 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1671 | % AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
|
---|
1672 | argon: "cc-pCVQZ": [
|
---|
1673 | (type: [am = s am = s am = s]
|
---|
1674 | {exp coef:0 coef:1 coef:2} = {
|
---|
1675 | 950600.00000 0.22754500000E-04 -0.64620100000E-05 0.20205600000E-05
|
---|
1676 | 142300.00000 0.17694500000E-03 -0.50234600000E-04 0.15685100000E-04
|
---|
1677 | 32360.000000 0.93128200000E-03 -0.26480400000E-03 0.82861700000E-04
|
---|
1678 | 9145.0000000 0.39286000000E-02 -0.11189500000E-02 0.34926400000E-03
|
---|
1679 | 2970.0000000 0.14206400000E-01 -0.40827600000E-02 0.12797600000E-02
|
---|
1680 | 1064.0000000 0.44811400000E-01 -0.13121600000E-01 0.41036500000E-02
|
---|
1681 | 410.80000000 0.12100100000 -0.37285500000E-01 0.11778900000E-01
|
---|
1682 | 168.00000000 0.26057900000 -0.89470900000E-01 0.28386800000E-01
|
---|
1683 | 71.990000000 0.38136400000 -0.16805400000 0.55240600000E-01
|
---|
1684 | 31.670000000 0.27605800000 -0.17959400000 0.60749200000E-01
|
---|
1685 | 12.890000000 0.50517900000E-01 0.10295300000 -0.36201200000E-01
|
---|
1686 | 5.9290000000 -0.35986600000E-02 0.56263000000 -0.27539800000
|
---|
1687 | 2.6780000000 0.21879800000E-02 0.45035500000 -0.36284500000
|
---|
1688 | })
|
---|
1689 | (type: [am = s]
|
---|
1690 | {exp coef:0} = {
|
---|
1691 | 0.94160000000 1.0000000000
|
---|
1692 | })
|
---|
1693 | (type: [am = s]
|
---|
1694 | {exp coef:0} = {
|
---|
1695 | 0.42390000000 1.0000000000
|
---|
1696 | })
|
---|
1697 | (type: [am = s]
|
---|
1698 | {exp coef:0} = {
|
---|
1699 | 0.17140000000 1.0000000000
|
---|
1700 | })
|
---|
1701 | (type: [am = s]
|
---|
1702 | {exp coef:0} = {
|
---|
1703 | 24.024000000 1.0000000000
|
---|
1704 | })
|
---|
1705 | (type: [am = s]
|
---|
1706 | {exp coef:0} = {
|
---|
1707 | 12.706000000 1.0000000000
|
---|
1708 | })
|
---|
1709 | (type: [am = s]
|
---|
1710 | {exp coef:0} = {
|
---|
1711 | 6.7200000000 1.0000000000
|
---|
1712 | })
|
---|
1713 | (type: [am = p am = p]
|
---|
1714 | {exp coef:0 coef:1} = {
|
---|
1715 | 1890.0000000 0.49575200000E-03 -0.13886300000E-03
|
---|
1716 | 447.80000000 0.42517200000E-02 -0.11887000000E-02
|
---|
1717 | 144.60000000 0.22327700000E-01 -0.63255300000E-02
|
---|
1718 | 54.460000000 0.83087800000E-01 -0.23881300000E-01
|
---|
1719 | 22.510000000 0.21711000000 -0.64923800000E-01
|
---|
1720 | 9.7740000000 0.37450700000 -0.11544400000
|
---|
1721 | 4.3680000000 0.36644500000 -0.12365100000
|
---|
1722 | 1.9590000000 0.12924500000 0.64905500000E-01
|
---|
1723 | })
|
---|
1724 | (type: [am = p]
|
---|
1725 | {exp coef:0} = {
|
---|
1726 | 0.82600000000 1.0000000000
|
---|
1727 | })
|
---|
1728 | (type: [am = p]
|
---|
1729 | {exp coef:0} = {
|
---|
1730 | 0.32970000000 1.0000000000
|
---|
1731 | })
|
---|
1732 | (type: [am = p]
|
---|
1733 | {exp coef:0} = {
|
---|
1734 | 0.12420000000 1.0000000000
|
---|
1735 | })
|
---|
1736 | (type: [am = p]
|
---|
1737 | {exp coef:0} = {
|
---|
1738 | 23.627000000 1.0000000000
|
---|
1739 | })
|
---|
1740 | (type: [am = p]
|
---|
1741 | {exp coef:0} = {
|
---|
1742 | 10.654000000 1.0000000000
|
---|
1743 | })
|
---|
1744 | (type: [am = p]
|
---|
1745 | {exp coef:0} = {
|
---|
1746 | 4.8040000000 1.0000000000
|
---|
1747 | })
|
---|
1748 | (type: [(am = d puream = 1)]
|
---|
1749 | {exp coef:0} = {
|
---|
1750 | 0.31100000000 1.0000000000
|
---|
1751 | })
|
---|
1752 | (type: [(am = d puream = 1)]
|
---|
1753 | {exp coef:0} = {
|
---|
1754 | 0.76300000000 1.0000000000
|
---|
1755 | })
|
---|
1756 | (type: [(am = d puream = 1)]
|
---|
1757 | {exp coef:0} = {
|
---|
1758 | 1.8730000000 1.0000000000
|
---|
1759 | })
|
---|
1760 | (type: [(am = d puream = 1)]
|
---|
1761 | {exp coef:0} = {
|
---|
1762 | 37.364000000 1.0000000000
|
---|
1763 | })
|
---|
1764 | (type: [(am = d puream = 1)]
|
---|
1765 | {exp coef:0} = {
|
---|
1766 | 15.013000000 1.0000000000
|
---|
1767 | })
|
---|
1768 | (type: [(am = d puream = 1)]
|
---|
1769 | {exp coef:0} = {
|
---|
1770 | 6.0320000000 1.0000000000
|
---|
1771 | })
|
---|
1772 | (type: [(am = f puream = 1)]
|
---|
1773 | {exp coef:0} = {
|
---|
1774 | 0.54300000000 1.0000000000
|
---|
1775 | })
|
---|
1776 | (type: [(am = f puream = 1)]
|
---|
1777 | {exp coef:0} = {
|
---|
1778 | 1.3250000000 1.0000000000
|
---|
1779 | })
|
---|
1780 | (type: [(am = f puream = 1)]
|
---|
1781 | {exp coef:0} = {
|
---|
1782 | 21.884000000 1.0000000000
|
---|
1783 | })
|
---|
1784 | (type: [(am = f puream = 1)]
|
---|
1785 | {exp coef:0} = {
|
---|
1786 | 7.9680000000 1.0000000000
|
---|
1787 | })
|
---|
1788 | (type: [(am = g puream = 1)]
|
---|
1789 | {exp coef:0} = {
|
---|
1790 | 1.0070000000 1.0000000000
|
---|
1791 | })
|
---|
1792 | (type: [(am = g puream = 1)]
|
---|
1793 | {exp coef:0} = {
|
---|
1794 | 17.243000000 1.0000000000
|
---|
1795 | })
|
---|
1796 | ]
|
---|
1797 | )
|
---|