source: ThirdParty/mpqc_open/lib/basis/cc-pcvqz.kv@ 7516f6

Action_Thermostats Adding_MD_integration_tests Adding_StructOpt_integration_tests AutomationFragmentation_failures Candidate_v1.6.1 ChemicalSpaceEvaluator Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Exclude_Hydrogens_annealWithBondGraph Fix_Verbose_Codepatterns ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion Gui_displays_atomic_force_velocity JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool PythonUI_with_named_parameters Recreated_GuiChecks StoppableMakroAction TremoloParser_IncreasedPrecision
Last change on this file since 7516f6 was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 51.9 KB
Line 
1%BASIS "cc-pCVQZ" CARTESIAN
2basis:(
3%Elements References
4%-------- ----------
5% H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
6% He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
7%Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
8%Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published)
9%Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
10%Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
11%Elements References
12%-------- ----------
13% H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
14%Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and
15% T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995).
16%Al - Ar: K.A. Peterson and T.H. Dunning, Jr. J. Chem. Phys. 117, 10548 (2002)
17%Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
18%
19%
20% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
21% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
22 lithium: "cc-pCVQZ": [
23 (type: [am = s am = s]
24 {exp coef:0 coef:1} = {
25 6601.0000000 0.11700000000E-03 -0.18000000000E-04
26 989.70000000 0.91100000000E-03 -0.14200000000E-03
27 225.70000000 0.47280000000E-02 -0.74100000000E-03
28 64.290000000 0.19197000000E-01 -0.30200000000E-02
29 21.180000000 0.63047000000E-01 -0.10123000000E-01
30 7.7240000000 0.16320800000 -0.27094000000E-01
31 3.0030000000 0.31482700000 -0.57359000000E-01
32 1.2120000000 0.39393600000 -0.93895000000E-01
33 0.49300000000 0.19691800000 -0.12109100000
34 })
35 (type: [am = s]
36 {exp coef:0} = {
37 0.95150000000E-01 1.0000000000
38 })
39 (type: [am = s]
40 {exp coef:0} = {
41 0.47910000000E-01 1.0000000000
42 })
43 (type: [am = s]
44 {exp coef:0} = {
45 0.22200000000E-01 1.0000000000
46 })
47 (type: [am = s]
48 {exp coef:0} = {
49 5.6140000000 1.0000000000
50 })
51 (type: [am = s]
52 {exp coef:0} = {
53 1.8600000000 1.0000000000
54 })
55 (type: [am = s]
56 {exp coef:0} = {
57 0.61600000000 1.0000000000
58 })
59 (type: [am = p]
60 {exp coef:0} = {
61 6.2500000000 0.33880000000E-02
62 1.3700000000 0.19316000000E-01
63 0.36720000000 0.79104000000E-01
64 })
65 (type: [am = p]
66 {exp coef:0} = {
67 0.11920000000 1.0000000000
68 })
69 (type: [am = p]
70 {exp coef:0} = {
71 0.44740000000E-01 1.0000000000
72 })
73 (type: [am = p]
74 {exp coef:0} = {
75 0.17950000000E-01 1.0000000000
76 })
77 (type: [am = p]
78 {exp coef:0} = {
79 9.7850000000 1.0000000000
80 })
81 (type: [am = p]
82 {exp coef:0} = {
83 2.5930000000 1.0000000000
84 })
85 (type: [am = p]
86 {exp coef:0} = {
87 0.68700000000 1.0000000000
88 })
89 (type: [(am = d puream = 1)]
90 {exp coef:0} = {
91 0.34400000000 1.0000000000
92 })
93 (type: [(am = d puream = 1)]
94 {exp coef:0} = {
95 0.15300000000 1.0000000000
96 })
97 (type: [(am = d puream = 1)]
98 {exp coef:0} = {
99 0.68000000000E-01 1.0000000000
100 })
101 (type: [(am = d puream = 1)]
102 {exp coef:0} = {
103 10.602000000 1.0000000000
104 })
105 (type: [(am = d puream = 1)]
106 {exp coef:0} = {
107 3.0660000000 1.0000000000
108 })
109 (type: [(am = f puream = 1)]
110 {exp coef:0} = {
111 0.24600000000 1.0000000000
112 })
113 (type: [(am = f puream = 1)]
114 {exp coef:0} = {
115 0.12920000000 1.0000000000
116 })
117 (type: [(am = f puream = 1)]
118 {exp coef:0} = {
119 6.6830000000 1.0000000000
120 })
121 (type: [(am = g puream = 1)]
122 {exp coef:0} = {
123 0.23800000000 1.0000000000
124 })
125 ]
126%
127% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
128% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
129 boron: "cc-pCVQZ": [
130 (type: [am = s am = s]
131 {exp coef:0 coef:1} = {
132 23870.000000 0.88000000000E-04 -0.18000000000E-04
133 3575.0000000 0.68700000000E-03 -0.13900000000E-03
134 812.80000000 0.36000000000E-02 -0.72500000000E-03
135 229.70000000 0.14949000000E-01 -0.30630000000E-02
136 74.690000000 0.51435000000E-01 -0.10581000000E-01
137 26.810000000 0.14330200000 -0.31365000000E-01
138 10.320000000 0.30093500000 -0.71012000000E-01
139 4.1780000000 0.40352600000 -0.13210300000
140 1.7270000000 0.22534000000 -0.12307200000
141 })
142 (type: [am = s]
143 {exp coef:0} = {
144 0.47040000000 1.0000000000
145 })
146 (type: [am = s]
147 {exp coef:0} = {
148 0.18960000000 1.0000000000
149 })
150 (type: [am = s]
151 {exp coef:0} = {
152 0.73940000000E-01 1.0000000000
153 })
154 (type: [am = s]
155 {exp coef:0} = {
156 4.8640000000 1.0000000000
157 })
158 (type: [am = s]
159 {exp coef:0} = {
160 13.288000000 1.0000000000
161 })
162 (type: [am = s]
163 {exp coef:0} = {
164 36.304000000 1.0000000000
165 })
166 (type: [am = p]
167 {exp coef:0} = {
168 22.260000000 0.50950000000E-02
169 5.0580000000 0.33206000000E-01
170 1.4870000000 0.13231400000
171 })
172 (type: [am = p]
173 {exp coef:0} = {
174 0.50710000000 1.0000000000
175 })
176 (type: [am = p]
177 {exp coef:0} = {
178 0.18120000000 1.0000000000
179 })
180 (type: [am = p]
181 {exp coef:0} = {
182 0.64630000000E-01 1.0000000000
183 })
184 (type: [am = p]
185 {exp coef:0} = {
186 5.4890000000 1.0000000000
187 })
188 (type: [am = p]
189 {exp coef:0} = {
190 16.302000000 1.0000000000
191 })
192 (type: [am = p]
193 {exp coef:0} = {
194 48.418000000 1.0000000000
195 })
196 (type: [(am = d puream = 1)]
197 {exp coef:0} = {
198 1.1100000000 1.0000000000
199 })
200 (type: [(am = d puream = 1)]
201 {exp coef:0} = {
202 0.40200000000 1.0000000000
203 })
204 (type: [(am = d puream = 1)]
205 {exp coef:0} = {
206 0.14500000000 1.0000000000
207 })
208 (type: [(am = d puream = 1)]
209 {exp coef:0} = {
210 6.6400000000 1.0000000000
211 })
212 (type: [(am = d puream = 1)]
213 {exp coef:0} = {
214 24.462000000 1.0000000000
215 })
216 (type: [(am = f puream = 1)]
217 {exp coef:0} = {
218 0.88200000000 1.0000000000
219 })
220 (type: [(am = f puream = 1)]
221 {exp coef:0} = {
222 0.31100000000 1.0000000000
223 })
224 (type: [(am = f puream = 1)]
225 {exp coef:0} = {
226 18.794000000 1.0000000000
227 })
228 (type: [(am = g puream = 1)]
229 {exp coef:0} = {
230 0.67300000000 1.0000000000
231 })
232 ]
233%
234% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
235% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
236 carbon: "cc-pCVQZ": [
237 (type: [am = s am = s]
238 {exp coef:0 coef:1} = {
239 33980.000000 0.91000000000E-04 -0.19000000000E-04
240 5089.0000000 0.70400000000E-03 -0.15100000000E-03
241 1157.0000000 0.36930000000E-02 -0.78500000000E-03
242 326.60000000 0.15360000000E-01 -0.33240000000E-02
243 106.10000000 0.52929000000E-01 -0.11512000000E-01
244 38.110000000 0.14704300000 -0.34160000000E-01
245 14.750000000 0.30563100000 -0.77173000000E-01
246 6.0350000000 0.39934500000 -0.14149300000
247 2.5300000000 0.21705100000 -0.11801900000
248 })
249 (type: [am = s]
250 {exp coef:0} = {
251 0.73550000000 1.0000000000
252 })
253 (type: [am = s]
254 {exp coef:0} = {
255 0.29050000000 1.0000000000
256 })
257 (type: [am = s]
258 {exp coef:0} = {
259 0.11110000000 1.0000000000
260 })
261 (type: [am = s]
262 {exp coef:0} = {
263 7.2160000000 1.0000000000
264 })
265 (type: [am = s]
266 {exp coef:0} = {
267 19.570000000 1.0000000000
268 })
269 (type: [am = s]
270 {exp coef:0} = {
271 53.073000000 1.0000000000
272 })
273 (type: [am = p]
274 {exp coef:0} = {
275 34.510000000 0.53780000000E-02
276 7.9150000000 0.36132000000E-01
277 2.3680000000 0.14249300000
278 })
279 (type: [am = p]
280 {exp coef:0} = {
281 0.81320000000 1.0000000000
282 })
283 (type: [am = p]
284 {exp coef:0} = {
285 0.28900000000 1.0000000000
286 })
287 (type: [am = p]
288 {exp coef:0} = {
289 0.10070000000 1.0000000000
290 })
291 (type: [am = p]
292 {exp coef:0} = {
293 8.1820000000 1.0000000000
294 })
295 (type: [am = p]
296 {exp coef:0} = {
297 24.186000000 1.0000000000
298 })
299 (type: [am = p]
300 {exp coef:0} = {
301 71.494000000 1.0000000000
302 })
303 (type: [(am = d puream = 1)]
304 {exp coef:0} = {
305 1.8480000000 1.0000000000
306 })
307 (type: [(am = d puream = 1)]
308 {exp coef:0} = {
309 0.64900000000 1.0000000000
310 })
311 (type: [(am = d puream = 1)]
312 {exp coef:0} = {
313 0.22800000000 1.0000000000
314 })
315 (type: [(am = d puream = 1)]
316 {exp coef:0} = {
317 8.6560000000 1.0000000000
318 })
319 (type: [(am = d puream = 1)]
320 {exp coef:0} = {
321 33.213000000 1.0000000000
322 })
323 (type: [(am = f puream = 1)]
324 {exp coef:0} = {
325 1.4190000000 1.0000000000
326 })
327 (type: [(am = f puream = 1)]
328 {exp coef:0} = {
329 0.48500000000 1.0000000000
330 })
331 (type: [(am = f puream = 1)]
332 {exp coef:0} = {
333 24.694000000 1.0000000000
334 })
335 (type: [(am = g puream = 1)]
336 {exp coef:0} = {
337 1.0110000000 1.0000000000
338 })
339 ]
340%
341% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
342% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
343 nitrogen: "cc-pCVQZ": [
344 (type: [am = s am = s]
345 {exp coef:0 coef:1} = {
346 45840.000000 0.92000000000E-04 -0.20000000000E-04
347 6868.0000000 0.71700000000E-03 -0.15900000000E-03
348 1563.0000000 0.37490000000E-02 -0.82400000000E-03
349 442.40000000 0.15532000000E-01 -0.34780000000E-02
350 144.30000000 0.53146000000E-01 -0.11966000000E-01
351 52.180000000 0.14678700000 -0.35388000000E-01
352 20.340000000 0.30466300000 -0.80077000000E-01
353 8.3810000000 0.39768400000 -0.14672200000
354 3.5290000000 0.21764100000 -0.11636000000
355 })
356 (type: [am = s]
357 {exp coef:0} = {
358 1.0540000000 1.0000000000
359 })
360 (type: [am = s]
361 {exp coef:0} = {
362 0.41180000000 1.0000000000
363 })
364 (type: [am = s]
365 {exp coef:0} = {
366 0.15520000000 1.0000000000
367 })
368 (type: [am = s]
369 {exp coef:0} = {
370 9.8620000000 1.0000000000
371 })
372 (type: [am = s]
373 {exp coef:0} = {
374 26.627000000 1.0000000000
375 })
376 (type: [am = s]
377 {exp coef:0} = {
378 71.894000000 1.0000000000
379 })
380 (type: [am = p]
381 {exp coef:0} = {
382 49.330000000 0.55330000000E-02
383 11.370000000 0.37962000000E-01
384 3.4350000000 0.14902800000
385 })
386 (type: [am = p]
387 {exp coef:0} = {
388 1.1820000000 1.0000000000
389 })
390 (type: [am = p]
391 {exp coef:0} = {
392 0.41730000000 1.0000000000
393 })
394 (type: [am = p]
395 {exp coef:0} = {
396 0.14280000000 1.0000000000
397 })
398 (type: [am = p]
399 {exp coef:0} = {
400 11.320000000 1.0000000000
401 })
402 (type: [am = p]
403 {exp coef:0} = {
404 33.349000000 1.0000000000
405 })
406 (type: [am = p]
407 {exp coef:0} = {
408 98.245000000 1.0000000000
409 })
410 (type: [(am = d puream = 1)]
411 {exp coef:0} = {
412 2.8370000000 1.0000000000
413 })
414 (type: [(am = d puream = 1)]
415 {exp coef:0} = {
416 0.96800000000 1.0000000000
417 })
418 (type: [(am = d puream = 1)]
419 {exp coef:0} = {
420 0.33500000000 1.0000000000
421 })
422 (type: [(am = d puream = 1)]
423 {exp coef:0} = {
424 11.828000000 1.0000000000
425 })
426 (type: [(am = d puream = 1)]
427 {exp coef:0} = {
428 45.218000000 1.0000000000
429 })
430 (type: [(am = f puream = 1)]
431 {exp coef:0} = {
432 2.0270000000 1.0000000000
433 })
434 (type: [(am = f puream = 1)]
435 {exp coef:0} = {
436 0.68500000000 1.0000000000
437 })
438 (type: [(am = f puream = 1)]
439 {exp coef:0} = {
440 28.364000000 1.0000000000
441 })
442 (type: [(am = g puream = 1)]
443 {exp coef:0} = {
444 1.4270000000 1.0000000000
445 })
446 ]
447%
448% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
449% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
450 oxygen: "cc-pCVQZ": [
451 (type: [am = s am = s]
452 {exp coef:0 coef:1} = {
453 61420.000000 0.90000000000E-04 -0.20000000000E-04
454 9199.0000000 0.69800000000E-03 -0.15900000000E-03
455 2091.0000000 0.36640000000E-02 -0.82900000000E-03
456 590.90000000 0.15218000000E-01 -0.35080000000E-02
457 192.30000000 0.52423000000E-01 -0.12156000000E-01
458 69.320000000 0.14592100000 -0.36261000000E-01
459 26.970000000 0.30525800000 -0.82992000000E-01
460 11.100000000 0.39850800000 -0.15209000000
461 4.6820000000 0.21698000000 -0.11533100000
462 })
463 (type: [am = s]
464 {exp coef:0} = {
465 1.4280000000 1.0000000000
466 })
467 (type: [am = s]
468 {exp coef:0} = {
469 0.55470000000 1.0000000000
470 })
471 (type: [am = s]
472 {exp coef:0} = {
473 0.20670000000 1.0000000000
474 })
475 (type: [am = s]
476 {exp coef:0} = {
477 12.974000000 1.0000000000
478 })
479 (type: [am = s]
480 {exp coef:0} = {
481 34.900000000 1.0000000000
482 })
483 (type: [am = s]
484 {exp coef:0} = {
485 93.881000000 1.0000000000
486 })
487 (type: [am = p]
488 {exp coef:0} = {
489 63.420000000 0.60440000000E-02
490 14.660000000 0.41799000000E-01
491 4.4590000000 0.16114300000
492 })
493 (type: [am = p]
494 {exp coef:0} = {
495 1.5310000000 1.0000000000
496 })
497 (type: [am = p]
498 {exp coef:0} = {
499 0.53020000000 1.0000000000
500 })
501 (type: [am = p]
502 {exp coef:0} = {
503 0.17500000000 1.0000000000
504 })
505 (type: [am = p]
506 {exp coef:0} = {
507 14.475000000 1.0000000000
508 })
509 (type: [am = p]
510 {exp coef:0} = {
511 42.730000000 1.0000000000
512 })
513 (type: [am = p]
514 {exp coef:0} = {
515 126.14000000 1.0000000000
516 })
517 (type: [(am = d puream = 1)]
518 {exp coef:0} = {
519 3.7750000000 1.0000000000
520 })
521 (type: [(am = d puream = 1)]
522 {exp coef:0} = {
523 1.3000000000 1.0000000000
524 })
525 (type: [(am = d puream = 1)]
526 {exp coef:0} = {
527 0.44400000000 1.0000000000
528 })
529 (type: [(am = d puream = 1)]
530 {exp coef:0} = {
531 14.927000000 1.0000000000
532 })
533 (type: [(am = d puream = 1)]
534 {exp coef:0} = {
535 57.544000000 1.0000000000
536 })
537 (type: [(am = f puream = 1)]
538 {exp coef:0} = {
539 2.6660000000 1.0000000000
540 })
541 (type: [(am = f puream = 1)]
542 {exp coef:0} = {
543 0.85900000000 1.0000000000
544 })
545 (type: [(am = f puream = 1)]
546 {exp coef:0} = {
547 26.483000000 1.0000000000
548 })
549 (type: [(am = g puream = 1)]
550 {exp coef:0} = {
551 1.8460000000 1.0000000000
552 })
553 ]
554%
555% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
556% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
557 fluorine: "cc-pCVQZ": [
558 (type: [am = s am = s]
559 {exp coef:0 coef:1} = {
560 74530.000000 0.95000000000E-04 -0.22000000000E-04
561 11170.000000 0.73800000000E-03 -0.17200000000E-03
562 2543.0000000 0.38580000000E-02 -0.89100000000E-03
563 721.00000000 0.15926000000E-01 -0.37480000000E-02
564 235.90000000 0.54289000000E-01 -0.12862000000E-01
565 85.600000000 0.14951300000 -0.38061000000E-01
566 33.550000000 0.30825200000 -0.86239000000E-01
567 13.930000000 0.39485300000 -0.15586500000
568 5.9150000000 0.21103100000 -0.11091400000
569 })
570 (type: [am = s]
571 {exp coef:0} = {
572 1.8430000000 1.0000000000
573 })
574 (type: [am = s]
575 {exp coef:0} = {
576 0.71240000000 1.0000000000
577 })
578 (type: [am = s]
579 {exp coef:0} = {
580 0.26370000000 1.0000000000
581 })
582 (type: [am = s]
583 {exp coef:0} = {
584 16.319000000 1.0000000000
585 })
586 (type: [am = s]
587 {exp coef:0} = {
588 43.784000000 1.0000000000
589 })
590 (type: [am = s]
591 {exp coef:0} = {
592 117.47200000 1.0000000000
593 })
594 (type: [am = p]
595 {exp coef:0} = {
596 80.390000000 0.63470000000E-02
597 18.630000000 0.44204000000E-01
598 5.6940000000 0.16851400000
599 })
600 (type: [am = p]
601 {exp coef:0} = {
602 1.9530000000 1.0000000000
603 })
604 (type: [am = p]
605 {exp coef:0} = {
606 0.67020000000 1.0000000000
607 })
608 (type: [am = p]
609 {exp coef:0} = {
610 0.21660000000 1.0000000000
611 })
612 (type: [am = p]
613 {exp coef:0} = {
614 18.119000000 1.0000000000
615 })
616 (type: [am = p]
617 {exp coef:0} = {
618 53.505000000 1.0000000000
619 })
620 (type: [am = p]
621 {exp coef:0} = {
622 158.00100000 1.0000000000
623 })
624 (type: [(am = d puream = 1)]
625 {exp coef:0} = {
626 5.0140000000 1.0000000000
627 })
628 (type: [(am = d puream = 1)]
629 {exp coef:0} = {
630 1.7250000000 1.0000000000
631 })
632 (type: [(am = d puream = 1)]
633 {exp coef:0} = {
634 0.58600000000 1.0000000000
635 })
636 (type: [(am = d puream = 1)]
637 {exp coef:0} = {
638 18.943000000 1.0000000000
639 })
640 (type: [(am = d puream = 1)]
641 {exp coef:0} = {
642 72.798000000 1.0000000000
643 })
644 (type: [(am = f puream = 1)]
645 {exp coef:0} = {
646 3.5620000000 1.0000000000
647 })
648 (type: [(am = f puream = 1)]
649 {exp coef:0} = {
650 1.1480000000 1.0000000000
651 })
652 (type: [(am = f puream = 1)]
653 {exp coef:0} = {
654 25.161000000 1.0000000000
655 })
656 (type: [(am = g puream = 1)]
657 {exp coef:0} = {
658 2.3760000000 1.0000000000
659 })
660 ]
661%
662% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
663% AUGMENTING FUNCTIONS: Tight (s,p,d)
664 neon: "cc-pCVQZ": [
665 (type: [am = s am = s]
666 {exp coef:0 coef:1} = {
667 99920.000000 0.86000000000E-04 -0.20000000000E-04
668 14960.000000 0.66900000000E-03 -0.15800000000E-03
669 3399.0000000 0.35180000000E-02 -0.82400000000E-03
670 958.90000000 0.14667000000E-01 -0.35000000000E-02
671 311.20000000 0.50962000000E-01 -0.12233000000E-01
672 111.70000000 0.14374400000 -0.37017000000E-01
673 43.320000000 0.30456200000 -0.86113000000E-01
674 17.800000000 0.40010500000 -0.15838100000
675 7.5030000000 0.21864400000 -0.11428800000
676 })
677 (type: [am = s]
678 {exp coef:0} = {
679 2.3370000000 1.0000000000
680 })
681 (type: [am = s]
682 {exp coef:0} = {
683 0.90010000000 1.0000000000
684 })
685 (type: [am = s]
686 {exp coef:0} = {
687 0.33010000000 1.0000000000
688 })
689 (type: [am = s]
690 {exp coef:0} = {
691 20.180000000 1.0000000000
692 })
693 (type: [am = s]
694 {exp coef:0} = {
695 54.042000000 1.0000000000
696 })
697 (type: [am = s]
698 {exp coef:0} = {
699 144.72500000 1.0000000000
700 })
701 (type: [am = p]
702 {exp coef:0} = {
703 99.680000000 0.65660000000E-02
704 23.150000000 0.45979000000E-01
705 7.1080000000 0.17341900000
706 })
707 (type: [am = p]
708 {exp coef:0} = {
709 2.4410000000 1.0000000000
710 })
711 (type: [am = p]
712 {exp coef:0} = {
713 0.83390000000 1.0000000000
714 })
715 (type: [am = p]
716 {exp coef:0} = {
717 0.26620000000 1.0000000000
718 })
719 (type: [am = p]
720 {exp coef:0} = {
721 22.222000000 1.0000000000
722 })
723 (type: [am = p]
724 {exp coef:0} = {
725 65.622000000 1.0000000000
726 })
727 (type: [am = p]
728 {exp coef:0} = {
729 193.78000000 1.0000000000
730 })
731 (type: [(am = d puream = 1)]
732 {exp coef:0} = {
733 6.4710000000 1.0000000000
734 })
735 (type: [(am = d puream = 1)]
736 {exp coef:0} = {
737 2.2130000000 1.0000000000
738 })
739 (type: [(am = d puream = 1)]
740 {exp coef:0} = {
741 0.74700000000 1.0000000000
742 })
743 (type: [(am = d puream = 1)]
744 {exp coef:0} = {
745 23.613000000 1.0000000000
746 })
747 (type: [(am = d puream = 1)]
748 {exp coef:0} = {
749 90.107000000 1.0000000000
750 })
751 (type: [(am = f puream = 1)]
752 {exp coef:0} = {
753 4.6570000000 1.0000000000
754 })
755 (type: [(am = f puream = 1)]
756 {exp coef:0} = {
757 1.5240000000 1.0000000000
758 })
759 (type: [(am = f puream = 1)]
760 {exp coef:0} = {
761 28.830000000 1.0000000000
762 })
763 (type: [(am = g puream = 1)]
764 {exp coef:0} = {
765 2.9830000000 1.0000000000
766 })
767 ]
768%
769% BASIS SET: (19s,12p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
770% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
771 sodium: "cc-pCVQZ": [
772 (type: [am = s am = s am = s]
773 {exp coef:0 coef:1 coef:2} = {
774 1224000.0000 0.47889400000E-05 -0.11695800000E-05 0.17587100000E-06
775 183200.00000 0.37239500000E-04 -0.90911000000E-05 0.13659400000E-05
776 41700.000000 0.19583100000E-03 -0.47849900000E-04 0.71979500000E-05
777 11810.000000 0.82669800000E-03 -0.20196200000E-03 0.30334900000E-04
778 3853.0000000 0.30025100000E-02 -0.73583700000E-03 0.11075200000E-03
779 1391.0000000 0.97031000000E-02 -0.23874600000E-02 0.35859600000E-03
780 542.50000000 0.28233700000E-01 -0.70496900000E-02 0.10627200000E-02
781 224.90000000 0.73205800000E-01 -0.18785600000E-01 0.28268700000E-02
782 97.930000000 0.16289700000 -0.44615300000E-01 0.67674200000E-02
783 44.310000000 0.28870800000 -0.89774100000E-01 0.13648000000E-01
784 20.650000000 0.34682900000 -0.14294000000 0.22281400000E-01
785 9.7290000000 0.20686500000 -0.12431500000 0.19601100000E-01
786 4.2280000000 0.32800900000E-01 0.99964800000E-01 -0.16770800000E-01
787 1.9690000000 -0.64773600000E-03 0.41708000000 -0.77373400000E-01
788 0.88900000000 0.14587800000E-02 0.47512300000 -0.11350100000
789 0.39640000000 -0.17834600000E-03 0.16326800000 -0.13913000000
790 })
791 (type: [am = s]
792 {exp coef:0} = {
793 0.69930000000E-01 1.0000000000
794 })
795 (type: [am = s]
796 {exp coef:0} = {
797 0.32890000000E-01 1.0000000000
798 })
799 (type: [am = s]
800 {exp coef:0} = {
801 0.16120000000E-01 1.0000000000
802 })
803 (type: [am = s]
804 {exp coef:0} = {
805 24.282000000 1.0000000000
806 })
807 (type: [am = s]
808 {exp coef:0} = {
809 4.8740000000 1.0000000000
810 })
811 (type: [am = s]
812 {exp coef:0} = {
813 0.97800000000 1.0000000000
814 })
815 (type: [am = p am = p]
816 {exp coef:0 coef:1} = {
817 413.40000000 0.90819600000E-03 -0.90174100000E-04
818 97.980000000 0.74177300000E-02 -0.73934200000E-03
819 31.370000000 0.35746400000E-01 -0.35730900000E-02
820 11.620000000 0.11852000000 -0.12014200000E-01
821 4.6710000000 0.26140300000 -0.26717800000E-01
822 1.9180000000 0.37839500000 -0.39275300000E-01
823 0.77750000000 0.33463200000 -0.37608300000E-01
824 0.30130000000 0.12684400000 -0.43322800000E-01
825 0.22750000000 -0.14711700000E-01 0.51800300000E-01
826 })
827 (type: [am = p]
828 {exp coef:0} = {
829 0.75270000000E-01 1.0000000000
830 })
831 (type: [am = p]
832 {exp coef:0} = {
833 0.31260000000E-01 1.0000000000
834 })
835 (type: [am = p]
836 {exp coef:0} = {
837 0.13420000000E-01 1.0000000000
838 })
839 (type: [am = p]
840 {exp coef:0} = {
841 4.4660000000 1.0000000000
842 })
843 (type: [am = p]
844 {exp coef:0} = {
845 1.6890000000 1.0000000000
846 })
847 (type: [am = p]
848 {exp coef:0} = {
849 0.63800000000 1.0000000000
850 })
851 (type: [(am = d puream = 1)]
852 {exp coef:0} = {
853 0.15380000000 1.0000000000
854 })
855 (type: [(am = d puream = 1)]
856 {exp coef:0} = {
857 0.86500000000E-01 1.0000000000
858 })
859 (type: [(am = d puream = 1)]
860 {exp coef:0} = {
861 0.48700000000E-01 1.0000000000
862 })
863 (type: [(am = d puream = 1)]
864 {exp coef:0} = {
865 8.6060000000 1.0000000000
866 })
867 (type: [(am = d puream = 1)]
868 {exp coef:0} = {
869 3.1370000000 1.0000000000
870 })
871 (type: [(am = d puream = 1)]
872 {exp coef:0} = {
873 1.1440000000 1.0000000000
874 })
875 (type: [(am = f puream = 1)]
876 {exp coef:0} = {
877 0.19120000000 1.0000000000
878 })
879 (type: [(am = f puream = 1)]
880 {exp coef:0} = {
881 0.10360000000 1.0000000000
882 })
883 (type: [(am = f puream = 1)]
884 {exp coef:0} = {
885 6.2580000000 1.0000000000
886 })
887 (type: [(am = f puream = 1)]
888 {exp coef:0} = {
889 2.1730000000 1.0000000000
890 })
891 (type: [(am = g puream = 1)]
892 {exp coef:0} = {
893 0.17220000000 1.0000000000
894 })
895 (type: [(am = g puream = 1)]
896 {exp coef:0} = {
897 4.0970000000 1.0000000000
898 })
899 ]
900%
901% BASIS SET: (16s,12p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
902% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
903 magnesium: "cc-pCVQZ": [
904 (type: [am = s am = s am = s]
905 {exp coef:0 coef:1 coef:2} = {
906 327600.00000 0.30960800000E-04 -0.78317300000E-05 0.15090800000E-05
907 49050.000000 0.24095400000E-03 -0.60793500000E-04 0.11713400000E-04
908 11150.000000 0.12666000000E-02 -0.32119700000E-03 0.61898000000E-04
909 3152.0000000 0.53335900000E-02 -0.13495500000E-02 0.26008800000E-03
910 1025.0000000 0.19077000000E-01 -0.49057000000E-02 0.94621800000E-03
911 368.80000000 0.58805800000E-01 -0.15356100000E-01 0.29659500000E-02
912 143.20000000 0.15145400000 -0.42340900000E-01 0.82124500000E-02
913 58.960000000 0.30071600000 -0.94060300000E-01 0.18397700000E-01
914 25.400000000 0.38114900000 -0.16342500000 0.32665700000E-01
915 11.150000000 0.21358400000 -0.12475400000 0.25731500000E-01
916 4.0040000000 0.23121000000E-01 0.23562300000 -0.53535100000E-01
917 1.7010000000 -0.23075700000E-02 0.57756300000 -0.15689500000
918 0.70600000000 0.12890000000E-02 0.33523200000 -0.20665900000
919 })
920 (type: [am = s]
921 {exp coef:0} = {
922 0.14100000000 1.0000000000
923 })
924 (type: [am = s]
925 {exp coef:0} = {
926 0.68080000000E-01 1.0000000000
927 })
928 (type: [am = s]
929 {exp coef:0} = {
930 0.30630000000E-01 1.0000000000
931 })
932 (type: [am = s]
933 {exp coef:0} = {
934 23.243000000 1.0000000000
935 })
936 (type: [am = s]
937 {exp coef:0} = {
938 9.5610000000 1.0000000000
939 })
940 (type: [am = s]
941 {exp coef:0} = {
942 3.9330000000 1.0000000000
943 })
944 (type: [am = p am = p]
945 {exp coef:0 coef:1} = {
946 539.60000000 0.83396900000E-03 -0.13207600000E-03
947 127.90000000 0.68921500000E-02 -0.10953800000E-02
948 41.020000000 0.33787400000E-01 -0.53949500000E-02
949 15.250000000 0.11440100000 -0.18557200000E-01
950 6.1660000000 0.25951400000 -0.42737500000E-01
951 2.5610000000 0.38509500000 -0.64768400000E-01
952 1.0600000000 0.33537300000 -0.62781800000E-01
953 0.41760000000 0.11064100000 -0.24491200000E-01
954 0.26900000000 -0.12131500000E-01 0.10476100000
955 })
956 (type: [am = p]
957 {exp coef:0} = {
958 0.12230000000 1.0000000000
959 })
960 (type: [am = p]
961 {exp coef:0} = {
962 0.54760000000E-01 1.0000000000
963 })
964 (type: [am = p]
965 {exp coef:0} = {
966 0.23880000000E-01 1.0000000000
967 })
968 (type: [am = p]
969 {exp coef:0} = {
970 39.536000000 1.0000000000
971 })
972 (type: [am = p]
973 {exp coef:0} = {
974 12.778000000 1.0000000000
975 })
976 (type: [am = p]
977 {exp coef:0} = {
978 4.1300000000 1.0000000000
979 })
980 (type: [(am = d puream = 1)]
981 {exp coef:0} = {
982 0.10600000000 1.0000000000
983 })
984 (type: [(am = d puream = 1)]
985 {exp coef:0} = {
986 0.19440000000 1.0000000000
987 })
988 (type: [(am = d puream = 1)]
989 {exp coef:0} = {
990 0.35700000000 1.0000000000
991 })
992 (type: [(am = d puream = 1)]
993 {exp coef:0} = {
994 12.533000000 1.0000000000
995 })
996 (type: [(am = d puream = 1)]
997 {exp coef:0} = {
998 4.6770000000 1.0000000000
999 })
1000 (type: [(am = d puream = 1)]
1001 {exp coef:0} = {
1002 1.7450000000 1.0000000000
1003 })
1004 (type: [(am = f puream = 1)]
1005 {exp coef:0} = {
1006 0.18100000000 1.0000000000
1007 })
1008 (type: [(am = f puream = 1)]
1009 {exp coef:0} = {
1010 0.35900000000 1.0000000000
1011 })
1012 (type: [(am = f puream = 1)]
1013 {exp coef:0} = {
1014 7.8760000000 1.0000000000
1015 })
1016 (type: [(am = f puream = 1)]
1017 {exp coef:0} = {
1018 2.8050000000 1.0000000000
1019 })
1020 (type: [(am = g puream = 1)]
1021 {exp coef:0} = {
1022 0.30700000000 1.0000000000
1023 })
1024 (type: [(am = g puream = 1)]
1025 {exp coef:0} = {
1026 5.3940000000 1.0000000000
1027 })
1028 ]
1029%
1030% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1031% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
1032 aluminum: "cc-pCVQZ": [
1033 (type: [am = s am = s am = s]
1034 {exp coef:0 coef:1 coef:2} = {
1035 419600.00000 0.27821900000E-04 -0.72375400000E-05 0.16715000000E-05
1036 62830.000000 0.21633000000E-03 -0.56173300000E-04 0.12964100000E-04
1037 14290.000000 0.11375400000E-02 -0.29652800000E-03 0.68510100000E-04
1038 4038.0000000 0.47963500000E-02 -0.12491300000E-02 0.28827400000E-03
1039 1312.0000000 0.17238900000E-01 -0.45510100000E-02 0.10527600000E-02
1040 470.50000000 0.53806600000E-01 -0.14439300000E-01 0.33387800000E-02
1041 181.80000000 0.14132600000 -0.40346400000E-01 0.93921700000E-02
1042 74.460000000 0.28926800000 -0.92261800000E-01 0.21604700000E-01
1043 31.900000000 0.38482500000 -0.16451000000 0.39587300000E-01
1044 13.960000000 0.23285200000 -0.14129600000 0.34918000000E-01
1045 5.1800000000 0.29333000000E-01 0.19536500000 -0.52841500000E-01
1046 2.2650000000 -0.30057400000E-02 0.57247500000 -0.19187800000
1047 0.96640000000 0.16667300000E-02 0.37404100000 -0.25411500000
1048 })
1049 (type: [am = s]
1050 {exp coef:0} = {
1051 0.24470000000 1.0000000000
1052 })
1053 (type: [am = s]
1054 {exp coef:0} = {
1055 0.11840000000 1.0000000000
1056 })
1057 (type: [am = s]
1058 {exp coef:0} = {
1059 0.50210000000E-01 1.0000000000
1060 })
1061 (type: [am = s]
1062 {exp coef:0} = {
1063 9.7290000000 1.0000000000
1064 })
1065 (type: [am = s]
1066 {exp coef:0} = {
1067 4.8700000000 1.0000000000
1068 })
1069 (type: [am = s]
1070 {exp coef:0} = {
1071 2.4370000000 1.0000000000
1072 })
1073 (type: [am = p am = p]
1074 {exp coef:0 coef:1} = {
1075 891.30000000 0.49175500000E-03 -0.88869500000E-04
1076 211.30000000 0.41584300000E-02 -0.74582300000E-03
1077 68.280000000 0.21253800000E-01 -0.38702500000E-02
1078 25.700000000 0.76405800000E-01 -0.13935000000E-01
1079 10.630000000 0.19427700000 -0.36686000000E-01
1080 4.6020000000 0.33442800000 -0.62779700000E-01
1081 2.0150000000 0.37502600000 -0.78960200000E-01
1082 0.87060000000 0.20404100000 -0.28858900000E-01
1083 })
1084 (type: [am = p]
1085 {exp coef:0} = {
1086 0.29720000000 1.0000000000
1087 })
1088 (type: [am = p]
1089 {exp coef:0} = {
1090 0.11000000000 1.0000000000
1091 })
1092 (type: [am = p]
1093 {exp coef:0} = {
1094 0.39890000000E-01 1.0000000000
1095 })
1096 (type: [am = p]
1097 {exp coef:0} = {
1098 10.000000000 1.0000000000
1099 })
1100 (type: [am = p]
1101 {exp coef:0} = {
1102 4.5140000000 1.0000000000
1103 })
1104 (type: [am = p]
1105 {exp coef:0} = {
1106 2.0380000000 1.0000000000
1107 })
1108 (type: [(am = d puream = 1)]
1109 {exp coef:0} = {
1110 0.80400000000E-01 1.0000000000
1111 })
1112 (type: [(am = d puream = 1)]
1113 {exp coef:0} = {
1114 0.19900000000 1.0000000000
1115 })
1116 (type: [(am = d puream = 1)]
1117 {exp coef:0} = {
1118 0.49400000000 1.0000000000
1119 })
1120 (type: [(am = d puream = 1)]
1121 {exp coef:0} = {
1122 14.835000000 1.0000000000
1123 })
1124 (type: [(am = d puream = 1)]
1125 {exp coef:0} = {
1126 5.6370000000 1.0000000000
1127 })
1128 (type: [(am = d puream = 1)]
1129 {exp coef:0} = {
1130 2.1420000000 1.0000000000
1131 })
1132 (type: [(am = f puream = 1)]
1133 {exp coef:0} = {
1134 0.15400000000 1.0000000000
1135 })
1136 (type: [(am = f puream = 1)]
1137 {exp coef:0} = {
1138 0.40100000000 1.0000000000
1139 })
1140 (type: [(am = f puream = 1)]
1141 {exp coef:0} = {
1142 9.8530000000 1.0000000000
1143 })
1144 (type: [(am = f puream = 1)]
1145 {exp coef:0} = {
1146 3.5250000000 1.0000000000
1147 })
1148 (type: [(am = g puream = 1)]
1149 {exp coef:0} = {
1150 0.35700000000 1.0000000000
1151 })
1152 (type: [(am = g puream = 1)]
1153 {exp coef:0} = {
1154 6.8940000000 1.0000000000
1155 })
1156 ]
1157%
1158% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1159% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
1160 silicon: "cc-pCVQZ": [
1161 (type: [am = s am = s am = s]
1162 {exp coef:0 coef:1 coef:2} = {
1163 513000.00000 0.26092000000E-04 -0.69488000000E-05 0.17806800000E-05
1164 76820.000000 0.20290500000E-03 -0.53964100000E-04 0.13814800000E-04
1165 17470.000000 0.10671500000E-02 -0.28471600000E-03 0.73000500000E-04
1166 4935.0000000 0.45059700000E-02 -0.12020300000E-02 0.30766600000E-03
1167 1602.0000000 0.16235900000E-01 -0.43839700000E-02 0.11256300000E-02
1168 574.10000000 0.50891300000E-01 -0.13977600000E-01 0.35843500000E-02
1169 221.50000000 0.13515500000 -0.39351600000E-01 0.10172800000E-01
1170 90.540000000 0.28129200000 -0.91428300000E-01 0.23752000000E-01
1171 38.740000000 0.38533600000 -0.16560900000 0.44348300000E-01
1172 16.950000000 0.24565100000 -0.15250500000 0.41904100000E-01
1173 6.4520000000 0.34314500000E-01 0.16852400000 -0.50250400000E-01
1174 2.8740000000 -0.33488400000E-02 0.56928400000 -0.21657800000
1175 1.2500000000 0.18762500000E-02 0.39805600000 -0.28644800000
1176 })
1177 (type: [am = s]
1178 {exp coef:0} = {
1179 0.35990000000 1.0000000000
1180 })
1181 (type: [am = s]
1182 {exp coef:0} = {
1183 0.16990000000 1.0000000000
1184 })
1185 (type: [am = s]
1186 {exp coef:0} = {
1187 0.70660000000E-01 1.0000000000
1188 })
1189 (type: [am = s]
1190 {exp coef:0} = {
1191 12.164000000 1.0000000000
1192 })
1193 (type: [am = s]
1194 {exp coef:0} = {
1195 6.1870000000 1.0000000000
1196 })
1197 (type: [am = s]
1198 {exp coef:0} = {
1199 3.1470000000 1.0000000000
1200 })
1201 (type: [am = p am = p]
1202 {exp coef:0 coef:1} = {
1203 1122.0000000 0.44814300000E-03 -0.96488300000E-04
1204 266.00000000 0.38163900000E-02 -0.81197100000E-03
1205 85.920000000 0.19810500000E-01 -0.43008700000E-02
1206 32.330000000 0.72701700000E-01 -0.15750200000E-01
1207 13.370000000 0.18983900000 -0.42954100000E-01
1208 5.8000000000 0.33567200000 -0.75257400000E-01
1209 2.5590000000 0.37936500000 -0.97144600000E-01
1210 1.1240000000 0.20119300000 -0.22750700000E-01
1211 })
1212 (type: [am = p]
1213 {exp coef:0} = {
1214 0.39880000000 1.0000000000
1215 })
1216 (type: [am = p]
1217 {exp coef:0} = {
1218 0.15330000000 1.0000000000
1219 })
1220 (type: [am = p]
1221 {exp coef:0} = {
1222 0.57280000000E-01 1.0000000000
1223 })
1224 (type: [am = p]
1225 {exp coef:0} = {
1226 12.646000000 1.0000000000
1227 })
1228 (type: [am = p]
1229 {exp coef:0} = {
1230 5.7470000000 1.0000000000
1231 })
1232 (type: [am = p]
1233 {exp coef:0} = {
1234 2.6120000000 1.0000000000
1235 })
1236 (type: [(am = d puream = 1)]
1237 {exp coef:0} = {
1238 0.12000000000 1.0000000000
1239 })
1240 (type: [(am = d puream = 1)]
1241 {exp coef:0} = {
1242 0.30200000000 1.0000000000
1243 })
1244 (type: [(am = d puream = 1)]
1245 {exp coef:0} = {
1246 0.76000000000 1.0000000000
1247 })
1248 (type: [(am = d puream = 1)]
1249 {exp coef:0} = {
1250 19.015000000 1.0000000000
1251 })
1252 (type: [(am = d puream = 1)]
1253 {exp coef:0} = {
1254 7.4010000000 1.0000000000
1255 })
1256 (type: [(am = d puream = 1)]
1257 {exp coef:0} = {
1258 2.8810000000 1.0000000000
1259 })
1260 (type: [(am = f puream = 1)]
1261 {exp coef:0} = {
1262 0.21200000000 1.0000000000
1263 })
1264 (type: [(am = f puream = 1)]
1265 {exp coef:0} = {
1266 0.54100000000 1.0000000000
1267 })
1268 (type: [(am = f puream = 1)]
1269 {exp coef:0} = {
1270 11.925000000 1.0000000000
1271 })
1272 (type: [(am = f puream = 1)]
1273 {exp coef:0} = {
1274 4.3040000000 1.0000000000
1275 })
1276 (type: [(am = g puream = 1)]
1277 {exp coef:0} = {
1278 0.46100000000 1.0000000000
1279 })
1280 (type: [(am = g puream = 1)]
1281 {exp coef:0} = {
1282 8.5770000000 1.0000000000
1283 })
1284 ]
1285%
1286% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1287% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
1288 phosphorus: "cc-pCVQZ": [
1289 (type: [am = s am = s am = s]
1290 {exp coef:0 coef:1 coef:2} = {
1291 615200.00000 0.24745000000E-04 -0.67220500000E-05 0.18474000000E-05
1292 92120.000000 0.19246500000E-03 -0.52231100000E-04 0.14338000000E-04
1293 20950.000000 0.10120200000E-02 -0.27536100000E-03 0.75722800000E-04
1294 5920.0000000 0.42726100000E-02 -0.11630700000E-02 0.31920500000E-03
1295 1922.0000000 0.15416100000E-01 -0.42428100000E-02 0.11685100000E-02
1296 688.00000000 0.48597600000E-01 -0.13611400000E-01 0.37426700000E-02
1297 265.00000000 0.13006000000 -0.38511400000E-01 0.10681700000E-01
1298 108.20000000 0.27451400000 -0.90664300000E-01 0.25265700000E-01
1299 46.220000000 0.38540200000 -0.16658400000 0.47928300000E-01
1300 20.230000000 0.25593400000 -0.16144700000 0.47709600000E-01
1301 7.8590000000 0.39123700000E-01 0.14678100000 -0.46652500000E-01
1302 3.5470000000 -0.36801000000E-02 0.56668200000 -0.23496800000
1303 1.5640000000 0.20821100000E-02 0.41643300000 -0.31133700000
1304 })
1305 (type: [am = s]
1306 {exp coef:0} = {
1307 0.48880000000 1.0000000000
1308 })
1309 (type: [am = s]
1310 {exp coef:0} = {
1311 0.22660000000 1.0000000000
1312 })
1313 (type: [am = s]
1314 {exp coef:0} = {
1315 0.93310000000E-01 1.0000000000
1316 })
1317 (type: [am = s]
1318 {exp coef:0} = {
1319 14.831000000 1.0000000000
1320 })
1321 (type: [am = s]
1322 {exp coef:0} = {
1323 7.6400000000 1.0000000000
1324 })
1325 (type: [am = s]
1326 {exp coef:0} = {
1327 3.9350000000 1.0000000000
1328 })
1329 (type: [am = p am = p]
1330 {exp coef:0 coef:1} = {
1331 1367.0000000 0.42101500000E-03 -0.10082700000E-03
1332 324.00000000 0.36098500000E-02 -0.85449900000E-03
1333 104.60000000 0.18921700000E-01 -0.45711600000E-02
1334 39.370000000 0.70556000000E-01 -0.17032700000E-01
1335 16.260000000 0.18815700000 -0.47520400000E-01
1336 7.0560000000 0.33870900000 -0.85278600000E-01
1337 3.1300000000 0.38194300000 -0.10967600000
1338 1.3940000000 0.19526100000 -0.16118100000E-01
1339 })
1340 (type: [am = p]
1341 {exp coef:0} = {
1342 0.51790000000 1.0000000000
1343 })
1344 (type: [am = p]
1345 {exp coef:0} = {
1346 0.20320000000 1.0000000000
1347 })
1348 (type: [am = p]
1349 {exp coef:0} = {
1350 0.76980000000E-01 1.0000000000
1351 })
1352 (type: [am = p]
1353 {exp coef:0} = {
1354 15.523000000 1.0000000000
1355 })
1356 (type: [am = p]
1357 {exp coef:0} = {
1358 7.0730000000 1.0000000000
1359 })
1360 (type: [am = p]
1361 {exp coef:0} = {
1362 3.2230000000 1.0000000000
1363 })
1364 (type: [(am = d puream = 1)]
1365 {exp coef:0} = {
1366 0.16500000000 1.0000000000
1367 })
1368 (type: [(am = d puream = 1)]
1369 {exp coef:0} = {
1370 0.41300000000 1.0000000000
1371 })
1372 (type: [(am = d puream = 1)]
1373 {exp coef:0} = {
1374 1.0360000000 1.0000000000
1375 })
1376 (type: [(am = d puream = 1)]
1377 {exp coef:0} = {
1378 23.417000000 1.0000000000
1379 })
1380 (type: [(am = d puream = 1)]
1381 {exp coef:0} = {
1382 9.2500000000 1.0000000000
1383 })
1384 (type: [(am = d puream = 1)]
1385 {exp coef:0} = {
1386 3.6540000000 1.0000000000
1387 })
1388 (type: [(am = f puream = 1)]
1389 {exp coef:0} = {
1390 0.28000000000 1.0000000000
1391 })
1392 (type: [(am = f puream = 1)]
1393 {exp coef:0} = {
1394 0.70300000000 1.0000000000
1395 })
1396 (type: [(am = f puream = 1)]
1397 {exp coef:0} = {
1398 14.207000000 1.0000000000
1399 })
1400 (type: [(am = f puream = 1)]
1401 {exp coef:0} = {
1402 5.1610000000 1.0000000000
1403 })
1404 (type: [(am = g puream = 1)]
1405 {exp coef:0} = {
1406 0.59700000000 1.0000000000
1407 })
1408 (type: [(am = g puream = 1)]
1409 {exp coef:0} = {
1410 10.448000000 1.0000000000
1411 })
1412 ]
1413%
1414% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1415% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
1416 sulfur: "cc-pCVQZ": [
1417 (type: [am = s am = s am = s]
1418 {exp coef:0 coef:1 coef:2} = {
1419 727800.00000 0.23602500000E-04 -0.65217900000E-05 0.18940600000E-05
1420 109000.00000 0.18348200000E-03 -0.50663100000E-04 0.14694800000E-04
1421 24800.000000 0.96427800000E-03 -0.26683300000E-03 0.77546000000E-04
1422 7014.0000000 0.40653700000E-02 -0.11260100000E-02 0.32650900000E-03
1423 2278.0000000 0.14697300000E-01 -0.41118600000E-02 0.11968600000E-02
1424 814.70000000 0.46508100000E-01 -0.13245400000E-01 0.38479900000E-02
1425 313.40000000 0.12550800000 -0.37700400000E-01 0.11053900000E-01
1426 127.70000000 0.26843300000 -0.89855400000E-01 0.26464500000E-01
1427 54.480000000 0.38480900000 -0.16709800000 0.50877100000E-01
1428 23.850000000 0.26537200000 -0.16935400000 0.53003000000E-01
1429 9.4280000000 0.43732600000E-01 0.12782400000 -0.42551800000E-01
1430 4.2900000000 -0.37880700000E-02 0.56486200000 -0.25085300000
1431 1.9090000000 0.21808300000E-02 0.43176700000 -0.33315200000
1432 })
1433 (type: [am = s]
1434 {exp coef:0} = {
1435 0.62700000000 1.0000000000
1436 })
1437 (type: [am = s]
1438 {exp coef:0} = {
1439 0.28730000000 1.0000000000
1440 })
1441 (type: [am = s]
1442 {exp coef:0} = {
1443 0.11720000000 1.0000000000
1444 })
1445 (type: [am = s]
1446 {exp coef:0} = {
1447 17.599000000 1.0000000000
1448 })
1449 (type: [am = s]
1450 {exp coef:0} = {
1451 9.1860000000 1.0000000000
1452 })
1453 (type: [am = s]
1454 {exp coef:0} = {
1455 4.7950000000 1.0000000000
1456 })
1457 (type: [am = p am = p]
1458 {exp coef:0 coef:1} = {
1459 1546.0000000 0.44118300000E-03 -0.11311000000E-03
1460 366.40000000 0.37757100000E-02 -0.95858100000E-03
1461 118.40000000 0.19836000000E-01 -0.51347100000E-02
1462 44.530000000 0.74206300000E-01 -0.19264100000E-01
1463 18.380000000 0.19732700000 -0.53598000000E-01
1464 7.9650000000 0.35185100000 -0.96033300000E-01
1465 3.5410000000 0.37868700000 -0.11818300000
1466 1.5910000000 0.17093100000 0.92319400000E-02
1467 })
1468 (type: [am = p]
1469 {exp coef:0} = {
1470 0.62050000000 1.0000000000
1471 })
1472 (type: [am = p]
1473 {exp coef:0} = {
1474 0.24200000000 1.0000000000
1475 })
1476 (type: [am = p]
1477 {exp coef:0} = {
1478 0.90140000000E-01 1.0000000000
1479 })
1480 (type: [am = p]
1481 {exp coef:0} = {
1482 18.127000000 1.0000000000
1483 })
1484 (type: [am = p]
1485 {exp coef:0} = {
1486 8.2190000000 1.0000000000
1487 })
1488 (type: [am = p]
1489 {exp coef:0} = {
1490 3.7260000000 1.0000000000
1491 })
1492 (type: [(am = d puream = 1)]
1493 {exp coef:0} = {
1494 0.20300000000 1.0000000000
1495 })
1496 (type: [(am = d puream = 1)]
1497 {exp coef:0} = {
1498 0.50400000000 1.0000000000
1499 })
1500 (type: [(am = d puream = 1)]
1501 {exp coef:0} = {
1502 1.2500000000 1.0000000000
1503 })
1504 (type: [(am = d puream = 1)]
1505 {exp coef:0} = {
1506 27.417000000 1.0000000000
1507 })
1508 (type: [(am = d puream = 1)]
1509 {exp coef:0} = {
1510 10.893000000 1.0000000000
1511 })
1512 (type: [(am = d puream = 1)]
1513 {exp coef:0} = {
1514 4.3190000000 1.0000000000
1515 })
1516 (type: [(am = f puream = 1)]
1517 {exp coef:0} = {
1518 0.33500000000 1.0000000000
1519 })
1520 (type: [(am = f puream = 1)]
1521 {exp coef:0} = {
1522 0.86900000000 1.0000000000
1523 })
1524 (type: [(am = f puream = 1)]
1525 {exp coef:0} = {
1526 16.535000000 1.0000000000
1527 })
1528 (type: [(am = f puream = 1)]
1529 {exp coef:0} = {
1530 6.0080000000 1.0000000000
1531 })
1532 (type: [(am = g puream = 1)]
1533 {exp coef:0} = {
1534 0.68300000000 1.0000000000
1535 })
1536 (type: [(am = g puream = 1)]
1537 {exp coef:0} = {
1538 12.518000000 1.0000000000
1539 })
1540 ]
1541%
1542% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1543% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
1544 chlorine: "cc-pCVQZ": [
1545 (type: [am = s am = s am = s]
1546 {exp coef:0 coef:1 coef:2} = {
1547 834900.00000 0.23168800000E-04 -0.64964900000E-05 0.19664500000E-05
1548 125000.00000 0.18015400000E-03 -0.50489500000E-04 0.15262000000E-04
1549 28430.000000 0.94778200000E-03 -0.26611300000E-03 0.80608600000E-04
1550 8033.0000000 0.40013900000E-02 -0.11249900000E-02 0.33996000000E-03
1551 2608.0000000 0.14462900000E-01 -0.41049700000E-02 0.12455100000E-02
1552 933.90000000 0.45658600000E-01 -0.13198700000E-01 0.39961200000E-02
1553 360.00000000 0.12324800000 -0.37534200000E-01 0.11475100000E-01
1554 147.00000000 0.26436900000 -0.89723300000E-01 0.27550400000E-01
1555 62.880000000 0.38298900000 -0.16767100000 0.53291700000E-01
1556 27.600000000 0.27093400000 -0.17476300000 0.57124600000E-01
1557 11.080000000 0.47140400000E-01 0.11490900000 -0.39520100000E-01
1558 5.0750000000 -0.37176600000E-02 0.56361800000 -0.26434300000
1559 2.2780000000 0.21915800000E-02 0.44160600000 -0.34929100000
1560 })
1561 (type: [am = s]
1562 {exp coef:0} = {
1563 0.77750000000 1.0000000000
1564 })
1565 (type: [am = s]
1566 {exp coef:0} = {
1567 0.35270000000 1.0000000000
1568 })
1569 (type: [am = s]
1570 {exp coef:0} = {
1571 0.14310000000 1.0000000000
1572 })
1573 (type: [am = s]
1574 {exp coef:0} = {
1575 20.689000000 1.0000000000
1576 })
1577 (type: [am = s]
1578 {exp coef:0} = {
1579 10.880000000 1.0000000000
1580 })
1581 (type: [am = s]
1582 {exp coef:0} = {
1583 5.7220000000 1.0000000000
1584 })
1585 (type: [am = p am = p]
1586 {exp coef:0 coef:1} = {
1587 1703.0000000 0.47403900000E-03 -0.12826600000E-03
1588 403.60000000 0.40641200000E-02 -0.10935600000E-02
1589 130.30000000 0.21335500000E-01 -0.58342900000E-02
1590 49.050000000 0.79461100000E-01 -0.21925800000E-01
1591 20.260000000 0.20892700000 -0.60138500000E-01
1592 8.7870000000 0.36494500000 -0.10692900000
1593 3.9190000000 0.37172500000 -0.12245400000
1594 1.7650000000 0.14629200000 0.38361900000E-01
1595 })
1596 (type: [am = p]
1597 {exp coef:0} = {
1598 0.72070000000 1.0000000000
1599 })
1600 (type: [am = p]
1601 {exp coef:0} = {
1602 0.28390000000 1.0000000000
1603 })
1604 (type: [am = p]
1605 {exp coef:0} = {
1606 0.10600000000 1.0000000000
1607 })
1608 (type: [am = p]
1609 {exp coef:0} = {
1610 20.784000000 1.0000000000
1611 })
1612 (type: [am = p]
1613 {exp coef:0} = {
1614 9.3790000000 1.0000000000
1615 })
1616 (type: [am = p]
1617 {exp coef:0} = {
1618 4.2320000000 1.0000000000
1619 })
1620 (type: [(am = d puream = 1)]
1621 {exp coef:0} = {
1622 0.25400000000 1.0000000000
1623 })
1624 (type: [(am = d puream = 1)]
1625 {exp coef:0} = {
1626 0.62800000000 1.0000000000
1627 })
1628 (type: [(am = d puream = 1)]
1629 {exp coef:0} = {
1630 1.5510000000 1.0000000000
1631 })
1632 (type: [(am = d puream = 1)]
1633 {exp coef:0} = {
1634 32.255000000 1.0000000000
1635 })
1636 (type: [(am = d puream = 1)]
1637 {exp coef:0} = {
1638 12.888000000 1.0000000000
1639 })
1640 (type: [(am = d puream = 1)]
1641 {exp coef:0} = {
1642 5.1490000000 1.0000000000
1643 })
1644 (type: [(am = f puream = 1)]
1645 {exp coef:0} = {
1646 0.42300000000 1.0000000000
1647 })
1648 (type: [(am = f puream = 1)]
1649 {exp coef:0} = {
1650 1.0890000000 1.0000000000
1651 })
1652 (type: [(am = f puream = 1)]
1653 {exp coef:0} = {
1654 19.107000000 1.0000000000
1655 })
1656 (type: [(am = f puream = 1)]
1657 {exp coef:0} = {
1658 6.9500000000 1.0000000000
1659 })
1660 (type: [(am = g puream = 1)]
1661 {exp coef:0} = {
1662 0.82700000000 1.0000000000
1663 })
1664 (type: [(am = g puream = 1)]
1665 {exp coef:0} = {
1666 14.782000000 1.0000000000
1667 })
1668 ]
1669%
1670% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1671% AUGMENTING FUNCTIONS: Tight (3s,3p,3d,2f,1g)
1672 argon: "cc-pCVQZ": [
1673 (type: [am = s am = s am = s]
1674 {exp coef:0 coef:1 coef:2} = {
1675 950600.00000 0.22754500000E-04 -0.64620100000E-05 0.20205600000E-05
1676 142300.00000 0.17694500000E-03 -0.50234600000E-04 0.15685100000E-04
1677 32360.000000 0.93128200000E-03 -0.26480400000E-03 0.82861700000E-04
1678 9145.0000000 0.39286000000E-02 -0.11189500000E-02 0.34926400000E-03
1679 2970.0000000 0.14206400000E-01 -0.40827600000E-02 0.12797600000E-02
1680 1064.0000000 0.44811400000E-01 -0.13121600000E-01 0.41036500000E-02
1681 410.80000000 0.12100100000 -0.37285500000E-01 0.11778900000E-01
1682 168.00000000 0.26057900000 -0.89470900000E-01 0.28386800000E-01
1683 71.990000000 0.38136400000 -0.16805400000 0.55240600000E-01
1684 31.670000000 0.27605800000 -0.17959400000 0.60749200000E-01
1685 12.890000000 0.50517900000E-01 0.10295300000 -0.36201200000E-01
1686 5.9290000000 -0.35986600000E-02 0.56263000000 -0.27539800000
1687 2.6780000000 0.21879800000E-02 0.45035500000 -0.36284500000
1688 })
1689 (type: [am = s]
1690 {exp coef:0} = {
1691 0.94160000000 1.0000000000
1692 })
1693 (type: [am = s]
1694 {exp coef:0} = {
1695 0.42390000000 1.0000000000
1696 })
1697 (type: [am = s]
1698 {exp coef:0} = {
1699 0.17140000000 1.0000000000
1700 })
1701 (type: [am = s]
1702 {exp coef:0} = {
1703 24.024000000 1.0000000000
1704 })
1705 (type: [am = s]
1706 {exp coef:0} = {
1707 12.706000000 1.0000000000
1708 })
1709 (type: [am = s]
1710 {exp coef:0} = {
1711 6.7200000000 1.0000000000
1712 })
1713 (type: [am = p am = p]
1714 {exp coef:0 coef:1} = {
1715 1890.0000000 0.49575200000E-03 -0.13886300000E-03
1716 447.80000000 0.42517200000E-02 -0.11887000000E-02
1717 144.60000000 0.22327700000E-01 -0.63255300000E-02
1718 54.460000000 0.83087800000E-01 -0.23881300000E-01
1719 22.510000000 0.21711000000 -0.64923800000E-01
1720 9.7740000000 0.37450700000 -0.11544400000
1721 4.3680000000 0.36644500000 -0.12365100000
1722 1.9590000000 0.12924500000 0.64905500000E-01
1723 })
1724 (type: [am = p]
1725 {exp coef:0} = {
1726 0.82600000000 1.0000000000
1727 })
1728 (type: [am = p]
1729 {exp coef:0} = {
1730 0.32970000000 1.0000000000
1731 })
1732 (type: [am = p]
1733 {exp coef:0} = {
1734 0.12420000000 1.0000000000
1735 })
1736 (type: [am = p]
1737 {exp coef:0} = {
1738 23.627000000 1.0000000000
1739 })
1740 (type: [am = p]
1741 {exp coef:0} = {
1742 10.654000000 1.0000000000
1743 })
1744 (type: [am = p]
1745 {exp coef:0} = {
1746 4.8040000000 1.0000000000
1747 })
1748 (type: [(am = d puream = 1)]
1749 {exp coef:0} = {
1750 0.31100000000 1.0000000000
1751 })
1752 (type: [(am = d puream = 1)]
1753 {exp coef:0} = {
1754 0.76300000000 1.0000000000
1755 })
1756 (type: [(am = d puream = 1)]
1757 {exp coef:0} = {
1758 1.8730000000 1.0000000000
1759 })
1760 (type: [(am = d puream = 1)]
1761 {exp coef:0} = {
1762 37.364000000 1.0000000000
1763 })
1764 (type: [(am = d puream = 1)]
1765 {exp coef:0} = {
1766 15.013000000 1.0000000000
1767 })
1768 (type: [(am = d puream = 1)]
1769 {exp coef:0} = {
1770 6.0320000000 1.0000000000
1771 })
1772 (type: [(am = f puream = 1)]
1773 {exp coef:0} = {
1774 0.54300000000 1.0000000000
1775 })
1776 (type: [(am = f puream = 1)]
1777 {exp coef:0} = {
1778 1.3250000000 1.0000000000
1779 })
1780 (type: [(am = f puream = 1)]
1781 {exp coef:0} = {
1782 21.884000000 1.0000000000
1783 })
1784 (type: [(am = f puream = 1)]
1785 {exp coef:0} = {
1786 7.9680000000 1.0000000000
1787 })
1788 (type: [(am = g puream = 1)]
1789 {exp coef:0} = {
1790 1.0070000000 1.0000000000
1791 })
1792 (type: [(am = g puream = 1)]
1793 {exp coef:0} = {
1794 17.243000000 1.0000000000
1795 })
1796 ]
1797)
Note: See TracBrowser for help on using the repository browser.