1 | %BASIS "cc-pCV5Z" CARTESIAN
|
---|
2 | basis:(
|
---|
3 | %Elements References
|
---|
4 | %-------- ----------
|
---|
5 | %H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
6 | %He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
|
---|
7 | %Li : Unofficial set from D. Feller.
|
---|
8 | %B - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
9 | %Na - Mg: Unofficial set from D. Feller.
|
---|
10 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
11 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
12 | %Elements References
|
---|
13 | %-------- ----------
|
---|
14 | % B - Na: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and
|
---|
15 | % T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995).
|
---|
16 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
17 | %
|
---|
18 | %
|
---|
19 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
20 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
21 | boron: "cc-pCV5Z": [
|
---|
22 | (type: [am = s am = s]
|
---|
23 | {exp coef:0 coef:1} = {
|
---|
24 | 68260.000000 0.24000000000E-04 -0.50000000000E-05
|
---|
25 | 10230.000000 0.18500000000E-03 -0.37000000000E-04
|
---|
26 | 2328.0000000 0.97000000000E-03 -0.19600000000E-03
|
---|
27 | 660.40000000 0.40560000000E-02 -0.82400000000E-03
|
---|
28 | 216.20000000 0.14399000000E-01 -0.29230000000E-02
|
---|
29 | 78.600000000 0.43901000000E-01 -0.91380000000E-02
|
---|
30 | 30.980000000 0.11305700000 -0.24105000000E-01
|
---|
31 | 12.960000000 0.23382500000 -0.54755000000E-01
|
---|
32 | 5.6590000000 0.35396000000 -0.96943000000E-01
|
---|
33 | 2.5560000000 0.30154700000 -0.13748500000
|
---|
34 | })
|
---|
35 | (type: [am = s]
|
---|
36 | {exp coef:0} = {
|
---|
37 | 1.1750000000 1.0000000000
|
---|
38 | })
|
---|
39 | (type: [am = s]
|
---|
40 | {exp coef:0} = {
|
---|
41 | 0.42490000000 1.0000000000
|
---|
42 | })
|
---|
43 | (type: [am = s]
|
---|
44 | {exp coef:0} = {
|
---|
45 | 0.17120000000 1.0000000000
|
---|
46 | })
|
---|
47 | (type: [am = s]
|
---|
48 | {exp coef:0} = {
|
---|
49 | 0.69130000000E-01 1.0000000000
|
---|
50 | })
|
---|
51 | (type: [am = s]
|
---|
52 | {exp coef:0} = {
|
---|
53 | 6.4110000000 1.0000000000
|
---|
54 | })
|
---|
55 | (type: [am = s]
|
---|
56 | {exp coef:0} = {
|
---|
57 | 14.521000000 1.0000000000
|
---|
58 | })
|
---|
59 | (type: [am = s]
|
---|
60 | {exp coef:0} = {
|
---|
61 | 32.890000000 1.0000000000
|
---|
62 | })
|
---|
63 | (type: [am = s]
|
---|
64 | {exp coef:0} = {
|
---|
65 | 74.496000000 1.0000000000
|
---|
66 | })
|
---|
67 | (type: [am = p]
|
---|
68 | {exp coef:0} = {
|
---|
69 | 66.440000000 0.83800000000E-03
|
---|
70 | 15.710000000 0.64090000000E-02
|
---|
71 | 4.9360000000 0.28081000000E-01
|
---|
72 | 1.7700000000 0.92152000000E-01
|
---|
73 | })
|
---|
74 | (type: [am = p]
|
---|
75 | {exp coef:0} = {
|
---|
76 | 0.70080000000 1.0000000000
|
---|
77 | })
|
---|
78 | (type: [am = p]
|
---|
79 | {exp coef:0} = {
|
---|
80 | 0.29010000000 1.0000000000
|
---|
81 | })
|
---|
82 | (type: [am = p]
|
---|
83 | {exp coef:0} = {
|
---|
84 | 0.12110000000 1.0000000000
|
---|
85 | })
|
---|
86 | (type: [am = p]
|
---|
87 | {exp coef:0} = {
|
---|
88 | 0.49730000000E-01 1.0000000000
|
---|
89 | })
|
---|
90 | (type: [am = p]
|
---|
91 | {exp coef:0} = {
|
---|
92 | 5.1720000000 1.0000000000
|
---|
93 | })
|
---|
94 | (type: [am = p]
|
---|
95 | {exp coef:0} = {
|
---|
96 | 13.225000000 1.0000000000
|
---|
97 | })
|
---|
98 | (type: [am = p]
|
---|
99 | {exp coef:0} = {
|
---|
100 | 33.816000000 1.0000000000
|
---|
101 | })
|
---|
102 | (type: [am = p]
|
---|
103 | {exp coef:0} = {
|
---|
104 | 86.467000000 1.0000000000
|
---|
105 | })
|
---|
106 | (type: [(am = d puream = 1)]
|
---|
107 | {exp coef:0} = {
|
---|
108 | 2.0100000000 1.0000000000
|
---|
109 | })
|
---|
110 | (type: [(am = d puream = 1)]
|
---|
111 | {exp coef:0} = {
|
---|
112 | 0.79600000000 1.0000000000
|
---|
113 | })
|
---|
114 | (type: [(am = d puream = 1)]
|
---|
115 | {exp coef:0} = {
|
---|
116 | 0.31600000000 1.0000000000
|
---|
117 | })
|
---|
118 | (type: [(am = d puream = 1)]
|
---|
119 | {exp coef:0} = {
|
---|
120 | 0.12500000000 1.0000000000
|
---|
121 | })
|
---|
122 | (type: [(am = d puream = 1)]
|
---|
123 | {exp coef:0} = {
|
---|
124 | 7.0660000000 1.0000000000
|
---|
125 | })
|
---|
126 | (type: [(am = d puream = 1)]
|
---|
127 | {exp coef:0} = {
|
---|
128 | 19.721000000 1.0000000000
|
---|
129 | })
|
---|
130 | (type: [(am = d puream = 1)]
|
---|
131 | {exp coef:0} = {
|
---|
132 | 55.042000000 1.0000000000
|
---|
133 | })
|
---|
134 | (type: [(am = f puream = 1)]
|
---|
135 | {exp coef:0} = {
|
---|
136 | 1.2150000000 1.0000000000
|
---|
137 | })
|
---|
138 | (type: [(am = f puream = 1)]
|
---|
139 | {exp coef:0} = {
|
---|
140 | 0.52500000000 1.0000000000
|
---|
141 | })
|
---|
142 | (type: [(am = f puream = 1)]
|
---|
143 | {exp coef:0} = {
|
---|
144 | 0.22700000000 1.0000000000
|
---|
145 | })
|
---|
146 | (type: [(am = f puream = 1)]
|
---|
147 | {exp coef:0} = {
|
---|
148 | 9.9940000000 1.0000000000
|
---|
149 | })
|
---|
150 | (type: [(am = f puream = 1)]
|
---|
151 | {exp coef:0} = {
|
---|
152 | 33.090000000 1.0000000000
|
---|
153 | })
|
---|
154 | (type: [(am = g puream = 1)]
|
---|
155 | {exp coef:0} = {
|
---|
156 | 1.1240000000 1.0000000000
|
---|
157 | })
|
---|
158 | (type: [(am = g puream = 1)]
|
---|
159 | {exp coef:0} = {
|
---|
160 | 0.46100000000 1.0000000000
|
---|
161 | })
|
---|
162 | (type: [(am = g puream = 1)]
|
---|
163 | {exp coef:0} = {
|
---|
164 | 24.020000000 1.0000000000
|
---|
165 | })
|
---|
166 | (type: [(am = h puream = 1)]
|
---|
167 | {exp coef:0} = {
|
---|
168 | 0.83400000000 1.0000000000
|
---|
169 | })
|
---|
170 | ]
|
---|
171 | %
|
---|
172 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
173 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
174 | carbon: "cc-pCV5Z": [
|
---|
175 | (type: [am = s am = s]
|
---|
176 | {exp coef:0 coef:1} = {
|
---|
177 | 96770.000000 0.25000000000E-04 -0.50000000000E-05
|
---|
178 | 14500.000000 0.19000000000E-03 -0.41000000000E-04
|
---|
179 | 3300.0000000 0.10000000000E-02 -0.21300000000E-03
|
---|
180 | 935.80000000 0.41830000000E-02 -0.89700000000E-03
|
---|
181 | 306.20000000 0.14859000000E-01 -0.31870000000E-02
|
---|
182 | 111.30000000 0.45301000000E-01 -0.99610000000E-02
|
---|
183 | 43.900000000 0.11650400000 -0.26375000000E-01
|
---|
184 | 18.400000000 0.24024900000 -0.60001000000E-01
|
---|
185 | 8.0540000000 0.35879900000 -0.10682500000
|
---|
186 | 3.6370000000 0.29394100000 -0.14416600000
|
---|
187 | })
|
---|
188 | (type: [am = s]
|
---|
189 | {exp coef:0} = {
|
---|
190 | 1.6560000000 1.0000000000
|
---|
191 | })
|
---|
192 | (type: [am = s]
|
---|
193 | {exp coef:0} = {
|
---|
194 | 0.63330000000 1.0000000000
|
---|
195 | })
|
---|
196 | (type: [am = s]
|
---|
197 | {exp coef:0} = {
|
---|
198 | 0.25450000000 1.0000000000
|
---|
199 | })
|
---|
200 | (type: [am = s]
|
---|
201 | {exp coef:0} = {
|
---|
202 | 0.10190000000 1.0000000000
|
---|
203 | })
|
---|
204 | (type: [am = s]
|
---|
205 | {exp coef:0} = {
|
---|
206 | 9.1850000000 1.0000000000
|
---|
207 | })
|
---|
208 | (type: [am = s]
|
---|
209 | {exp coef:0} = {
|
---|
210 | 20.795000000 1.0000000000
|
---|
211 | })
|
---|
212 | (type: [am = s]
|
---|
213 | {exp coef:0} = {
|
---|
214 | 47.080000000 1.0000000000
|
---|
215 | })
|
---|
216 | (type: [am = s]
|
---|
217 | {exp coef:0} = {
|
---|
218 | 106.58800000 1.0000000000
|
---|
219 | })
|
---|
220 | (type: [am = p]
|
---|
221 | {exp coef:0} = {
|
---|
222 | 101.80000000 0.89100000000E-03
|
---|
223 | 24.040000000 0.69760000000E-02
|
---|
224 | 7.5710000000 0.31669000000E-01
|
---|
225 | 2.7320000000 0.10400600000
|
---|
226 | })
|
---|
227 | (type: [am = p]
|
---|
228 | {exp coef:0} = {
|
---|
229 | 1.0850000000 1.0000000000
|
---|
230 | })
|
---|
231 | (type: [am = p]
|
---|
232 | {exp coef:0} = {
|
---|
233 | 0.44960000000 1.0000000000
|
---|
234 | })
|
---|
235 | (type: [am = p]
|
---|
236 | {exp coef:0} = {
|
---|
237 | 0.18760000000 1.0000000000
|
---|
238 | })
|
---|
239 | (type: [am = p]
|
---|
240 | {exp coef:0} = {
|
---|
241 | 0.76060000000E-01 1.0000000000
|
---|
242 | })
|
---|
243 | (type: [am = p]
|
---|
244 | {exp coef:0} = {
|
---|
245 | 7.6680000000 1.0000000000
|
---|
246 | })
|
---|
247 | (type: [am = p]
|
---|
248 | {exp coef:0} = {
|
---|
249 | 19.484000000 1.0000000000
|
---|
250 | })
|
---|
251 | (type: [am = p]
|
---|
252 | {exp coef:0} = {
|
---|
253 | 49.510000000 1.0000000000
|
---|
254 | })
|
---|
255 | (type: [am = p]
|
---|
256 | {exp coef:0} = {
|
---|
257 | 125.80400000 1.0000000000
|
---|
258 | })
|
---|
259 | (type: [(am = d puream = 1)]
|
---|
260 | {exp coef:0} = {
|
---|
261 | 3.1340000000 1.0000000000
|
---|
262 | })
|
---|
263 | (type: [(am = d puream = 1)]
|
---|
264 | {exp coef:0} = {
|
---|
265 | 1.2330000000 1.0000000000
|
---|
266 | })
|
---|
267 | (type: [(am = d puream = 1)]
|
---|
268 | {exp coef:0} = {
|
---|
269 | 0.48500000000 1.0000000000
|
---|
270 | })
|
---|
271 | (type: [(am = d puream = 1)]
|
---|
272 | {exp coef:0} = {
|
---|
273 | 0.19100000000 1.0000000000
|
---|
274 | })
|
---|
275 | (type: [(am = d puream = 1)]
|
---|
276 | {exp coef:0} = {
|
---|
277 | 10.009000000 1.0000000000
|
---|
278 | })
|
---|
279 | (type: [(am = d puream = 1)]
|
---|
280 | {exp coef:0} = {
|
---|
281 | 28.065000000 1.0000000000
|
---|
282 | })
|
---|
283 | (type: [(am = d puream = 1)]
|
---|
284 | {exp coef:0} = {
|
---|
285 | 78.695000000 1.0000000000
|
---|
286 | })
|
---|
287 | (type: [(am = f puream = 1)]
|
---|
288 | {exp coef:0} = {
|
---|
289 | 2.0060000000 1.0000000000
|
---|
290 | })
|
---|
291 | (type: [(am = f puream = 1)]
|
---|
292 | {exp coef:0} = {
|
---|
293 | 0.83800000000 1.0000000000
|
---|
294 | })
|
---|
295 | (type: [(am = f puream = 1)]
|
---|
296 | {exp coef:0} = {
|
---|
297 | 0.35000000000 1.0000000000
|
---|
298 | })
|
---|
299 | (type: [(am = f puream = 1)]
|
---|
300 | {exp coef:0} = {
|
---|
301 | 11.693000000 1.0000000000
|
---|
302 | })
|
---|
303 | (type: [(am = f puream = 1)]
|
---|
304 | {exp coef:0} = {
|
---|
305 | 41.569000000 1.0000000000
|
---|
306 | })
|
---|
307 | (type: [(am = g puream = 1)]
|
---|
308 | {exp coef:0} = {
|
---|
309 | 1.7530000000 1.0000000000
|
---|
310 | })
|
---|
311 | (type: [(am = g puream = 1)]
|
---|
312 | {exp coef:0} = {
|
---|
313 | 0.67800000000 1.0000000000
|
---|
314 | })
|
---|
315 | (type: [(am = g puream = 1)]
|
---|
316 | {exp coef:0} = {
|
---|
317 | 32.780000000 1.0000000000
|
---|
318 | })
|
---|
319 | (type: [(am = h puream = 1)]
|
---|
320 | {exp coef:0} = {
|
---|
321 | 1.2590000000 1.0000000000
|
---|
322 | })
|
---|
323 | ]
|
---|
324 | %
|
---|
325 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
326 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
327 | nitrogen: "cc-pCV5Z": [
|
---|
328 | (type: [am = s am = s]
|
---|
329 | {exp coef:0 coef:1} = {
|
---|
330 | 129200.00000 0.25000000000E-04 -0.60000000000E-05
|
---|
331 | 19350.000000 0.19700000000E-03 -0.43000000000E-04
|
---|
332 | 4404.0000000 0.10320000000E-02 -0.22700000000E-03
|
---|
333 | 1248.0000000 0.43250000000E-02 -0.95800000000E-03
|
---|
334 | 408.00000000 0.15380000000E-01 -0.34160000000E-02
|
---|
335 | 148.20000000 0.46867000000E-01 -0.10667000000E-01
|
---|
336 | 58.500000000 0.12011600000 -0.28279000000E-01
|
---|
337 | 24.590000000 0.24569500000 -0.64020000000E-01
|
---|
338 | 10.810000000 0.36137900000 -0.11393200000
|
---|
339 | 4.8820000000 0.28728300000 -0.14699500000
|
---|
340 | })
|
---|
341 | (type: [am = s]
|
---|
342 | {exp coef:0} = {
|
---|
343 | 2.1950000000 1.0000000000
|
---|
344 | })
|
---|
345 | (type: [am = s]
|
---|
346 | {exp coef:0} = {
|
---|
347 | 0.87150000000 1.0000000000
|
---|
348 | })
|
---|
349 | (type: [am = s]
|
---|
350 | {exp coef:0} = {
|
---|
351 | 0.35040000000 1.0000000000
|
---|
352 | })
|
---|
353 | (type: [am = s]
|
---|
354 | {exp coef:0} = {
|
---|
355 | 0.13970000000 1.0000000000
|
---|
356 | })
|
---|
357 | (type: [am = s]
|
---|
358 | {exp coef:0} = {
|
---|
359 | 12.275000000 1.0000000000
|
---|
360 | })
|
---|
361 | (type: [am = s]
|
---|
362 | {exp coef:0} = {
|
---|
363 | 27.827000000 1.0000000000
|
---|
364 | })
|
---|
365 | (type: [am = s]
|
---|
366 | {exp coef:0} = {
|
---|
367 | 63.085000000 1.0000000000
|
---|
368 | })
|
---|
369 | (type: [am = s]
|
---|
370 | {exp coef:0} = {
|
---|
371 | 143.01300000 1.0000000000
|
---|
372 | })
|
---|
373 | (type: [am = p]
|
---|
374 | {exp coef:0} = {
|
---|
375 | 147.00000000 0.89200000000E-03
|
---|
376 | 34.760000000 0.70820000000E-02
|
---|
377 | 11.000000000 0.32816000000E-01
|
---|
378 | 3.9950000000 0.10820900000
|
---|
379 | })
|
---|
380 | (type: [am = p]
|
---|
381 | {exp coef:0} = {
|
---|
382 | 1.5870000000 1.0000000000
|
---|
383 | })
|
---|
384 | (type: [am = p]
|
---|
385 | {exp coef:0} = {
|
---|
386 | 0.65330000000 1.0000000000
|
---|
387 | })
|
---|
388 | (type: [am = p]
|
---|
389 | {exp coef:0} = {
|
---|
390 | 0.26860000000 1.0000000000
|
---|
391 | })
|
---|
392 | (type: [am = p]
|
---|
393 | {exp coef:0} = {
|
---|
394 | 0.10670000000 1.0000000000
|
---|
395 | })
|
---|
396 | (type: [am = p]
|
---|
397 | {exp coef:0} = {
|
---|
398 | 10.760000000 1.0000000000
|
---|
399 | })
|
---|
400 | (type: [am = p]
|
---|
401 | {exp coef:0} = {
|
---|
402 | 27.180000000 1.0000000000
|
---|
403 | })
|
---|
404 | (type: [am = p]
|
---|
405 | {exp coef:0} = {
|
---|
406 | 68.656000000 1.0000000000
|
---|
407 | })
|
---|
408 | (type: [am = p]
|
---|
409 | {exp coef:0} = {
|
---|
410 | 173.42500000 1.0000000000
|
---|
411 | })
|
---|
412 | (type: [(am = d puream = 1)]
|
---|
413 | {exp coef:0} = {
|
---|
414 | 4.6470000000 1.0000000000
|
---|
415 | })
|
---|
416 | (type: [(am = d puream = 1)]
|
---|
417 | {exp coef:0} = {
|
---|
418 | 1.8130000000 1.0000000000
|
---|
419 | })
|
---|
420 | (type: [(am = d puream = 1)]
|
---|
421 | {exp coef:0} = {
|
---|
422 | 0.70700000000 1.0000000000
|
---|
423 | })
|
---|
424 | (type: [(am = d puream = 1)]
|
---|
425 | {exp coef:0} = {
|
---|
426 | 0.27600000000 1.0000000000
|
---|
427 | })
|
---|
428 | (type: [(am = d puream = 1)]
|
---|
429 | {exp coef:0} = {
|
---|
430 | 14.053000000 1.0000000000
|
---|
431 | })
|
---|
432 | (type: [(am = d puream = 1)]
|
---|
433 | {exp coef:0} = {
|
---|
434 | 39.081000000 1.0000000000
|
---|
435 | })
|
---|
436 | (type: [(am = d puream = 1)]
|
---|
437 | {exp coef:0} = {
|
---|
438 | 108.68500000 1.0000000000
|
---|
439 | })
|
---|
440 | (type: [(am = f puream = 1)]
|
---|
441 | {exp coef:0} = {
|
---|
442 | 2.9420000000 1.0000000000
|
---|
443 | })
|
---|
444 | (type: [(am = f puream = 1)]
|
---|
445 | {exp coef:0} = {
|
---|
446 | 1.2040000000 1.0000000000
|
---|
447 | })
|
---|
448 | (type: [(am = f puream = 1)]
|
---|
449 | {exp coef:0} = {
|
---|
450 | 0.49300000000 1.0000000000
|
---|
451 | })
|
---|
452 | (type: [(am = f puream = 1)]
|
---|
453 | {exp coef:0} = {
|
---|
454 | 14.357000000 1.0000000000
|
---|
455 | })
|
---|
456 | (type: [(am = f puream = 1)]
|
---|
457 | {exp coef:0} = {
|
---|
458 | 52.690000000 1.0000000000
|
---|
459 | })
|
---|
460 | (type: [(am = g puream = 1)]
|
---|
461 | {exp coef:0} = {
|
---|
462 | 2.5110000000 1.0000000000
|
---|
463 | })
|
---|
464 | (type: [(am = g puream = 1)]
|
---|
465 | {exp coef:0} = {
|
---|
466 | 0.94200000000 1.0000000000
|
---|
467 | })
|
---|
468 | (type: [(am = g puream = 1)]
|
---|
469 | {exp coef:0} = {
|
---|
470 | 41.120000000 1.0000000000
|
---|
471 | })
|
---|
472 | (type: [(am = h puream = 1)]
|
---|
473 | {exp coef:0} = {
|
---|
474 | 1.7680000000 1.0000000000
|
---|
475 | })
|
---|
476 | ]
|
---|
477 | %
|
---|
478 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
479 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
480 | oxygen: "cc-pCV5Z": [
|
---|
481 | (type: [am = s am = s]
|
---|
482 | {exp coef:0 coef:1} = {
|
---|
483 | 164200.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
484 | 24590.000000 0.20500000000E-03 -0.46000000000E-04
|
---|
485 | 5592.0000000 0.10760000000E-02 -0.24400000000E-03
|
---|
486 | 1582.0000000 0.45220000000E-02 -0.10310000000E-02
|
---|
487 | 516.10000000 0.16108000000E-01 -0.36880000000E-02
|
---|
488 | 187.20000000 0.49085000000E-01 -0.11514000000E-01
|
---|
489 | 73.930000000 0.12485700000 -0.30435000000E-01
|
---|
490 | 31.220000000 0.25168600000 -0.68147000000E-01
|
---|
491 | 13.810000000 0.36242000000 -0.12036800000
|
---|
492 | 6.2560000000 0.27905100000 -0.14826000000
|
---|
493 | })
|
---|
494 | (type: [am = s]
|
---|
495 | {exp coef:0} = {
|
---|
496 | 2.7760000000 1.0000000000
|
---|
497 | })
|
---|
498 | (type: [am = s]
|
---|
499 | {exp coef:0} = {
|
---|
500 | 1.1380000000 1.0000000000
|
---|
501 | })
|
---|
502 | (type: [am = s]
|
---|
503 | {exp coef:0} = {
|
---|
504 | 0.46000000000 1.0000000000
|
---|
505 | })
|
---|
506 | (type: [am = s]
|
---|
507 | {exp coef:0} = {
|
---|
508 | 0.18290000000 1.0000000000
|
---|
509 | })
|
---|
510 | (type: [am = s]
|
---|
511 | {exp coef:0} = {
|
---|
512 | 15.645000000 1.0000000000
|
---|
513 | })
|
---|
514 | (type: [am = s]
|
---|
515 | {exp coef:0} = {
|
---|
516 | 35.874000000 1.0000000000
|
---|
517 | })
|
---|
518 | (type: [am = s]
|
---|
519 | {exp coef:0} = {
|
---|
520 | 82.259000000 1.0000000000
|
---|
521 | })
|
---|
522 | (type: [am = s]
|
---|
523 | {exp coef:0} = {
|
---|
524 | 188.62000000 1.0000000000
|
---|
525 | })
|
---|
526 | (type: [am = p]
|
---|
527 | {exp coef:0} = {
|
---|
528 | 195.50000000 0.91800000000E-03
|
---|
529 | 46.160000000 0.73880000000E-02
|
---|
530 | 14.580000000 0.34958000000E-01
|
---|
531 | 5.2960000000 0.11543100000
|
---|
532 | })
|
---|
533 | (type: [am = p]
|
---|
534 | {exp coef:0} = {
|
---|
535 | 2.0940000000 1.0000000000
|
---|
536 | })
|
---|
537 | (type: [am = p]
|
---|
538 | {exp coef:0} = {
|
---|
539 | 0.84710000000 1.0000000000
|
---|
540 | })
|
---|
541 | (type: [am = p]
|
---|
542 | {exp coef:0} = {
|
---|
543 | 0.33680000000 1.0000000000
|
---|
544 | })
|
---|
545 | (type: [am = p]
|
---|
546 | {exp coef:0} = {
|
---|
547 | 0.12850000000 1.0000000000
|
---|
548 | })
|
---|
549 | (type: [am = p]
|
---|
550 | {exp coef:0} = {
|
---|
551 | 14.049000000 1.0000000000
|
---|
552 | })
|
---|
553 | (type: [am = p]
|
---|
554 | {exp coef:0} = {
|
---|
555 | 35.446000000 1.0000000000
|
---|
556 | })
|
---|
557 | (type: [am = p]
|
---|
558 | {exp coef:0} = {
|
---|
559 | 89.429000000 1.0000000000
|
---|
560 | })
|
---|
561 | (type: [am = p]
|
---|
562 | {exp coef:0} = {
|
---|
563 | 225.63000000 1.0000000000
|
---|
564 | })
|
---|
565 | (type: [(am = d puream = 1)]
|
---|
566 | {exp coef:0} = {
|
---|
567 | 5.8790000000 1.0000000000
|
---|
568 | })
|
---|
569 | (type: [(am = d puream = 1)]
|
---|
570 | {exp coef:0} = {
|
---|
571 | 2.3070000000 1.0000000000
|
---|
572 | })
|
---|
573 | (type: [(am = d puream = 1)]
|
---|
574 | {exp coef:0} = {
|
---|
575 | 0.90500000000 1.0000000000
|
---|
576 | })
|
---|
577 | (type: [(am = d puream = 1)]
|
---|
578 | {exp coef:0} = {
|
---|
579 | 0.35500000000 1.0000000000
|
---|
580 | })
|
---|
581 | (type: [(am = d puream = 1)]
|
---|
582 | {exp coef:0} = {
|
---|
583 | 16.703000000 1.0000000000
|
---|
584 | })
|
---|
585 | (type: [(am = d puream = 1)]
|
---|
586 | {exp coef:0} = {
|
---|
587 | 47.320000000 1.0000000000
|
---|
588 | })
|
---|
589 | (type: [(am = d puream = 1)]
|
---|
590 | {exp coef:0} = {
|
---|
591 | 134.05600000 1.0000000000
|
---|
592 | })
|
---|
593 | (type: [(am = f puream = 1)]
|
---|
594 | {exp coef:0} = {
|
---|
595 | 4.0160000000 1.0000000000
|
---|
596 | })
|
---|
597 | (type: [(am = f puream = 1)]
|
---|
598 | {exp coef:0} = {
|
---|
599 | 1.5540000000 1.0000000000
|
---|
600 | })
|
---|
601 | (type: [(am = f puream = 1)]
|
---|
602 | {exp coef:0} = {
|
---|
603 | 0.60100000000 1.0000000000
|
---|
604 | })
|
---|
605 | (type: [(am = f puream = 1)]
|
---|
606 | {exp coef:0} = {
|
---|
607 | 17.354000000 1.0000000000
|
---|
608 | })
|
---|
609 | (type: [(am = f puream = 1)]
|
---|
610 | {exp coef:0} = {
|
---|
611 | 65.546000000 1.0000000000
|
---|
612 | })
|
---|
613 | (type: [(am = g puream = 1)]
|
---|
614 | {exp coef:0} = {
|
---|
615 | 3.3500000000 1.0000000000
|
---|
616 | })
|
---|
617 | (type: [(am = g puream = 1)]
|
---|
618 | {exp coef:0} = {
|
---|
619 | 1.1890000000 1.0000000000
|
---|
620 | })
|
---|
621 | (type: [(am = g puream = 1)]
|
---|
622 | {exp coef:0} = {
|
---|
623 | 48.578000000 1.0000000000
|
---|
624 | })
|
---|
625 | (type: [(am = h puream = 1)]
|
---|
626 | {exp coef:0} = {
|
---|
627 | 2.3190000000 1.0000000000
|
---|
628 | })
|
---|
629 | ]
|
---|
630 | %
|
---|
631 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
632 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
633 | fluorine: "cc-pCV5Z": [
|
---|
634 | (type: [am = s am = s]
|
---|
635 | {exp coef:0 coef:1} = {
|
---|
636 | 211400.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
637 | 31660.000000 0.20100000000E-03 -0.47000000000E-04
|
---|
638 | 7202.0000000 0.10560000000E-02 -0.24400000000E-03
|
---|
639 | 2040.0000000 0.44320000000E-02 -0.10310000000E-02
|
---|
640 | 666.40000000 0.15766000000E-01 -0.36830000000E-02
|
---|
641 | 242.00000000 0.48112000000E-01 -0.11513000000E-01
|
---|
642 | 95.530000000 0.12323200000 -0.30663000000E-01
|
---|
643 | 40.230000000 0.25151900000 -0.69572000000E-01
|
---|
644 | 17.720000000 0.36452500000 -0.12399200000
|
---|
645 | 8.0050000000 0.27976600000 -0.15021400000
|
---|
646 | })
|
---|
647 | (type: [am = s]
|
---|
648 | {exp coef:0} = {
|
---|
649 | 3.5380000000 1.0000000000
|
---|
650 | })
|
---|
651 | (type: [am = s]
|
---|
652 | {exp coef:0} = {
|
---|
653 | 1.4580000000 1.0000000000
|
---|
654 | })
|
---|
655 | (type: [am = s]
|
---|
656 | {exp coef:0} = {
|
---|
657 | 0.58870000000 1.0000000000
|
---|
658 | })
|
---|
659 | (type: [am = s]
|
---|
660 | {exp coef:0} = {
|
---|
661 | 0.23240000000 1.0000000000
|
---|
662 | })
|
---|
663 | (type: [am = s]
|
---|
664 | {exp coef:0} = {
|
---|
665 | 19.876000000 1.0000000000
|
---|
666 | })
|
---|
667 | (type: [am = s]
|
---|
668 | {exp coef:0} = {
|
---|
669 | 44.880000000 1.0000000000
|
---|
670 | })
|
---|
671 | (type: [am = s]
|
---|
672 | {exp coef:0} = {
|
---|
673 | 101.33900000 1.0000000000
|
---|
674 | })
|
---|
675 | (type: [am = s]
|
---|
676 | {exp coef:0} = {
|
---|
677 | 228.82400000 1.0000000000
|
---|
678 | })
|
---|
679 | (type: [am = p]
|
---|
680 | {exp coef:0} = {
|
---|
681 | 241.90000000 0.10020000000E-02
|
---|
682 | 57.170000000 0.80540000000E-02
|
---|
683 | 18.130000000 0.38048000000E-01
|
---|
684 | 6.6240000000 0.12377900000
|
---|
685 | })
|
---|
686 | (type: [am = p]
|
---|
687 | {exp coef:0} = {
|
---|
688 | 2.6220000000 1.0000000000
|
---|
689 | })
|
---|
690 | (type: [am = p]
|
---|
691 | {exp coef:0} = {
|
---|
692 | 1.0570000000 1.0000000000
|
---|
693 | })
|
---|
694 | (type: [am = p]
|
---|
695 | {exp coef:0} = {
|
---|
696 | 0.41760000000 1.0000000000
|
---|
697 | })
|
---|
698 | (type: [am = p]
|
---|
699 | {exp coef:0} = {
|
---|
700 | 0.15740000000 1.0000000000
|
---|
701 | })
|
---|
702 | (type: [am = p]
|
---|
703 | {exp coef:0} = {
|
---|
704 | 17.306000000 1.0000000000
|
---|
705 | })
|
---|
706 | (type: [am = p]
|
---|
707 | {exp coef:0} = {
|
---|
708 | 43.663000000 1.0000000000
|
---|
709 | })
|
---|
710 | (type: [am = p]
|
---|
711 | {exp coef:0} = {
|
---|
712 | 110.16200000 1.0000000000
|
---|
713 | })
|
---|
714 | (type: [am = p]
|
---|
715 | {exp coef:0} = {
|
---|
716 | 277.93800000 1.0000000000
|
---|
717 | })
|
---|
718 | (type: [(am = d puream = 1)]
|
---|
719 | {exp coef:0} = {
|
---|
720 | 7.7600000000 1.0000000000
|
---|
721 | })
|
---|
722 | (type: [(am = d puream = 1)]
|
---|
723 | {exp coef:0} = {
|
---|
724 | 3.0320000000 1.0000000000
|
---|
725 | })
|
---|
726 | (type: [(am = d puream = 1)]
|
---|
727 | {exp coef:0} = {
|
---|
728 | 1.1850000000 1.0000000000
|
---|
729 | })
|
---|
730 | (type: [(am = d puream = 1)]
|
---|
731 | {exp coef:0} = {
|
---|
732 | 0.46300000000 1.0000000000
|
---|
733 | })
|
---|
734 | (type: [(am = d puream = 1)]
|
---|
735 | {exp coef:0} = {
|
---|
736 | 21.731000000 1.0000000000
|
---|
737 | })
|
---|
738 | (type: [(am = d puream = 1)]
|
---|
739 | {exp coef:0} = {
|
---|
740 | 60.955000000 1.0000000000
|
---|
741 | })
|
---|
742 | (type: [(am = d puream = 1)]
|
---|
743 | {exp coef:0} = {
|
---|
744 | 170.89000000 1.0000000000
|
---|
745 | })
|
---|
746 | (type: [(am = f puream = 1)]
|
---|
747 | {exp coef:0} = {
|
---|
748 | 5.3980000000 1.0000000000
|
---|
749 | })
|
---|
750 | (type: [(am = f puream = 1)]
|
---|
751 | {exp coef:0} = {
|
---|
752 | 2.0780000000 1.0000000000
|
---|
753 | })
|
---|
754 | (type: [(am = f puream = 1)]
|
---|
755 | {exp coef:0} = {
|
---|
756 | 0.80000000000 1.0000000000
|
---|
757 | })
|
---|
758 | (type: [(am = f puream = 1)]
|
---|
759 | {exp coef:0} = {
|
---|
760 | 22.337000000 1.0000000000
|
---|
761 | })
|
---|
762 | (type: [(am = f puream = 1)]
|
---|
763 | {exp coef:0} = {
|
---|
764 | 82.290000000 1.0000000000
|
---|
765 | })
|
---|
766 | (type: [(am = g puream = 1)]
|
---|
767 | {exp coef:0} = {
|
---|
768 | 4.3380000000 1.0000000000
|
---|
769 | })
|
---|
770 | (type: [(am = g puream = 1)]
|
---|
771 | {exp coef:0} = {
|
---|
772 | 1.5130000000 1.0000000000
|
---|
773 | })
|
---|
774 | (type: [(am = g puream = 1)]
|
---|
775 | {exp coef:0} = {
|
---|
776 | 49.727000000 1.0000000000
|
---|
777 | })
|
---|
778 | (type: [(am = h puream = 1)]
|
---|
779 | {exp coef:0} = {
|
---|
780 | 2.9950000000 1.0000000000
|
---|
781 | })
|
---|
782 | ]
|
---|
783 | %
|
---|
784 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
785 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
786 | neon: "cc-pCV5Z": [
|
---|
787 | (type: [am = s am = s]
|
---|
788 | {exp coef:0 coef:1} = {
|
---|
789 | 262700.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
790 | 39350.000000 0.20000000000E-03 -0.47000000000E-04
|
---|
791 | 8955.0000000 0.10500000000E-02 -0.24700000000E-03
|
---|
792 | 2538.0000000 0.44000000000E-02 -0.10380000000E-02
|
---|
793 | 829.90000000 0.15649000000E-01 -0.37110000000E-02
|
---|
794 | 301.50000000 0.47758000000E-01 -0.11593000000E-01
|
---|
795 | 119.00000000 0.12294300000 -0.31086000000E-01
|
---|
796 | 50.000000000 0.25248300000 -0.70972000000E-01
|
---|
797 | 21.980000000 0.36631400000 -0.12726600000
|
---|
798 | 9.8910000000 0.27961700000 -0.15123100000
|
---|
799 | })
|
---|
800 | (type: [am = s]
|
---|
801 | {exp coef:0} = {
|
---|
802 | 4.3270000000 1.0000000000
|
---|
803 | })
|
---|
804 | (type: [am = s]
|
---|
805 | {exp coef:0} = {
|
---|
806 | 1.8040000000 1.0000000000
|
---|
807 | })
|
---|
808 | (type: [am = s]
|
---|
809 | {exp coef:0} = {
|
---|
810 | 0.72880000000 1.0000000000
|
---|
811 | })
|
---|
812 | (type: [am = s]
|
---|
813 | {exp coef:0} = {
|
---|
814 | 0.28670000000 1.0000000000
|
---|
815 | })
|
---|
816 | (type: [am = s]
|
---|
817 | {exp coef:0} = {
|
---|
818 | 24.313000000 1.0000000000
|
---|
819 | })
|
---|
820 | (type: [am = s]
|
---|
821 | {exp coef:0} = {
|
---|
822 | 54.680000000 1.0000000000
|
---|
823 | })
|
---|
824 | (type: [am = s]
|
---|
825 | {exp coef:0} = {
|
---|
826 | 122.97500000 1.0000000000
|
---|
827 | })
|
---|
828 | (type: [am = s]
|
---|
829 | {exp coef:0} = {
|
---|
830 | 276.57100000 1.0000000000
|
---|
831 | })
|
---|
832 | (type: [am = p]
|
---|
833 | {exp coef:0} = {
|
---|
834 | 299.10000000 0.10380000000E-02
|
---|
835 | 70.730000000 0.83750000000E-02
|
---|
836 | 22.480000000 0.39693000000E-01
|
---|
837 | 8.2460000000 0.12805600000
|
---|
838 | })
|
---|
839 | (type: [am = p]
|
---|
840 | {exp coef:0} = {
|
---|
841 | 3.2690000000 1.0000000000
|
---|
842 | })
|
---|
843 | (type: [am = p]
|
---|
844 | {exp coef:0} = {
|
---|
845 | 1.3150000000 1.0000000000
|
---|
846 | })
|
---|
847 | (type: [am = p]
|
---|
848 | {exp coef:0} = {
|
---|
849 | 0.51580000000 1.0000000000
|
---|
850 | })
|
---|
851 | (type: [am = p]
|
---|
852 | {exp coef:0} = {
|
---|
853 | 0.19180000000 1.0000000000
|
---|
854 | })
|
---|
855 | (type: [am = p]
|
---|
856 | {exp coef:0} = {
|
---|
857 | 21.309000000 1.0000000000
|
---|
858 | })
|
---|
859 | (type: [am = p]
|
---|
860 | {exp coef:0} = {
|
---|
861 | 53.720000000 1.0000000000
|
---|
862 | })
|
---|
863 | (type: [am = p]
|
---|
864 | {exp coef:0} = {
|
---|
865 | 135.42800000 1.0000000000
|
---|
866 | })
|
---|
867 | (type: [am = p]
|
---|
868 | {exp coef:0} = {
|
---|
869 | 341.41400000 1.0000000000
|
---|
870 | })
|
---|
871 | (type: [(am = d puream = 1)]
|
---|
872 | {exp coef:0} = {
|
---|
873 | 9.8370000000 1.0000000000
|
---|
874 | })
|
---|
875 | (type: [(am = d puream = 1)]
|
---|
876 | {exp coef:0} = {
|
---|
877 | 3.8440000000 1.0000000000
|
---|
878 | })
|
---|
879 | (type: [(am = d puream = 1)]
|
---|
880 | {exp coef:0} = {
|
---|
881 | 1.5020000000 1.0000000000
|
---|
882 | })
|
---|
883 | (type: [(am = d puream = 1)]
|
---|
884 | {exp coef:0} = {
|
---|
885 | 0.58700000000 1.0000000000
|
---|
886 | })
|
---|
887 | (type: [(am = d puream = 1)]
|
---|
888 | {exp coef:0} = {
|
---|
889 | 27.044000000 1.0000000000
|
---|
890 | })
|
---|
891 | (type: [(am = d puream = 1)]
|
---|
892 | {exp coef:0} = {
|
---|
893 | 75.750000000 1.0000000000
|
---|
894 | })
|
---|
895 | (type: [(am = d puream = 1)]
|
---|
896 | {exp coef:0} = {
|
---|
897 | 212.17600000 1.0000000000
|
---|
898 | })
|
---|
899 | (type: [(am = f puream = 1)]
|
---|
900 | {exp coef:0} = {
|
---|
901 | 7.0900000000 1.0000000000
|
---|
902 | })
|
---|
903 | (type: [(am = f puream = 1)]
|
---|
904 | {exp coef:0} = {
|
---|
905 | 2.7380000000 1.0000000000
|
---|
906 | })
|
---|
907 | (type: [(am = f puream = 1)]
|
---|
908 | {exp coef:0} = {
|
---|
909 | 1.0570000000 1.0000000000
|
---|
910 | })
|
---|
911 | (type: [(am = f puream = 1)]
|
---|
912 | {exp coef:0} = {
|
---|
913 | 28.029000000 1.0000000000
|
---|
914 | })
|
---|
915 | (type: [(am = f puream = 1)]
|
---|
916 | {exp coef:0} = {
|
---|
917 | 102.58600000 1.0000000000
|
---|
918 | })
|
---|
919 | (type: [(am = g puream = 1)]
|
---|
920 | {exp coef:0} = {
|
---|
921 | 5.4600000000 1.0000000000
|
---|
922 | })
|
---|
923 | (type: [(am = g puream = 1)]
|
---|
924 | {exp coef:0} = {
|
---|
925 | 1.8800000000 1.0000000000
|
---|
926 | })
|
---|
927 | (type: [(am = g puream = 1)]
|
---|
928 | {exp coef:0} = {
|
---|
929 | 38.794000000 1.0000000000
|
---|
930 | })
|
---|
931 | (type: [(am = h puream = 1)]
|
---|
932 | {exp coef:0} = {
|
---|
933 | 3.7760000000 1.0000000000
|
---|
934 | })
|
---|
935 | ]
|
---|
936 | )
|
---|