[0b990d] | 1 | %BASIS "cc-pCV5Z" CARTESIAN
|
---|
| 2 | basis:(
|
---|
| 3 | %Elements References
|
---|
| 4 | %-------- ----------
|
---|
| 5 | %H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 6 | %He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
|
---|
| 7 | %Li : Unofficial set from D. Feller.
|
---|
| 8 | %B - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 9 | %Na - Mg: Unofficial set from D. Feller.
|
---|
| 10 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
| 11 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
| 12 | %Elements References
|
---|
| 13 | %-------- ----------
|
---|
| 14 | % B - Na: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and
|
---|
| 15 | % T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995).
|
---|
| 16 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
| 17 | %
|
---|
| 18 | %
|
---|
| 19 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 20 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
| 21 | boron: "cc-pCV5Z": [
|
---|
| 22 | (type: [am = s am = s]
|
---|
| 23 | {exp coef:0 coef:1} = {
|
---|
| 24 | 68260.000000 0.24000000000E-04 -0.50000000000E-05
|
---|
| 25 | 10230.000000 0.18500000000E-03 -0.37000000000E-04
|
---|
| 26 | 2328.0000000 0.97000000000E-03 -0.19600000000E-03
|
---|
| 27 | 660.40000000 0.40560000000E-02 -0.82400000000E-03
|
---|
| 28 | 216.20000000 0.14399000000E-01 -0.29230000000E-02
|
---|
| 29 | 78.600000000 0.43901000000E-01 -0.91380000000E-02
|
---|
| 30 | 30.980000000 0.11305700000 -0.24105000000E-01
|
---|
| 31 | 12.960000000 0.23382500000 -0.54755000000E-01
|
---|
| 32 | 5.6590000000 0.35396000000 -0.96943000000E-01
|
---|
| 33 | 2.5560000000 0.30154700000 -0.13748500000
|
---|
| 34 | })
|
---|
| 35 | (type: [am = s]
|
---|
| 36 | {exp coef:0} = {
|
---|
| 37 | 1.1750000000 1.0000000000
|
---|
| 38 | })
|
---|
| 39 | (type: [am = s]
|
---|
| 40 | {exp coef:0} = {
|
---|
| 41 | 0.42490000000 1.0000000000
|
---|
| 42 | })
|
---|
| 43 | (type: [am = s]
|
---|
| 44 | {exp coef:0} = {
|
---|
| 45 | 0.17120000000 1.0000000000
|
---|
| 46 | })
|
---|
| 47 | (type: [am = s]
|
---|
| 48 | {exp coef:0} = {
|
---|
| 49 | 0.69130000000E-01 1.0000000000
|
---|
| 50 | })
|
---|
| 51 | (type: [am = s]
|
---|
| 52 | {exp coef:0} = {
|
---|
| 53 | 6.4110000000 1.0000000000
|
---|
| 54 | })
|
---|
| 55 | (type: [am = s]
|
---|
| 56 | {exp coef:0} = {
|
---|
| 57 | 14.521000000 1.0000000000
|
---|
| 58 | })
|
---|
| 59 | (type: [am = s]
|
---|
| 60 | {exp coef:0} = {
|
---|
| 61 | 32.890000000 1.0000000000
|
---|
| 62 | })
|
---|
| 63 | (type: [am = s]
|
---|
| 64 | {exp coef:0} = {
|
---|
| 65 | 74.496000000 1.0000000000
|
---|
| 66 | })
|
---|
| 67 | (type: [am = p]
|
---|
| 68 | {exp coef:0} = {
|
---|
| 69 | 66.440000000 0.83800000000E-03
|
---|
| 70 | 15.710000000 0.64090000000E-02
|
---|
| 71 | 4.9360000000 0.28081000000E-01
|
---|
| 72 | 1.7700000000 0.92152000000E-01
|
---|
| 73 | })
|
---|
| 74 | (type: [am = p]
|
---|
| 75 | {exp coef:0} = {
|
---|
| 76 | 0.70080000000 1.0000000000
|
---|
| 77 | })
|
---|
| 78 | (type: [am = p]
|
---|
| 79 | {exp coef:0} = {
|
---|
| 80 | 0.29010000000 1.0000000000
|
---|
| 81 | })
|
---|
| 82 | (type: [am = p]
|
---|
| 83 | {exp coef:0} = {
|
---|
| 84 | 0.12110000000 1.0000000000
|
---|
| 85 | })
|
---|
| 86 | (type: [am = p]
|
---|
| 87 | {exp coef:0} = {
|
---|
| 88 | 0.49730000000E-01 1.0000000000
|
---|
| 89 | })
|
---|
| 90 | (type: [am = p]
|
---|
| 91 | {exp coef:0} = {
|
---|
| 92 | 5.1720000000 1.0000000000
|
---|
| 93 | })
|
---|
| 94 | (type: [am = p]
|
---|
| 95 | {exp coef:0} = {
|
---|
| 96 | 13.225000000 1.0000000000
|
---|
| 97 | })
|
---|
| 98 | (type: [am = p]
|
---|
| 99 | {exp coef:0} = {
|
---|
| 100 | 33.816000000 1.0000000000
|
---|
| 101 | })
|
---|
| 102 | (type: [am = p]
|
---|
| 103 | {exp coef:0} = {
|
---|
| 104 | 86.467000000 1.0000000000
|
---|
| 105 | })
|
---|
| 106 | (type: [(am = d puream = 1)]
|
---|
| 107 | {exp coef:0} = {
|
---|
| 108 | 2.0100000000 1.0000000000
|
---|
| 109 | })
|
---|
| 110 | (type: [(am = d puream = 1)]
|
---|
| 111 | {exp coef:0} = {
|
---|
| 112 | 0.79600000000 1.0000000000
|
---|
| 113 | })
|
---|
| 114 | (type: [(am = d puream = 1)]
|
---|
| 115 | {exp coef:0} = {
|
---|
| 116 | 0.31600000000 1.0000000000
|
---|
| 117 | })
|
---|
| 118 | (type: [(am = d puream = 1)]
|
---|
| 119 | {exp coef:0} = {
|
---|
| 120 | 0.12500000000 1.0000000000
|
---|
| 121 | })
|
---|
| 122 | (type: [(am = d puream = 1)]
|
---|
| 123 | {exp coef:0} = {
|
---|
| 124 | 7.0660000000 1.0000000000
|
---|
| 125 | })
|
---|
| 126 | (type: [(am = d puream = 1)]
|
---|
| 127 | {exp coef:0} = {
|
---|
| 128 | 19.721000000 1.0000000000
|
---|
| 129 | })
|
---|
| 130 | (type: [(am = d puream = 1)]
|
---|
| 131 | {exp coef:0} = {
|
---|
| 132 | 55.042000000 1.0000000000
|
---|
| 133 | })
|
---|
| 134 | (type: [(am = f puream = 1)]
|
---|
| 135 | {exp coef:0} = {
|
---|
| 136 | 1.2150000000 1.0000000000
|
---|
| 137 | })
|
---|
| 138 | (type: [(am = f puream = 1)]
|
---|
| 139 | {exp coef:0} = {
|
---|
| 140 | 0.52500000000 1.0000000000
|
---|
| 141 | })
|
---|
| 142 | (type: [(am = f puream = 1)]
|
---|
| 143 | {exp coef:0} = {
|
---|
| 144 | 0.22700000000 1.0000000000
|
---|
| 145 | })
|
---|
| 146 | (type: [(am = f puream = 1)]
|
---|
| 147 | {exp coef:0} = {
|
---|
| 148 | 9.9940000000 1.0000000000
|
---|
| 149 | })
|
---|
| 150 | (type: [(am = f puream = 1)]
|
---|
| 151 | {exp coef:0} = {
|
---|
| 152 | 33.090000000 1.0000000000
|
---|
| 153 | })
|
---|
| 154 | (type: [(am = g puream = 1)]
|
---|
| 155 | {exp coef:0} = {
|
---|
| 156 | 1.1240000000 1.0000000000
|
---|
| 157 | })
|
---|
| 158 | (type: [(am = g puream = 1)]
|
---|
| 159 | {exp coef:0} = {
|
---|
| 160 | 0.46100000000 1.0000000000
|
---|
| 161 | })
|
---|
| 162 | (type: [(am = g puream = 1)]
|
---|
| 163 | {exp coef:0} = {
|
---|
| 164 | 24.020000000 1.0000000000
|
---|
| 165 | })
|
---|
| 166 | (type: [(am = h puream = 1)]
|
---|
| 167 | {exp coef:0} = {
|
---|
| 168 | 0.83400000000 1.0000000000
|
---|
| 169 | })
|
---|
| 170 | ]
|
---|
| 171 | %
|
---|
| 172 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 173 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
| 174 | carbon: "cc-pCV5Z": [
|
---|
| 175 | (type: [am = s am = s]
|
---|
| 176 | {exp coef:0 coef:1} = {
|
---|
| 177 | 96770.000000 0.25000000000E-04 -0.50000000000E-05
|
---|
| 178 | 14500.000000 0.19000000000E-03 -0.41000000000E-04
|
---|
| 179 | 3300.0000000 0.10000000000E-02 -0.21300000000E-03
|
---|
| 180 | 935.80000000 0.41830000000E-02 -0.89700000000E-03
|
---|
| 181 | 306.20000000 0.14859000000E-01 -0.31870000000E-02
|
---|
| 182 | 111.30000000 0.45301000000E-01 -0.99610000000E-02
|
---|
| 183 | 43.900000000 0.11650400000 -0.26375000000E-01
|
---|
| 184 | 18.400000000 0.24024900000 -0.60001000000E-01
|
---|
| 185 | 8.0540000000 0.35879900000 -0.10682500000
|
---|
| 186 | 3.6370000000 0.29394100000 -0.14416600000
|
---|
| 187 | })
|
---|
| 188 | (type: [am = s]
|
---|
| 189 | {exp coef:0} = {
|
---|
| 190 | 1.6560000000 1.0000000000
|
---|
| 191 | })
|
---|
| 192 | (type: [am = s]
|
---|
| 193 | {exp coef:0} = {
|
---|
| 194 | 0.63330000000 1.0000000000
|
---|
| 195 | })
|
---|
| 196 | (type: [am = s]
|
---|
| 197 | {exp coef:0} = {
|
---|
| 198 | 0.25450000000 1.0000000000
|
---|
| 199 | })
|
---|
| 200 | (type: [am = s]
|
---|
| 201 | {exp coef:0} = {
|
---|
| 202 | 0.10190000000 1.0000000000
|
---|
| 203 | })
|
---|
| 204 | (type: [am = s]
|
---|
| 205 | {exp coef:0} = {
|
---|
| 206 | 9.1850000000 1.0000000000
|
---|
| 207 | })
|
---|
| 208 | (type: [am = s]
|
---|
| 209 | {exp coef:0} = {
|
---|
| 210 | 20.795000000 1.0000000000
|
---|
| 211 | })
|
---|
| 212 | (type: [am = s]
|
---|
| 213 | {exp coef:0} = {
|
---|
| 214 | 47.080000000 1.0000000000
|
---|
| 215 | })
|
---|
| 216 | (type: [am = s]
|
---|
| 217 | {exp coef:0} = {
|
---|
| 218 | 106.58800000 1.0000000000
|
---|
| 219 | })
|
---|
| 220 | (type: [am = p]
|
---|
| 221 | {exp coef:0} = {
|
---|
| 222 | 101.80000000 0.89100000000E-03
|
---|
| 223 | 24.040000000 0.69760000000E-02
|
---|
| 224 | 7.5710000000 0.31669000000E-01
|
---|
| 225 | 2.7320000000 0.10400600000
|
---|
| 226 | })
|
---|
| 227 | (type: [am = p]
|
---|
| 228 | {exp coef:0} = {
|
---|
| 229 | 1.0850000000 1.0000000000
|
---|
| 230 | })
|
---|
| 231 | (type: [am = p]
|
---|
| 232 | {exp coef:0} = {
|
---|
| 233 | 0.44960000000 1.0000000000
|
---|
| 234 | })
|
---|
| 235 | (type: [am = p]
|
---|
| 236 | {exp coef:0} = {
|
---|
| 237 | 0.18760000000 1.0000000000
|
---|
| 238 | })
|
---|
| 239 | (type: [am = p]
|
---|
| 240 | {exp coef:0} = {
|
---|
| 241 | 0.76060000000E-01 1.0000000000
|
---|
| 242 | })
|
---|
| 243 | (type: [am = p]
|
---|
| 244 | {exp coef:0} = {
|
---|
| 245 | 7.6680000000 1.0000000000
|
---|
| 246 | })
|
---|
| 247 | (type: [am = p]
|
---|
| 248 | {exp coef:0} = {
|
---|
| 249 | 19.484000000 1.0000000000
|
---|
| 250 | })
|
---|
| 251 | (type: [am = p]
|
---|
| 252 | {exp coef:0} = {
|
---|
| 253 | 49.510000000 1.0000000000
|
---|
| 254 | })
|
---|
| 255 | (type: [am = p]
|
---|
| 256 | {exp coef:0} = {
|
---|
| 257 | 125.80400000 1.0000000000
|
---|
| 258 | })
|
---|
| 259 | (type: [(am = d puream = 1)]
|
---|
| 260 | {exp coef:0} = {
|
---|
| 261 | 3.1340000000 1.0000000000
|
---|
| 262 | })
|
---|
| 263 | (type: [(am = d puream = 1)]
|
---|
| 264 | {exp coef:0} = {
|
---|
| 265 | 1.2330000000 1.0000000000
|
---|
| 266 | })
|
---|
| 267 | (type: [(am = d puream = 1)]
|
---|
| 268 | {exp coef:0} = {
|
---|
| 269 | 0.48500000000 1.0000000000
|
---|
| 270 | })
|
---|
| 271 | (type: [(am = d puream = 1)]
|
---|
| 272 | {exp coef:0} = {
|
---|
| 273 | 0.19100000000 1.0000000000
|
---|
| 274 | })
|
---|
| 275 | (type: [(am = d puream = 1)]
|
---|
| 276 | {exp coef:0} = {
|
---|
| 277 | 10.009000000 1.0000000000
|
---|
| 278 | })
|
---|
| 279 | (type: [(am = d puream = 1)]
|
---|
| 280 | {exp coef:0} = {
|
---|
| 281 | 28.065000000 1.0000000000
|
---|
| 282 | })
|
---|
| 283 | (type: [(am = d puream = 1)]
|
---|
| 284 | {exp coef:0} = {
|
---|
| 285 | 78.695000000 1.0000000000
|
---|
| 286 | })
|
---|
| 287 | (type: [(am = f puream = 1)]
|
---|
| 288 | {exp coef:0} = {
|
---|
| 289 | 2.0060000000 1.0000000000
|
---|
| 290 | })
|
---|
| 291 | (type: [(am = f puream = 1)]
|
---|
| 292 | {exp coef:0} = {
|
---|
| 293 | 0.83800000000 1.0000000000
|
---|
| 294 | })
|
---|
| 295 | (type: [(am = f puream = 1)]
|
---|
| 296 | {exp coef:0} = {
|
---|
| 297 | 0.35000000000 1.0000000000
|
---|
| 298 | })
|
---|
| 299 | (type: [(am = f puream = 1)]
|
---|
| 300 | {exp coef:0} = {
|
---|
| 301 | 11.693000000 1.0000000000
|
---|
| 302 | })
|
---|
| 303 | (type: [(am = f puream = 1)]
|
---|
| 304 | {exp coef:0} = {
|
---|
| 305 | 41.569000000 1.0000000000
|
---|
| 306 | })
|
---|
| 307 | (type: [(am = g puream = 1)]
|
---|
| 308 | {exp coef:0} = {
|
---|
| 309 | 1.7530000000 1.0000000000
|
---|
| 310 | })
|
---|
| 311 | (type: [(am = g puream = 1)]
|
---|
| 312 | {exp coef:0} = {
|
---|
| 313 | 0.67800000000 1.0000000000
|
---|
| 314 | })
|
---|
| 315 | (type: [(am = g puream = 1)]
|
---|
| 316 | {exp coef:0} = {
|
---|
| 317 | 32.780000000 1.0000000000
|
---|
| 318 | })
|
---|
| 319 | (type: [(am = h puream = 1)]
|
---|
| 320 | {exp coef:0} = {
|
---|
| 321 | 1.2590000000 1.0000000000
|
---|
| 322 | })
|
---|
| 323 | ]
|
---|
| 324 | %
|
---|
| 325 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 326 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
| 327 | nitrogen: "cc-pCV5Z": [
|
---|
| 328 | (type: [am = s am = s]
|
---|
| 329 | {exp coef:0 coef:1} = {
|
---|
| 330 | 129200.00000 0.25000000000E-04 -0.60000000000E-05
|
---|
| 331 | 19350.000000 0.19700000000E-03 -0.43000000000E-04
|
---|
| 332 | 4404.0000000 0.10320000000E-02 -0.22700000000E-03
|
---|
| 333 | 1248.0000000 0.43250000000E-02 -0.95800000000E-03
|
---|
| 334 | 408.00000000 0.15380000000E-01 -0.34160000000E-02
|
---|
| 335 | 148.20000000 0.46867000000E-01 -0.10667000000E-01
|
---|
| 336 | 58.500000000 0.12011600000 -0.28279000000E-01
|
---|
| 337 | 24.590000000 0.24569500000 -0.64020000000E-01
|
---|
| 338 | 10.810000000 0.36137900000 -0.11393200000
|
---|
| 339 | 4.8820000000 0.28728300000 -0.14699500000
|
---|
| 340 | })
|
---|
| 341 | (type: [am = s]
|
---|
| 342 | {exp coef:0} = {
|
---|
| 343 | 2.1950000000 1.0000000000
|
---|
| 344 | })
|
---|
| 345 | (type: [am = s]
|
---|
| 346 | {exp coef:0} = {
|
---|
| 347 | 0.87150000000 1.0000000000
|
---|
| 348 | })
|
---|
| 349 | (type: [am = s]
|
---|
| 350 | {exp coef:0} = {
|
---|
| 351 | 0.35040000000 1.0000000000
|
---|
| 352 | })
|
---|
| 353 | (type: [am = s]
|
---|
| 354 | {exp coef:0} = {
|
---|
| 355 | 0.13970000000 1.0000000000
|
---|
| 356 | })
|
---|
| 357 | (type: [am = s]
|
---|
| 358 | {exp coef:0} = {
|
---|
| 359 | 12.275000000 1.0000000000
|
---|
| 360 | })
|
---|
| 361 | (type: [am = s]
|
---|
| 362 | {exp coef:0} = {
|
---|
| 363 | 27.827000000 1.0000000000
|
---|
| 364 | })
|
---|
| 365 | (type: [am = s]
|
---|
| 366 | {exp coef:0} = {
|
---|
| 367 | 63.085000000 1.0000000000
|
---|
| 368 | })
|
---|
| 369 | (type: [am = s]
|
---|
| 370 | {exp coef:0} = {
|
---|
| 371 | 143.01300000 1.0000000000
|
---|
| 372 | })
|
---|
| 373 | (type: [am = p]
|
---|
| 374 | {exp coef:0} = {
|
---|
| 375 | 147.00000000 0.89200000000E-03
|
---|
| 376 | 34.760000000 0.70820000000E-02
|
---|
| 377 | 11.000000000 0.32816000000E-01
|
---|
| 378 | 3.9950000000 0.10820900000
|
---|
| 379 | })
|
---|
| 380 | (type: [am = p]
|
---|
| 381 | {exp coef:0} = {
|
---|
| 382 | 1.5870000000 1.0000000000
|
---|
| 383 | })
|
---|
| 384 | (type: [am = p]
|
---|
| 385 | {exp coef:0} = {
|
---|
| 386 | 0.65330000000 1.0000000000
|
---|
| 387 | })
|
---|
| 388 | (type: [am = p]
|
---|
| 389 | {exp coef:0} = {
|
---|
| 390 | 0.26860000000 1.0000000000
|
---|
| 391 | })
|
---|
| 392 | (type: [am = p]
|
---|
| 393 | {exp coef:0} = {
|
---|
| 394 | 0.10670000000 1.0000000000
|
---|
| 395 | })
|
---|
| 396 | (type: [am = p]
|
---|
| 397 | {exp coef:0} = {
|
---|
| 398 | 10.760000000 1.0000000000
|
---|
| 399 | })
|
---|
| 400 | (type: [am = p]
|
---|
| 401 | {exp coef:0} = {
|
---|
| 402 | 27.180000000 1.0000000000
|
---|
| 403 | })
|
---|
| 404 | (type: [am = p]
|
---|
| 405 | {exp coef:0} = {
|
---|
| 406 | 68.656000000 1.0000000000
|
---|
| 407 | })
|
---|
| 408 | (type: [am = p]
|
---|
| 409 | {exp coef:0} = {
|
---|
| 410 | 173.42500000 1.0000000000
|
---|
| 411 | })
|
---|
| 412 | (type: [(am = d puream = 1)]
|
---|
| 413 | {exp coef:0} = {
|
---|
| 414 | 4.6470000000 1.0000000000
|
---|
| 415 | })
|
---|
| 416 | (type: [(am = d puream = 1)]
|
---|
| 417 | {exp coef:0} = {
|
---|
| 418 | 1.8130000000 1.0000000000
|
---|
| 419 | })
|
---|
| 420 | (type: [(am = d puream = 1)]
|
---|
| 421 | {exp coef:0} = {
|
---|
| 422 | 0.70700000000 1.0000000000
|
---|
| 423 | })
|
---|
| 424 | (type: [(am = d puream = 1)]
|
---|
| 425 | {exp coef:0} = {
|
---|
| 426 | 0.27600000000 1.0000000000
|
---|
| 427 | })
|
---|
| 428 | (type: [(am = d puream = 1)]
|
---|
| 429 | {exp coef:0} = {
|
---|
| 430 | 14.053000000 1.0000000000
|
---|
| 431 | })
|
---|
| 432 | (type: [(am = d puream = 1)]
|
---|
| 433 | {exp coef:0} = {
|
---|
| 434 | 39.081000000 1.0000000000
|
---|
| 435 | })
|
---|
| 436 | (type: [(am = d puream = 1)]
|
---|
| 437 | {exp coef:0} = {
|
---|
| 438 | 108.68500000 1.0000000000
|
---|
| 439 | })
|
---|
| 440 | (type: [(am = f puream = 1)]
|
---|
| 441 | {exp coef:0} = {
|
---|
| 442 | 2.9420000000 1.0000000000
|
---|
| 443 | })
|
---|
| 444 | (type: [(am = f puream = 1)]
|
---|
| 445 | {exp coef:0} = {
|
---|
| 446 | 1.2040000000 1.0000000000
|
---|
| 447 | })
|
---|
| 448 | (type: [(am = f puream = 1)]
|
---|
| 449 | {exp coef:0} = {
|
---|
| 450 | 0.49300000000 1.0000000000
|
---|
| 451 | })
|
---|
| 452 | (type: [(am = f puream = 1)]
|
---|
| 453 | {exp coef:0} = {
|
---|
| 454 | 14.357000000 1.0000000000
|
---|
| 455 | })
|
---|
| 456 | (type: [(am = f puream = 1)]
|
---|
| 457 | {exp coef:0} = {
|
---|
| 458 | 52.690000000 1.0000000000
|
---|
| 459 | })
|
---|
| 460 | (type: [(am = g puream = 1)]
|
---|
| 461 | {exp coef:0} = {
|
---|
| 462 | 2.5110000000 1.0000000000
|
---|
| 463 | })
|
---|
| 464 | (type: [(am = g puream = 1)]
|
---|
| 465 | {exp coef:0} = {
|
---|
| 466 | 0.94200000000 1.0000000000
|
---|
| 467 | })
|
---|
| 468 | (type: [(am = g puream = 1)]
|
---|
| 469 | {exp coef:0} = {
|
---|
| 470 | 41.120000000 1.0000000000
|
---|
| 471 | })
|
---|
| 472 | (type: [(am = h puream = 1)]
|
---|
| 473 | {exp coef:0} = {
|
---|
| 474 | 1.7680000000 1.0000000000
|
---|
| 475 | })
|
---|
| 476 | ]
|
---|
| 477 | %
|
---|
| 478 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 479 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
| 480 | oxygen: "cc-pCV5Z": [
|
---|
| 481 | (type: [am = s am = s]
|
---|
| 482 | {exp coef:0 coef:1} = {
|
---|
| 483 | 164200.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
| 484 | 24590.000000 0.20500000000E-03 -0.46000000000E-04
|
---|
| 485 | 5592.0000000 0.10760000000E-02 -0.24400000000E-03
|
---|
| 486 | 1582.0000000 0.45220000000E-02 -0.10310000000E-02
|
---|
| 487 | 516.10000000 0.16108000000E-01 -0.36880000000E-02
|
---|
| 488 | 187.20000000 0.49085000000E-01 -0.11514000000E-01
|
---|
| 489 | 73.930000000 0.12485700000 -0.30435000000E-01
|
---|
| 490 | 31.220000000 0.25168600000 -0.68147000000E-01
|
---|
| 491 | 13.810000000 0.36242000000 -0.12036800000
|
---|
| 492 | 6.2560000000 0.27905100000 -0.14826000000
|
---|
| 493 | })
|
---|
| 494 | (type: [am = s]
|
---|
| 495 | {exp coef:0} = {
|
---|
| 496 | 2.7760000000 1.0000000000
|
---|
| 497 | })
|
---|
| 498 | (type: [am = s]
|
---|
| 499 | {exp coef:0} = {
|
---|
| 500 | 1.1380000000 1.0000000000
|
---|
| 501 | })
|
---|
| 502 | (type: [am = s]
|
---|
| 503 | {exp coef:0} = {
|
---|
| 504 | 0.46000000000 1.0000000000
|
---|
| 505 | })
|
---|
| 506 | (type: [am = s]
|
---|
| 507 | {exp coef:0} = {
|
---|
| 508 | 0.18290000000 1.0000000000
|
---|
| 509 | })
|
---|
| 510 | (type: [am = s]
|
---|
| 511 | {exp coef:0} = {
|
---|
| 512 | 15.645000000 1.0000000000
|
---|
| 513 | })
|
---|
| 514 | (type: [am = s]
|
---|
| 515 | {exp coef:0} = {
|
---|
| 516 | 35.874000000 1.0000000000
|
---|
| 517 | })
|
---|
| 518 | (type: [am = s]
|
---|
| 519 | {exp coef:0} = {
|
---|
| 520 | 82.259000000 1.0000000000
|
---|
| 521 | })
|
---|
| 522 | (type: [am = s]
|
---|
| 523 | {exp coef:0} = {
|
---|
| 524 | 188.62000000 1.0000000000
|
---|
| 525 | })
|
---|
| 526 | (type: [am = p]
|
---|
| 527 | {exp coef:0} = {
|
---|
| 528 | 195.50000000 0.91800000000E-03
|
---|
| 529 | 46.160000000 0.73880000000E-02
|
---|
| 530 | 14.580000000 0.34958000000E-01
|
---|
| 531 | 5.2960000000 0.11543100000
|
---|
| 532 | })
|
---|
| 533 | (type: [am = p]
|
---|
| 534 | {exp coef:0} = {
|
---|
| 535 | 2.0940000000 1.0000000000
|
---|
| 536 | })
|
---|
| 537 | (type: [am = p]
|
---|
| 538 | {exp coef:0} = {
|
---|
| 539 | 0.84710000000 1.0000000000
|
---|
| 540 | })
|
---|
| 541 | (type: [am = p]
|
---|
| 542 | {exp coef:0} = {
|
---|
| 543 | 0.33680000000 1.0000000000
|
---|
| 544 | })
|
---|
| 545 | (type: [am = p]
|
---|
| 546 | {exp coef:0} = {
|
---|
| 547 | 0.12850000000 1.0000000000
|
---|
| 548 | })
|
---|
| 549 | (type: [am = p]
|
---|
| 550 | {exp coef:0} = {
|
---|
| 551 | 14.049000000 1.0000000000
|
---|
| 552 | })
|
---|
| 553 | (type: [am = p]
|
---|
| 554 | {exp coef:0} = {
|
---|
| 555 | 35.446000000 1.0000000000
|
---|
| 556 | })
|
---|
| 557 | (type: [am = p]
|
---|
| 558 | {exp coef:0} = {
|
---|
| 559 | 89.429000000 1.0000000000
|
---|
| 560 | })
|
---|
| 561 | (type: [am = p]
|
---|
| 562 | {exp coef:0} = {
|
---|
| 563 | 225.63000000 1.0000000000
|
---|
| 564 | })
|
---|
| 565 | (type: [(am = d puream = 1)]
|
---|
| 566 | {exp coef:0} = {
|
---|
| 567 | 5.8790000000 1.0000000000
|
---|
| 568 | })
|
---|
| 569 | (type: [(am = d puream = 1)]
|
---|
| 570 | {exp coef:0} = {
|
---|
| 571 | 2.3070000000 1.0000000000
|
---|
| 572 | })
|
---|
| 573 | (type: [(am = d puream = 1)]
|
---|
| 574 | {exp coef:0} = {
|
---|
| 575 | 0.90500000000 1.0000000000
|
---|
| 576 | })
|
---|
| 577 | (type: [(am = d puream = 1)]
|
---|
| 578 | {exp coef:0} = {
|
---|
| 579 | 0.35500000000 1.0000000000
|
---|
| 580 | })
|
---|
| 581 | (type: [(am = d puream = 1)]
|
---|
| 582 | {exp coef:0} = {
|
---|
| 583 | 16.703000000 1.0000000000
|
---|
| 584 | })
|
---|
| 585 | (type: [(am = d puream = 1)]
|
---|
| 586 | {exp coef:0} = {
|
---|
| 587 | 47.320000000 1.0000000000
|
---|
| 588 | })
|
---|
| 589 | (type: [(am = d puream = 1)]
|
---|
| 590 | {exp coef:0} = {
|
---|
| 591 | 134.05600000 1.0000000000
|
---|
| 592 | })
|
---|
| 593 | (type: [(am = f puream = 1)]
|
---|
| 594 | {exp coef:0} = {
|
---|
| 595 | 4.0160000000 1.0000000000
|
---|
| 596 | })
|
---|
| 597 | (type: [(am = f puream = 1)]
|
---|
| 598 | {exp coef:0} = {
|
---|
| 599 | 1.5540000000 1.0000000000
|
---|
| 600 | })
|
---|
| 601 | (type: [(am = f puream = 1)]
|
---|
| 602 | {exp coef:0} = {
|
---|
| 603 | 0.60100000000 1.0000000000
|
---|
| 604 | })
|
---|
| 605 | (type: [(am = f puream = 1)]
|
---|
| 606 | {exp coef:0} = {
|
---|
| 607 | 17.354000000 1.0000000000
|
---|
| 608 | })
|
---|
| 609 | (type: [(am = f puream = 1)]
|
---|
| 610 | {exp coef:0} = {
|
---|
| 611 | 65.546000000 1.0000000000
|
---|
| 612 | })
|
---|
| 613 | (type: [(am = g puream = 1)]
|
---|
| 614 | {exp coef:0} = {
|
---|
| 615 | 3.3500000000 1.0000000000
|
---|
| 616 | })
|
---|
| 617 | (type: [(am = g puream = 1)]
|
---|
| 618 | {exp coef:0} = {
|
---|
| 619 | 1.1890000000 1.0000000000
|
---|
| 620 | })
|
---|
| 621 | (type: [(am = g puream = 1)]
|
---|
| 622 | {exp coef:0} = {
|
---|
| 623 | 48.578000000 1.0000000000
|
---|
| 624 | })
|
---|
| 625 | (type: [(am = h puream = 1)]
|
---|
| 626 | {exp coef:0} = {
|
---|
| 627 | 2.3190000000 1.0000000000
|
---|
| 628 | })
|
---|
| 629 | ]
|
---|
| 630 | %
|
---|
| 631 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 632 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
| 633 | fluorine: "cc-pCV5Z": [
|
---|
| 634 | (type: [am = s am = s]
|
---|
| 635 | {exp coef:0 coef:1} = {
|
---|
| 636 | 211400.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
| 637 | 31660.000000 0.20100000000E-03 -0.47000000000E-04
|
---|
| 638 | 7202.0000000 0.10560000000E-02 -0.24400000000E-03
|
---|
| 639 | 2040.0000000 0.44320000000E-02 -0.10310000000E-02
|
---|
| 640 | 666.40000000 0.15766000000E-01 -0.36830000000E-02
|
---|
| 641 | 242.00000000 0.48112000000E-01 -0.11513000000E-01
|
---|
| 642 | 95.530000000 0.12323200000 -0.30663000000E-01
|
---|
| 643 | 40.230000000 0.25151900000 -0.69572000000E-01
|
---|
| 644 | 17.720000000 0.36452500000 -0.12399200000
|
---|
| 645 | 8.0050000000 0.27976600000 -0.15021400000
|
---|
| 646 | })
|
---|
| 647 | (type: [am = s]
|
---|
| 648 | {exp coef:0} = {
|
---|
| 649 | 3.5380000000 1.0000000000
|
---|
| 650 | })
|
---|
| 651 | (type: [am = s]
|
---|
| 652 | {exp coef:0} = {
|
---|
| 653 | 1.4580000000 1.0000000000
|
---|
| 654 | })
|
---|
| 655 | (type: [am = s]
|
---|
| 656 | {exp coef:0} = {
|
---|
| 657 | 0.58870000000 1.0000000000
|
---|
| 658 | })
|
---|
| 659 | (type: [am = s]
|
---|
| 660 | {exp coef:0} = {
|
---|
| 661 | 0.23240000000 1.0000000000
|
---|
| 662 | })
|
---|
| 663 | (type: [am = s]
|
---|
| 664 | {exp coef:0} = {
|
---|
| 665 | 19.876000000 1.0000000000
|
---|
| 666 | })
|
---|
| 667 | (type: [am = s]
|
---|
| 668 | {exp coef:0} = {
|
---|
| 669 | 44.880000000 1.0000000000
|
---|
| 670 | })
|
---|
| 671 | (type: [am = s]
|
---|
| 672 | {exp coef:0} = {
|
---|
| 673 | 101.33900000 1.0000000000
|
---|
| 674 | })
|
---|
| 675 | (type: [am = s]
|
---|
| 676 | {exp coef:0} = {
|
---|
| 677 | 228.82400000 1.0000000000
|
---|
| 678 | })
|
---|
| 679 | (type: [am = p]
|
---|
| 680 | {exp coef:0} = {
|
---|
| 681 | 241.90000000 0.10020000000E-02
|
---|
| 682 | 57.170000000 0.80540000000E-02
|
---|
| 683 | 18.130000000 0.38048000000E-01
|
---|
| 684 | 6.6240000000 0.12377900000
|
---|
| 685 | })
|
---|
| 686 | (type: [am = p]
|
---|
| 687 | {exp coef:0} = {
|
---|
| 688 | 2.6220000000 1.0000000000
|
---|
| 689 | })
|
---|
| 690 | (type: [am = p]
|
---|
| 691 | {exp coef:0} = {
|
---|
| 692 | 1.0570000000 1.0000000000
|
---|
| 693 | })
|
---|
| 694 | (type: [am = p]
|
---|
| 695 | {exp coef:0} = {
|
---|
| 696 | 0.41760000000 1.0000000000
|
---|
| 697 | })
|
---|
| 698 | (type: [am = p]
|
---|
| 699 | {exp coef:0} = {
|
---|
| 700 | 0.15740000000 1.0000000000
|
---|
| 701 | })
|
---|
| 702 | (type: [am = p]
|
---|
| 703 | {exp coef:0} = {
|
---|
| 704 | 17.306000000 1.0000000000
|
---|
| 705 | })
|
---|
| 706 | (type: [am = p]
|
---|
| 707 | {exp coef:0} = {
|
---|
| 708 | 43.663000000 1.0000000000
|
---|
| 709 | })
|
---|
| 710 | (type: [am = p]
|
---|
| 711 | {exp coef:0} = {
|
---|
| 712 | 110.16200000 1.0000000000
|
---|
| 713 | })
|
---|
| 714 | (type: [am = p]
|
---|
| 715 | {exp coef:0} = {
|
---|
| 716 | 277.93800000 1.0000000000
|
---|
| 717 | })
|
---|
| 718 | (type: [(am = d puream = 1)]
|
---|
| 719 | {exp coef:0} = {
|
---|
| 720 | 7.7600000000 1.0000000000
|
---|
| 721 | })
|
---|
| 722 | (type: [(am = d puream = 1)]
|
---|
| 723 | {exp coef:0} = {
|
---|
| 724 | 3.0320000000 1.0000000000
|
---|
| 725 | })
|
---|
| 726 | (type: [(am = d puream = 1)]
|
---|
| 727 | {exp coef:0} = {
|
---|
| 728 | 1.1850000000 1.0000000000
|
---|
| 729 | })
|
---|
| 730 | (type: [(am = d puream = 1)]
|
---|
| 731 | {exp coef:0} = {
|
---|
| 732 | 0.46300000000 1.0000000000
|
---|
| 733 | })
|
---|
| 734 | (type: [(am = d puream = 1)]
|
---|
| 735 | {exp coef:0} = {
|
---|
| 736 | 21.731000000 1.0000000000
|
---|
| 737 | })
|
---|
| 738 | (type: [(am = d puream = 1)]
|
---|
| 739 | {exp coef:0} = {
|
---|
| 740 | 60.955000000 1.0000000000
|
---|
| 741 | })
|
---|
| 742 | (type: [(am = d puream = 1)]
|
---|
| 743 | {exp coef:0} = {
|
---|
| 744 | 170.89000000 1.0000000000
|
---|
| 745 | })
|
---|
| 746 | (type: [(am = f puream = 1)]
|
---|
| 747 | {exp coef:0} = {
|
---|
| 748 | 5.3980000000 1.0000000000
|
---|
| 749 | })
|
---|
| 750 | (type: [(am = f puream = 1)]
|
---|
| 751 | {exp coef:0} = {
|
---|
| 752 | 2.0780000000 1.0000000000
|
---|
| 753 | })
|
---|
| 754 | (type: [(am = f puream = 1)]
|
---|
| 755 | {exp coef:0} = {
|
---|
| 756 | 0.80000000000 1.0000000000
|
---|
| 757 | })
|
---|
| 758 | (type: [(am = f puream = 1)]
|
---|
| 759 | {exp coef:0} = {
|
---|
| 760 | 22.337000000 1.0000000000
|
---|
| 761 | })
|
---|
| 762 | (type: [(am = f puream = 1)]
|
---|
| 763 | {exp coef:0} = {
|
---|
| 764 | 82.290000000 1.0000000000
|
---|
| 765 | })
|
---|
| 766 | (type: [(am = g puream = 1)]
|
---|
| 767 | {exp coef:0} = {
|
---|
| 768 | 4.3380000000 1.0000000000
|
---|
| 769 | })
|
---|
| 770 | (type: [(am = g puream = 1)]
|
---|
| 771 | {exp coef:0} = {
|
---|
| 772 | 1.5130000000 1.0000000000
|
---|
| 773 | })
|
---|
| 774 | (type: [(am = g puream = 1)]
|
---|
| 775 | {exp coef:0} = {
|
---|
| 776 | 49.727000000 1.0000000000
|
---|
| 777 | })
|
---|
| 778 | (type: [(am = h puream = 1)]
|
---|
| 779 | {exp coef:0} = {
|
---|
| 780 | 2.9950000000 1.0000000000
|
---|
| 781 | })
|
---|
| 782 | ]
|
---|
| 783 | %
|
---|
| 784 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 785 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
| 786 | neon: "cc-pCV5Z": [
|
---|
| 787 | (type: [am = s am = s]
|
---|
| 788 | {exp coef:0 coef:1} = {
|
---|
| 789 | 262700.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
| 790 | 39350.000000 0.20000000000E-03 -0.47000000000E-04
|
---|
| 791 | 8955.0000000 0.10500000000E-02 -0.24700000000E-03
|
---|
| 792 | 2538.0000000 0.44000000000E-02 -0.10380000000E-02
|
---|
| 793 | 829.90000000 0.15649000000E-01 -0.37110000000E-02
|
---|
| 794 | 301.50000000 0.47758000000E-01 -0.11593000000E-01
|
---|
| 795 | 119.00000000 0.12294300000 -0.31086000000E-01
|
---|
| 796 | 50.000000000 0.25248300000 -0.70972000000E-01
|
---|
| 797 | 21.980000000 0.36631400000 -0.12726600000
|
---|
| 798 | 9.8910000000 0.27961700000 -0.15123100000
|
---|
| 799 | })
|
---|
| 800 | (type: [am = s]
|
---|
| 801 | {exp coef:0} = {
|
---|
| 802 | 4.3270000000 1.0000000000
|
---|
| 803 | })
|
---|
| 804 | (type: [am = s]
|
---|
| 805 | {exp coef:0} = {
|
---|
| 806 | 1.8040000000 1.0000000000
|
---|
| 807 | })
|
---|
| 808 | (type: [am = s]
|
---|
| 809 | {exp coef:0} = {
|
---|
| 810 | 0.72880000000 1.0000000000
|
---|
| 811 | })
|
---|
| 812 | (type: [am = s]
|
---|
| 813 | {exp coef:0} = {
|
---|
| 814 | 0.28670000000 1.0000000000
|
---|
| 815 | })
|
---|
| 816 | (type: [am = s]
|
---|
| 817 | {exp coef:0} = {
|
---|
| 818 | 24.313000000 1.0000000000
|
---|
| 819 | })
|
---|
| 820 | (type: [am = s]
|
---|
| 821 | {exp coef:0} = {
|
---|
| 822 | 54.680000000 1.0000000000
|
---|
| 823 | })
|
---|
| 824 | (type: [am = s]
|
---|
| 825 | {exp coef:0} = {
|
---|
| 826 | 122.97500000 1.0000000000
|
---|
| 827 | })
|
---|
| 828 | (type: [am = s]
|
---|
| 829 | {exp coef:0} = {
|
---|
| 830 | 276.57100000 1.0000000000
|
---|
| 831 | })
|
---|
| 832 | (type: [am = p]
|
---|
| 833 | {exp coef:0} = {
|
---|
| 834 | 299.10000000 0.10380000000E-02
|
---|
| 835 | 70.730000000 0.83750000000E-02
|
---|
| 836 | 22.480000000 0.39693000000E-01
|
---|
| 837 | 8.2460000000 0.12805600000
|
---|
| 838 | })
|
---|
| 839 | (type: [am = p]
|
---|
| 840 | {exp coef:0} = {
|
---|
| 841 | 3.2690000000 1.0000000000
|
---|
| 842 | })
|
---|
| 843 | (type: [am = p]
|
---|
| 844 | {exp coef:0} = {
|
---|
| 845 | 1.3150000000 1.0000000000
|
---|
| 846 | })
|
---|
| 847 | (type: [am = p]
|
---|
| 848 | {exp coef:0} = {
|
---|
| 849 | 0.51580000000 1.0000000000
|
---|
| 850 | })
|
---|
| 851 | (type: [am = p]
|
---|
| 852 | {exp coef:0} = {
|
---|
| 853 | 0.19180000000 1.0000000000
|
---|
| 854 | })
|
---|
| 855 | (type: [am = p]
|
---|
| 856 | {exp coef:0} = {
|
---|
| 857 | 21.309000000 1.0000000000
|
---|
| 858 | })
|
---|
| 859 | (type: [am = p]
|
---|
| 860 | {exp coef:0} = {
|
---|
| 861 | 53.720000000 1.0000000000
|
---|
| 862 | })
|
---|
| 863 | (type: [am = p]
|
---|
| 864 | {exp coef:0} = {
|
---|
| 865 | 135.42800000 1.0000000000
|
---|
| 866 | })
|
---|
| 867 | (type: [am = p]
|
---|
| 868 | {exp coef:0} = {
|
---|
| 869 | 341.41400000 1.0000000000
|
---|
| 870 | })
|
---|
| 871 | (type: [(am = d puream = 1)]
|
---|
| 872 | {exp coef:0} = {
|
---|
| 873 | 9.8370000000 1.0000000000
|
---|
| 874 | })
|
---|
| 875 | (type: [(am = d puream = 1)]
|
---|
| 876 | {exp coef:0} = {
|
---|
| 877 | 3.8440000000 1.0000000000
|
---|
| 878 | })
|
---|
| 879 | (type: [(am = d puream = 1)]
|
---|
| 880 | {exp coef:0} = {
|
---|
| 881 | 1.5020000000 1.0000000000
|
---|
| 882 | })
|
---|
| 883 | (type: [(am = d puream = 1)]
|
---|
| 884 | {exp coef:0} = {
|
---|
| 885 | 0.58700000000 1.0000000000
|
---|
| 886 | })
|
---|
| 887 | (type: [(am = d puream = 1)]
|
---|
| 888 | {exp coef:0} = {
|
---|
| 889 | 27.044000000 1.0000000000
|
---|
| 890 | })
|
---|
| 891 | (type: [(am = d puream = 1)]
|
---|
| 892 | {exp coef:0} = {
|
---|
| 893 | 75.750000000 1.0000000000
|
---|
| 894 | })
|
---|
| 895 | (type: [(am = d puream = 1)]
|
---|
| 896 | {exp coef:0} = {
|
---|
| 897 | 212.17600000 1.0000000000
|
---|
| 898 | })
|
---|
| 899 | (type: [(am = f puream = 1)]
|
---|
| 900 | {exp coef:0} = {
|
---|
| 901 | 7.0900000000 1.0000000000
|
---|
| 902 | })
|
---|
| 903 | (type: [(am = f puream = 1)]
|
---|
| 904 | {exp coef:0} = {
|
---|
| 905 | 2.7380000000 1.0000000000
|
---|
| 906 | })
|
---|
| 907 | (type: [(am = f puream = 1)]
|
---|
| 908 | {exp coef:0} = {
|
---|
| 909 | 1.0570000000 1.0000000000
|
---|
| 910 | })
|
---|
| 911 | (type: [(am = f puream = 1)]
|
---|
| 912 | {exp coef:0} = {
|
---|
| 913 | 28.029000000 1.0000000000
|
---|
| 914 | })
|
---|
| 915 | (type: [(am = f puream = 1)]
|
---|
| 916 | {exp coef:0} = {
|
---|
| 917 | 102.58600000 1.0000000000
|
---|
| 918 | })
|
---|
| 919 | (type: [(am = g puream = 1)]
|
---|
| 920 | {exp coef:0} = {
|
---|
| 921 | 5.4600000000 1.0000000000
|
---|
| 922 | })
|
---|
| 923 | (type: [(am = g puream = 1)]
|
---|
| 924 | {exp coef:0} = {
|
---|
| 925 | 1.8800000000 1.0000000000
|
---|
| 926 | })
|
---|
| 927 | (type: [(am = g puream = 1)]
|
---|
| 928 | {exp coef:0} = {
|
---|
| 929 | 38.794000000 1.0000000000
|
---|
| 930 | })
|
---|
| 931 | (type: [(am = h puream = 1)]
|
---|
| 932 | {exp coef:0} = {
|
---|
| 933 | 3.7760000000 1.0000000000
|
---|
| 934 | })
|
---|
| 935 | ]
|
---|
| 936 | )
|
---|