source: ThirdParty/mpqc_open/lib/basis/aug-cc-pvqz.kv@ 7516f6

Action_Thermostats Adding_MD_integration_tests Adding_StructOpt_integration_tests AutomationFragmentation_failures Candidate_v1.6.1 ChemicalSpaceEvaluator Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Exclude_Hydrogens_annealWithBondGraph Fix_Verbose_Codepatterns ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion Gui_displays_atomic_force_velocity JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool PythonUI_with_named_parameters Recreated_GuiChecks StoppableMakroAction TremoloParser_IncreasedPrecision
Last change on this file since 7516f6 was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 68.2 KB
Line 
1%BASIS "aug-cc-pVQZ" CARTESIAN
2basis:(
3%Elements References
4%-------- ----------
5% H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
6% He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
7%Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
8%Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published)
9%Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
10%Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
11%Elements References
12%-------- ---------
13% H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
14% He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
15% B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
16% 6769 (1992).
17%Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
18%
19%
20% BASIS SET: (6s,3p,2d,1f) -> [4s,3p,2d,1f]
21% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
22 hydrogen: "aug-cc-pVQZ": [
23 (type: [am = s]
24 {exp coef:0} = {
25 82.640000000 0.20060000000E-02
26 12.410000000 0.15343000000E-01
27 2.8240000000 0.75579000000E-01
28 })
29 (type: [am = s]
30 {exp coef:0} = {
31 0.79770000000 1.0000000000
32 })
33 (type: [am = s]
34 {exp coef:0} = {
35 0.25810000000 1.0000000000
36 })
37 (type: [am = s]
38 {exp coef:0} = {
39 0.89890000000E-01 1.0000000000
40 })
41 (type: [am = s]
42 {exp coef:0} = {
43 0.23630000000E-01 1.0000000000
44 })
45 (type: [am = p]
46 {exp coef:0} = {
47 2.2920000000 1.0000000000
48 })
49 (type: [am = p]
50 {exp coef:0} = {
51 0.83800000000 1.0000000000
52 })
53 (type: [am = p]
54 {exp coef:0} = {
55 0.29200000000 1.0000000000
56 })
57 (type: [am = p]
58 {exp coef:0} = {
59 0.84800000000E-01 1.0000000000
60 })
61 (type: [(am = d puream = 1)]
62 {exp coef:0} = {
63 2.0620000000 1.0000000000
64 })
65 (type: [(am = d puream = 1)]
66 {exp coef:0} = {
67 0.66200000000 1.0000000000
68 })
69 (type: [(am = d puream = 1)]
70 {exp coef:0} = {
71 0.19000000000 1.0000000000
72 })
73 (type: [(am = f puream = 1)]
74 {exp coef:0} = {
75 1.3970000000 1.0000000000
76 })
77 (type: [(am = f puream = 1)]
78 {exp coef:0} = {
79 0.36000000000 1.0000000000
80 })
81 ]
82%
83% BASIS SET: (7s,3p,2d,1f) -> [4s,3p,2d,1f]
84% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
85 helium: "aug-cc-pVQZ": [
86 (type: [am = s]
87 {exp coef:0} = {
88 528.50000000 0.94000000000E-03
89 79.310000000 0.72140000000E-02
90 18.050000000 0.35975000000E-01
91 5.0850000000 0.12778200000
92 })
93 (type: [am = s]
94 {exp coef:0} = {
95 1.6090000000 1.0000000000
96 })
97 (type: [am = s]
98 {exp coef:0} = {
99 0.53630000000 1.0000000000
100 })
101 (type: [am = s]
102 {exp coef:0} = {
103 0.18330000000 1.0000000000
104 })
105 (type: [am = s]
106 {exp coef:0} = {
107 0.48190000000E-01 1.0000000000
108 })
109 (type: [am = p]
110 {exp coef:0} = {
111 5.9940000000 1.0000000000
112 })
113 (type: [am = p]
114 {exp coef:0} = {
115 1.7450000000 1.0000000000
116 })
117 (type: [am = p]
118 {exp coef:0} = {
119 0.56000000000 1.0000000000
120 })
121 (type: [am = p]
122 {exp coef:0} = {
123 0.16260000000 1.0000000000
124 })
125 (type: [(am = d puream = 1)]
126 {exp coef:0} = {
127 4.2990000000 1.0000000000
128 })
129 (type: [(am = d puream = 1)]
130 {exp coef:0} = {
131 1.2230000000 1.0000000000
132 })
133 (type: [(am = d puream = 1)]
134 {exp coef:0} = {
135 0.35100000000 1.0000000000
136 })
137 (type: [(am = f puream = 1)]
138 {exp coef:0} = {
139 2.6800000000 1.0000000000
140 })
141 (type: [(am = f puream = 1)]
142 {exp coef:0} = {
143 0.69060000000 1.0000000000
144 })
145 ]
146%
147% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
148% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
149 boron: "aug-cc-pVQZ": [
150 (type: [am = s am = s]
151 {exp coef:0 coef:1} = {
152 23870.000000 0.88000000000E-04 -0.18000000000E-04
153 3575.0000000 0.68700000000E-03 -0.13900000000E-03
154 812.80000000 0.36000000000E-02 -0.72500000000E-03
155 229.70000000 0.14949000000E-01 -0.30630000000E-02
156 74.690000000 0.51435000000E-01 -0.10581000000E-01
157 26.810000000 0.14330200000 -0.31365000000E-01
158 10.320000000 0.30093500000 -0.71012000000E-01
159 4.1780000000 0.40352600000 -0.13210300000
160 1.7270000000 0.22534000000 -0.12307200000
161 })
162 (type: [am = s]
163 {exp coef:0} = {
164 0.47040000000 1.0000000000
165 })
166 (type: [am = s]
167 {exp coef:0} = {
168 0.18960000000 1.0000000000
169 })
170 (type: [am = s]
171 {exp coef:0} = {
172 0.73940000000E-01 1.0000000000
173 })
174 (type: [am = s]
175 {exp coef:0} = {
176 0.27210000000E-01 1.0000000000
177 })
178 (type: [am = p]
179 {exp coef:0} = {
180 22.260000000 0.50950000000E-02
181 5.0580000000 0.33206000000E-01
182 1.4870000000 0.13231400000
183 })
184 (type: [am = p]
185 {exp coef:0} = {
186 0.50710000000 1.0000000000
187 })
188 (type: [am = p]
189 {exp coef:0} = {
190 0.18120000000 1.0000000000
191 })
192 (type: [am = p]
193 {exp coef:0} = {
194 0.64630000000E-01 1.0000000000
195 })
196 (type: [am = p]
197 {exp coef:0} = {
198 0.18780000000E-01 1.0000000000
199 })
200 (type: [(am = d puream = 1)]
201 {exp coef:0} = {
202 1.1100000000 1.0000000000
203 })
204 (type: [(am = d puream = 1)]
205 {exp coef:0} = {
206 0.40200000000 1.0000000000
207 })
208 (type: [(am = d puream = 1)]
209 {exp coef:0} = {
210 0.14500000000 1.0000000000
211 })
212 (type: [(am = d puream = 1)]
213 {exp coef:0} = {
214 0.46600000000E-01 1.0000000000
215 })
216 (type: [(am = f puream = 1)]
217 {exp coef:0} = {
218 0.88200000000 1.0000000000
219 })
220 (type: [(am = f puream = 1)]
221 {exp coef:0} = {
222 0.31100000000 1.0000000000
223 })
224 (type: [(am = f puream = 1)]
225 {exp coef:0} = {
226 0.11300000000 1.0000000000
227 })
228 (type: [(am = g puream = 1)]
229 {exp coef:0} = {
230 0.67300000000 1.0000000000
231 })
232 (type: [(am = g puream = 1)]
233 {exp coef:0} = {
234 0.27300000000 1.0000000000
235 })
236 ]
237%
238% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
239% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
240 carbon: "aug-cc-pVQZ": [
241 (type: [am = s am = s]
242 {exp coef:0 coef:1} = {
243 33980.000000 0.91000000000E-04 -0.19000000000E-04
244 5089.0000000 0.70400000000E-03 -0.15100000000E-03
245 1157.0000000 0.36930000000E-02 -0.78500000000E-03
246 326.60000000 0.15360000000E-01 -0.33240000000E-02
247 106.10000000 0.52929000000E-01 -0.11512000000E-01
248 38.110000000 0.14704300000 -0.34160000000E-01
249 14.750000000 0.30563100000 -0.77173000000E-01
250 6.0350000000 0.39934500000 -0.14149300000
251 2.5300000000 0.21705100000 -0.11801900000
252 })
253 (type: [am = s]
254 {exp coef:0} = {
255 0.73550000000 1.0000000000
256 })
257 (type: [am = s]
258 {exp coef:0} = {
259 0.29050000000 1.0000000000
260 })
261 (type: [am = s]
262 {exp coef:0} = {
263 0.11110000000 1.0000000000
264 })
265 (type: [am = s]
266 {exp coef:0} = {
267 0.41450000000E-01 1.0000000000
268 })
269 (type: [am = p]
270 {exp coef:0} = {
271 34.510000000 0.53780000000E-02
272 7.9150000000 0.36132000000E-01
273 2.3680000000 0.14249300000
274 })
275 (type: [am = p]
276 {exp coef:0} = {
277 0.81320000000 1.0000000000
278 })
279 (type: [am = p]
280 {exp coef:0} = {
281 0.28900000000 1.0000000000
282 })
283 (type: [am = p]
284 {exp coef:0} = {
285 0.10070000000 1.0000000000
286 })
287 (type: [am = p]
288 {exp coef:0} = {
289 0.32180000000E-01 1.0000000000
290 })
291 (type: [(am = d puream = 1)]
292 {exp coef:0} = {
293 1.8480000000 1.0000000000
294 })
295 (type: [(am = d puream = 1)]
296 {exp coef:0} = {
297 0.64900000000 1.0000000000
298 })
299 (type: [(am = d puream = 1)]
300 {exp coef:0} = {
301 0.22800000000 1.0000000000
302 })
303 (type: [(am = d puream = 1)]
304 {exp coef:0} = {
305 0.76600000000E-01 1.0000000000
306 })
307 (type: [(am = f puream = 1)]
308 {exp coef:0} = {
309 1.4190000000 1.0000000000
310 })
311 (type: [(am = f puream = 1)]
312 {exp coef:0} = {
313 0.48500000000 1.0000000000
314 })
315 (type: [(am = f puream = 1)]
316 {exp coef:0} = {
317 0.18700000000 1.0000000000
318 })
319 (type: [(am = g puream = 1)]
320 {exp coef:0} = {
321 1.0110000000 1.0000000000
322 })
323 (type: [(am = g puream = 1)]
324 {exp coef:0} = {
325 0.42400000000 1.0000000000
326 })
327 ]
328%
329% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
330% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
331 nitrogen: "aug-cc-pVQZ": [
332 (type: [am = s am = s]
333 {exp coef:0 coef:1} = {
334 45840.000000 0.92000000000E-04 -0.20000000000E-04
335 6868.0000000 0.71700000000E-03 -0.15900000000E-03
336 1563.0000000 0.37490000000E-02 -0.82400000000E-03
337 442.40000000 0.15532000000E-01 -0.34780000000E-02
338 144.30000000 0.53146000000E-01 -0.11966000000E-01
339 52.180000000 0.14678700000 -0.35388000000E-01
340 20.340000000 0.30466300000 -0.80077000000E-01
341 8.3810000000 0.39768400000 -0.14672200000
342 3.5290000000 0.21764100000 -0.11636000000
343 })
344 (type: [am = s]
345 {exp coef:0} = {
346 1.0540000000 1.0000000000
347 })
348 (type: [am = s]
349 {exp coef:0} = {
350 0.41180000000 1.0000000000
351 })
352 (type: [am = s]
353 {exp coef:0} = {
354 0.15520000000 1.0000000000
355 })
356 (type: [am = s]
357 {exp coef:0} = {
358 0.54640000000E-01 1.0000000000
359 })
360 (type: [am = p]
361 {exp coef:0} = {
362 49.330000000 0.55330000000E-02
363 11.370000000 0.37962000000E-01
364 3.4350000000 0.14902800000
365 })
366 (type: [am = p]
367 {exp coef:0} = {
368 1.1820000000 1.0000000000
369 })
370 (type: [am = p]
371 {exp coef:0} = {
372 0.41730000000 1.0000000000
373 })
374 (type: [am = p]
375 {exp coef:0} = {
376 0.14280000000 1.0000000000
377 })
378 (type: [am = p]
379 {exp coef:0} = {
380 0.44020000000E-01 1.0000000000
381 })
382 (type: [(am = d puream = 1)]
383 {exp coef:0} = {
384 2.8370000000 1.0000000000
385 })
386 (type: [(am = d puream = 1)]
387 {exp coef:0} = {
388 0.96800000000 1.0000000000
389 })
390 (type: [(am = d puream = 1)]
391 {exp coef:0} = {
392 0.33500000000 1.0000000000
393 })
394 (type: [(am = d puream = 1)]
395 {exp coef:0} = {
396 0.11100000000 1.0000000000
397 })
398 (type: [(am = f puream = 1)]
399 {exp coef:0} = {
400 2.0270000000 1.0000000000
401 })
402 (type: [(am = f puream = 1)]
403 {exp coef:0} = {
404 0.68500000000 1.0000000000
405 })
406 (type: [(am = f puream = 1)]
407 {exp coef:0} = {
408 0.24500000000 1.0000000000
409 })
410 (type: [(am = g puream = 1)]
411 {exp coef:0} = {
412 1.4270000000 1.0000000000
413 })
414 (type: [(am = g puream = 1)]
415 {exp coef:0} = {
416 0.55900000000 1.0000000000
417 })
418 ]
419%
420% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
421% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
422 oxygen: "aug-cc-pVQZ": [
423 (type: [am = s am = s]
424 {exp coef:0 coef:1} = {
425 61420.000000 0.90000000000E-04 -0.20000000000E-04
426 9199.0000000 0.69800000000E-03 -0.15900000000E-03
427 2091.0000000 0.36640000000E-02 -0.82900000000E-03
428 590.90000000 0.15218000000E-01 -0.35080000000E-02
429 192.30000000 0.52423000000E-01 -0.12156000000E-01
430 69.320000000 0.14592100000 -0.36261000000E-01
431 26.970000000 0.30525800000 -0.82992000000E-01
432 11.100000000 0.39850800000 -0.15209000000
433 4.6820000000 0.21698000000 -0.11533100000
434 })
435 (type: [am = s]
436 {exp coef:0} = {
437 1.4280000000 1.0000000000
438 })
439 (type: [am = s]
440 {exp coef:0} = {
441 0.55470000000 1.0000000000
442 })
443 (type: [am = s]
444 {exp coef:0} = {
445 0.20670000000 1.0000000000
446 })
447 (type: [am = s]
448 {exp coef:0} = {
449 0.69590000000E-01 1.0000000000
450 })
451 (type: [am = p]
452 {exp coef:0} = {
453 63.420000000 0.60440000000E-02
454 14.660000000 0.41799000000E-01
455 4.4590000000 0.16114300000
456 })
457 (type: [am = p]
458 {exp coef:0} = {
459 1.5310000000 1.0000000000
460 })
461 (type: [am = p]
462 {exp coef:0} = {
463 0.53020000000 1.0000000000
464 })
465 (type: [am = p]
466 {exp coef:0} = {
467 0.17500000000 1.0000000000
468 })
469 (type: [am = p]
470 {exp coef:0} = {
471 0.53480000000E-01 1.0000000000
472 })
473 (type: [(am = d puream = 1)]
474 {exp coef:0} = {
475 3.7750000000 1.0000000000
476 })
477 (type: [(am = d puream = 1)]
478 {exp coef:0} = {
479 1.3000000000 1.0000000000
480 })
481 (type: [(am = d puream = 1)]
482 {exp coef:0} = {
483 0.44400000000 1.0000000000
484 })
485 (type: [(am = d puream = 1)]
486 {exp coef:0} = {
487 0.15400000000 1.0000000000
488 })
489 (type: [(am = f puream = 1)]
490 {exp coef:0} = {
491 2.6660000000 1.0000000000
492 })
493 (type: [(am = f puream = 1)]
494 {exp coef:0} = {
495 0.85900000000 1.0000000000
496 })
497 (type: [(am = f puream = 1)]
498 {exp coef:0} = {
499 0.32400000000 1.0000000000
500 })
501 (type: [(am = g puream = 1)]
502 {exp coef:0} = {
503 1.8460000000 1.0000000000
504 })
505 (type: [(am = g puream = 1)]
506 {exp coef:0} = {
507 0.71400000000 1.0000000000
508 })
509 ]
510%
511% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
512% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
513 fluorine: "aug-cc-pVQZ": [
514 (type: [am = s am = s]
515 {exp coef:0 coef:1} = {
516 74530.000000 0.95000000000E-04 -0.22000000000E-04
517 11170.000000 0.73800000000E-03 -0.17200000000E-03
518 2543.0000000 0.38580000000E-02 -0.89100000000E-03
519 721.00000000 0.15926000000E-01 -0.37480000000E-02
520 235.90000000 0.54289000000E-01 -0.12862000000E-01
521 85.600000000 0.14951300000 -0.38061000000E-01
522 33.550000000 0.30825200000 -0.86239000000E-01
523 13.930000000 0.39485300000 -0.15586500000
524 5.9150000000 0.21103100000 -0.11091400000
525 })
526 (type: [am = s]
527 {exp coef:0} = {
528 1.8430000000 1.0000000000
529 })
530 (type: [am = s]
531 {exp coef:0} = {
532 0.71240000000 1.0000000000
533 })
534 (type: [am = s]
535 {exp coef:0} = {
536 0.26370000000 1.0000000000
537 })
538 (type: [am = s]
539 {exp coef:0} = {
540 0.85940000000E-01 1.0000000000
541 })
542 (type: [am = p]
543 {exp coef:0} = {
544 80.390000000 0.63470000000E-02
545 18.630000000 0.44204000000E-01
546 5.6940000000 0.16851400000
547 })
548 (type: [am = p]
549 {exp coef:0} = {
550 1.9530000000 1.0000000000
551 })
552 (type: [am = p]
553 {exp coef:0} = {
554 0.67020000000 1.0000000000
555 })
556 (type: [am = p]
557 {exp coef:0} = {
558 0.21660000000 1.0000000000
559 })
560 (type: [am = p]
561 {exp coef:0} = {
562 0.65680000000E-01 1.0000000000
563 })
564 (type: [(am = d puream = 1)]
565 {exp coef:0} = {
566 5.0140000000 1.0000000000
567 })
568 (type: [(am = d puream = 1)]
569 {exp coef:0} = {
570 1.7250000000 1.0000000000
571 })
572 (type: [(am = d puream = 1)]
573 {exp coef:0} = {
574 0.58600000000 1.0000000000
575 })
576 (type: [(am = d puream = 1)]
577 {exp coef:0} = {
578 0.20700000000 1.0000000000
579 })
580 (type: [(am = f puream = 1)]
581 {exp coef:0} = {
582 3.5620000000 1.0000000000
583 })
584 (type: [(am = f puream = 1)]
585 {exp coef:0} = {
586 1.1480000000 1.0000000000
587 })
588 (type: [(am = f puream = 1)]
589 {exp coef:0} = {
590 0.46000000000 1.0000000000
591 })
592 (type: [(am = g puream = 1)]
593 {exp coef:0} = {
594 2.3760000000 1.0000000000
595 })
596 (type: [(am = g puream = 1)]
597 {exp coef:0} = {
598 0.92400000000 1.0000000000
599 })
600 ]
601%
602% BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
603% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
604 neon: "aug-cc-pVQZ": [
605 (type: [am = s am = s]
606 {exp coef:0 coef:1} = {
607 99920.000000 0.86000000000E-04 -0.20000000000E-04
608 14960.000000 0.66900000000E-03 -0.15800000000E-03
609 3399.0000000 0.35180000000E-02 -0.82400000000E-03
610 958.90000000 0.14667000000E-01 -0.35000000000E-02
611 311.20000000 0.50962000000E-01 -0.12233000000E-01
612 111.70000000 0.14374400000 -0.37017000000E-01
613 43.320000000 0.30456200000 -0.86113000000E-01
614 17.800000000 0.40010500000 -0.15838100000
615 7.5030000000 0.21864400000 -0.11428800000
616 })
617 (type: [am = s]
618 {exp coef:0} = {
619 2.3370000000 1.0000000000
620 })
621 (type: [am = s]
622 {exp coef:0} = {
623 0.90010000000 1.0000000000
624 })
625 (type: [am = s]
626 {exp coef:0} = {
627 0.33010000000 1.0000000000
628 })
629 (type: [am = s]
630 {exp coef:0} = {
631 0.10540000000 1.0000000000
632 })
633 (type: [am = p]
634 {exp coef:0} = {
635 99.680000000 0.65660000000E-02
636 23.150000000 0.45979000000E-01
637 7.1080000000 0.17341900000
638 })
639 (type: [am = p]
640 {exp coef:0} = {
641 2.4410000000 1.0000000000
642 })
643 (type: [am = p]
644 {exp coef:0} = {
645 0.83390000000 1.0000000000
646 })
647 (type: [am = p]
648 {exp coef:0} = {
649 0.26620000000 1.0000000000
650 })
651 (type: [am = p]
652 {exp coef:0} = {
653 0.81780000000E-01 1.0000000000
654 })
655 (type: [(am = d puream = 1)]
656 {exp coef:0} = {
657 6.4710000000 1.0000000000
658 })
659 (type: [(am = d puream = 1)]
660 {exp coef:0} = {
661 2.2130000000 1.0000000000
662 })
663 (type: [(am = d puream = 1)]
664 {exp coef:0} = {
665 0.74700000000 1.0000000000
666 })
667 (type: [(am = d puream = 1)]
668 {exp coef:0} = {
669 0.27300000000 1.0000000000
670 })
671 (type: [(am = f puream = 1)]
672 {exp coef:0} = {
673 4.6570000000 1.0000000000
674 })
675 (type: [(am = f puream = 1)]
676 {exp coef:0} = {
677 1.5240000000 1.0000000000
678 })
679 (type: [(am = f puream = 1)]
680 {exp coef:0} = {
681 0.68900000000 1.0000000000
682 })
683 (type: [(am = g puream = 1)]
684 {exp coef:0} = {
685 2.9830000000 1.0000000000
686 })
687 (type: [(am = g puream = 1)]
688 {exp coef:0} = {
689 1.2240000000 1.0000000000
690 })
691 ]
692%
693% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
694% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
695 aluminum: "aug-cc-pVQZ": [
696 (type: [am = s am = s am = s]
697 {exp coef:0 coef:1 coef:2} = {
698 419600.00000 0.27821900000E-04 -0.72375400000E-05 0.16715000000E-05
699 62830.000000 0.21633000000E-03 -0.56173300000E-04 0.12964100000E-04
700 14290.000000 0.11375400000E-02 -0.29652800000E-03 0.68510100000E-04
701 4038.0000000 0.47963500000E-02 -0.12491300000E-02 0.28827400000E-03
702 1312.0000000 0.17238900000E-01 -0.45510100000E-02 0.10527600000E-02
703 470.50000000 0.53806600000E-01 -0.14439300000E-01 0.33387800000E-02
704 181.80000000 0.14132600000 -0.40346400000E-01 0.93921700000E-02
705 74.460000000 0.28926800000 -0.92261800000E-01 0.21604700000E-01
706 31.900000000 0.38482500000 -0.16451000000 0.39587300000E-01
707 13.960000000 0.23285200000 -0.14129600000 0.34918000000E-01
708 5.1800000000 0.29333000000E-01 0.19536500000 -0.52841500000E-01
709 2.2650000000 -0.30057400000E-02 0.57247500000 -0.19187800000
710 0.96640000000 0.16667300000E-02 0.37404100000 -0.25411500000
711 })
712 (type: [am = s]
713 {exp coef:0} = {
714 0.24470000000 1.0000000000
715 })
716 (type: [am = s]
717 {exp coef:0} = {
718 0.11840000000 1.0000000000
719 })
720 (type: [am = s]
721 {exp coef:0} = {
722 0.50210000000E-01 1.0000000000
723 })
724 (type: [am = s]
725 {exp coef:0} = {
726 0.18300000000E-01 1.0000000000
727 })
728 (type: [am = p am = p]
729 {exp coef:0 coef:1} = {
730 891.30000000 0.49175500000E-03 -0.88869500000E-04
731 211.30000000 0.41584300000E-02 -0.74582300000E-03
732 68.280000000 0.21253800000E-01 -0.38702500000E-02
733 25.700000000 0.76405800000E-01 -0.13935000000E-01
734 10.630000000 0.19427700000 -0.36686000000E-01
735 4.6020000000 0.33442800000 -0.62779700000E-01
736 2.0150000000 0.37502600000 -0.78960200000E-01
737 0.87060000000 0.20404100000 -0.28858900000E-01
738 })
739 (type: [am = p]
740 {exp coef:0} = {
741 0.29720000000 1.0000000000
742 })
743 (type: [am = p]
744 {exp coef:0} = {
745 0.11000000000 1.0000000000
746 })
747 (type: [am = p]
748 {exp coef:0} = {
749 0.39890000000E-01 1.0000000000
750 })
751 (type: [am = p]
752 {exp coef:0} = {
753 0.12100000000E-01 1.0000000000
754 })
755 (type: [(am = d puream = 1)]
756 {exp coef:0} = {
757 0.80400000000E-01 1.0000000000
758 })
759 (type: [(am = d puream = 1)]
760 {exp coef:0} = {
761 0.19900000000 1.0000000000
762 })
763 (type: [(am = d puream = 1)]
764 {exp coef:0} = {
765 0.49400000000 1.0000000000
766 })
767 (type: [(am = d puream = 1)]
768 {exp coef:0} = {
769 0.28200000000E-01 1.0000000000
770 })
771 (type: [(am = f puream = 1)]
772 {exp coef:0} = {
773 0.15400000000 1.0000000000
774 })
775 (type: [(am = f puream = 1)]
776 {exp coef:0} = {
777 0.40100000000 1.0000000000
778 })
779 (type: [(am = f puream = 1)]
780 {exp coef:0} = {
781 0.58200000000E-01 1.0000000000
782 })
783 (type: [(am = g puream = 1)]
784 {exp coef:0} = {
785 0.35700000000 1.0000000000
786 })
787 (type: [(am = g puream = 1)]
788 {exp coef:0} = {
789 0.15300000000 1.0000000000
790 })
791 ]
792%
793% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
794% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
795 silicon: "aug-cc-pVQZ": [
796 (type: [am = s am = s am = s]
797 {exp coef:0 coef:1 coef:2} = {
798 513000.00000 0.26092000000E-04 -0.69488000000E-05 0.17806800000E-05
799 76820.000000 0.20290500000E-03 -0.53964100000E-04 0.13814800000E-04
800 17470.000000 0.10671500000E-02 -0.28471600000E-03 0.73000500000E-04
801 4935.0000000 0.45059700000E-02 -0.12020300000E-02 0.30766600000E-03
802 1602.0000000 0.16235900000E-01 -0.43839700000E-02 0.11256300000E-02
803 574.10000000 0.50891300000E-01 -0.13977600000E-01 0.35843500000E-02
804 221.50000000 0.13515500000 -0.39351600000E-01 0.10172800000E-01
805 90.540000000 0.28129200000 -0.91428300000E-01 0.23752000000E-01
806 38.740000000 0.38533600000 -0.16560900000 0.44348300000E-01
807 16.950000000 0.24565100000 -0.15250500000 0.41904100000E-01
808 6.4520000000 0.34314500000E-01 0.16852400000 -0.50250400000E-01
809 2.8740000000 -0.33488400000E-02 0.56928400000 -0.21657800000
810 1.2500000000 0.18762500000E-02 0.39805600000 -0.28644800000
811 })
812 (type: [am = s]
813 {exp coef:0} = {
814 0.35990000000 1.0000000000
815 })
816 (type: [am = s]
817 {exp coef:0} = {
818 0.16990000000 1.0000000000
819 })
820 (type: [am = s]
821 {exp coef:0} = {
822 0.70660000000E-01 1.0000000000
823 })
824 (type: [am = s]
825 {exp coef:0} = {
826 0.27500000000E-01 1.0000000000
827 })
828 (type: [am = p am = p]
829 {exp coef:0 coef:1} = {
830 1122.0000000 0.44814300000E-03 -0.96488300000E-04
831 266.00000000 0.38163900000E-02 -0.81197100000E-03
832 85.920000000 0.19810500000E-01 -0.43008700000E-02
833 32.330000000 0.72701700000E-01 -0.15750200000E-01
834 13.370000000 0.18983900000 -0.42954100000E-01
835 5.8000000000 0.33567200000 -0.75257400000E-01
836 2.5590000000 0.37936500000 -0.97144600000E-01
837 1.1240000000 0.20119300000 -0.22750700000E-01
838 })
839 (type: [am = p]
840 {exp coef:0} = {
841 0.39880000000 1.0000000000
842 })
843 (type: [am = p]
844 {exp coef:0} = {
845 0.15330000000 1.0000000000
846 })
847 (type: [am = p]
848 {exp coef:0} = {
849 0.57280000000E-01 1.0000000000
850 })
851 (type: [am = p]
852 {exp coef:0} = {
853 0.20000000000E-01 1.0000000000
854 })
855 (type: [(am = d puream = 1)]
856 {exp coef:0} = {
857 0.12000000000 1.0000000000
858 })
859 (type: [(am = d puream = 1)]
860 {exp coef:0} = {
861 0.30200000000 1.0000000000
862 })
863 (type: [(am = d puream = 1)]
864 {exp coef:0} = {
865 0.76000000000 1.0000000000
866 })
867 (type: [(am = d puream = 1)]
868 {exp coef:0} = {
869 0.43500000000E-01 1.0000000000
870 })
871 (type: [(am = f puream = 1)]
872 {exp coef:0} = {
873 0.21200000000 1.0000000000
874 })
875 (type: [(am = f puream = 1)]
876 {exp coef:0} = {
877 0.54100000000 1.0000000000
878 })
879 (type: [(am = f puream = 1)]
880 {exp coef:0} = {
881 0.84600000000E-01 1.0000000000
882 })
883 (type: [(am = g puream = 1)]
884 {exp coef:0} = {
885 0.46100000000 1.0000000000
886 })
887 (type: [(am = g puream = 1)]
888 {exp coef:0} = {
889 0.21200000000 1.0000000000
890 })
891 ]
892%
893% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
894% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
895 phosphorus: "aug-cc-pVQZ": [
896 (type: [am = s am = s am = s]
897 {exp coef:0 coef:1 coef:2} = {
898 615200.00000 0.24745000000E-04 -0.67220500000E-05 0.18474000000E-05
899 92120.000000 0.19246500000E-03 -0.52231100000E-04 0.14338000000E-04
900 20950.000000 0.10120200000E-02 -0.27536100000E-03 0.75722800000E-04
901 5920.0000000 0.42726100000E-02 -0.11630700000E-02 0.31920500000E-03
902 1922.0000000 0.15416100000E-01 -0.42428100000E-02 0.11685100000E-02
903 688.00000000 0.48597600000E-01 -0.13611400000E-01 0.37426700000E-02
904 265.00000000 0.13006000000 -0.38511400000E-01 0.10681700000E-01
905 108.20000000 0.27451400000 -0.90664300000E-01 0.25265700000E-01
906 46.220000000 0.38540200000 -0.16658400000 0.47928300000E-01
907 20.230000000 0.25593400000 -0.16144700000 0.47709600000E-01
908 7.8590000000 0.39123700000E-01 0.14678100000 -0.46652500000E-01
909 3.5470000000 -0.36801000000E-02 0.56668200000 -0.23496800000
910 1.5640000000 0.20821100000E-02 0.41643300000 -0.31133700000
911 })
912 (type: [am = s]
913 {exp coef:0} = {
914 0.48880000000 1.0000000000
915 })
916 (type: [am = s]
917 {exp coef:0} = {
918 0.22660000000 1.0000000000
919 })
920 (type: [am = s]
921 {exp coef:0} = {
922 0.93310000000E-01 1.0000000000
923 })
924 (type: [am = s]
925 {exp coef:0} = {
926 0.35400000000E-01 1.0000000000
927 })
928 (type: [am = p am = p]
929 {exp coef:0 coef:1} = {
930 1367.0000000 0.42101500000E-03 -0.10082700000E-03
931 324.00000000 0.36098500000E-02 -0.85449900000E-03
932 104.60000000 0.18921700000E-01 -0.45711600000E-02
933 39.370000000 0.70556000000E-01 -0.17032700000E-01
934 16.260000000 0.18815700000 -0.47520400000E-01
935 7.0560000000 0.33870900000 -0.85278600000E-01
936 3.1300000000 0.38194300000 -0.10967600000
937 1.3940000000 0.19526100000 -0.16118100000E-01
938 })
939 (type: [am = p]
940 {exp coef:0} = {
941 0.51790000000 1.0000000000
942 })
943 (type: [am = p]
944 {exp coef:0} = {
945 0.20320000000 1.0000000000
946 })
947 (type: [am = p]
948 {exp coef:0} = {
949 0.76980000000E-01 1.0000000000
950 })
951 (type: [am = p]
952 {exp coef:0} = {
953 0.27200000000E-01 1.0000000000
954 })
955 (type: [(am = d puream = 1)]
956 {exp coef:0} = {
957 0.16500000000 1.0000000000
958 })
959 (type: [(am = d puream = 1)]
960 {exp coef:0} = {
961 0.41300000000 1.0000000000
962 })
963 (type: [(am = d puream = 1)]
964 {exp coef:0} = {
965 1.0360000000 1.0000000000
966 })
967 (type: [(am = d puream = 1)]
968 {exp coef:0} = {
969 0.59400000000E-01 1.0000000000
970 })
971 (type: [(am = f puream = 1)]
972 {exp coef:0} = {
973 0.28000000000 1.0000000000
974 })
975 (type: [(am = f puream = 1)]
976 {exp coef:0} = {
977 0.70300000000 1.0000000000
978 })
979 (type: [(am = f puream = 1)]
980 {exp coef:0} = {
981 0.10900000000 1.0000000000
982 })
983 (type: [(am = g puream = 1)]
984 {exp coef:0} = {
985 0.59700000000 1.0000000000
986 })
987 (type: [(am = g puream = 1)]
988 {exp coef:0} = {
989 0.25000000000 1.0000000000
990 })
991 ]
992%
993% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
994% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
995 sulfur: "aug-cc-pVQZ": [
996 (type: [am = s am = s am = s]
997 {exp coef:0 coef:1 coef:2} = {
998 727800.00000 0.23602500000E-04 -0.65217900000E-05 0.18940600000E-05
999 109000.00000 0.18348200000E-03 -0.50663100000E-04 0.14694800000E-04
1000 24800.000000 0.96427800000E-03 -0.26683300000E-03 0.77546000000E-04
1001 7014.0000000 0.40653700000E-02 -0.11260100000E-02 0.32650900000E-03
1002 2278.0000000 0.14697300000E-01 -0.41118600000E-02 0.11968600000E-02
1003 814.70000000 0.46508100000E-01 -0.13245400000E-01 0.38479900000E-02
1004 313.40000000 0.12550800000 -0.37700400000E-01 0.11053900000E-01
1005 127.70000000 0.26843300000 -0.89855400000E-01 0.26464500000E-01
1006 54.480000000 0.38480900000 -0.16709800000 0.50877100000E-01
1007 23.850000000 0.26537200000 -0.16935400000 0.53003000000E-01
1008 9.4280000000 0.43732600000E-01 0.12782400000 -0.42551800000E-01
1009 4.2900000000 -0.37880700000E-02 0.56486200000 -0.25085300000
1010 1.9090000000 0.21808300000E-02 0.43176700000 -0.33315200000
1011 })
1012 (type: [am = s]
1013 {exp coef:0} = {
1014 0.62700000000 1.0000000000
1015 })
1016 (type: [am = s]
1017 {exp coef:0} = {
1018 0.28730000000 1.0000000000
1019 })
1020 (type: [am = s]
1021 {exp coef:0} = {
1022 0.11720000000 1.0000000000
1023 })
1024 (type: [am = s]
1025 {exp coef:0} = {
1026 0.42800000000E-01 1.0000000000
1027 })
1028 (type: [am = p am = p]
1029 {exp coef:0 coef:1} = {
1030 1546.0000000 0.44118300000E-03 -0.11311000000E-03
1031 366.40000000 0.37757100000E-02 -0.95858100000E-03
1032 118.40000000 0.19836000000E-01 -0.51347100000E-02
1033 44.530000000 0.74206300000E-01 -0.19264100000E-01
1034 18.380000000 0.19732700000 -0.53598000000E-01
1035 7.9650000000 0.35185100000 -0.96033300000E-01
1036 3.5410000000 0.37868700000 -0.11818300000
1037 1.5910000000 0.17093100000 0.92319400000E-02
1038 })
1039 (type: [am = p]
1040 {exp coef:0} = {
1041 0.62050000000 1.0000000000
1042 })
1043 (type: [am = p]
1044 {exp coef:0} = {
1045 0.24200000000 1.0000000000
1046 })
1047 (type: [am = p]
1048 {exp coef:0} = {
1049 0.90140000000E-01 1.0000000000
1050 })
1051 (type: [am = p]
1052 {exp coef:0} = {
1053 0.31700000000E-01 1.0000000000
1054 })
1055 (type: [(am = d puream = 1)]
1056 {exp coef:0} = {
1057 0.20300000000 1.0000000000
1058 })
1059 (type: [(am = d puream = 1)]
1060 {exp coef:0} = {
1061 0.50400000000 1.0000000000
1062 })
1063 (type: [(am = d puream = 1)]
1064 {exp coef:0} = {
1065 1.2500000000 1.0000000000
1066 })
1067 (type: [(am = d puream = 1)]
1068 {exp coef:0} = {
1069 0.74800000000E-01 1.0000000000
1070 })
1071 (type: [(am = f puream = 1)]
1072 {exp coef:0} = {
1073 0.33500000000 1.0000000000
1074 })
1075 (type: [(am = f puream = 1)]
1076 {exp coef:0} = {
1077 0.86900000000 1.0000000000
1078 })
1079 (type: [(am = f puream = 1)]
1080 {exp coef:0} = {
1081 0.14000000000 1.0000000000
1082 })
1083 (type: [(am = g puream = 1)]
1084 {exp coef:0} = {
1085 0.68300000000 1.0000000000
1086 })
1087 (type: [(am = g puream = 1)]
1088 {exp coef:0} = {
1089 0.29700000000 1.0000000000
1090 })
1091 ]
1092%
1093% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1094% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1095 chlorine: "aug-cc-pVQZ": [
1096 (type: [am = s am = s am = s]
1097 {exp coef:0 coef:1 coef:2} = {
1098 834900.00000 0.23168800000E-04 -0.64964900000E-05 0.19664500000E-05
1099 125000.00000 0.18015400000E-03 -0.50489500000E-04 0.15262000000E-04
1100 28430.000000 0.94778200000E-03 -0.26611300000E-03 0.80608600000E-04
1101 8033.0000000 0.40013900000E-02 -0.11249900000E-02 0.33996000000E-03
1102 2608.0000000 0.14462900000E-01 -0.41049700000E-02 0.12455100000E-02
1103 933.90000000 0.45658600000E-01 -0.13198700000E-01 0.39961200000E-02
1104 360.00000000 0.12324800000 -0.37534200000E-01 0.11475100000E-01
1105 147.00000000 0.26436900000 -0.89723300000E-01 0.27550400000E-01
1106 62.880000000 0.38298900000 -0.16767100000 0.53291700000E-01
1107 27.600000000 0.27093400000 -0.17476300000 0.57124600000E-01
1108 11.080000000 0.47140400000E-01 0.11490900000 -0.39520100000E-01
1109 5.0750000000 -0.37176600000E-02 0.56361800000 -0.26434300000
1110 2.2780000000 0.21915800000E-02 0.44160600000 -0.34929100000
1111 })
1112 (type: [am = s]
1113 {exp coef:0} = {
1114 0.77750000000 1.0000000000
1115 })
1116 (type: [am = s]
1117 {exp coef:0} = {
1118 0.35270000000 1.0000000000
1119 })
1120 (type: [am = s]
1121 {exp coef:0} = {
1122 0.14310000000 1.0000000000
1123 })
1124 (type: [am = s]
1125 {exp coef:0} = {
1126 0.51900000000E-01 1.0000000000
1127 })
1128 (type: [am = p am = p]
1129 {exp coef:0 coef:1} = {
1130 1703.0000000 0.47403900000E-03 -0.12826600000E-03
1131 403.60000000 0.40641200000E-02 -0.10935600000E-02
1132 130.30000000 0.21335500000E-01 -0.58342900000E-02
1133 49.050000000 0.79461100000E-01 -0.21925800000E-01
1134 20.260000000 0.20892700000 -0.60138500000E-01
1135 8.7870000000 0.36494500000 -0.10692900000
1136 3.9190000000 0.37172500000 -0.12245400000
1137 1.7650000000 0.14629200000 0.38361900000E-01
1138 })
1139 (type: [am = p]
1140 {exp coef:0} = {
1141 0.72070000000 1.0000000000
1142 })
1143 (type: [am = p]
1144 {exp coef:0} = {
1145 0.28390000000 1.0000000000
1146 })
1147 (type: [am = p]
1148 {exp coef:0} = {
1149 0.10600000000 1.0000000000
1150 })
1151 (type: [am = p]
1152 {exp coef:0} = {
1153 0.37600000000E-01 1.0000000000
1154 })
1155 (type: [(am = d puream = 1)]
1156 {exp coef:0} = {
1157 0.25400000000 1.0000000000
1158 })
1159 (type: [(am = d puream = 1)]
1160 {exp coef:0} = {
1161 0.62800000000 1.0000000000
1162 })
1163 (type: [(am = d puream = 1)]
1164 {exp coef:0} = {
1165 1.5510000000 1.0000000000
1166 })
1167 (type: [(am = d puream = 1)]
1168 {exp coef:0} = {
1169 0.95200000000E-01 1.0000000000
1170 })
1171 (type: [(am = f puream = 1)]
1172 {exp coef:0} = {
1173 0.42300000000 1.0000000000
1174 })
1175 (type: [(am = f puream = 1)]
1176 {exp coef:0} = {
1177 1.0890000000 1.0000000000
1178 })
1179 (type: [(am = f puream = 1)]
1180 {exp coef:0} = {
1181 0.21700000000 1.0000000000
1182 })
1183 (type: [(am = g puream = 1)]
1184 {exp coef:0} = {
1185 0.82700000000 1.0000000000
1186 })
1187 (type: [(am = g puream = 1)]
1188 {exp coef:0} = {
1189 0.37800000000 1.0000000000
1190 })
1191 ]
1192%
1193% BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
1194% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1195 argon: "aug-cc-pVQZ": [
1196 (type: [am = s am = s am = s]
1197 {exp coef:0 coef:1 coef:2} = {
1198 950600.00000 0.22754500000E-04 -0.64620100000E-05 0.20205600000E-05
1199 142300.00000 0.17694500000E-03 -0.50234600000E-04 0.15685100000E-04
1200 32360.000000 0.93128200000E-03 -0.26480400000E-03 0.82861700000E-04
1201 9145.0000000 0.39286000000E-02 -0.11189500000E-02 0.34926400000E-03
1202 2970.0000000 0.14206400000E-01 -0.40827600000E-02 0.12797600000E-02
1203 1064.0000000 0.44811400000E-01 -0.13121600000E-01 0.41036500000E-02
1204 410.80000000 0.12100100000 -0.37285500000E-01 0.11778900000E-01
1205 168.00000000 0.26057900000 -0.89470900000E-01 0.28386800000E-01
1206 71.990000000 0.38136400000 -0.16805400000 0.55240600000E-01
1207 31.670000000 0.27605800000 -0.17959400000 0.60749200000E-01
1208 12.890000000 0.50517900000E-01 0.10295300000 -0.36201200000E-01
1209 5.9290000000 -0.35986600000E-02 0.56263000000 -0.27539800000
1210 2.6780000000 0.21879800000E-02 0.45035500000 -0.36284500000
1211 })
1212 (type: [am = s]
1213 {exp coef:0} = {
1214 0.94160000000 1.0000000000
1215 })
1216 (type: [am = s]
1217 {exp coef:0} = {
1218 0.42390000000 1.0000000000
1219 })
1220 (type: [am = s]
1221 {exp coef:0} = {
1222 0.17140000000 1.0000000000
1223 })
1224 (type: [am = s]
1225 {exp coef:0} = {
1226 0.61000000000E-01 1.0000000000
1227 })
1228 (type: [am = p am = p]
1229 {exp coef:0 coef:1} = {
1230 1890.0000000 0.49575200000E-03 -0.13886300000E-03
1231 447.80000000 0.42517200000E-02 -0.11887000000E-02
1232 144.60000000 0.22327700000E-01 -0.63255300000E-02
1233 54.460000000 0.83087800000E-01 -0.23881300000E-01
1234 22.510000000 0.21711000000 -0.64923800000E-01
1235 9.7740000000 0.37450700000 -0.11544400000
1236 4.3680000000 0.36644500000 -0.12365100000
1237 1.9590000000 0.12924500000 0.64905500000E-01
1238 })
1239 (type: [am = p]
1240 {exp coef:0} = {
1241 0.82600000000 1.0000000000
1242 })
1243 (type: [am = p]
1244 {exp coef:0} = {
1245 0.32970000000 1.0000000000
1246 })
1247 (type: [am = p]
1248 {exp coef:0} = {
1249 0.12420000000 1.0000000000
1250 })
1251 (type: [am = p]
1252 {exp coef:0} = {
1253 0.43500000000E-01 1.0000000000
1254 })
1255 (type: [(am = d puream = 1)]
1256 {exp coef:0} = {
1257 0.31100000000 1.0000000000
1258 })
1259 (type: [(am = d puream = 1)]
1260 {exp coef:0} = {
1261 0.76300000000 1.0000000000
1262 })
1263 (type: [(am = d puream = 1)]
1264 {exp coef:0} = {
1265 1.8730000000 1.0000000000
1266 })
1267 (type: [(am = d puream = 1)]
1268 {exp coef:0} = {
1269 0.11600000000 1.0000000000
1270 })
1271 (type: [(am = f puream = 1)]
1272 {exp coef:0} = {
1273 0.54300000000 1.0000000000
1274 })
1275 (type: [(am = f puream = 1)]
1276 {exp coef:0} = {
1277 1.3250000000 1.0000000000
1278 })
1279 (type: [(am = f puream = 1)]
1280 {exp coef:0} = {
1281 0.29400000000 1.0000000000
1282 })
1283 (type: [(am = g puream = 1)]
1284 {exp coef:0} = {
1285 1.0070000000 1.0000000000
1286 })
1287 (type: [(am = g puream = 1)]
1288 {exp coef:0} = {
1289 0.45900000000 1.0000000000
1290 })
1291 ]
1292%
1293% BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
1294% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1295 gallium: "aug-cc-pVQZ": [
1296 (type: [am = s am = s am = s am = s]
1297 {exp coef:0 coef:1 coef:2 coef:3} = {
1298 11274496.000 0.41000000000E-05 -0.13000000000E-05 0.50000000000E-06 -0.10000000000E-06
1299 1688053.4000 0.31600000000E-04 -0.98000000000E-05 0.37000000000E-05 -0.90000000000E-06
1300 384140.83000 0.16620000000E-03 -0.51500000000E-04 0.19700000000E-04 -0.46000000000E-05
1301 108807.03000 0.70170000000E-03 -0.21760000000E-03 0.83000000000E-04 -0.19300000000E-04
1302 35497.691000 0.25508000000E-02 -0.79320000000E-03 0.30290000000E-03 -0.70500000000E-04
1303 12815.104000 0.82653000000E-02 -0.25821000000E-02 0.98500000000E-03 -0.22900000000E-03
1304 4998.1087000 0.24195000000E-01 -0.76652000000E-02 0.29341000000E-02 -0.68350000000E-03
1305 2072.8848000 0.63657200000E-01 -0.20756700000E-01 0.79572000000E-02 -0.18505000000E-02
1306 903.74582000 0.14576510000 -0.50775800000E-01 0.19676100000E-01 -0.45930000000E-02
1307 410.44307000 0.27033130000 -0.10738020000 0.42178300000E-01 -0.98343000000E-02
1308 192.60636000 0.34915710000 -0.18065200000 0.73864500000E-01 -0.17384900000E-01
1309 92.049678000 0.23744330000 -0.17367010000 0.74753100000E-01 -0.17575200000E-01
1310 42.047811000 0.48083300000E-01 0.11082510000 -0.53410800000E-01 0.12525400000E-01
1311 21.069217000 -0.22966000000E-02 0.54183660000 -0.35739190000 0.90340000000E-01
1312 10.447915000 0.17904000000E-02 0.44678990000 -0.42507130000 0.11047210000
1313 4.7776580000 -0.82760000000E-03 0.76210500000E-01 0.20109920000 -0.61211900000E-01
1314 2.2825660000 0.35430000000E-03 -0.93710000000E-03 0.71459660000 -0.25617680000
1315 1.0353030000 -0.14110000000E-03 0.17806000000E-02 0.36881490000 -0.26037720000
1316 })
1317 (type: [am = s]
1318 {exp coef:0} = {
1319 0.25767400000 1.0000000000
1320 })
1321 (type: [am = s]
1322 {exp coef:0} = {
1323 0.11917900000 1.0000000000
1324 })
1325 (type: [am = s]
1326 {exp coef:0} = {
1327 0.51294000000E-01 1.0000000000
1328 })
1329 (type: [am = s]
1330 {exp coef:0} = {
1331 0.18475000000E-01 1.0000000000
1332 })
1333 (type: [am = p am = p am = p]
1334 {exp coef:0 coef:1 coef:2} = {
1335 22059.771000 0.54700000000E-04 -0.20700000000E-04 0.34000000000E-05
1336 5222.3129000 0.48650000000E-03 -0.18460000000E-03 0.30000000000E-04
1337 1696.0601000 0.27990000000E-02 -0.10640000000E-02 0.17500000000E-03
1338 648.76573000 0.12239600000E-01 -0.46946000000E-02 0.76420000000E-03
1339 275.10267000 0.42747600000E-01 -0.16648600000E-01 0.27458000000E-02
1340 125.34634000 0.11871870000 -0.47811400000E-01 0.78140000000E-02
1341 60.054334000 0.24858280000 -0.10453030000 0.17421500000E-01
1342 29.723768000 0.36016220000 -0.16129650000 0.26485200000E-01
1343 15.039781000 0.29501710000 -0.11431700000 0.19395000000E-01
1344 7.5722730000 0.98479400000E-01 0.14590560000 -0.31312900000E-01
1345 3.7386760000 0.87671000000E-02 0.42719890000 -0.80163400000E-01
1346 1.7967880000 0.13961000000E-02 0.42404150000 -0.10017290000
1347 0.82991000000 0.77000000000E-04 0.15994400000 -0.10587800000E-01
1348 })
1349 (type: [am = p]
1350 {exp coef:0} = {
1351 0.27287400000 1.0000000000
1352 })
1353 (type: [am = p]
1354 {exp coef:0} = {
1355 0.10154000000 1.0000000000
1356 })
1357 (type: [am = p]
1358 {exp coef:0} = {
1359 0.37658000000E-01 1.0000000000
1360 })
1361 (type: [am = p]
1362 {exp coef:0} = {
1363 0.11406000000E-01 1.0000000000
1364 })
1365 (type: [(am = d puream = 1)]
1366 {exp coef:0} = {
1367 766.43696000 0.17450000000E-03
1368 231.00425000 0.16577000000E-02
1369 89.781238000 0.92899000000E-02
1370 39.546681000 0.34890500000E-01
1371 18.607583000 0.96345300000E-01
1372 9.1512870000 0.19557030000
1373 4.5650050000 0.28359420000
1374 2.2530660000 0.30825150000
1375 1.0867230000 0.25196200000
1376 })
1377 (type: [(am = d puream = 1)]
1378 {exp coef:0} = {
1379 0.50330400000 1.0000000000
1380 })
1381 (type: [(am = d puream = 1)]
1382 {exp coef:0} = {
1383 0.21228300000 1.0000000000
1384 })
1385 (type: [(am = d puream = 1)]
1386 {exp coef:0} = {
1387 0.82800000000E-01 1.0000000000
1388 })
1389 (type: [(am = d puream = 1)]
1390 {exp coef:0} = {
1391 0.27900000000E-01 1.0000000000
1392 })
1393 (type: [(am = f puream = 1)]
1394 {exp coef:0} = {
1395 0.18100000000 1.0000000000
1396 })
1397 (type: [(am = f puream = 1)]
1398 {exp coef:0} = {
1399 0.47100000000 1.0000000000
1400 })
1401 (type: [(am = f puream = 1)]
1402 {exp coef:0} = {
1403 0.65500000000E-01 1.0000000000
1404 })
1405 (type: [(am = g puream = 1)]
1406 {exp coef:0} = {
1407 0.40320000000 1.0000000000
1408 })
1409 (type: [(am = g puream = 1)]
1410 {exp coef:0} = {
1411 0.16800000000 1.0000000000
1412 })
1413 ]
1414%
1415% BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
1416% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1417 germanium: "aug-cc-pVQZ": [
1418 (type: [am = s am = s am = s am = s]
1419 {exp coef:0 coef:1 coef:2 coef:3} = {
1420 12360507.000 0.39000000000E-05 -0.12000000000E-05 0.50000000000E-06 -0.10000000000E-06
1421 1850697.8000 0.30500000000E-04 -0.95000000000E-05 0.37000000000E-05 -0.90000000000E-06
1422 421131.42000 0.16050000000E-03 -0.49900000000E-04 0.19200000000E-04 -0.49000000000E-05
1423 119278.26000 0.67760000000E-03 -0.21090000000E-03 0.81300000000E-04 -0.20800000000E-04
1424 38912.277000 0.24637000000E-02 -0.76860000000E-03 0.29650000000E-03 -0.76100000000E-04
1425 14048.682000 0.79835000000E-02 -0.25025000000E-02 0.96480000000E-03 -0.24720000000E-03
1426 5480.6992000 0.23377400000E-01 -0.74259000000E-02 0.28715000000E-02 -0.73730000000E-03
1427 2274.2055000 0.61574200000E-01 -0.20124900000E-01 0.77973000000E-02 -0.19981000000E-02
1428 992.24129000 0.14150760000 -0.49298600000E-01 0.19292200000E-01 -0.49640000000E-02
1429 450.99966000 0.26469420000 -0.10486830000 0.41620000000E-01 -0.10693000000E-01
1430 211.82024000 0.34832570000 -0.17832750000 0.73536800000E-01 -0.19084300000E-01
1431 101.41102000 0.24541960000 -0.17895810000 0.77832000000E-01 -0.20164300000E-01
1432 46.914090000 0.53564600000E-01 0.87384200000E-01 -0.42358200000E-01 0.10836200000E-01
1433 23.508950000 -0.18380000000E-02 0.52709200000 -0.34475370000 0.96211000000E-01
1434 11.681311000 0.18049000000E-02 0.46795510000 -0.44567130000 0.12799790000
1435 5.4345260000 -0.84760000000E-03 0.89220600000E-01 0.15115440000 -0.50606500000E-01
1436 2.6088080000 0.36680000000E-03 -0.34230000000E-03 0.71742950000 -0.28529170000
1437 1.1984420000 -0.15420000000E-03 0.19144000000E-02 0.40356340000 -0.30653590000
1438 })
1439 (type: [am = s]
1440 {exp coef:0} = {
1441 0.32980800000 1.0000000000
1442 })
1443 (type: [am = s]
1444 {exp coef:0} = {
1445 0.15543300000 1.0000000000
1446 })
1447 (type: [am = s]
1448 {exp coef:0} = {
1449 0.66913000000E-01 1.0000000000
1450 })
1451 (type: [am = s]
1452 {exp coef:0} = {
1453 0.26390000000E-01 1.0000000000
1454 })
1455 (type: [am = p am = p am = p]
1456 {exp coef:0 coef:1 coef:2} = {
1457 24017.466000 0.53100000000E-04 -0.20400000000E-04 0.40000000000E-05
1458 5685.7175000 0.47200000000E-03 -0.18180000000E-03 0.35700000000E-04
1459 1846.4859000 0.27187000000E-02 -0.10491000000E-02 0.20800000000E-03
1460 706.24981000 0.11914500000E-01 -0.46392000000E-02 0.91210000000E-03
1461 299.45610000 0.41762500000E-01 -0.16509000000E-01 0.32823000000E-02
1462 136.43904000 0.11658940000 -0.47660900000E-01 0.94139000000E-02
1463 65.390155000 0.24583380000 -0.10496780000 0.21091700000E-01
1464 32.393735000 0.35912610000 -0.16337450000 0.32500000000E-01
1465 16.415616000 0.29779290000 -0.11809980000 0.23997200000E-01
1466 8.2877870000 0.10177080000 0.14201780000 -0.37118600000E-01
1467 4.1126340000 0.94072000000E-02 0.42743240000 -0.98813000000E-01
1468 1.9988540000 0.14350000000E-02 0.42561670000 -0.12356590000
1469 0.94429100000 0.35400000000E-04 0.15820340000 -0.11013300000E-01
1470 })
1471 (type: [am = p]
1472 {exp coef:0} = {
1473 0.34121100000 1.0000000000
1474 })
1475 (type: [am = p]
1476 {exp coef:0} = {
1477 0.13435000000 1.0000000000
1478 })
1479 (type: [am = p]
1480 {exp coef:0} = {
1481 0.51735000000E-01 1.0000000000
1482 })
1483 (type: [am = p]
1484 {exp coef:0} = {
1485 0.18550000000E-01 1.0000000000
1486 })
1487 (type: [(am = d puream = 1)]
1488 {exp coef:0} = {
1489 864.67411000 0.16450000000E-03
1490 261.03763000 0.15654000000E-02
1491 101.77030000 0.87954000000E-02
1492 45.116641000 0.33185200000E-01
1493 21.430686000 0.91953700000E-01
1494 10.659861000 0.18920170000
1495 5.3922870000 0.28058920000
1496 2.7044970000 0.31174740000
1497 1.3285440000 0.25541970000
1498 })
1499 (type: [(am = d puream = 1)]
1500 {exp coef:0} = {
1501 0.62645200000 1.0000000000
1502 })
1503 (type: [(am = d puream = 1)]
1504 {exp coef:0} = {
1505 0.26601300000 1.0000000000
1506 })
1507 (type: [(am = d puream = 1)]
1508 {exp coef:0} = {
1509 0.10630000000 1.0000000000
1510 })
1511 (type: [(am = d puream = 1)]
1512 {exp coef:0} = {
1513 0.39700000000E-01 1.0000000000
1514 })
1515 (type: [(am = f puream = 1)]
1516 {exp coef:0} = {
1517 0.54920000000 1.0000000000
1518 })
1519 (type: [(am = f puream = 1)]
1520 {exp coef:0} = {
1521 0.21900000000 1.0000000000
1522 })
1523 (type: [(am = f puream = 1)]
1524 {exp coef:0} = {
1525 0.88400000000E-01 1.0000000000
1526 })
1527 (type: [(am = g puream = 1)]
1528 {exp coef:0} = {
1529 0.46810000000 1.0000000000
1530 })
1531 (type: [(am = g puream = 1)]
1532 {exp coef:0} = {
1533 0.21430000000 1.0000000000
1534 })
1535 ]
1536%
1537% BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
1538% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1539 arsenic: "aug-cc-pVQZ": [
1540 (type: [am = s am = s am = s am = s]
1541 {exp coef:0 coef:1 coef:2 coef:3} = {
1542 13600341.000 0.38000000000E-05 -0.12000000000E-05 0.50000000000E-06 -0.10000000000E-06
1543 2036507.3000 0.29200000000E-04 -0.91000000000E-05 0.36000000000E-05 -0.10000000000E-05
1544 463432.78000 0.15380000000E-03 -0.48000000000E-04 0.18700000000E-04 -0.52000000000E-05
1545 131259.94000 0.64960000000E-03 -0.20280000000E-03 0.79000000000E-04 -0.21700000000E-04
1546 42819.192000 0.23625000000E-02 -0.73920000000E-03 0.28810000000E-03 -0.79400000000E-04
1547 15457.019000 0.76609000000E-02 -0.24089000000E-02 0.93860000000E-03 -0.25830000000E-03
1548 6028.4583000 0.22467200000E-01 -0.71538000000E-02 0.27946000000E-02 -0.77090000000E-03
1549 2500.5599000 0.59342500000E-01 -0.19433300000E-01 0.76098000000E-02 -0.20946000000E-02
1550 1090.6149000 0.13710150000 -0.47747100000E-01 0.18869900000E-01 -0.52164000000E-02
1551 495.62154000 0.25894720000 -0.10226390000 0.41006300000E-01 -0.11316300000E-01
1552 232.81669000 0.34728470000 -0.17583260000 0.73127500000E-01 -0.20393500000E-01
1553 111.63118000 0.25342470000 -0.18374940000 0.80719400000E-01 -0.22466400000E-01
1554 52.269950000 0.59626600000E-01 0.64827600000E-01 -0.31630000000E-01 0.85590000000E-02
1555 26.149878000 -0.11861000000E-02 0.51092810000 -0.33173760000 0.99569200000E-01
1556 13.018757000 0.17791000000E-02 0.48731430000 -0.46382210000 0.14345010000
1557 6.1554320000 -0.84550000000E-03 0.10336360000 0.10369900000 -0.37190100000E-01
1558 2.9591270000 0.36600000000E-03 0.63550000000E-03 0.71829860000 -0.30853680000
1559 1.3738740000 -0.16220000000E-03 0.19766000000E-02 0.43533050000 -0.34786490000
1560 })
1561 (type: [am = s]
1562 {exp coef:0} = {
1563 0.40885000000 1.0000000000
1564 })
1565 (type: [am = s]
1566 {exp coef:0} = {
1567 0.19451100000 1.0000000000
1568 })
1569 (type: [am = s]
1570 {exp coef:0} = {
1571 0.83641000000E-01 1.0000000000
1572 })
1573 (type: [am = s]
1574 {exp coef:0} = {
1575 0.32499000000E-01 1.0000000000
1576 })
1577 (type: [am = p am = p am = p]
1578 {exp coef:0 coef:1 coef:2} = {
1579 25570.418000 0.53300000000E-04 -0.20800000000E-04 0.46000000000E-05
1580 6052.9237000 0.47440000000E-03 -0.18550000000E-03 0.41200000000E-04
1581 1965.7002000 0.27330000000E-02 -0.10704000000E-02 0.23930000000E-03
1582 751.77229000 0.11987100000E-01 -0.47392000000E-02 0.10531000000E-02
1583 318.68140000 0.42076600000E-01 -0.16888500000E-01 0.37863000000E-02
1584 145.14749000 0.11758910000 -0.48844500000E-01 0.10910100000E-01
1585 69.541162000 0.24787470000 -0.10759890000 0.24385300000E-01
1586 34.451376000 0.36051480000 -0.16693760000 0.37648200000E-01
1587 17.460610000 0.29559210000 -0.11692140000 0.26513700000E-01
1588 8.8086090000 0.99216300000E-01 0.15145050000 -0.44546400000E-01
1589 4.3786460000 0.87866000000E-02 0.43717310000 -0.11676810000
1590 2.1444050000 0.14462000000E-02 0.41970780000 -0.14094410000
1591 1.0293500000 -0.44700000000E-04 0.14376360000 -0.12121000000E-02
1592 })
1593 (type: [am = p]
1594 {exp coef:0} = {
1595 0.40463600000 1.0000000000
1596 })
1597 (type: [am = p]
1598 {exp coef:0} = {
1599 0.16562200000 1.0000000000
1600 })
1601 (type: [am = p]
1602 {exp coef:0} = {
1603 0.65610000000E-01 1.0000000000
1604 })
1605 (type: [am = p]
1606 {exp coef:0} = {
1607 0.23698000000E-01 1.0000000000
1608 })
1609 (type: [(am = d puream = 1)]
1610 {exp coef:0} = {
1611 996.97960000 0.14620000000E-03
1612 300.98518000 0.14034000000E-02
1613 117.23473000 0.80195000000E-02
1614 51.956904000 0.31004800000E-01
1615 24.689440000 0.87847800000E-01
1616 12.295171000 0.18522500000
1617 6.2446520000 0.28082510000
1618 3.1554600000 0.31631980000
1619 1.5680490000 0.25711920000
1620 })
1621 (type: [(am = d puream = 1)]
1622 {exp coef:0} = {
1623 0.74864700000 1.0000000000
1624 })
1625 (type: [(am = d puream = 1)]
1626 {exp coef:0} = {
1627 0.31912500000 1.0000000000
1628 })
1629 (type: [(am = d puream = 1)]
1630 {exp coef:0} = {
1631 0.13000000000 1.0000000000
1632 })
1633 (type: [(am = d puream = 1)]
1634 {exp coef:0} = {
1635 0.53100000000E-01 1.0000000000
1636 })
1637 (type: [(am = f puream = 1)]
1638 {exp coef:0} = {
1639 0.26400000000 1.0000000000
1640 })
1641 (type: [(am = f puream = 1)]
1642 {exp coef:0} = {
1643 0.64400000000 1.0000000000
1644 })
1645 (type: [(am = f puream = 1)]
1646 {exp coef:0} = {
1647 0.11320000000 1.0000000000
1648 })
1649 (type: [(am = g puream = 1)]
1650 {exp coef:0} = {
1651 0.54650000000 1.0000000000
1652 })
1653 (type: [(am = g puream = 1)]
1654 {exp coef:0} = {
1655 0.23900000000 1.0000000000
1656 })
1657 ]
1658%
1659% BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
1660% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1661 selenium: "aug-cc-pVQZ": [
1662 (type: [am = s am = s am = s am = s]
1663 {exp coef:0 coef:1 coef:2 coef:3} = {
1664 15011000.000 0.36000000000E-05 -0.11000000000E-05 0.40000000000E-06 -0.10000000000E-06
1665 2247500.0000 0.27900000000E-04 -0.87000000000E-05 0.34000000000E-05 -0.10000000000E-05
1666 511450.00000 0.14660000000E-03 -0.45900000000E-04 0.18100000000E-04 -0.53000000000E-05
1667 144870.00000 0.61900000000E-03 -0.19390000000E-03 0.76300000000E-04 -0.22300000000E-04
1668 47261.000000 0.22514000000E-02 -0.70640000000E-03 0.27810000000E-03 -0.81400000000E-04
1669 17062.000000 0.73030000000E-02 -0.23030000000E-02 0.90680000000E-03 -0.26490000000E-03
1670 6654.5000000 0.21444200000E-01 -0.68425000000E-02 0.26999000000E-02 -0.79060000000E-03
1671 2759.8000000 0.56812200000E-01 -0.18633500000E-01 0.73726000000E-02 -0.21539000000E-02
1672 1203.2000000 0.13208070000 -0.45951200000E-01 0.18336000000E-01 -0.53812000000E-02
1673 546.53000000 0.25234690000 -0.99219300000E-01 0.40181200000E-01 -0.11769400000E-01
1674 256.63000000 0.34592960000 -0.17288130000 0.72486400000E-01 -0.21462900000E-01
1675 123.14000000 0.26238900000 -0.18849730000 0.83562600000E-01 -0.24690400000E-01
1676 58.263000000 0.66793800000E-01 0.42261000000E-01 -0.20759200000E-01 0.57774000000E-02
1677 29.023000000 -0.33320000000E-03 0.49367910000 -0.31835350000 0.10152090000
1678 14.465000000 0.17275000000E-02 0.50528180000 -0.47983330000 0.15785700000
1679 6.9348000000 -0.82990000000E-03 0.11841500000 0.59281900000E-01 -0.22421900000E-01
1680 3.3299000000 0.35780000000E-03 0.19567000000E-02 0.71741160000 -0.32907760000
1681 1.5600000000 -0.16660000000E-03 0.19648000000E-02 0.46386360000 -0.38734430000
1682 })
1683 (type: [am = s]
1684 {exp coef:0} = {
1685 0.49291000000 1.0000000000
1686 })
1687 (type: [am = s]
1688 {exp coef:0} = {
1689 0.23525000000 1.0000000000
1690 })
1691 (type: [am = s]
1692 {exp coef:0} = {
1693 0.10037000000 1.0000000000
1694 })
1695 (type: [am = s]
1696 {exp coef:0} = {
1697 0.38152000000E-01 1.0000000000
1698 })
1699 (type: [am = p am = p am = p]
1700 {exp coef:0 coef:1 coef:2} = {
1701 25217.000000 0.61000000000E-04 -0.24100000000E-04 0.58000000000E-05
1702 5969.9000000 0.54240000000E-03 -0.21520000000E-03 0.52000000000E-04
1703 1938.9000000 0.31174000000E-02 -0.12386000000E-02 0.29980000000E-03
1704 741.66000000 0.13597700000E-01 -0.54607000000E-02 0.13201000000E-02
1705 314.50000000 0.47278800000E-01 -0.19293600000E-01 0.46857000000E-02
1706 143.31000000 0.12978560000 -0.54971500000E-01 0.13373700000E-01
1707 68.650000000 0.26573830000 -0.11779520000 0.28924500000E-01
1708 33.995000000 0.36735440000 -0.17407820000 0.42945400000E-01
1709 17.185000000 0.27478050000 -0.95579800000E-01 0.22327200000E-01
1710 8.5740000000 0.79167900000E-01 0.20597140000 -0.63603100000E-01
1711 4.2206000000 0.51349000000E-02 0.47354310000 -0.14361470000
1712 2.0521000000 0.13319000000E-02 0.38319220000 -0.14472930000
1713 0.96156000000 -0.20330000000E-03 0.92087200000E-01 0.63038000000E-01
1714 })
1715 (type: [am = p]
1716 {exp coef:0} = {
1717 0.42151000000 1.0000000000
1718 })
1719 (type: [am = p]
1720 {exp coef:0} = {
1721 0.17626000000 1.0000000000
1722 })
1723 (type: [am = p]
1724 {exp coef:0} = {
1725 0.70663000000E-01 1.0000000000
1726 })
1727 (type: [am = p]
1728 {exp coef:0} = {
1729 0.26569000000E-01 1.0000000000
1730 })
1731 (type: [(am = d puream = 1)]
1732 {exp coef:0} = {
1733 1143.4000000 0.13010000000E-03
1734 345.33000000 0.12573000000E-02
1735 134.46000000 0.72882000000E-02
1736 59.567000000 0.28864700000E-01
1737 28.283000000 0.83898700000E-01
1738 14.061000000 0.18197710000
1739 7.1390000000 0.28260570000
1740 3.6148000000 0.32204530000
1741 1.8072000000 0.25816330000
1742 })
1743 (type: [(am = d puream = 1)]
1744 {exp coef:0} = {
1745 0.86944000000 1.0000000000
1746 })
1747 (type: [(am = d puream = 1)]
1748 {exp coef:0} = {
1749 0.37036000000 1.0000000000
1750 })
1751 (type: [(am = d puream = 1)]
1752 {exp coef:0} = {
1753 0.15300000000 1.0000000000
1754 })
1755 (type: [(am = d puream = 1)]
1756 {exp coef:0} = {
1757 0.61900000000E-01 1.0000000000
1758 })
1759 (type: [(am = f puream = 1)]
1760 {exp coef:0} = {
1761 0.28400000000 1.0000000000
1762 })
1763 (type: [(am = f puream = 1)]
1764 {exp coef:0} = {
1765 0.70970000000 1.0000000000
1766 })
1767 (type: [(am = f puream = 1)]
1768 {exp coef:0} = {
1769 0.12400000000 1.0000000000
1770 })
1771 (type: [(am = g puream = 1)]
1772 {exp coef:0} = {
1773 0.57300000000 1.0000000000
1774 })
1775 (type: [(am = g puream = 1)]
1776 {exp coef:0} = {
1777 0.26300000000 1.0000000000
1778 })
1779 ]
1780%
1781% BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
1782% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1783 bromine: "aug-cc-pVQZ": [
1784 (type: [am = s am = s am = s am = s]
1785 {exp coef:0 coef:1 coef:2 coef:3} = {
1786 16475000.000 0.34000000000E-05 -0.11000000000E-05 0.40000000000E-06 -0.10000000000E-06
1787 2466600.0000 0.26700000000E-04 -0.84000000000E-05 0.33000000000E-05 -0.10000000000E-05
1788 561310.00000 0.14040000000E-03 -0.44100000000E-04 0.17500000000E-04 -0.54000000000E-05
1789 158990.00000 0.59270000000E-03 -0.18620000000E-03 0.74000000000E-04 -0.22700000000E-04
1790 51869.000000 0.21561000000E-02 -0.67830000000E-03 0.26970000000E-03 -0.82700000000E-04
1791 18726.000000 0.69959000000E-02 -0.22122000000E-02 0.87990000000E-03 -0.26940000000E-03
1792 7303.6000000 0.20564500000E-01 -0.65752000000E-02 0.26198000000E-02 -0.80420000000E-03
1793 3029.1000000 0.54589300000E-01 -0.17932800000E-01 0.71671000000E-02 -0.21949000000E-02
1794 1320.8000000 0.12752260000 -0.44332100000E-01 0.17856100000E-01 -0.54939000000E-02
1795 600.03000000 0.24597800000 -0.96347800000E-01 0.39396000000E-01 -0.12096000000E-01
1796 281.90000000 0.34365080000 -0.16968140000 0.71710200000E-01 -0.22262300000E-01
1797 135.54000000 0.27025300000 -0.19207690000 0.85887700000E-01 -0.26606300000E-01
1798 64.870000000 0.74479500000E-01 0.20873100000E-01 -0.10386100000E-01 0.27580000000E-02
1799 32.129000000 0.87870000000E-03 0.47449960000 -0.30401350000 0.10168030000
1800 16.037000000 0.15755000000E-02 0.52149070000 -0.49331780000 0.17041320000
1801 7.7849000000 -0.76020000000E-03 0.13480010000 0.16089000000E-01 -0.62220000000E-02
1802 3.7247000000 0.32110000000E-03 0.36614000000E-02 0.71466860000 -0.34525700000
1803 1.7583000000 -0.15860000000E-03 0.18840000000E-02 0.49047950000 -0.42348400000
1804 })
1805 (type: [am = s]
1806 {exp coef:0} = {
1807 0.58331000000 1.0000000000
1808 })
1809 (type: [am = s]
1810 {exp coef:0} = {
1811 0.27856000000 1.0000000000
1812 })
1813 (type: [am = s]
1814 {exp coef:0} = {
1815 0.11829000000 1.0000000000
1816 })
1817 (type: [am = s]
1818 {exp coef:0} = {
1819 0.44270000000E-01 1.0000000000
1820 })
1821 (type: [am = p am = p am = p]
1822 {exp coef:0 coef:1 coef:2} = {
1823 26607.000000 0.61900000000E-04 -0.24800000000E-04 0.64000000000E-05
1824 6298.2000000 0.54990000000E-03 -0.22120000000E-03 0.57200000000E-04
1825 2045.2000000 0.31620000000E-02 -0.12736000000E-02 0.32970000000E-03
1826 782.16000000 0.13797900000E-01 -0.56179000000E-02 0.14562000000E-02
1827 331.63000000 0.47981200000E-01 -0.19860000000E-01 0.51591000000E-02
1828 151.11000000 0.13157100000 -0.56553100000E-01 0.14761700000E-01
1829 72.392000000 0.26858610000 -0.12094790000 0.31769400000E-01
1830 35.862000000 0.36834730000 -0.17730980000 0.47068000000E-01
1831 18.134000000 0.27113630000 -0.92147200000E-01 0.22387100000E-01
1832 9.0430000000 0.76222200000E-01 0.21876830000 -0.72025400000E-01
1833 4.4500000000 0.46749000000E-02 0.48546700000 -0.16264290000
1834 2.1661000000 0.12565000000E-02 0.37219700000 -0.14965030000
1835 0.99628000000 -0.23570000000E-03 0.77690700000E-01 0.10645170000
1836 })
1837 (type: [am = p]
1838 {exp coef:0} = {
1839 0.45443000000 1.0000000000
1840 })
1841 (type: [am = p]
1842 {exp coef:0} = {
1843 0.19404000000 1.0000000000
1844 })
1845 (type: [am = p]
1846 {exp coef:0} = {
1847 0.78997000000E-01 1.0000000000
1848 })
1849 (type: [am = p]
1850 {exp coef:0} = {
1851 0.30513000000E-01 1.0000000000
1852 })
1853 (type: [(am = d puream = 1)]
1854 {exp coef:0} = {
1855 1289.6000000 0.11900000000E-03
1856 389.75000000 0.11551000000E-02
1857 151.76000000 0.67648000000E-02
1858 67.223000000 0.27301700000E-01
1859 31.913000000 0.80929800000E-01
1860 15.857000000 0.17940110000
1861 8.0545000000 0.28400860000
1862 4.0887000000 0.32667970000
1863 2.0556000000 0.25849000000
1864 })
1865 (type: [(am = d puream = 1)]
1866 {exp coef:0} = {
1867 0.99509000000 1.0000000000
1868 })
1869 (type: [(am = d puream = 1)]
1870 {exp coef:0} = {
1871 0.42313000000 1.0000000000
1872 })
1873 (type: [(am = d puream = 1)]
1874 {exp coef:0} = {
1875 0.17790000000 1.0000000000
1876 })
1877 (type: [(am = d puream = 1)]
1878 {exp coef:0} = {
1879 0.82900000000E-01 1.0000000000
1880 })
1881 (type: [(am = f puream = 1)]
1882 {exp coef:0} = {
1883 0.34070000000 1.0000000000
1884 })
1885 (type: [(am = f puream = 1)]
1886 {exp coef:0} = {
1887 0.82570000000 1.0000000000
1888 })
1889 (type: [(am = f puream = 1)]
1890 {exp coef:0} = {
1891 0.17480000000 1.0000000000
1892 })
1893 (type: [(am = g puream = 1)]
1894 {exp coef:0} = {
1895 0.64910000000 1.0000000000
1896 })
1897 (type: [(am = g puream = 1)]
1898 {exp coef:0} = {
1899 0.31100000000 1.0000000000
1900 })
1901 ]
1902%
1903% BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
1904% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
1905 krypton: "aug-cc-pVQZ": [
1906 (type: [am = s am = s am = s am = s]
1907 {exp coef:0 coef:1 coef:2 coef:3} = {
1908 18226108.000 0.32000000000E-05 -0.10000000000E-05 0.40000000000E-06 -0.10000000000E-06
1909 2728802.5000 0.25200000000E-04 -0.79000000000E-05 0.32000000000E-05 -0.10000000000E-05
1910 620997.71000 0.13280000000E-03 -0.41800000000E-04 0.16800000000E-04 -0.53000000000E-05
1911 175899.58000 0.56070000000E-03 -0.17660000000E-03 0.70900000000E-04 -0.22600000000E-04
1912 57387.497000 0.20401000000E-02 -0.64340000000E-03 0.25820000000E-03 -0.82300000000E-04
1913 20717.181000 0.66235000000E-02 -0.20999000000E-02 0.84330000000E-03 -0.26840000000E-03
1914 8078.8899000 0.19499600000E-01 -0.62453000000E-02 0.25115000000E-02 -0.80140000000E-03
1915 3349.5170000 0.51936400000E-01 -0.17080400000E-01 0.68921000000E-02 -0.21937000000E-02
1916 1459.7812000 0.12211660000 -0.42381500000E-01 0.17222000000E-01 -0.55074000000E-02
1917 662.89391000 0.23836530000 -0.92867900000E-01 0.38315900000E-01 -0.12226600000E-01
1918 311.39215000 0.34070510000 -0.16573900000 0.70543800000E-01 -0.22761700000E-01
1919 149.93751000 0.27928550000 -0.19550880000 0.88071700000E-01 -0.28360600000E-01
1920 72.498249000 0.84099200000E-01 -0.16409000000E-02 0.63280000000E-03 -0.75650000000E-03
1921 35.569354000 0.25042000000E-02 0.45300710000 -0.28810650000 0.10013650000
1922 17.766633000 0.13574000000E-02 0.53707510000 -0.50497970000 0.18153320000
1923 8.7123830000 -0.65910000000E-03 0.15289710000 -0.26777300000E-01 0.11186700000E-01
1924 4.1449710000 0.27010000000E-03 0.57411000000E-02 0.70987180000 -0.35758430000
1925 1.9696490000 -0.14360000000E-03 0.17414000000E-02 0.51580200000 -0.45723050000
1926 })
1927 (type: [am = s]
1928 {exp coef:0} = {
1929 0.67995200000 1.0000000000
1930 })
1931 (type: [am = s]
1932 {exp coef:0} = {
1933 0.32450200000 1.0000000000
1934 })
1935 (type: [am = s]
1936 {exp coef:0} = {
1937 0.13744100000 1.0000000000
1938 })
1939 (type: [am = s]
1940 {exp coef:0} = {
1941 0.50388000000E-01 1.0000000000
1942 })
1943 (type: [am = p am = p am = p]
1944 {exp coef:0 coef:1 coef:2} = {
1945 28600.831000 0.60500000000E-04 -0.24600000000E-04 0.67000000000E-05
1946 6770.9912000 0.53780000000E-03 -0.21920000000E-03 0.59600000000E-04
1947 2199.0489000 0.30934000000E-02 -0.12628000000E-02 0.34320000000E-03
1948 841.17957000 0.13515000000E-01 -0.55756000000E-02 0.15190000000E-02
1949 356.76633000 0.47095900000E-01 -0.19754600000E-01 0.53881000000E-02
1950 162.63620000 0.12962000000 -0.56448800000E-01 0.15493500000E-01
1951 77.966035000 0.26611080000 -0.12149230000 0.33517600000E-01
1952 38.661489000 0.36780580000 -0.17949070000 0.50191100000E-01
1953 19.576791000 0.27403720000 -0.96231400000E-01 0.24455000000E-01
1954 9.7917610000 0.78711300000E-01 0.21631900000 -0.75295300000E-01
1955 4.8353830000 0.49842000000E-02 0.48997210000 -0.17605340000
1956 2.3681250000 0.12267000000E-02 0.37267580000 -0.15707240000
1957 1.0899960000 -0.24480000000E-03 0.75008800000E-01 0.13045790000
1958 })
1959 (type: [am = p]
1960 {exp coef:0} = {
1961 0.50458800000 1.0000000000
1962 })
1963 (type: [am = p]
1964 {exp coef:0} = {
1965 0.21845500000 1.0000000000
1966 })
1967 (type: [am = p]
1968 {exp coef:0} = {
1969 0.89959000000E-01 1.0000000000
1970 })
1971 (type: [am = p]
1972 {exp coef:0} = {
1973 0.34457000000E-01 1.0000000000
1974 })
1975 (type: [(am = d puream = 1)]
1976 {exp coef:0} = {
1977 1437.7792000 0.11080000000E-03
1978 434.26846000 0.10828000000E-02
1979 168.92699000 0.64065000000E-02
1980 74.777535000 0.26237900000E-01
1981 35.516024000 0.78823500000E-01
1982 17.671051000 0.17706770000
1983 9.0046110000 0.28396220000
1984 4.5947730000 0.32947020000
1985 2.3264860000 0.25890010000
1986 })
1987 (type: [(am = d puream = 1)]
1988 {exp coef:0} = {
1989 1.1332470000 1.0000000000
1990 })
1991 (type: [(am = d puream = 1)]
1992 {exp coef:0} = {
1993 0.48130700000 1.0000000000
1994 })
1995 (type: [(am = d puream = 1)]
1996 {exp coef:0} = {
1997 0.20530000000 1.0000000000
1998 })
1999 (type: [(am = d puream = 1)]
2000 {exp coef:0} = {
2001 0.10390000000 1.0000000000
2002 })
2003 (type: [(am = f puream = 1)]
2004 {exp coef:0} = {
2005 0.41300000000 1.0000000000
2006 })
2007 (type: [(am = f puream = 1)]
2008 {exp coef:0} = {
2009 0.95570000000 1.0000000000
2010 })
2011 (type: [(am = f puream = 1)]
2012 {exp coef:0} = {
2013 0.22560000000 1.0000000000
2014 })
2015 (type: [(am = g puream = 1)]
2016 {exp coef:0} = {
2017 0.73950000000 1.0000000000
2018 })
2019 (type: [(am = g puream = 1)]
2020 {exp coef:0} = {
2021 0.35900000000 1.0000000000
2022 })
2023 ]
2024)
Note: See TracBrowser for help on using the repository browser.