1 | %BASIS "aug-cc-pVQZ" CARTESIAN
|
---|
2 | basis:(
|
---|
3 | %Elements References
|
---|
4 | %-------- ----------
|
---|
5 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
6 | % He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
|
---|
7 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
8 | %Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published)
|
---|
9 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
10 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
11 | %Elements References
|
---|
12 | %-------- ---------
|
---|
13 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
14 | % He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
|
---|
15 | % B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
|
---|
16 | % 6769 (1992).
|
---|
17 | %Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
18 | %
|
---|
19 | %
|
---|
20 | % BASIS SET: (6s,3p,2d,1f) -> [4s,3p,2d,1f]
|
---|
21 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
22 | hydrogen: "aug-cc-pVQZ": [
|
---|
23 | (type: [am = s]
|
---|
24 | {exp coef:0} = {
|
---|
25 | 82.640000000 0.20060000000E-02
|
---|
26 | 12.410000000 0.15343000000E-01
|
---|
27 | 2.8240000000 0.75579000000E-01
|
---|
28 | })
|
---|
29 | (type: [am = s]
|
---|
30 | {exp coef:0} = {
|
---|
31 | 0.79770000000 1.0000000000
|
---|
32 | })
|
---|
33 | (type: [am = s]
|
---|
34 | {exp coef:0} = {
|
---|
35 | 0.25810000000 1.0000000000
|
---|
36 | })
|
---|
37 | (type: [am = s]
|
---|
38 | {exp coef:0} = {
|
---|
39 | 0.89890000000E-01 1.0000000000
|
---|
40 | })
|
---|
41 | (type: [am = s]
|
---|
42 | {exp coef:0} = {
|
---|
43 | 0.23630000000E-01 1.0000000000
|
---|
44 | })
|
---|
45 | (type: [am = p]
|
---|
46 | {exp coef:0} = {
|
---|
47 | 2.2920000000 1.0000000000
|
---|
48 | })
|
---|
49 | (type: [am = p]
|
---|
50 | {exp coef:0} = {
|
---|
51 | 0.83800000000 1.0000000000
|
---|
52 | })
|
---|
53 | (type: [am = p]
|
---|
54 | {exp coef:0} = {
|
---|
55 | 0.29200000000 1.0000000000
|
---|
56 | })
|
---|
57 | (type: [am = p]
|
---|
58 | {exp coef:0} = {
|
---|
59 | 0.84800000000E-01 1.0000000000
|
---|
60 | })
|
---|
61 | (type: [(am = d puream = 1)]
|
---|
62 | {exp coef:0} = {
|
---|
63 | 2.0620000000 1.0000000000
|
---|
64 | })
|
---|
65 | (type: [(am = d puream = 1)]
|
---|
66 | {exp coef:0} = {
|
---|
67 | 0.66200000000 1.0000000000
|
---|
68 | })
|
---|
69 | (type: [(am = d puream = 1)]
|
---|
70 | {exp coef:0} = {
|
---|
71 | 0.19000000000 1.0000000000
|
---|
72 | })
|
---|
73 | (type: [(am = f puream = 1)]
|
---|
74 | {exp coef:0} = {
|
---|
75 | 1.3970000000 1.0000000000
|
---|
76 | })
|
---|
77 | (type: [(am = f puream = 1)]
|
---|
78 | {exp coef:0} = {
|
---|
79 | 0.36000000000 1.0000000000
|
---|
80 | })
|
---|
81 | ]
|
---|
82 | %
|
---|
83 | % BASIS SET: (7s,3p,2d,1f) -> [4s,3p,2d,1f]
|
---|
84 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
85 | helium: "aug-cc-pVQZ": [
|
---|
86 | (type: [am = s]
|
---|
87 | {exp coef:0} = {
|
---|
88 | 528.50000000 0.94000000000E-03
|
---|
89 | 79.310000000 0.72140000000E-02
|
---|
90 | 18.050000000 0.35975000000E-01
|
---|
91 | 5.0850000000 0.12778200000
|
---|
92 | })
|
---|
93 | (type: [am = s]
|
---|
94 | {exp coef:0} = {
|
---|
95 | 1.6090000000 1.0000000000
|
---|
96 | })
|
---|
97 | (type: [am = s]
|
---|
98 | {exp coef:0} = {
|
---|
99 | 0.53630000000 1.0000000000
|
---|
100 | })
|
---|
101 | (type: [am = s]
|
---|
102 | {exp coef:0} = {
|
---|
103 | 0.18330000000 1.0000000000
|
---|
104 | })
|
---|
105 | (type: [am = s]
|
---|
106 | {exp coef:0} = {
|
---|
107 | 0.48190000000E-01 1.0000000000
|
---|
108 | })
|
---|
109 | (type: [am = p]
|
---|
110 | {exp coef:0} = {
|
---|
111 | 5.9940000000 1.0000000000
|
---|
112 | })
|
---|
113 | (type: [am = p]
|
---|
114 | {exp coef:0} = {
|
---|
115 | 1.7450000000 1.0000000000
|
---|
116 | })
|
---|
117 | (type: [am = p]
|
---|
118 | {exp coef:0} = {
|
---|
119 | 0.56000000000 1.0000000000
|
---|
120 | })
|
---|
121 | (type: [am = p]
|
---|
122 | {exp coef:0} = {
|
---|
123 | 0.16260000000 1.0000000000
|
---|
124 | })
|
---|
125 | (type: [(am = d puream = 1)]
|
---|
126 | {exp coef:0} = {
|
---|
127 | 4.2990000000 1.0000000000
|
---|
128 | })
|
---|
129 | (type: [(am = d puream = 1)]
|
---|
130 | {exp coef:0} = {
|
---|
131 | 1.2230000000 1.0000000000
|
---|
132 | })
|
---|
133 | (type: [(am = d puream = 1)]
|
---|
134 | {exp coef:0} = {
|
---|
135 | 0.35100000000 1.0000000000
|
---|
136 | })
|
---|
137 | (type: [(am = f puream = 1)]
|
---|
138 | {exp coef:0} = {
|
---|
139 | 2.6800000000 1.0000000000
|
---|
140 | })
|
---|
141 | (type: [(am = f puream = 1)]
|
---|
142 | {exp coef:0} = {
|
---|
143 | 0.69060000000 1.0000000000
|
---|
144 | })
|
---|
145 | ]
|
---|
146 | %
|
---|
147 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
148 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
149 | boron: "aug-cc-pVQZ": [
|
---|
150 | (type: [am = s am = s]
|
---|
151 | {exp coef:0 coef:1} = {
|
---|
152 | 23870.000000 0.88000000000E-04 -0.18000000000E-04
|
---|
153 | 3575.0000000 0.68700000000E-03 -0.13900000000E-03
|
---|
154 | 812.80000000 0.36000000000E-02 -0.72500000000E-03
|
---|
155 | 229.70000000 0.14949000000E-01 -0.30630000000E-02
|
---|
156 | 74.690000000 0.51435000000E-01 -0.10581000000E-01
|
---|
157 | 26.810000000 0.14330200000 -0.31365000000E-01
|
---|
158 | 10.320000000 0.30093500000 -0.71012000000E-01
|
---|
159 | 4.1780000000 0.40352600000 -0.13210300000
|
---|
160 | 1.7270000000 0.22534000000 -0.12307200000
|
---|
161 | })
|
---|
162 | (type: [am = s]
|
---|
163 | {exp coef:0} = {
|
---|
164 | 0.47040000000 1.0000000000
|
---|
165 | })
|
---|
166 | (type: [am = s]
|
---|
167 | {exp coef:0} = {
|
---|
168 | 0.18960000000 1.0000000000
|
---|
169 | })
|
---|
170 | (type: [am = s]
|
---|
171 | {exp coef:0} = {
|
---|
172 | 0.73940000000E-01 1.0000000000
|
---|
173 | })
|
---|
174 | (type: [am = s]
|
---|
175 | {exp coef:0} = {
|
---|
176 | 0.27210000000E-01 1.0000000000
|
---|
177 | })
|
---|
178 | (type: [am = p]
|
---|
179 | {exp coef:0} = {
|
---|
180 | 22.260000000 0.50950000000E-02
|
---|
181 | 5.0580000000 0.33206000000E-01
|
---|
182 | 1.4870000000 0.13231400000
|
---|
183 | })
|
---|
184 | (type: [am = p]
|
---|
185 | {exp coef:0} = {
|
---|
186 | 0.50710000000 1.0000000000
|
---|
187 | })
|
---|
188 | (type: [am = p]
|
---|
189 | {exp coef:0} = {
|
---|
190 | 0.18120000000 1.0000000000
|
---|
191 | })
|
---|
192 | (type: [am = p]
|
---|
193 | {exp coef:0} = {
|
---|
194 | 0.64630000000E-01 1.0000000000
|
---|
195 | })
|
---|
196 | (type: [am = p]
|
---|
197 | {exp coef:0} = {
|
---|
198 | 0.18780000000E-01 1.0000000000
|
---|
199 | })
|
---|
200 | (type: [(am = d puream = 1)]
|
---|
201 | {exp coef:0} = {
|
---|
202 | 1.1100000000 1.0000000000
|
---|
203 | })
|
---|
204 | (type: [(am = d puream = 1)]
|
---|
205 | {exp coef:0} = {
|
---|
206 | 0.40200000000 1.0000000000
|
---|
207 | })
|
---|
208 | (type: [(am = d puream = 1)]
|
---|
209 | {exp coef:0} = {
|
---|
210 | 0.14500000000 1.0000000000
|
---|
211 | })
|
---|
212 | (type: [(am = d puream = 1)]
|
---|
213 | {exp coef:0} = {
|
---|
214 | 0.46600000000E-01 1.0000000000
|
---|
215 | })
|
---|
216 | (type: [(am = f puream = 1)]
|
---|
217 | {exp coef:0} = {
|
---|
218 | 0.88200000000 1.0000000000
|
---|
219 | })
|
---|
220 | (type: [(am = f puream = 1)]
|
---|
221 | {exp coef:0} = {
|
---|
222 | 0.31100000000 1.0000000000
|
---|
223 | })
|
---|
224 | (type: [(am = f puream = 1)]
|
---|
225 | {exp coef:0} = {
|
---|
226 | 0.11300000000 1.0000000000
|
---|
227 | })
|
---|
228 | (type: [(am = g puream = 1)]
|
---|
229 | {exp coef:0} = {
|
---|
230 | 0.67300000000 1.0000000000
|
---|
231 | })
|
---|
232 | (type: [(am = g puream = 1)]
|
---|
233 | {exp coef:0} = {
|
---|
234 | 0.27300000000 1.0000000000
|
---|
235 | })
|
---|
236 | ]
|
---|
237 | %
|
---|
238 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
239 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
240 | carbon: "aug-cc-pVQZ": [
|
---|
241 | (type: [am = s am = s]
|
---|
242 | {exp coef:0 coef:1} = {
|
---|
243 | 33980.000000 0.91000000000E-04 -0.19000000000E-04
|
---|
244 | 5089.0000000 0.70400000000E-03 -0.15100000000E-03
|
---|
245 | 1157.0000000 0.36930000000E-02 -0.78500000000E-03
|
---|
246 | 326.60000000 0.15360000000E-01 -0.33240000000E-02
|
---|
247 | 106.10000000 0.52929000000E-01 -0.11512000000E-01
|
---|
248 | 38.110000000 0.14704300000 -0.34160000000E-01
|
---|
249 | 14.750000000 0.30563100000 -0.77173000000E-01
|
---|
250 | 6.0350000000 0.39934500000 -0.14149300000
|
---|
251 | 2.5300000000 0.21705100000 -0.11801900000
|
---|
252 | })
|
---|
253 | (type: [am = s]
|
---|
254 | {exp coef:0} = {
|
---|
255 | 0.73550000000 1.0000000000
|
---|
256 | })
|
---|
257 | (type: [am = s]
|
---|
258 | {exp coef:0} = {
|
---|
259 | 0.29050000000 1.0000000000
|
---|
260 | })
|
---|
261 | (type: [am = s]
|
---|
262 | {exp coef:0} = {
|
---|
263 | 0.11110000000 1.0000000000
|
---|
264 | })
|
---|
265 | (type: [am = s]
|
---|
266 | {exp coef:0} = {
|
---|
267 | 0.41450000000E-01 1.0000000000
|
---|
268 | })
|
---|
269 | (type: [am = p]
|
---|
270 | {exp coef:0} = {
|
---|
271 | 34.510000000 0.53780000000E-02
|
---|
272 | 7.9150000000 0.36132000000E-01
|
---|
273 | 2.3680000000 0.14249300000
|
---|
274 | })
|
---|
275 | (type: [am = p]
|
---|
276 | {exp coef:0} = {
|
---|
277 | 0.81320000000 1.0000000000
|
---|
278 | })
|
---|
279 | (type: [am = p]
|
---|
280 | {exp coef:0} = {
|
---|
281 | 0.28900000000 1.0000000000
|
---|
282 | })
|
---|
283 | (type: [am = p]
|
---|
284 | {exp coef:0} = {
|
---|
285 | 0.10070000000 1.0000000000
|
---|
286 | })
|
---|
287 | (type: [am = p]
|
---|
288 | {exp coef:0} = {
|
---|
289 | 0.32180000000E-01 1.0000000000
|
---|
290 | })
|
---|
291 | (type: [(am = d puream = 1)]
|
---|
292 | {exp coef:0} = {
|
---|
293 | 1.8480000000 1.0000000000
|
---|
294 | })
|
---|
295 | (type: [(am = d puream = 1)]
|
---|
296 | {exp coef:0} = {
|
---|
297 | 0.64900000000 1.0000000000
|
---|
298 | })
|
---|
299 | (type: [(am = d puream = 1)]
|
---|
300 | {exp coef:0} = {
|
---|
301 | 0.22800000000 1.0000000000
|
---|
302 | })
|
---|
303 | (type: [(am = d puream = 1)]
|
---|
304 | {exp coef:0} = {
|
---|
305 | 0.76600000000E-01 1.0000000000
|
---|
306 | })
|
---|
307 | (type: [(am = f puream = 1)]
|
---|
308 | {exp coef:0} = {
|
---|
309 | 1.4190000000 1.0000000000
|
---|
310 | })
|
---|
311 | (type: [(am = f puream = 1)]
|
---|
312 | {exp coef:0} = {
|
---|
313 | 0.48500000000 1.0000000000
|
---|
314 | })
|
---|
315 | (type: [(am = f puream = 1)]
|
---|
316 | {exp coef:0} = {
|
---|
317 | 0.18700000000 1.0000000000
|
---|
318 | })
|
---|
319 | (type: [(am = g puream = 1)]
|
---|
320 | {exp coef:0} = {
|
---|
321 | 1.0110000000 1.0000000000
|
---|
322 | })
|
---|
323 | (type: [(am = g puream = 1)]
|
---|
324 | {exp coef:0} = {
|
---|
325 | 0.42400000000 1.0000000000
|
---|
326 | })
|
---|
327 | ]
|
---|
328 | %
|
---|
329 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
330 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
331 | nitrogen: "aug-cc-pVQZ": [
|
---|
332 | (type: [am = s am = s]
|
---|
333 | {exp coef:0 coef:1} = {
|
---|
334 | 45840.000000 0.92000000000E-04 -0.20000000000E-04
|
---|
335 | 6868.0000000 0.71700000000E-03 -0.15900000000E-03
|
---|
336 | 1563.0000000 0.37490000000E-02 -0.82400000000E-03
|
---|
337 | 442.40000000 0.15532000000E-01 -0.34780000000E-02
|
---|
338 | 144.30000000 0.53146000000E-01 -0.11966000000E-01
|
---|
339 | 52.180000000 0.14678700000 -0.35388000000E-01
|
---|
340 | 20.340000000 0.30466300000 -0.80077000000E-01
|
---|
341 | 8.3810000000 0.39768400000 -0.14672200000
|
---|
342 | 3.5290000000 0.21764100000 -0.11636000000
|
---|
343 | })
|
---|
344 | (type: [am = s]
|
---|
345 | {exp coef:0} = {
|
---|
346 | 1.0540000000 1.0000000000
|
---|
347 | })
|
---|
348 | (type: [am = s]
|
---|
349 | {exp coef:0} = {
|
---|
350 | 0.41180000000 1.0000000000
|
---|
351 | })
|
---|
352 | (type: [am = s]
|
---|
353 | {exp coef:0} = {
|
---|
354 | 0.15520000000 1.0000000000
|
---|
355 | })
|
---|
356 | (type: [am = s]
|
---|
357 | {exp coef:0} = {
|
---|
358 | 0.54640000000E-01 1.0000000000
|
---|
359 | })
|
---|
360 | (type: [am = p]
|
---|
361 | {exp coef:0} = {
|
---|
362 | 49.330000000 0.55330000000E-02
|
---|
363 | 11.370000000 0.37962000000E-01
|
---|
364 | 3.4350000000 0.14902800000
|
---|
365 | })
|
---|
366 | (type: [am = p]
|
---|
367 | {exp coef:0} = {
|
---|
368 | 1.1820000000 1.0000000000
|
---|
369 | })
|
---|
370 | (type: [am = p]
|
---|
371 | {exp coef:0} = {
|
---|
372 | 0.41730000000 1.0000000000
|
---|
373 | })
|
---|
374 | (type: [am = p]
|
---|
375 | {exp coef:0} = {
|
---|
376 | 0.14280000000 1.0000000000
|
---|
377 | })
|
---|
378 | (type: [am = p]
|
---|
379 | {exp coef:0} = {
|
---|
380 | 0.44020000000E-01 1.0000000000
|
---|
381 | })
|
---|
382 | (type: [(am = d puream = 1)]
|
---|
383 | {exp coef:0} = {
|
---|
384 | 2.8370000000 1.0000000000
|
---|
385 | })
|
---|
386 | (type: [(am = d puream = 1)]
|
---|
387 | {exp coef:0} = {
|
---|
388 | 0.96800000000 1.0000000000
|
---|
389 | })
|
---|
390 | (type: [(am = d puream = 1)]
|
---|
391 | {exp coef:0} = {
|
---|
392 | 0.33500000000 1.0000000000
|
---|
393 | })
|
---|
394 | (type: [(am = d puream = 1)]
|
---|
395 | {exp coef:0} = {
|
---|
396 | 0.11100000000 1.0000000000
|
---|
397 | })
|
---|
398 | (type: [(am = f puream = 1)]
|
---|
399 | {exp coef:0} = {
|
---|
400 | 2.0270000000 1.0000000000
|
---|
401 | })
|
---|
402 | (type: [(am = f puream = 1)]
|
---|
403 | {exp coef:0} = {
|
---|
404 | 0.68500000000 1.0000000000
|
---|
405 | })
|
---|
406 | (type: [(am = f puream = 1)]
|
---|
407 | {exp coef:0} = {
|
---|
408 | 0.24500000000 1.0000000000
|
---|
409 | })
|
---|
410 | (type: [(am = g puream = 1)]
|
---|
411 | {exp coef:0} = {
|
---|
412 | 1.4270000000 1.0000000000
|
---|
413 | })
|
---|
414 | (type: [(am = g puream = 1)]
|
---|
415 | {exp coef:0} = {
|
---|
416 | 0.55900000000 1.0000000000
|
---|
417 | })
|
---|
418 | ]
|
---|
419 | %
|
---|
420 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
421 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
422 | oxygen: "aug-cc-pVQZ": [
|
---|
423 | (type: [am = s am = s]
|
---|
424 | {exp coef:0 coef:1} = {
|
---|
425 | 61420.000000 0.90000000000E-04 -0.20000000000E-04
|
---|
426 | 9199.0000000 0.69800000000E-03 -0.15900000000E-03
|
---|
427 | 2091.0000000 0.36640000000E-02 -0.82900000000E-03
|
---|
428 | 590.90000000 0.15218000000E-01 -0.35080000000E-02
|
---|
429 | 192.30000000 0.52423000000E-01 -0.12156000000E-01
|
---|
430 | 69.320000000 0.14592100000 -0.36261000000E-01
|
---|
431 | 26.970000000 0.30525800000 -0.82992000000E-01
|
---|
432 | 11.100000000 0.39850800000 -0.15209000000
|
---|
433 | 4.6820000000 0.21698000000 -0.11533100000
|
---|
434 | })
|
---|
435 | (type: [am = s]
|
---|
436 | {exp coef:0} = {
|
---|
437 | 1.4280000000 1.0000000000
|
---|
438 | })
|
---|
439 | (type: [am = s]
|
---|
440 | {exp coef:0} = {
|
---|
441 | 0.55470000000 1.0000000000
|
---|
442 | })
|
---|
443 | (type: [am = s]
|
---|
444 | {exp coef:0} = {
|
---|
445 | 0.20670000000 1.0000000000
|
---|
446 | })
|
---|
447 | (type: [am = s]
|
---|
448 | {exp coef:0} = {
|
---|
449 | 0.69590000000E-01 1.0000000000
|
---|
450 | })
|
---|
451 | (type: [am = p]
|
---|
452 | {exp coef:0} = {
|
---|
453 | 63.420000000 0.60440000000E-02
|
---|
454 | 14.660000000 0.41799000000E-01
|
---|
455 | 4.4590000000 0.16114300000
|
---|
456 | })
|
---|
457 | (type: [am = p]
|
---|
458 | {exp coef:0} = {
|
---|
459 | 1.5310000000 1.0000000000
|
---|
460 | })
|
---|
461 | (type: [am = p]
|
---|
462 | {exp coef:0} = {
|
---|
463 | 0.53020000000 1.0000000000
|
---|
464 | })
|
---|
465 | (type: [am = p]
|
---|
466 | {exp coef:0} = {
|
---|
467 | 0.17500000000 1.0000000000
|
---|
468 | })
|
---|
469 | (type: [am = p]
|
---|
470 | {exp coef:0} = {
|
---|
471 | 0.53480000000E-01 1.0000000000
|
---|
472 | })
|
---|
473 | (type: [(am = d puream = 1)]
|
---|
474 | {exp coef:0} = {
|
---|
475 | 3.7750000000 1.0000000000
|
---|
476 | })
|
---|
477 | (type: [(am = d puream = 1)]
|
---|
478 | {exp coef:0} = {
|
---|
479 | 1.3000000000 1.0000000000
|
---|
480 | })
|
---|
481 | (type: [(am = d puream = 1)]
|
---|
482 | {exp coef:0} = {
|
---|
483 | 0.44400000000 1.0000000000
|
---|
484 | })
|
---|
485 | (type: [(am = d puream = 1)]
|
---|
486 | {exp coef:0} = {
|
---|
487 | 0.15400000000 1.0000000000
|
---|
488 | })
|
---|
489 | (type: [(am = f puream = 1)]
|
---|
490 | {exp coef:0} = {
|
---|
491 | 2.6660000000 1.0000000000
|
---|
492 | })
|
---|
493 | (type: [(am = f puream = 1)]
|
---|
494 | {exp coef:0} = {
|
---|
495 | 0.85900000000 1.0000000000
|
---|
496 | })
|
---|
497 | (type: [(am = f puream = 1)]
|
---|
498 | {exp coef:0} = {
|
---|
499 | 0.32400000000 1.0000000000
|
---|
500 | })
|
---|
501 | (type: [(am = g puream = 1)]
|
---|
502 | {exp coef:0} = {
|
---|
503 | 1.8460000000 1.0000000000
|
---|
504 | })
|
---|
505 | (type: [(am = g puream = 1)]
|
---|
506 | {exp coef:0} = {
|
---|
507 | 0.71400000000 1.0000000000
|
---|
508 | })
|
---|
509 | ]
|
---|
510 | %
|
---|
511 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
512 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
513 | fluorine: "aug-cc-pVQZ": [
|
---|
514 | (type: [am = s am = s]
|
---|
515 | {exp coef:0 coef:1} = {
|
---|
516 | 74530.000000 0.95000000000E-04 -0.22000000000E-04
|
---|
517 | 11170.000000 0.73800000000E-03 -0.17200000000E-03
|
---|
518 | 2543.0000000 0.38580000000E-02 -0.89100000000E-03
|
---|
519 | 721.00000000 0.15926000000E-01 -0.37480000000E-02
|
---|
520 | 235.90000000 0.54289000000E-01 -0.12862000000E-01
|
---|
521 | 85.600000000 0.14951300000 -0.38061000000E-01
|
---|
522 | 33.550000000 0.30825200000 -0.86239000000E-01
|
---|
523 | 13.930000000 0.39485300000 -0.15586500000
|
---|
524 | 5.9150000000 0.21103100000 -0.11091400000
|
---|
525 | })
|
---|
526 | (type: [am = s]
|
---|
527 | {exp coef:0} = {
|
---|
528 | 1.8430000000 1.0000000000
|
---|
529 | })
|
---|
530 | (type: [am = s]
|
---|
531 | {exp coef:0} = {
|
---|
532 | 0.71240000000 1.0000000000
|
---|
533 | })
|
---|
534 | (type: [am = s]
|
---|
535 | {exp coef:0} = {
|
---|
536 | 0.26370000000 1.0000000000
|
---|
537 | })
|
---|
538 | (type: [am = s]
|
---|
539 | {exp coef:0} = {
|
---|
540 | 0.85940000000E-01 1.0000000000
|
---|
541 | })
|
---|
542 | (type: [am = p]
|
---|
543 | {exp coef:0} = {
|
---|
544 | 80.390000000 0.63470000000E-02
|
---|
545 | 18.630000000 0.44204000000E-01
|
---|
546 | 5.6940000000 0.16851400000
|
---|
547 | })
|
---|
548 | (type: [am = p]
|
---|
549 | {exp coef:0} = {
|
---|
550 | 1.9530000000 1.0000000000
|
---|
551 | })
|
---|
552 | (type: [am = p]
|
---|
553 | {exp coef:0} = {
|
---|
554 | 0.67020000000 1.0000000000
|
---|
555 | })
|
---|
556 | (type: [am = p]
|
---|
557 | {exp coef:0} = {
|
---|
558 | 0.21660000000 1.0000000000
|
---|
559 | })
|
---|
560 | (type: [am = p]
|
---|
561 | {exp coef:0} = {
|
---|
562 | 0.65680000000E-01 1.0000000000
|
---|
563 | })
|
---|
564 | (type: [(am = d puream = 1)]
|
---|
565 | {exp coef:0} = {
|
---|
566 | 5.0140000000 1.0000000000
|
---|
567 | })
|
---|
568 | (type: [(am = d puream = 1)]
|
---|
569 | {exp coef:0} = {
|
---|
570 | 1.7250000000 1.0000000000
|
---|
571 | })
|
---|
572 | (type: [(am = d puream = 1)]
|
---|
573 | {exp coef:0} = {
|
---|
574 | 0.58600000000 1.0000000000
|
---|
575 | })
|
---|
576 | (type: [(am = d puream = 1)]
|
---|
577 | {exp coef:0} = {
|
---|
578 | 0.20700000000 1.0000000000
|
---|
579 | })
|
---|
580 | (type: [(am = f puream = 1)]
|
---|
581 | {exp coef:0} = {
|
---|
582 | 3.5620000000 1.0000000000
|
---|
583 | })
|
---|
584 | (type: [(am = f puream = 1)]
|
---|
585 | {exp coef:0} = {
|
---|
586 | 1.1480000000 1.0000000000
|
---|
587 | })
|
---|
588 | (type: [(am = f puream = 1)]
|
---|
589 | {exp coef:0} = {
|
---|
590 | 0.46000000000 1.0000000000
|
---|
591 | })
|
---|
592 | (type: [(am = g puream = 1)]
|
---|
593 | {exp coef:0} = {
|
---|
594 | 2.3760000000 1.0000000000
|
---|
595 | })
|
---|
596 | (type: [(am = g puream = 1)]
|
---|
597 | {exp coef:0} = {
|
---|
598 | 0.92400000000 1.0000000000
|
---|
599 | })
|
---|
600 | ]
|
---|
601 | %
|
---|
602 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
603 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
604 | neon: "aug-cc-pVQZ": [
|
---|
605 | (type: [am = s am = s]
|
---|
606 | {exp coef:0 coef:1} = {
|
---|
607 | 99920.000000 0.86000000000E-04 -0.20000000000E-04
|
---|
608 | 14960.000000 0.66900000000E-03 -0.15800000000E-03
|
---|
609 | 3399.0000000 0.35180000000E-02 -0.82400000000E-03
|
---|
610 | 958.90000000 0.14667000000E-01 -0.35000000000E-02
|
---|
611 | 311.20000000 0.50962000000E-01 -0.12233000000E-01
|
---|
612 | 111.70000000 0.14374400000 -0.37017000000E-01
|
---|
613 | 43.320000000 0.30456200000 -0.86113000000E-01
|
---|
614 | 17.800000000 0.40010500000 -0.15838100000
|
---|
615 | 7.5030000000 0.21864400000 -0.11428800000
|
---|
616 | })
|
---|
617 | (type: [am = s]
|
---|
618 | {exp coef:0} = {
|
---|
619 | 2.3370000000 1.0000000000
|
---|
620 | })
|
---|
621 | (type: [am = s]
|
---|
622 | {exp coef:0} = {
|
---|
623 | 0.90010000000 1.0000000000
|
---|
624 | })
|
---|
625 | (type: [am = s]
|
---|
626 | {exp coef:0} = {
|
---|
627 | 0.33010000000 1.0000000000
|
---|
628 | })
|
---|
629 | (type: [am = s]
|
---|
630 | {exp coef:0} = {
|
---|
631 | 0.10540000000 1.0000000000
|
---|
632 | })
|
---|
633 | (type: [am = p]
|
---|
634 | {exp coef:0} = {
|
---|
635 | 99.680000000 0.65660000000E-02
|
---|
636 | 23.150000000 0.45979000000E-01
|
---|
637 | 7.1080000000 0.17341900000
|
---|
638 | })
|
---|
639 | (type: [am = p]
|
---|
640 | {exp coef:0} = {
|
---|
641 | 2.4410000000 1.0000000000
|
---|
642 | })
|
---|
643 | (type: [am = p]
|
---|
644 | {exp coef:0} = {
|
---|
645 | 0.83390000000 1.0000000000
|
---|
646 | })
|
---|
647 | (type: [am = p]
|
---|
648 | {exp coef:0} = {
|
---|
649 | 0.26620000000 1.0000000000
|
---|
650 | })
|
---|
651 | (type: [am = p]
|
---|
652 | {exp coef:0} = {
|
---|
653 | 0.81780000000E-01 1.0000000000
|
---|
654 | })
|
---|
655 | (type: [(am = d puream = 1)]
|
---|
656 | {exp coef:0} = {
|
---|
657 | 6.4710000000 1.0000000000
|
---|
658 | })
|
---|
659 | (type: [(am = d puream = 1)]
|
---|
660 | {exp coef:0} = {
|
---|
661 | 2.2130000000 1.0000000000
|
---|
662 | })
|
---|
663 | (type: [(am = d puream = 1)]
|
---|
664 | {exp coef:0} = {
|
---|
665 | 0.74700000000 1.0000000000
|
---|
666 | })
|
---|
667 | (type: [(am = d puream = 1)]
|
---|
668 | {exp coef:0} = {
|
---|
669 | 0.27300000000 1.0000000000
|
---|
670 | })
|
---|
671 | (type: [(am = f puream = 1)]
|
---|
672 | {exp coef:0} = {
|
---|
673 | 4.6570000000 1.0000000000
|
---|
674 | })
|
---|
675 | (type: [(am = f puream = 1)]
|
---|
676 | {exp coef:0} = {
|
---|
677 | 1.5240000000 1.0000000000
|
---|
678 | })
|
---|
679 | (type: [(am = f puream = 1)]
|
---|
680 | {exp coef:0} = {
|
---|
681 | 0.68900000000 1.0000000000
|
---|
682 | })
|
---|
683 | (type: [(am = g puream = 1)]
|
---|
684 | {exp coef:0} = {
|
---|
685 | 2.9830000000 1.0000000000
|
---|
686 | })
|
---|
687 | (type: [(am = g puream = 1)]
|
---|
688 | {exp coef:0} = {
|
---|
689 | 1.2240000000 1.0000000000
|
---|
690 | })
|
---|
691 | ]
|
---|
692 | %
|
---|
693 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
694 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
695 | aluminum: "aug-cc-pVQZ": [
|
---|
696 | (type: [am = s am = s am = s]
|
---|
697 | {exp coef:0 coef:1 coef:2} = {
|
---|
698 | 419600.00000 0.27821900000E-04 -0.72375400000E-05 0.16715000000E-05
|
---|
699 | 62830.000000 0.21633000000E-03 -0.56173300000E-04 0.12964100000E-04
|
---|
700 | 14290.000000 0.11375400000E-02 -0.29652800000E-03 0.68510100000E-04
|
---|
701 | 4038.0000000 0.47963500000E-02 -0.12491300000E-02 0.28827400000E-03
|
---|
702 | 1312.0000000 0.17238900000E-01 -0.45510100000E-02 0.10527600000E-02
|
---|
703 | 470.50000000 0.53806600000E-01 -0.14439300000E-01 0.33387800000E-02
|
---|
704 | 181.80000000 0.14132600000 -0.40346400000E-01 0.93921700000E-02
|
---|
705 | 74.460000000 0.28926800000 -0.92261800000E-01 0.21604700000E-01
|
---|
706 | 31.900000000 0.38482500000 -0.16451000000 0.39587300000E-01
|
---|
707 | 13.960000000 0.23285200000 -0.14129600000 0.34918000000E-01
|
---|
708 | 5.1800000000 0.29333000000E-01 0.19536500000 -0.52841500000E-01
|
---|
709 | 2.2650000000 -0.30057400000E-02 0.57247500000 -0.19187800000
|
---|
710 | 0.96640000000 0.16667300000E-02 0.37404100000 -0.25411500000
|
---|
711 | })
|
---|
712 | (type: [am = s]
|
---|
713 | {exp coef:0} = {
|
---|
714 | 0.24470000000 1.0000000000
|
---|
715 | })
|
---|
716 | (type: [am = s]
|
---|
717 | {exp coef:0} = {
|
---|
718 | 0.11840000000 1.0000000000
|
---|
719 | })
|
---|
720 | (type: [am = s]
|
---|
721 | {exp coef:0} = {
|
---|
722 | 0.50210000000E-01 1.0000000000
|
---|
723 | })
|
---|
724 | (type: [am = s]
|
---|
725 | {exp coef:0} = {
|
---|
726 | 0.18300000000E-01 1.0000000000
|
---|
727 | })
|
---|
728 | (type: [am = p am = p]
|
---|
729 | {exp coef:0 coef:1} = {
|
---|
730 | 891.30000000 0.49175500000E-03 -0.88869500000E-04
|
---|
731 | 211.30000000 0.41584300000E-02 -0.74582300000E-03
|
---|
732 | 68.280000000 0.21253800000E-01 -0.38702500000E-02
|
---|
733 | 25.700000000 0.76405800000E-01 -0.13935000000E-01
|
---|
734 | 10.630000000 0.19427700000 -0.36686000000E-01
|
---|
735 | 4.6020000000 0.33442800000 -0.62779700000E-01
|
---|
736 | 2.0150000000 0.37502600000 -0.78960200000E-01
|
---|
737 | 0.87060000000 0.20404100000 -0.28858900000E-01
|
---|
738 | })
|
---|
739 | (type: [am = p]
|
---|
740 | {exp coef:0} = {
|
---|
741 | 0.29720000000 1.0000000000
|
---|
742 | })
|
---|
743 | (type: [am = p]
|
---|
744 | {exp coef:0} = {
|
---|
745 | 0.11000000000 1.0000000000
|
---|
746 | })
|
---|
747 | (type: [am = p]
|
---|
748 | {exp coef:0} = {
|
---|
749 | 0.39890000000E-01 1.0000000000
|
---|
750 | })
|
---|
751 | (type: [am = p]
|
---|
752 | {exp coef:0} = {
|
---|
753 | 0.12100000000E-01 1.0000000000
|
---|
754 | })
|
---|
755 | (type: [(am = d puream = 1)]
|
---|
756 | {exp coef:0} = {
|
---|
757 | 0.80400000000E-01 1.0000000000
|
---|
758 | })
|
---|
759 | (type: [(am = d puream = 1)]
|
---|
760 | {exp coef:0} = {
|
---|
761 | 0.19900000000 1.0000000000
|
---|
762 | })
|
---|
763 | (type: [(am = d puream = 1)]
|
---|
764 | {exp coef:0} = {
|
---|
765 | 0.49400000000 1.0000000000
|
---|
766 | })
|
---|
767 | (type: [(am = d puream = 1)]
|
---|
768 | {exp coef:0} = {
|
---|
769 | 0.28200000000E-01 1.0000000000
|
---|
770 | })
|
---|
771 | (type: [(am = f puream = 1)]
|
---|
772 | {exp coef:0} = {
|
---|
773 | 0.15400000000 1.0000000000
|
---|
774 | })
|
---|
775 | (type: [(am = f puream = 1)]
|
---|
776 | {exp coef:0} = {
|
---|
777 | 0.40100000000 1.0000000000
|
---|
778 | })
|
---|
779 | (type: [(am = f puream = 1)]
|
---|
780 | {exp coef:0} = {
|
---|
781 | 0.58200000000E-01 1.0000000000
|
---|
782 | })
|
---|
783 | (type: [(am = g puream = 1)]
|
---|
784 | {exp coef:0} = {
|
---|
785 | 0.35700000000 1.0000000000
|
---|
786 | })
|
---|
787 | (type: [(am = g puream = 1)]
|
---|
788 | {exp coef:0} = {
|
---|
789 | 0.15300000000 1.0000000000
|
---|
790 | })
|
---|
791 | ]
|
---|
792 | %
|
---|
793 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
794 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
795 | silicon: "aug-cc-pVQZ": [
|
---|
796 | (type: [am = s am = s am = s]
|
---|
797 | {exp coef:0 coef:1 coef:2} = {
|
---|
798 | 513000.00000 0.26092000000E-04 -0.69488000000E-05 0.17806800000E-05
|
---|
799 | 76820.000000 0.20290500000E-03 -0.53964100000E-04 0.13814800000E-04
|
---|
800 | 17470.000000 0.10671500000E-02 -0.28471600000E-03 0.73000500000E-04
|
---|
801 | 4935.0000000 0.45059700000E-02 -0.12020300000E-02 0.30766600000E-03
|
---|
802 | 1602.0000000 0.16235900000E-01 -0.43839700000E-02 0.11256300000E-02
|
---|
803 | 574.10000000 0.50891300000E-01 -0.13977600000E-01 0.35843500000E-02
|
---|
804 | 221.50000000 0.13515500000 -0.39351600000E-01 0.10172800000E-01
|
---|
805 | 90.540000000 0.28129200000 -0.91428300000E-01 0.23752000000E-01
|
---|
806 | 38.740000000 0.38533600000 -0.16560900000 0.44348300000E-01
|
---|
807 | 16.950000000 0.24565100000 -0.15250500000 0.41904100000E-01
|
---|
808 | 6.4520000000 0.34314500000E-01 0.16852400000 -0.50250400000E-01
|
---|
809 | 2.8740000000 -0.33488400000E-02 0.56928400000 -0.21657800000
|
---|
810 | 1.2500000000 0.18762500000E-02 0.39805600000 -0.28644800000
|
---|
811 | })
|
---|
812 | (type: [am = s]
|
---|
813 | {exp coef:0} = {
|
---|
814 | 0.35990000000 1.0000000000
|
---|
815 | })
|
---|
816 | (type: [am = s]
|
---|
817 | {exp coef:0} = {
|
---|
818 | 0.16990000000 1.0000000000
|
---|
819 | })
|
---|
820 | (type: [am = s]
|
---|
821 | {exp coef:0} = {
|
---|
822 | 0.70660000000E-01 1.0000000000
|
---|
823 | })
|
---|
824 | (type: [am = s]
|
---|
825 | {exp coef:0} = {
|
---|
826 | 0.27500000000E-01 1.0000000000
|
---|
827 | })
|
---|
828 | (type: [am = p am = p]
|
---|
829 | {exp coef:0 coef:1} = {
|
---|
830 | 1122.0000000 0.44814300000E-03 -0.96488300000E-04
|
---|
831 | 266.00000000 0.38163900000E-02 -0.81197100000E-03
|
---|
832 | 85.920000000 0.19810500000E-01 -0.43008700000E-02
|
---|
833 | 32.330000000 0.72701700000E-01 -0.15750200000E-01
|
---|
834 | 13.370000000 0.18983900000 -0.42954100000E-01
|
---|
835 | 5.8000000000 0.33567200000 -0.75257400000E-01
|
---|
836 | 2.5590000000 0.37936500000 -0.97144600000E-01
|
---|
837 | 1.1240000000 0.20119300000 -0.22750700000E-01
|
---|
838 | })
|
---|
839 | (type: [am = p]
|
---|
840 | {exp coef:0} = {
|
---|
841 | 0.39880000000 1.0000000000
|
---|
842 | })
|
---|
843 | (type: [am = p]
|
---|
844 | {exp coef:0} = {
|
---|
845 | 0.15330000000 1.0000000000
|
---|
846 | })
|
---|
847 | (type: [am = p]
|
---|
848 | {exp coef:0} = {
|
---|
849 | 0.57280000000E-01 1.0000000000
|
---|
850 | })
|
---|
851 | (type: [am = p]
|
---|
852 | {exp coef:0} = {
|
---|
853 | 0.20000000000E-01 1.0000000000
|
---|
854 | })
|
---|
855 | (type: [(am = d puream = 1)]
|
---|
856 | {exp coef:0} = {
|
---|
857 | 0.12000000000 1.0000000000
|
---|
858 | })
|
---|
859 | (type: [(am = d puream = 1)]
|
---|
860 | {exp coef:0} = {
|
---|
861 | 0.30200000000 1.0000000000
|
---|
862 | })
|
---|
863 | (type: [(am = d puream = 1)]
|
---|
864 | {exp coef:0} = {
|
---|
865 | 0.76000000000 1.0000000000
|
---|
866 | })
|
---|
867 | (type: [(am = d puream = 1)]
|
---|
868 | {exp coef:0} = {
|
---|
869 | 0.43500000000E-01 1.0000000000
|
---|
870 | })
|
---|
871 | (type: [(am = f puream = 1)]
|
---|
872 | {exp coef:0} = {
|
---|
873 | 0.21200000000 1.0000000000
|
---|
874 | })
|
---|
875 | (type: [(am = f puream = 1)]
|
---|
876 | {exp coef:0} = {
|
---|
877 | 0.54100000000 1.0000000000
|
---|
878 | })
|
---|
879 | (type: [(am = f puream = 1)]
|
---|
880 | {exp coef:0} = {
|
---|
881 | 0.84600000000E-01 1.0000000000
|
---|
882 | })
|
---|
883 | (type: [(am = g puream = 1)]
|
---|
884 | {exp coef:0} = {
|
---|
885 | 0.46100000000 1.0000000000
|
---|
886 | })
|
---|
887 | (type: [(am = g puream = 1)]
|
---|
888 | {exp coef:0} = {
|
---|
889 | 0.21200000000 1.0000000000
|
---|
890 | })
|
---|
891 | ]
|
---|
892 | %
|
---|
893 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
894 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
895 | phosphorus: "aug-cc-pVQZ": [
|
---|
896 | (type: [am = s am = s am = s]
|
---|
897 | {exp coef:0 coef:1 coef:2} = {
|
---|
898 | 615200.00000 0.24745000000E-04 -0.67220500000E-05 0.18474000000E-05
|
---|
899 | 92120.000000 0.19246500000E-03 -0.52231100000E-04 0.14338000000E-04
|
---|
900 | 20950.000000 0.10120200000E-02 -0.27536100000E-03 0.75722800000E-04
|
---|
901 | 5920.0000000 0.42726100000E-02 -0.11630700000E-02 0.31920500000E-03
|
---|
902 | 1922.0000000 0.15416100000E-01 -0.42428100000E-02 0.11685100000E-02
|
---|
903 | 688.00000000 0.48597600000E-01 -0.13611400000E-01 0.37426700000E-02
|
---|
904 | 265.00000000 0.13006000000 -0.38511400000E-01 0.10681700000E-01
|
---|
905 | 108.20000000 0.27451400000 -0.90664300000E-01 0.25265700000E-01
|
---|
906 | 46.220000000 0.38540200000 -0.16658400000 0.47928300000E-01
|
---|
907 | 20.230000000 0.25593400000 -0.16144700000 0.47709600000E-01
|
---|
908 | 7.8590000000 0.39123700000E-01 0.14678100000 -0.46652500000E-01
|
---|
909 | 3.5470000000 -0.36801000000E-02 0.56668200000 -0.23496800000
|
---|
910 | 1.5640000000 0.20821100000E-02 0.41643300000 -0.31133700000
|
---|
911 | })
|
---|
912 | (type: [am = s]
|
---|
913 | {exp coef:0} = {
|
---|
914 | 0.48880000000 1.0000000000
|
---|
915 | })
|
---|
916 | (type: [am = s]
|
---|
917 | {exp coef:0} = {
|
---|
918 | 0.22660000000 1.0000000000
|
---|
919 | })
|
---|
920 | (type: [am = s]
|
---|
921 | {exp coef:0} = {
|
---|
922 | 0.93310000000E-01 1.0000000000
|
---|
923 | })
|
---|
924 | (type: [am = s]
|
---|
925 | {exp coef:0} = {
|
---|
926 | 0.35400000000E-01 1.0000000000
|
---|
927 | })
|
---|
928 | (type: [am = p am = p]
|
---|
929 | {exp coef:0 coef:1} = {
|
---|
930 | 1367.0000000 0.42101500000E-03 -0.10082700000E-03
|
---|
931 | 324.00000000 0.36098500000E-02 -0.85449900000E-03
|
---|
932 | 104.60000000 0.18921700000E-01 -0.45711600000E-02
|
---|
933 | 39.370000000 0.70556000000E-01 -0.17032700000E-01
|
---|
934 | 16.260000000 0.18815700000 -0.47520400000E-01
|
---|
935 | 7.0560000000 0.33870900000 -0.85278600000E-01
|
---|
936 | 3.1300000000 0.38194300000 -0.10967600000
|
---|
937 | 1.3940000000 0.19526100000 -0.16118100000E-01
|
---|
938 | })
|
---|
939 | (type: [am = p]
|
---|
940 | {exp coef:0} = {
|
---|
941 | 0.51790000000 1.0000000000
|
---|
942 | })
|
---|
943 | (type: [am = p]
|
---|
944 | {exp coef:0} = {
|
---|
945 | 0.20320000000 1.0000000000
|
---|
946 | })
|
---|
947 | (type: [am = p]
|
---|
948 | {exp coef:0} = {
|
---|
949 | 0.76980000000E-01 1.0000000000
|
---|
950 | })
|
---|
951 | (type: [am = p]
|
---|
952 | {exp coef:0} = {
|
---|
953 | 0.27200000000E-01 1.0000000000
|
---|
954 | })
|
---|
955 | (type: [(am = d puream = 1)]
|
---|
956 | {exp coef:0} = {
|
---|
957 | 0.16500000000 1.0000000000
|
---|
958 | })
|
---|
959 | (type: [(am = d puream = 1)]
|
---|
960 | {exp coef:0} = {
|
---|
961 | 0.41300000000 1.0000000000
|
---|
962 | })
|
---|
963 | (type: [(am = d puream = 1)]
|
---|
964 | {exp coef:0} = {
|
---|
965 | 1.0360000000 1.0000000000
|
---|
966 | })
|
---|
967 | (type: [(am = d puream = 1)]
|
---|
968 | {exp coef:0} = {
|
---|
969 | 0.59400000000E-01 1.0000000000
|
---|
970 | })
|
---|
971 | (type: [(am = f puream = 1)]
|
---|
972 | {exp coef:0} = {
|
---|
973 | 0.28000000000 1.0000000000
|
---|
974 | })
|
---|
975 | (type: [(am = f puream = 1)]
|
---|
976 | {exp coef:0} = {
|
---|
977 | 0.70300000000 1.0000000000
|
---|
978 | })
|
---|
979 | (type: [(am = f puream = 1)]
|
---|
980 | {exp coef:0} = {
|
---|
981 | 0.10900000000 1.0000000000
|
---|
982 | })
|
---|
983 | (type: [(am = g puream = 1)]
|
---|
984 | {exp coef:0} = {
|
---|
985 | 0.59700000000 1.0000000000
|
---|
986 | })
|
---|
987 | (type: [(am = g puream = 1)]
|
---|
988 | {exp coef:0} = {
|
---|
989 | 0.25000000000 1.0000000000
|
---|
990 | })
|
---|
991 | ]
|
---|
992 | %
|
---|
993 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
994 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
995 | sulfur: "aug-cc-pVQZ": [
|
---|
996 | (type: [am = s am = s am = s]
|
---|
997 | {exp coef:0 coef:1 coef:2} = {
|
---|
998 | 727800.00000 0.23602500000E-04 -0.65217900000E-05 0.18940600000E-05
|
---|
999 | 109000.00000 0.18348200000E-03 -0.50663100000E-04 0.14694800000E-04
|
---|
1000 | 24800.000000 0.96427800000E-03 -0.26683300000E-03 0.77546000000E-04
|
---|
1001 | 7014.0000000 0.40653700000E-02 -0.11260100000E-02 0.32650900000E-03
|
---|
1002 | 2278.0000000 0.14697300000E-01 -0.41118600000E-02 0.11968600000E-02
|
---|
1003 | 814.70000000 0.46508100000E-01 -0.13245400000E-01 0.38479900000E-02
|
---|
1004 | 313.40000000 0.12550800000 -0.37700400000E-01 0.11053900000E-01
|
---|
1005 | 127.70000000 0.26843300000 -0.89855400000E-01 0.26464500000E-01
|
---|
1006 | 54.480000000 0.38480900000 -0.16709800000 0.50877100000E-01
|
---|
1007 | 23.850000000 0.26537200000 -0.16935400000 0.53003000000E-01
|
---|
1008 | 9.4280000000 0.43732600000E-01 0.12782400000 -0.42551800000E-01
|
---|
1009 | 4.2900000000 -0.37880700000E-02 0.56486200000 -0.25085300000
|
---|
1010 | 1.9090000000 0.21808300000E-02 0.43176700000 -0.33315200000
|
---|
1011 | })
|
---|
1012 | (type: [am = s]
|
---|
1013 | {exp coef:0} = {
|
---|
1014 | 0.62700000000 1.0000000000
|
---|
1015 | })
|
---|
1016 | (type: [am = s]
|
---|
1017 | {exp coef:0} = {
|
---|
1018 | 0.28730000000 1.0000000000
|
---|
1019 | })
|
---|
1020 | (type: [am = s]
|
---|
1021 | {exp coef:0} = {
|
---|
1022 | 0.11720000000 1.0000000000
|
---|
1023 | })
|
---|
1024 | (type: [am = s]
|
---|
1025 | {exp coef:0} = {
|
---|
1026 | 0.42800000000E-01 1.0000000000
|
---|
1027 | })
|
---|
1028 | (type: [am = p am = p]
|
---|
1029 | {exp coef:0 coef:1} = {
|
---|
1030 | 1546.0000000 0.44118300000E-03 -0.11311000000E-03
|
---|
1031 | 366.40000000 0.37757100000E-02 -0.95858100000E-03
|
---|
1032 | 118.40000000 0.19836000000E-01 -0.51347100000E-02
|
---|
1033 | 44.530000000 0.74206300000E-01 -0.19264100000E-01
|
---|
1034 | 18.380000000 0.19732700000 -0.53598000000E-01
|
---|
1035 | 7.9650000000 0.35185100000 -0.96033300000E-01
|
---|
1036 | 3.5410000000 0.37868700000 -0.11818300000
|
---|
1037 | 1.5910000000 0.17093100000 0.92319400000E-02
|
---|
1038 | })
|
---|
1039 | (type: [am = p]
|
---|
1040 | {exp coef:0} = {
|
---|
1041 | 0.62050000000 1.0000000000
|
---|
1042 | })
|
---|
1043 | (type: [am = p]
|
---|
1044 | {exp coef:0} = {
|
---|
1045 | 0.24200000000 1.0000000000
|
---|
1046 | })
|
---|
1047 | (type: [am = p]
|
---|
1048 | {exp coef:0} = {
|
---|
1049 | 0.90140000000E-01 1.0000000000
|
---|
1050 | })
|
---|
1051 | (type: [am = p]
|
---|
1052 | {exp coef:0} = {
|
---|
1053 | 0.31700000000E-01 1.0000000000
|
---|
1054 | })
|
---|
1055 | (type: [(am = d puream = 1)]
|
---|
1056 | {exp coef:0} = {
|
---|
1057 | 0.20300000000 1.0000000000
|
---|
1058 | })
|
---|
1059 | (type: [(am = d puream = 1)]
|
---|
1060 | {exp coef:0} = {
|
---|
1061 | 0.50400000000 1.0000000000
|
---|
1062 | })
|
---|
1063 | (type: [(am = d puream = 1)]
|
---|
1064 | {exp coef:0} = {
|
---|
1065 | 1.2500000000 1.0000000000
|
---|
1066 | })
|
---|
1067 | (type: [(am = d puream = 1)]
|
---|
1068 | {exp coef:0} = {
|
---|
1069 | 0.74800000000E-01 1.0000000000
|
---|
1070 | })
|
---|
1071 | (type: [(am = f puream = 1)]
|
---|
1072 | {exp coef:0} = {
|
---|
1073 | 0.33500000000 1.0000000000
|
---|
1074 | })
|
---|
1075 | (type: [(am = f puream = 1)]
|
---|
1076 | {exp coef:0} = {
|
---|
1077 | 0.86900000000 1.0000000000
|
---|
1078 | })
|
---|
1079 | (type: [(am = f puream = 1)]
|
---|
1080 | {exp coef:0} = {
|
---|
1081 | 0.14000000000 1.0000000000
|
---|
1082 | })
|
---|
1083 | (type: [(am = g puream = 1)]
|
---|
1084 | {exp coef:0} = {
|
---|
1085 | 0.68300000000 1.0000000000
|
---|
1086 | })
|
---|
1087 | (type: [(am = g puream = 1)]
|
---|
1088 | {exp coef:0} = {
|
---|
1089 | 0.29700000000 1.0000000000
|
---|
1090 | })
|
---|
1091 | ]
|
---|
1092 | %
|
---|
1093 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1094 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1095 | chlorine: "aug-cc-pVQZ": [
|
---|
1096 | (type: [am = s am = s am = s]
|
---|
1097 | {exp coef:0 coef:1 coef:2} = {
|
---|
1098 | 834900.00000 0.23168800000E-04 -0.64964900000E-05 0.19664500000E-05
|
---|
1099 | 125000.00000 0.18015400000E-03 -0.50489500000E-04 0.15262000000E-04
|
---|
1100 | 28430.000000 0.94778200000E-03 -0.26611300000E-03 0.80608600000E-04
|
---|
1101 | 8033.0000000 0.40013900000E-02 -0.11249900000E-02 0.33996000000E-03
|
---|
1102 | 2608.0000000 0.14462900000E-01 -0.41049700000E-02 0.12455100000E-02
|
---|
1103 | 933.90000000 0.45658600000E-01 -0.13198700000E-01 0.39961200000E-02
|
---|
1104 | 360.00000000 0.12324800000 -0.37534200000E-01 0.11475100000E-01
|
---|
1105 | 147.00000000 0.26436900000 -0.89723300000E-01 0.27550400000E-01
|
---|
1106 | 62.880000000 0.38298900000 -0.16767100000 0.53291700000E-01
|
---|
1107 | 27.600000000 0.27093400000 -0.17476300000 0.57124600000E-01
|
---|
1108 | 11.080000000 0.47140400000E-01 0.11490900000 -0.39520100000E-01
|
---|
1109 | 5.0750000000 -0.37176600000E-02 0.56361800000 -0.26434300000
|
---|
1110 | 2.2780000000 0.21915800000E-02 0.44160600000 -0.34929100000
|
---|
1111 | })
|
---|
1112 | (type: [am = s]
|
---|
1113 | {exp coef:0} = {
|
---|
1114 | 0.77750000000 1.0000000000
|
---|
1115 | })
|
---|
1116 | (type: [am = s]
|
---|
1117 | {exp coef:0} = {
|
---|
1118 | 0.35270000000 1.0000000000
|
---|
1119 | })
|
---|
1120 | (type: [am = s]
|
---|
1121 | {exp coef:0} = {
|
---|
1122 | 0.14310000000 1.0000000000
|
---|
1123 | })
|
---|
1124 | (type: [am = s]
|
---|
1125 | {exp coef:0} = {
|
---|
1126 | 0.51900000000E-01 1.0000000000
|
---|
1127 | })
|
---|
1128 | (type: [am = p am = p]
|
---|
1129 | {exp coef:0 coef:1} = {
|
---|
1130 | 1703.0000000 0.47403900000E-03 -0.12826600000E-03
|
---|
1131 | 403.60000000 0.40641200000E-02 -0.10935600000E-02
|
---|
1132 | 130.30000000 0.21335500000E-01 -0.58342900000E-02
|
---|
1133 | 49.050000000 0.79461100000E-01 -0.21925800000E-01
|
---|
1134 | 20.260000000 0.20892700000 -0.60138500000E-01
|
---|
1135 | 8.7870000000 0.36494500000 -0.10692900000
|
---|
1136 | 3.9190000000 0.37172500000 -0.12245400000
|
---|
1137 | 1.7650000000 0.14629200000 0.38361900000E-01
|
---|
1138 | })
|
---|
1139 | (type: [am = p]
|
---|
1140 | {exp coef:0} = {
|
---|
1141 | 0.72070000000 1.0000000000
|
---|
1142 | })
|
---|
1143 | (type: [am = p]
|
---|
1144 | {exp coef:0} = {
|
---|
1145 | 0.28390000000 1.0000000000
|
---|
1146 | })
|
---|
1147 | (type: [am = p]
|
---|
1148 | {exp coef:0} = {
|
---|
1149 | 0.10600000000 1.0000000000
|
---|
1150 | })
|
---|
1151 | (type: [am = p]
|
---|
1152 | {exp coef:0} = {
|
---|
1153 | 0.37600000000E-01 1.0000000000
|
---|
1154 | })
|
---|
1155 | (type: [(am = d puream = 1)]
|
---|
1156 | {exp coef:0} = {
|
---|
1157 | 0.25400000000 1.0000000000
|
---|
1158 | })
|
---|
1159 | (type: [(am = d puream = 1)]
|
---|
1160 | {exp coef:0} = {
|
---|
1161 | 0.62800000000 1.0000000000
|
---|
1162 | })
|
---|
1163 | (type: [(am = d puream = 1)]
|
---|
1164 | {exp coef:0} = {
|
---|
1165 | 1.5510000000 1.0000000000
|
---|
1166 | })
|
---|
1167 | (type: [(am = d puream = 1)]
|
---|
1168 | {exp coef:0} = {
|
---|
1169 | 0.95200000000E-01 1.0000000000
|
---|
1170 | })
|
---|
1171 | (type: [(am = f puream = 1)]
|
---|
1172 | {exp coef:0} = {
|
---|
1173 | 0.42300000000 1.0000000000
|
---|
1174 | })
|
---|
1175 | (type: [(am = f puream = 1)]
|
---|
1176 | {exp coef:0} = {
|
---|
1177 | 1.0890000000 1.0000000000
|
---|
1178 | })
|
---|
1179 | (type: [(am = f puream = 1)]
|
---|
1180 | {exp coef:0} = {
|
---|
1181 | 0.21700000000 1.0000000000
|
---|
1182 | })
|
---|
1183 | (type: [(am = g puream = 1)]
|
---|
1184 | {exp coef:0} = {
|
---|
1185 | 0.82700000000 1.0000000000
|
---|
1186 | })
|
---|
1187 | (type: [(am = g puream = 1)]
|
---|
1188 | {exp coef:0} = {
|
---|
1189 | 0.37800000000 1.0000000000
|
---|
1190 | })
|
---|
1191 | ]
|
---|
1192 | %
|
---|
1193 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
1194 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1195 | argon: "aug-cc-pVQZ": [
|
---|
1196 | (type: [am = s am = s am = s]
|
---|
1197 | {exp coef:0 coef:1 coef:2} = {
|
---|
1198 | 950600.00000 0.22754500000E-04 -0.64620100000E-05 0.20205600000E-05
|
---|
1199 | 142300.00000 0.17694500000E-03 -0.50234600000E-04 0.15685100000E-04
|
---|
1200 | 32360.000000 0.93128200000E-03 -0.26480400000E-03 0.82861700000E-04
|
---|
1201 | 9145.0000000 0.39286000000E-02 -0.11189500000E-02 0.34926400000E-03
|
---|
1202 | 2970.0000000 0.14206400000E-01 -0.40827600000E-02 0.12797600000E-02
|
---|
1203 | 1064.0000000 0.44811400000E-01 -0.13121600000E-01 0.41036500000E-02
|
---|
1204 | 410.80000000 0.12100100000 -0.37285500000E-01 0.11778900000E-01
|
---|
1205 | 168.00000000 0.26057900000 -0.89470900000E-01 0.28386800000E-01
|
---|
1206 | 71.990000000 0.38136400000 -0.16805400000 0.55240600000E-01
|
---|
1207 | 31.670000000 0.27605800000 -0.17959400000 0.60749200000E-01
|
---|
1208 | 12.890000000 0.50517900000E-01 0.10295300000 -0.36201200000E-01
|
---|
1209 | 5.9290000000 -0.35986600000E-02 0.56263000000 -0.27539800000
|
---|
1210 | 2.6780000000 0.21879800000E-02 0.45035500000 -0.36284500000
|
---|
1211 | })
|
---|
1212 | (type: [am = s]
|
---|
1213 | {exp coef:0} = {
|
---|
1214 | 0.94160000000 1.0000000000
|
---|
1215 | })
|
---|
1216 | (type: [am = s]
|
---|
1217 | {exp coef:0} = {
|
---|
1218 | 0.42390000000 1.0000000000
|
---|
1219 | })
|
---|
1220 | (type: [am = s]
|
---|
1221 | {exp coef:0} = {
|
---|
1222 | 0.17140000000 1.0000000000
|
---|
1223 | })
|
---|
1224 | (type: [am = s]
|
---|
1225 | {exp coef:0} = {
|
---|
1226 | 0.61000000000E-01 1.0000000000
|
---|
1227 | })
|
---|
1228 | (type: [am = p am = p]
|
---|
1229 | {exp coef:0 coef:1} = {
|
---|
1230 | 1890.0000000 0.49575200000E-03 -0.13886300000E-03
|
---|
1231 | 447.80000000 0.42517200000E-02 -0.11887000000E-02
|
---|
1232 | 144.60000000 0.22327700000E-01 -0.63255300000E-02
|
---|
1233 | 54.460000000 0.83087800000E-01 -0.23881300000E-01
|
---|
1234 | 22.510000000 0.21711000000 -0.64923800000E-01
|
---|
1235 | 9.7740000000 0.37450700000 -0.11544400000
|
---|
1236 | 4.3680000000 0.36644500000 -0.12365100000
|
---|
1237 | 1.9590000000 0.12924500000 0.64905500000E-01
|
---|
1238 | })
|
---|
1239 | (type: [am = p]
|
---|
1240 | {exp coef:0} = {
|
---|
1241 | 0.82600000000 1.0000000000
|
---|
1242 | })
|
---|
1243 | (type: [am = p]
|
---|
1244 | {exp coef:0} = {
|
---|
1245 | 0.32970000000 1.0000000000
|
---|
1246 | })
|
---|
1247 | (type: [am = p]
|
---|
1248 | {exp coef:0} = {
|
---|
1249 | 0.12420000000 1.0000000000
|
---|
1250 | })
|
---|
1251 | (type: [am = p]
|
---|
1252 | {exp coef:0} = {
|
---|
1253 | 0.43500000000E-01 1.0000000000
|
---|
1254 | })
|
---|
1255 | (type: [(am = d puream = 1)]
|
---|
1256 | {exp coef:0} = {
|
---|
1257 | 0.31100000000 1.0000000000
|
---|
1258 | })
|
---|
1259 | (type: [(am = d puream = 1)]
|
---|
1260 | {exp coef:0} = {
|
---|
1261 | 0.76300000000 1.0000000000
|
---|
1262 | })
|
---|
1263 | (type: [(am = d puream = 1)]
|
---|
1264 | {exp coef:0} = {
|
---|
1265 | 1.8730000000 1.0000000000
|
---|
1266 | })
|
---|
1267 | (type: [(am = d puream = 1)]
|
---|
1268 | {exp coef:0} = {
|
---|
1269 | 0.11600000000 1.0000000000
|
---|
1270 | })
|
---|
1271 | (type: [(am = f puream = 1)]
|
---|
1272 | {exp coef:0} = {
|
---|
1273 | 0.54300000000 1.0000000000
|
---|
1274 | })
|
---|
1275 | (type: [(am = f puream = 1)]
|
---|
1276 | {exp coef:0} = {
|
---|
1277 | 1.3250000000 1.0000000000
|
---|
1278 | })
|
---|
1279 | (type: [(am = f puream = 1)]
|
---|
1280 | {exp coef:0} = {
|
---|
1281 | 0.29400000000 1.0000000000
|
---|
1282 | })
|
---|
1283 | (type: [(am = g puream = 1)]
|
---|
1284 | {exp coef:0} = {
|
---|
1285 | 1.0070000000 1.0000000000
|
---|
1286 | })
|
---|
1287 | (type: [(am = g puream = 1)]
|
---|
1288 | {exp coef:0} = {
|
---|
1289 | 0.45900000000 1.0000000000
|
---|
1290 | })
|
---|
1291 | ]
|
---|
1292 | %
|
---|
1293 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
1294 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1295 | gallium: "aug-cc-pVQZ": [
|
---|
1296 | (type: [am = s am = s am = s am = s]
|
---|
1297 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
1298 | 11274496.000 0.41000000000E-05 -0.13000000000E-05 0.50000000000E-06 -0.10000000000E-06
|
---|
1299 | 1688053.4000 0.31600000000E-04 -0.98000000000E-05 0.37000000000E-05 -0.90000000000E-06
|
---|
1300 | 384140.83000 0.16620000000E-03 -0.51500000000E-04 0.19700000000E-04 -0.46000000000E-05
|
---|
1301 | 108807.03000 0.70170000000E-03 -0.21760000000E-03 0.83000000000E-04 -0.19300000000E-04
|
---|
1302 | 35497.691000 0.25508000000E-02 -0.79320000000E-03 0.30290000000E-03 -0.70500000000E-04
|
---|
1303 | 12815.104000 0.82653000000E-02 -0.25821000000E-02 0.98500000000E-03 -0.22900000000E-03
|
---|
1304 | 4998.1087000 0.24195000000E-01 -0.76652000000E-02 0.29341000000E-02 -0.68350000000E-03
|
---|
1305 | 2072.8848000 0.63657200000E-01 -0.20756700000E-01 0.79572000000E-02 -0.18505000000E-02
|
---|
1306 | 903.74582000 0.14576510000 -0.50775800000E-01 0.19676100000E-01 -0.45930000000E-02
|
---|
1307 | 410.44307000 0.27033130000 -0.10738020000 0.42178300000E-01 -0.98343000000E-02
|
---|
1308 | 192.60636000 0.34915710000 -0.18065200000 0.73864500000E-01 -0.17384900000E-01
|
---|
1309 | 92.049678000 0.23744330000 -0.17367010000 0.74753100000E-01 -0.17575200000E-01
|
---|
1310 | 42.047811000 0.48083300000E-01 0.11082510000 -0.53410800000E-01 0.12525400000E-01
|
---|
1311 | 21.069217000 -0.22966000000E-02 0.54183660000 -0.35739190000 0.90340000000E-01
|
---|
1312 | 10.447915000 0.17904000000E-02 0.44678990000 -0.42507130000 0.11047210000
|
---|
1313 | 4.7776580000 -0.82760000000E-03 0.76210500000E-01 0.20109920000 -0.61211900000E-01
|
---|
1314 | 2.2825660000 0.35430000000E-03 -0.93710000000E-03 0.71459660000 -0.25617680000
|
---|
1315 | 1.0353030000 -0.14110000000E-03 0.17806000000E-02 0.36881490000 -0.26037720000
|
---|
1316 | })
|
---|
1317 | (type: [am = s]
|
---|
1318 | {exp coef:0} = {
|
---|
1319 | 0.25767400000 1.0000000000
|
---|
1320 | })
|
---|
1321 | (type: [am = s]
|
---|
1322 | {exp coef:0} = {
|
---|
1323 | 0.11917900000 1.0000000000
|
---|
1324 | })
|
---|
1325 | (type: [am = s]
|
---|
1326 | {exp coef:0} = {
|
---|
1327 | 0.51294000000E-01 1.0000000000
|
---|
1328 | })
|
---|
1329 | (type: [am = s]
|
---|
1330 | {exp coef:0} = {
|
---|
1331 | 0.18475000000E-01 1.0000000000
|
---|
1332 | })
|
---|
1333 | (type: [am = p am = p am = p]
|
---|
1334 | {exp coef:0 coef:1 coef:2} = {
|
---|
1335 | 22059.771000 0.54700000000E-04 -0.20700000000E-04 0.34000000000E-05
|
---|
1336 | 5222.3129000 0.48650000000E-03 -0.18460000000E-03 0.30000000000E-04
|
---|
1337 | 1696.0601000 0.27990000000E-02 -0.10640000000E-02 0.17500000000E-03
|
---|
1338 | 648.76573000 0.12239600000E-01 -0.46946000000E-02 0.76420000000E-03
|
---|
1339 | 275.10267000 0.42747600000E-01 -0.16648600000E-01 0.27458000000E-02
|
---|
1340 | 125.34634000 0.11871870000 -0.47811400000E-01 0.78140000000E-02
|
---|
1341 | 60.054334000 0.24858280000 -0.10453030000 0.17421500000E-01
|
---|
1342 | 29.723768000 0.36016220000 -0.16129650000 0.26485200000E-01
|
---|
1343 | 15.039781000 0.29501710000 -0.11431700000 0.19395000000E-01
|
---|
1344 | 7.5722730000 0.98479400000E-01 0.14590560000 -0.31312900000E-01
|
---|
1345 | 3.7386760000 0.87671000000E-02 0.42719890000 -0.80163400000E-01
|
---|
1346 | 1.7967880000 0.13961000000E-02 0.42404150000 -0.10017290000
|
---|
1347 | 0.82991000000 0.77000000000E-04 0.15994400000 -0.10587800000E-01
|
---|
1348 | })
|
---|
1349 | (type: [am = p]
|
---|
1350 | {exp coef:0} = {
|
---|
1351 | 0.27287400000 1.0000000000
|
---|
1352 | })
|
---|
1353 | (type: [am = p]
|
---|
1354 | {exp coef:0} = {
|
---|
1355 | 0.10154000000 1.0000000000
|
---|
1356 | })
|
---|
1357 | (type: [am = p]
|
---|
1358 | {exp coef:0} = {
|
---|
1359 | 0.37658000000E-01 1.0000000000
|
---|
1360 | })
|
---|
1361 | (type: [am = p]
|
---|
1362 | {exp coef:0} = {
|
---|
1363 | 0.11406000000E-01 1.0000000000
|
---|
1364 | })
|
---|
1365 | (type: [(am = d puream = 1)]
|
---|
1366 | {exp coef:0} = {
|
---|
1367 | 766.43696000 0.17450000000E-03
|
---|
1368 | 231.00425000 0.16577000000E-02
|
---|
1369 | 89.781238000 0.92899000000E-02
|
---|
1370 | 39.546681000 0.34890500000E-01
|
---|
1371 | 18.607583000 0.96345300000E-01
|
---|
1372 | 9.1512870000 0.19557030000
|
---|
1373 | 4.5650050000 0.28359420000
|
---|
1374 | 2.2530660000 0.30825150000
|
---|
1375 | 1.0867230000 0.25196200000
|
---|
1376 | })
|
---|
1377 | (type: [(am = d puream = 1)]
|
---|
1378 | {exp coef:0} = {
|
---|
1379 | 0.50330400000 1.0000000000
|
---|
1380 | })
|
---|
1381 | (type: [(am = d puream = 1)]
|
---|
1382 | {exp coef:0} = {
|
---|
1383 | 0.21228300000 1.0000000000
|
---|
1384 | })
|
---|
1385 | (type: [(am = d puream = 1)]
|
---|
1386 | {exp coef:0} = {
|
---|
1387 | 0.82800000000E-01 1.0000000000
|
---|
1388 | })
|
---|
1389 | (type: [(am = d puream = 1)]
|
---|
1390 | {exp coef:0} = {
|
---|
1391 | 0.27900000000E-01 1.0000000000
|
---|
1392 | })
|
---|
1393 | (type: [(am = f puream = 1)]
|
---|
1394 | {exp coef:0} = {
|
---|
1395 | 0.18100000000 1.0000000000
|
---|
1396 | })
|
---|
1397 | (type: [(am = f puream = 1)]
|
---|
1398 | {exp coef:0} = {
|
---|
1399 | 0.47100000000 1.0000000000
|
---|
1400 | })
|
---|
1401 | (type: [(am = f puream = 1)]
|
---|
1402 | {exp coef:0} = {
|
---|
1403 | 0.65500000000E-01 1.0000000000
|
---|
1404 | })
|
---|
1405 | (type: [(am = g puream = 1)]
|
---|
1406 | {exp coef:0} = {
|
---|
1407 | 0.40320000000 1.0000000000
|
---|
1408 | })
|
---|
1409 | (type: [(am = g puream = 1)]
|
---|
1410 | {exp coef:0} = {
|
---|
1411 | 0.16800000000 1.0000000000
|
---|
1412 | })
|
---|
1413 | ]
|
---|
1414 | %
|
---|
1415 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
1416 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1417 | germanium: "aug-cc-pVQZ": [
|
---|
1418 | (type: [am = s am = s am = s am = s]
|
---|
1419 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
1420 | 12360507.000 0.39000000000E-05 -0.12000000000E-05 0.50000000000E-06 -0.10000000000E-06
|
---|
1421 | 1850697.8000 0.30500000000E-04 -0.95000000000E-05 0.37000000000E-05 -0.90000000000E-06
|
---|
1422 | 421131.42000 0.16050000000E-03 -0.49900000000E-04 0.19200000000E-04 -0.49000000000E-05
|
---|
1423 | 119278.26000 0.67760000000E-03 -0.21090000000E-03 0.81300000000E-04 -0.20800000000E-04
|
---|
1424 | 38912.277000 0.24637000000E-02 -0.76860000000E-03 0.29650000000E-03 -0.76100000000E-04
|
---|
1425 | 14048.682000 0.79835000000E-02 -0.25025000000E-02 0.96480000000E-03 -0.24720000000E-03
|
---|
1426 | 5480.6992000 0.23377400000E-01 -0.74259000000E-02 0.28715000000E-02 -0.73730000000E-03
|
---|
1427 | 2274.2055000 0.61574200000E-01 -0.20124900000E-01 0.77973000000E-02 -0.19981000000E-02
|
---|
1428 | 992.24129000 0.14150760000 -0.49298600000E-01 0.19292200000E-01 -0.49640000000E-02
|
---|
1429 | 450.99966000 0.26469420000 -0.10486830000 0.41620000000E-01 -0.10693000000E-01
|
---|
1430 | 211.82024000 0.34832570000 -0.17832750000 0.73536800000E-01 -0.19084300000E-01
|
---|
1431 | 101.41102000 0.24541960000 -0.17895810000 0.77832000000E-01 -0.20164300000E-01
|
---|
1432 | 46.914090000 0.53564600000E-01 0.87384200000E-01 -0.42358200000E-01 0.10836200000E-01
|
---|
1433 | 23.508950000 -0.18380000000E-02 0.52709200000 -0.34475370000 0.96211000000E-01
|
---|
1434 | 11.681311000 0.18049000000E-02 0.46795510000 -0.44567130000 0.12799790000
|
---|
1435 | 5.4345260000 -0.84760000000E-03 0.89220600000E-01 0.15115440000 -0.50606500000E-01
|
---|
1436 | 2.6088080000 0.36680000000E-03 -0.34230000000E-03 0.71742950000 -0.28529170000
|
---|
1437 | 1.1984420000 -0.15420000000E-03 0.19144000000E-02 0.40356340000 -0.30653590000
|
---|
1438 | })
|
---|
1439 | (type: [am = s]
|
---|
1440 | {exp coef:0} = {
|
---|
1441 | 0.32980800000 1.0000000000
|
---|
1442 | })
|
---|
1443 | (type: [am = s]
|
---|
1444 | {exp coef:0} = {
|
---|
1445 | 0.15543300000 1.0000000000
|
---|
1446 | })
|
---|
1447 | (type: [am = s]
|
---|
1448 | {exp coef:0} = {
|
---|
1449 | 0.66913000000E-01 1.0000000000
|
---|
1450 | })
|
---|
1451 | (type: [am = s]
|
---|
1452 | {exp coef:0} = {
|
---|
1453 | 0.26390000000E-01 1.0000000000
|
---|
1454 | })
|
---|
1455 | (type: [am = p am = p am = p]
|
---|
1456 | {exp coef:0 coef:1 coef:2} = {
|
---|
1457 | 24017.466000 0.53100000000E-04 -0.20400000000E-04 0.40000000000E-05
|
---|
1458 | 5685.7175000 0.47200000000E-03 -0.18180000000E-03 0.35700000000E-04
|
---|
1459 | 1846.4859000 0.27187000000E-02 -0.10491000000E-02 0.20800000000E-03
|
---|
1460 | 706.24981000 0.11914500000E-01 -0.46392000000E-02 0.91210000000E-03
|
---|
1461 | 299.45610000 0.41762500000E-01 -0.16509000000E-01 0.32823000000E-02
|
---|
1462 | 136.43904000 0.11658940000 -0.47660900000E-01 0.94139000000E-02
|
---|
1463 | 65.390155000 0.24583380000 -0.10496780000 0.21091700000E-01
|
---|
1464 | 32.393735000 0.35912610000 -0.16337450000 0.32500000000E-01
|
---|
1465 | 16.415616000 0.29779290000 -0.11809980000 0.23997200000E-01
|
---|
1466 | 8.2877870000 0.10177080000 0.14201780000 -0.37118600000E-01
|
---|
1467 | 4.1126340000 0.94072000000E-02 0.42743240000 -0.98813000000E-01
|
---|
1468 | 1.9988540000 0.14350000000E-02 0.42561670000 -0.12356590000
|
---|
1469 | 0.94429100000 0.35400000000E-04 0.15820340000 -0.11013300000E-01
|
---|
1470 | })
|
---|
1471 | (type: [am = p]
|
---|
1472 | {exp coef:0} = {
|
---|
1473 | 0.34121100000 1.0000000000
|
---|
1474 | })
|
---|
1475 | (type: [am = p]
|
---|
1476 | {exp coef:0} = {
|
---|
1477 | 0.13435000000 1.0000000000
|
---|
1478 | })
|
---|
1479 | (type: [am = p]
|
---|
1480 | {exp coef:0} = {
|
---|
1481 | 0.51735000000E-01 1.0000000000
|
---|
1482 | })
|
---|
1483 | (type: [am = p]
|
---|
1484 | {exp coef:0} = {
|
---|
1485 | 0.18550000000E-01 1.0000000000
|
---|
1486 | })
|
---|
1487 | (type: [(am = d puream = 1)]
|
---|
1488 | {exp coef:0} = {
|
---|
1489 | 864.67411000 0.16450000000E-03
|
---|
1490 | 261.03763000 0.15654000000E-02
|
---|
1491 | 101.77030000 0.87954000000E-02
|
---|
1492 | 45.116641000 0.33185200000E-01
|
---|
1493 | 21.430686000 0.91953700000E-01
|
---|
1494 | 10.659861000 0.18920170000
|
---|
1495 | 5.3922870000 0.28058920000
|
---|
1496 | 2.7044970000 0.31174740000
|
---|
1497 | 1.3285440000 0.25541970000
|
---|
1498 | })
|
---|
1499 | (type: [(am = d puream = 1)]
|
---|
1500 | {exp coef:0} = {
|
---|
1501 | 0.62645200000 1.0000000000
|
---|
1502 | })
|
---|
1503 | (type: [(am = d puream = 1)]
|
---|
1504 | {exp coef:0} = {
|
---|
1505 | 0.26601300000 1.0000000000
|
---|
1506 | })
|
---|
1507 | (type: [(am = d puream = 1)]
|
---|
1508 | {exp coef:0} = {
|
---|
1509 | 0.10630000000 1.0000000000
|
---|
1510 | })
|
---|
1511 | (type: [(am = d puream = 1)]
|
---|
1512 | {exp coef:0} = {
|
---|
1513 | 0.39700000000E-01 1.0000000000
|
---|
1514 | })
|
---|
1515 | (type: [(am = f puream = 1)]
|
---|
1516 | {exp coef:0} = {
|
---|
1517 | 0.54920000000 1.0000000000
|
---|
1518 | })
|
---|
1519 | (type: [(am = f puream = 1)]
|
---|
1520 | {exp coef:0} = {
|
---|
1521 | 0.21900000000 1.0000000000
|
---|
1522 | })
|
---|
1523 | (type: [(am = f puream = 1)]
|
---|
1524 | {exp coef:0} = {
|
---|
1525 | 0.88400000000E-01 1.0000000000
|
---|
1526 | })
|
---|
1527 | (type: [(am = g puream = 1)]
|
---|
1528 | {exp coef:0} = {
|
---|
1529 | 0.46810000000 1.0000000000
|
---|
1530 | })
|
---|
1531 | (type: [(am = g puream = 1)]
|
---|
1532 | {exp coef:0} = {
|
---|
1533 | 0.21430000000 1.0000000000
|
---|
1534 | })
|
---|
1535 | ]
|
---|
1536 | %
|
---|
1537 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
1538 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1539 | arsenic: "aug-cc-pVQZ": [
|
---|
1540 | (type: [am = s am = s am = s am = s]
|
---|
1541 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
1542 | 13600341.000 0.38000000000E-05 -0.12000000000E-05 0.50000000000E-06 -0.10000000000E-06
|
---|
1543 | 2036507.3000 0.29200000000E-04 -0.91000000000E-05 0.36000000000E-05 -0.10000000000E-05
|
---|
1544 | 463432.78000 0.15380000000E-03 -0.48000000000E-04 0.18700000000E-04 -0.52000000000E-05
|
---|
1545 | 131259.94000 0.64960000000E-03 -0.20280000000E-03 0.79000000000E-04 -0.21700000000E-04
|
---|
1546 | 42819.192000 0.23625000000E-02 -0.73920000000E-03 0.28810000000E-03 -0.79400000000E-04
|
---|
1547 | 15457.019000 0.76609000000E-02 -0.24089000000E-02 0.93860000000E-03 -0.25830000000E-03
|
---|
1548 | 6028.4583000 0.22467200000E-01 -0.71538000000E-02 0.27946000000E-02 -0.77090000000E-03
|
---|
1549 | 2500.5599000 0.59342500000E-01 -0.19433300000E-01 0.76098000000E-02 -0.20946000000E-02
|
---|
1550 | 1090.6149000 0.13710150000 -0.47747100000E-01 0.18869900000E-01 -0.52164000000E-02
|
---|
1551 | 495.62154000 0.25894720000 -0.10226390000 0.41006300000E-01 -0.11316300000E-01
|
---|
1552 | 232.81669000 0.34728470000 -0.17583260000 0.73127500000E-01 -0.20393500000E-01
|
---|
1553 | 111.63118000 0.25342470000 -0.18374940000 0.80719400000E-01 -0.22466400000E-01
|
---|
1554 | 52.269950000 0.59626600000E-01 0.64827600000E-01 -0.31630000000E-01 0.85590000000E-02
|
---|
1555 | 26.149878000 -0.11861000000E-02 0.51092810000 -0.33173760000 0.99569200000E-01
|
---|
1556 | 13.018757000 0.17791000000E-02 0.48731430000 -0.46382210000 0.14345010000
|
---|
1557 | 6.1554320000 -0.84550000000E-03 0.10336360000 0.10369900000 -0.37190100000E-01
|
---|
1558 | 2.9591270000 0.36600000000E-03 0.63550000000E-03 0.71829860000 -0.30853680000
|
---|
1559 | 1.3738740000 -0.16220000000E-03 0.19766000000E-02 0.43533050000 -0.34786490000
|
---|
1560 | })
|
---|
1561 | (type: [am = s]
|
---|
1562 | {exp coef:0} = {
|
---|
1563 | 0.40885000000 1.0000000000
|
---|
1564 | })
|
---|
1565 | (type: [am = s]
|
---|
1566 | {exp coef:0} = {
|
---|
1567 | 0.19451100000 1.0000000000
|
---|
1568 | })
|
---|
1569 | (type: [am = s]
|
---|
1570 | {exp coef:0} = {
|
---|
1571 | 0.83641000000E-01 1.0000000000
|
---|
1572 | })
|
---|
1573 | (type: [am = s]
|
---|
1574 | {exp coef:0} = {
|
---|
1575 | 0.32499000000E-01 1.0000000000
|
---|
1576 | })
|
---|
1577 | (type: [am = p am = p am = p]
|
---|
1578 | {exp coef:0 coef:1 coef:2} = {
|
---|
1579 | 25570.418000 0.53300000000E-04 -0.20800000000E-04 0.46000000000E-05
|
---|
1580 | 6052.9237000 0.47440000000E-03 -0.18550000000E-03 0.41200000000E-04
|
---|
1581 | 1965.7002000 0.27330000000E-02 -0.10704000000E-02 0.23930000000E-03
|
---|
1582 | 751.77229000 0.11987100000E-01 -0.47392000000E-02 0.10531000000E-02
|
---|
1583 | 318.68140000 0.42076600000E-01 -0.16888500000E-01 0.37863000000E-02
|
---|
1584 | 145.14749000 0.11758910000 -0.48844500000E-01 0.10910100000E-01
|
---|
1585 | 69.541162000 0.24787470000 -0.10759890000 0.24385300000E-01
|
---|
1586 | 34.451376000 0.36051480000 -0.16693760000 0.37648200000E-01
|
---|
1587 | 17.460610000 0.29559210000 -0.11692140000 0.26513700000E-01
|
---|
1588 | 8.8086090000 0.99216300000E-01 0.15145050000 -0.44546400000E-01
|
---|
1589 | 4.3786460000 0.87866000000E-02 0.43717310000 -0.11676810000
|
---|
1590 | 2.1444050000 0.14462000000E-02 0.41970780000 -0.14094410000
|
---|
1591 | 1.0293500000 -0.44700000000E-04 0.14376360000 -0.12121000000E-02
|
---|
1592 | })
|
---|
1593 | (type: [am = p]
|
---|
1594 | {exp coef:0} = {
|
---|
1595 | 0.40463600000 1.0000000000
|
---|
1596 | })
|
---|
1597 | (type: [am = p]
|
---|
1598 | {exp coef:0} = {
|
---|
1599 | 0.16562200000 1.0000000000
|
---|
1600 | })
|
---|
1601 | (type: [am = p]
|
---|
1602 | {exp coef:0} = {
|
---|
1603 | 0.65610000000E-01 1.0000000000
|
---|
1604 | })
|
---|
1605 | (type: [am = p]
|
---|
1606 | {exp coef:0} = {
|
---|
1607 | 0.23698000000E-01 1.0000000000
|
---|
1608 | })
|
---|
1609 | (type: [(am = d puream = 1)]
|
---|
1610 | {exp coef:0} = {
|
---|
1611 | 996.97960000 0.14620000000E-03
|
---|
1612 | 300.98518000 0.14034000000E-02
|
---|
1613 | 117.23473000 0.80195000000E-02
|
---|
1614 | 51.956904000 0.31004800000E-01
|
---|
1615 | 24.689440000 0.87847800000E-01
|
---|
1616 | 12.295171000 0.18522500000
|
---|
1617 | 6.2446520000 0.28082510000
|
---|
1618 | 3.1554600000 0.31631980000
|
---|
1619 | 1.5680490000 0.25711920000
|
---|
1620 | })
|
---|
1621 | (type: [(am = d puream = 1)]
|
---|
1622 | {exp coef:0} = {
|
---|
1623 | 0.74864700000 1.0000000000
|
---|
1624 | })
|
---|
1625 | (type: [(am = d puream = 1)]
|
---|
1626 | {exp coef:0} = {
|
---|
1627 | 0.31912500000 1.0000000000
|
---|
1628 | })
|
---|
1629 | (type: [(am = d puream = 1)]
|
---|
1630 | {exp coef:0} = {
|
---|
1631 | 0.13000000000 1.0000000000
|
---|
1632 | })
|
---|
1633 | (type: [(am = d puream = 1)]
|
---|
1634 | {exp coef:0} = {
|
---|
1635 | 0.53100000000E-01 1.0000000000
|
---|
1636 | })
|
---|
1637 | (type: [(am = f puream = 1)]
|
---|
1638 | {exp coef:0} = {
|
---|
1639 | 0.26400000000 1.0000000000
|
---|
1640 | })
|
---|
1641 | (type: [(am = f puream = 1)]
|
---|
1642 | {exp coef:0} = {
|
---|
1643 | 0.64400000000 1.0000000000
|
---|
1644 | })
|
---|
1645 | (type: [(am = f puream = 1)]
|
---|
1646 | {exp coef:0} = {
|
---|
1647 | 0.11320000000 1.0000000000
|
---|
1648 | })
|
---|
1649 | (type: [(am = g puream = 1)]
|
---|
1650 | {exp coef:0} = {
|
---|
1651 | 0.54650000000 1.0000000000
|
---|
1652 | })
|
---|
1653 | (type: [(am = g puream = 1)]
|
---|
1654 | {exp coef:0} = {
|
---|
1655 | 0.23900000000 1.0000000000
|
---|
1656 | })
|
---|
1657 | ]
|
---|
1658 | %
|
---|
1659 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
1660 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1661 | selenium: "aug-cc-pVQZ": [
|
---|
1662 | (type: [am = s am = s am = s am = s]
|
---|
1663 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
1664 | 15011000.000 0.36000000000E-05 -0.11000000000E-05 0.40000000000E-06 -0.10000000000E-06
|
---|
1665 | 2247500.0000 0.27900000000E-04 -0.87000000000E-05 0.34000000000E-05 -0.10000000000E-05
|
---|
1666 | 511450.00000 0.14660000000E-03 -0.45900000000E-04 0.18100000000E-04 -0.53000000000E-05
|
---|
1667 | 144870.00000 0.61900000000E-03 -0.19390000000E-03 0.76300000000E-04 -0.22300000000E-04
|
---|
1668 | 47261.000000 0.22514000000E-02 -0.70640000000E-03 0.27810000000E-03 -0.81400000000E-04
|
---|
1669 | 17062.000000 0.73030000000E-02 -0.23030000000E-02 0.90680000000E-03 -0.26490000000E-03
|
---|
1670 | 6654.5000000 0.21444200000E-01 -0.68425000000E-02 0.26999000000E-02 -0.79060000000E-03
|
---|
1671 | 2759.8000000 0.56812200000E-01 -0.18633500000E-01 0.73726000000E-02 -0.21539000000E-02
|
---|
1672 | 1203.2000000 0.13208070000 -0.45951200000E-01 0.18336000000E-01 -0.53812000000E-02
|
---|
1673 | 546.53000000 0.25234690000 -0.99219300000E-01 0.40181200000E-01 -0.11769400000E-01
|
---|
1674 | 256.63000000 0.34592960000 -0.17288130000 0.72486400000E-01 -0.21462900000E-01
|
---|
1675 | 123.14000000 0.26238900000 -0.18849730000 0.83562600000E-01 -0.24690400000E-01
|
---|
1676 | 58.263000000 0.66793800000E-01 0.42261000000E-01 -0.20759200000E-01 0.57774000000E-02
|
---|
1677 | 29.023000000 -0.33320000000E-03 0.49367910000 -0.31835350000 0.10152090000
|
---|
1678 | 14.465000000 0.17275000000E-02 0.50528180000 -0.47983330000 0.15785700000
|
---|
1679 | 6.9348000000 -0.82990000000E-03 0.11841500000 0.59281900000E-01 -0.22421900000E-01
|
---|
1680 | 3.3299000000 0.35780000000E-03 0.19567000000E-02 0.71741160000 -0.32907760000
|
---|
1681 | 1.5600000000 -0.16660000000E-03 0.19648000000E-02 0.46386360000 -0.38734430000
|
---|
1682 | })
|
---|
1683 | (type: [am = s]
|
---|
1684 | {exp coef:0} = {
|
---|
1685 | 0.49291000000 1.0000000000
|
---|
1686 | })
|
---|
1687 | (type: [am = s]
|
---|
1688 | {exp coef:0} = {
|
---|
1689 | 0.23525000000 1.0000000000
|
---|
1690 | })
|
---|
1691 | (type: [am = s]
|
---|
1692 | {exp coef:0} = {
|
---|
1693 | 0.10037000000 1.0000000000
|
---|
1694 | })
|
---|
1695 | (type: [am = s]
|
---|
1696 | {exp coef:0} = {
|
---|
1697 | 0.38152000000E-01 1.0000000000
|
---|
1698 | })
|
---|
1699 | (type: [am = p am = p am = p]
|
---|
1700 | {exp coef:0 coef:1 coef:2} = {
|
---|
1701 | 25217.000000 0.61000000000E-04 -0.24100000000E-04 0.58000000000E-05
|
---|
1702 | 5969.9000000 0.54240000000E-03 -0.21520000000E-03 0.52000000000E-04
|
---|
1703 | 1938.9000000 0.31174000000E-02 -0.12386000000E-02 0.29980000000E-03
|
---|
1704 | 741.66000000 0.13597700000E-01 -0.54607000000E-02 0.13201000000E-02
|
---|
1705 | 314.50000000 0.47278800000E-01 -0.19293600000E-01 0.46857000000E-02
|
---|
1706 | 143.31000000 0.12978560000 -0.54971500000E-01 0.13373700000E-01
|
---|
1707 | 68.650000000 0.26573830000 -0.11779520000 0.28924500000E-01
|
---|
1708 | 33.995000000 0.36735440000 -0.17407820000 0.42945400000E-01
|
---|
1709 | 17.185000000 0.27478050000 -0.95579800000E-01 0.22327200000E-01
|
---|
1710 | 8.5740000000 0.79167900000E-01 0.20597140000 -0.63603100000E-01
|
---|
1711 | 4.2206000000 0.51349000000E-02 0.47354310000 -0.14361470000
|
---|
1712 | 2.0521000000 0.13319000000E-02 0.38319220000 -0.14472930000
|
---|
1713 | 0.96156000000 -0.20330000000E-03 0.92087200000E-01 0.63038000000E-01
|
---|
1714 | })
|
---|
1715 | (type: [am = p]
|
---|
1716 | {exp coef:0} = {
|
---|
1717 | 0.42151000000 1.0000000000
|
---|
1718 | })
|
---|
1719 | (type: [am = p]
|
---|
1720 | {exp coef:0} = {
|
---|
1721 | 0.17626000000 1.0000000000
|
---|
1722 | })
|
---|
1723 | (type: [am = p]
|
---|
1724 | {exp coef:0} = {
|
---|
1725 | 0.70663000000E-01 1.0000000000
|
---|
1726 | })
|
---|
1727 | (type: [am = p]
|
---|
1728 | {exp coef:0} = {
|
---|
1729 | 0.26569000000E-01 1.0000000000
|
---|
1730 | })
|
---|
1731 | (type: [(am = d puream = 1)]
|
---|
1732 | {exp coef:0} = {
|
---|
1733 | 1143.4000000 0.13010000000E-03
|
---|
1734 | 345.33000000 0.12573000000E-02
|
---|
1735 | 134.46000000 0.72882000000E-02
|
---|
1736 | 59.567000000 0.28864700000E-01
|
---|
1737 | 28.283000000 0.83898700000E-01
|
---|
1738 | 14.061000000 0.18197710000
|
---|
1739 | 7.1390000000 0.28260570000
|
---|
1740 | 3.6148000000 0.32204530000
|
---|
1741 | 1.8072000000 0.25816330000
|
---|
1742 | })
|
---|
1743 | (type: [(am = d puream = 1)]
|
---|
1744 | {exp coef:0} = {
|
---|
1745 | 0.86944000000 1.0000000000
|
---|
1746 | })
|
---|
1747 | (type: [(am = d puream = 1)]
|
---|
1748 | {exp coef:0} = {
|
---|
1749 | 0.37036000000 1.0000000000
|
---|
1750 | })
|
---|
1751 | (type: [(am = d puream = 1)]
|
---|
1752 | {exp coef:0} = {
|
---|
1753 | 0.15300000000 1.0000000000
|
---|
1754 | })
|
---|
1755 | (type: [(am = d puream = 1)]
|
---|
1756 | {exp coef:0} = {
|
---|
1757 | 0.61900000000E-01 1.0000000000
|
---|
1758 | })
|
---|
1759 | (type: [(am = f puream = 1)]
|
---|
1760 | {exp coef:0} = {
|
---|
1761 | 0.28400000000 1.0000000000
|
---|
1762 | })
|
---|
1763 | (type: [(am = f puream = 1)]
|
---|
1764 | {exp coef:0} = {
|
---|
1765 | 0.70970000000 1.0000000000
|
---|
1766 | })
|
---|
1767 | (type: [(am = f puream = 1)]
|
---|
1768 | {exp coef:0} = {
|
---|
1769 | 0.12400000000 1.0000000000
|
---|
1770 | })
|
---|
1771 | (type: [(am = g puream = 1)]
|
---|
1772 | {exp coef:0} = {
|
---|
1773 | 0.57300000000 1.0000000000
|
---|
1774 | })
|
---|
1775 | (type: [(am = g puream = 1)]
|
---|
1776 | {exp coef:0} = {
|
---|
1777 | 0.26300000000 1.0000000000
|
---|
1778 | })
|
---|
1779 | ]
|
---|
1780 | %
|
---|
1781 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
1782 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1783 | bromine: "aug-cc-pVQZ": [
|
---|
1784 | (type: [am = s am = s am = s am = s]
|
---|
1785 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
1786 | 16475000.000 0.34000000000E-05 -0.11000000000E-05 0.40000000000E-06 -0.10000000000E-06
|
---|
1787 | 2466600.0000 0.26700000000E-04 -0.84000000000E-05 0.33000000000E-05 -0.10000000000E-05
|
---|
1788 | 561310.00000 0.14040000000E-03 -0.44100000000E-04 0.17500000000E-04 -0.54000000000E-05
|
---|
1789 | 158990.00000 0.59270000000E-03 -0.18620000000E-03 0.74000000000E-04 -0.22700000000E-04
|
---|
1790 | 51869.000000 0.21561000000E-02 -0.67830000000E-03 0.26970000000E-03 -0.82700000000E-04
|
---|
1791 | 18726.000000 0.69959000000E-02 -0.22122000000E-02 0.87990000000E-03 -0.26940000000E-03
|
---|
1792 | 7303.6000000 0.20564500000E-01 -0.65752000000E-02 0.26198000000E-02 -0.80420000000E-03
|
---|
1793 | 3029.1000000 0.54589300000E-01 -0.17932800000E-01 0.71671000000E-02 -0.21949000000E-02
|
---|
1794 | 1320.8000000 0.12752260000 -0.44332100000E-01 0.17856100000E-01 -0.54939000000E-02
|
---|
1795 | 600.03000000 0.24597800000 -0.96347800000E-01 0.39396000000E-01 -0.12096000000E-01
|
---|
1796 | 281.90000000 0.34365080000 -0.16968140000 0.71710200000E-01 -0.22262300000E-01
|
---|
1797 | 135.54000000 0.27025300000 -0.19207690000 0.85887700000E-01 -0.26606300000E-01
|
---|
1798 | 64.870000000 0.74479500000E-01 0.20873100000E-01 -0.10386100000E-01 0.27580000000E-02
|
---|
1799 | 32.129000000 0.87870000000E-03 0.47449960000 -0.30401350000 0.10168030000
|
---|
1800 | 16.037000000 0.15755000000E-02 0.52149070000 -0.49331780000 0.17041320000
|
---|
1801 | 7.7849000000 -0.76020000000E-03 0.13480010000 0.16089000000E-01 -0.62220000000E-02
|
---|
1802 | 3.7247000000 0.32110000000E-03 0.36614000000E-02 0.71466860000 -0.34525700000
|
---|
1803 | 1.7583000000 -0.15860000000E-03 0.18840000000E-02 0.49047950000 -0.42348400000
|
---|
1804 | })
|
---|
1805 | (type: [am = s]
|
---|
1806 | {exp coef:0} = {
|
---|
1807 | 0.58331000000 1.0000000000
|
---|
1808 | })
|
---|
1809 | (type: [am = s]
|
---|
1810 | {exp coef:0} = {
|
---|
1811 | 0.27856000000 1.0000000000
|
---|
1812 | })
|
---|
1813 | (type: [am = s]
|
---|
1814 | {exp coef:0} = {
|
---|
1815 | 0.11829000000 1.0000000000
|
---|
1816 | })
|
---|
1817 | (type: [am = s]
|
---|
1818 | {exp coef:0} = {
|
---|
1819 | 0.44270000000E-01 1.0000000000
|
---|
1820 | })
|
---|
1821 | (type: [am = p am = p am = p]
|
---|
1822 | {exp coef:0 coef:1 coef:2} = {
|
---|
1823 | 26607.000000 0.61900000000E-04 -0.24800000000E-04 0.64000000000E-05
|
---|
1824 | 6298.2000000 0.54990000000E-03 -0.22120000000E-03 0.57200000000E-04
|
---|
1825 | 2045.2000000 0.31620000000E-02 -0.12736000000E-02 0.32970000000E-03
|
---|
1826 | 782.16000000 0.13797900000E-01 -0.56179000000E-02 0.14562000000E-02
|
---|
1827 | 331.63000000 0.47981200000E-01 -0.19860000000E-01 0.51591000000E-02
|
---|
1828 | 151.11000000 0.13157100000 -0.56553100000E-01 0.14761700000E-01
|
---|
1829 | 72.392000000 0.26858610000 -0.12094790000 0.31769400000E-01
|
---|
1830 | 35.862000000 0.36834730000 -0.17730980000 0.47068000000E-01
|
---|
1831 | 18.134000000 0.27113630000 -0.92147200000E-01 0.22387100000E-01
|
---|
1832 | 9.0430000000 0.76222200000E-01 0.21876830000 -0.72025400000E-01
|
---|
1833 | 4.4500000000 0.46749000000E-02 0.48546700000 -0.16264290000
|
---|
1834 | 2.1661000000 0.12565000000E-02 0.37219700000 -0.14965030000
|
---|
1835 | 0.99628000000 -0.23570000000E-03 0.77690700000E-01 0.10645170000
|
---|
1836 | })
|
---|
1837 | (type: [am = p]
|
---|
1838 | {exp coef:0} = {
|
---|
1839 | 0.45443000000 1.0000000000
|
---|
1840 | })
|
---|
1841 | (type: [am = p]
|
---|
1842 | {exp coef:0} = {
|
---|
1843 | 0.19404000000 1.0000000000
|
---|
1844 | })
|
---|
1845 | (type: [am = p]
|
---|
1846 | {exp coef:0} = {
|
---|
1847 | 0.78997000000E-01 1.0000000000
|
---|
1848 | })
|
---|
1849 | (type: [am = p]
|
---|
1850 | {exp coef:0} = {
|
---|
1851 | 0.30513000000E-01 1.0000000000
|
---|
1852 | })
|
---|
1853 | (type: [(am = d puream = 1)]
|
---|
1854 | {exp coef:0} = {
|
---|
1855 | 1289.6000000 0.11900000000E-03
|
---|
1856 | 389.75000000 0.11551000000E-02
|
---|
1857 | 151.76000000 0.67648000000E-02
|
---|
1858 | 67.223000000 0.27301700000E-01
|
---|
1859 | 31.913000000 0.80929800000E-01
|
---|
1860 | 15.857000000 0.17940110000
|
---|
1861 | 8.0545000000 0.28400860000
|
---|
1862 | 4.0887000000 0.32667970000
|
---|
1863 | 2.0556000000 0.25849000000
|
---|
1864 | })
|
---|
1865 | (type: [(am = d puream = 1)]
|
---|
1866 | {exp coef:0} = {
|
---|
1867 | 0.99509000000 1.0000000000
|
---|
1868 | })
|
---|
1869 | (type: [(am = d puream = 1)]
|
---|
1870 | {exp coef:0} = {
|
---|
1871 | 0.42313000000 1.0000000000
|
---|
1872 | })
|
---|
1873 | (type: [(am = d puream = 1)]
|
---|
1874 | {exp coef:0} = {
|
---|
1875 | 0.17790000000 1.0000000000
|
---|
1876 | })
|
---|
1877 | (type: [(am = d puream = 1)]
|
---|
1878 | {exp coef:0} = {
|
---|
1879 | 0.82900000000E-01 1.0000000000
|
---|
1880 | })
|
---|
1881 | (type: [(am = f puream = 1)]
|
---|
1882 | {exp coef:0} = {
|
---|
1883 | 0.34070000000 1.0000000000
|
---|
1884 | })
|
---|
1885 | (type: [(am = f puream = 1)]
|
---|
1886 | {exp coef:0} = {
|
---|
1887 | 0.82570000000 1.0000000000
|
---|
1888 | })
|
---|
1889 | (type: [(am = f puream = 1)]
|
---|
1890 | {exp coef:0} = {
|
---|
1891 | 0.17480000000 1.0000000000
|
---|
1892 | })
|
---|
1893 | (type: [(am = g puream = 1)]
|
---|
1894 | {exp coef:0} = {
|
---|
1895 | 0.64910000000 1.0000000000
|
---|
1896 | })
|
---|
1897 | (type: [(am = g puream = 1)]
|
---|
1898 | {exp coef:0} = {
|
---|
1899 | 0.31100000000 1.0000000000
|
---|
1900 | })
|
---|
1901 | ]
|
---|
1902 | %
|
---|
1903 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
1904 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
1905 | krypton: "aug-cc-pVQZ": [
|
---|
1906 | (type: [am = s am = s am = s am = s]
|
---|
1907 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
1908 | 18226108.000 0.32000000000E-05 -0.10000000000E-05 0.40000000000E-06 -0.10000000000E-06
|
---|
1909 | 2728802.5000 0.25200000000E-04 -0.79000000000E-05 0.32000000000E-05 -0.10000000000E-05
|
---|
1910 | 620997.71000 0.13280000000E-03 -0.41800000000E-04 0.16800000000E-04 -0.53000000000E-05
|
---|
1911 | 175899.58000 0.56070000000E-03 -0.17660000000E-03 0.70900000000E-04 -0.22600000000E-04
|
---|
1912 | 57387.497000 0.20401000000E-02 -0.64340000000E-03 0.25820000000E-03 -0.82300000000E-04
|
---|
1913 | 20717.181000 0.66235000000E-02 -0.20999000000E-02 0.84330000000E-03 -0.26840000000E-03
|
---|
1914 | 8078.8899000 0.19499600000E-01 -0.62453000000E-02 0.25115000000E-02 -0.80140000000E-03
|
---|
1915 | 3349.5170000 0.51936400000E-01 -0.17080400000E-01 0.68921000000E-02 -0.21937000000E-02
|
---|
1916 | 1459.7812000 0.12211660000 -0.42381500000E-01 0.17222000000E-01 -0.55074000000E-02
|
---|
1917 | 662.89391000 0.23836530000 -0.92867900000E-01 0.38315900000E-01 -0.12226600000E-01
|
---|
1918 | 311.39215000 0.34070510000 -0.16573900000 0.70543800000E-01 -0.22761700000E-01
|
---|
1919 | 149.93751000 0.27928550000 -0.19550880000 0.88071700000E-01 -0.28360600000E-01
|
---|
1920 | 72.498249000 0.84099200000E-01 -0.16409000000E-02 0.63280000000E-03 -0.75650000000E-03
|
---|
1921 | 35.569354000 0.25042000000E-02 0.45300710000 -0.28810650000 0.10013650000
|
---|
1922 | 17.766633000 0.13574000000E-02 0.53707510000 -0.50497970000 0.18153320000
|
---|
1923 | 8.7123830000 -0.65910000000E-03 0.15289710000 -0.26777300000E-01 0.11186700000E-01
|
---|
1924 | 4.1449710000 0.27010000000E-03 0.57411000000E-02 0.70987180000 -0.35758430000
|
---|
1925 | 1.9696490000 -0.14360000000E-03 0.17414000000E-02 0.51580200000 -0.45723050000
|
---|
1926 | })
|
---|
1927 | (type: [am = s]
|
---|
1928 | {exp coef:0} = {
|
---|
1929 | 0.67995200000 1.0000000000
|
---|
1930 | })
|
---|
1931 | (type: [am = s]
|
---|
1932 | {exp coef:0} = {
|
---|
1933 | 0.32450200000 1.0000000000
|
---|
1934 | })
|
---|
1935 | (type: [am = s]
|
---|
1936 | {exp coef:0} = {
|
---|
1937 | 0.13744100000 1.0000000000
|
---|
1938 | })
|
---|
1939 | (type: [am = s]
|
---|
1940 | {exp coef:0} = {
|
---|
1941 | 0.50388000000E-01 1.0000000000
|
---|
1942 | })
|
---|
1943 | (type: [am = p am = p am = p]
|
---|
1944 | {exp coef:0 coef:1 coef:2} = {
|
---|
1945 | 28600.831000 0.60500000000E-04 -0.24600000000E-04 0.67000000000E-05
|
---|
1946 | 6770.9912000 0.53780000000E-03 -0.21920000000E-03 0.59600000000E-04
|
---|
1947 | 2199.0489000 0.30934000000E-02 -0.12628000000E-02 0.34320000000E-03
|
---|
1948 | 841.17957000 0.13515000000E-01 -0.55756000000E-02 0.15190000000E-02
|
---|
1949 | 356.76633000 0.47095900000E-01 -0.19754600000E-01 0.53881000000E-02
|
---|
1950 | 162.63620000 0.12962000000 -0.56448800000E-01 0.15493500000E-01
|
---|
1951 | 77.966035000 0.26611080000 -0.12149230000 0.33517600000E-01
|
---|
1952 | 38.661489000 0.36780580000 -0.17949070000 0.50191100000E-01
|
---|
1953 | 19.576791000 0.27403720000 -0.96231400000E-01 0.24455000000E-01
|
---|
1954 | 9.7917610000 0.78711300000E-01 0.21631900000 -0.75295300000E-01
|
---|
1955 | 4.8353830000 0.49842000000E-02 0.48997210000 -0.17605340000
|
---|
1956 | 2.3681250000 0.12267000000E-02 0.37267580000 -0.15707240000
|
---|
1957 | 1.0899960000 -0.24480000000E-03 0.75008800000E-01 0.13045790000
|
---|
1958 | })
|
---|
1959 | (type: [am = p]
|
---|
1960 | {exp coef:0} = {
|
---|
1961 | 0.50458800000 1.0000000000
|
---|
1962 | })
|
---|
1963 | (type: [am = p]
|
---|
1964 | {exp coef:0} = {
|
---|
1965 | 0.21845500000 1.0000000000
|
---|
1966 | })
|
---|
1967 | (type: [am = p]
|
---|
1968 | {exp coef:0} = {
|
---|
1969 | 0.89959000000E-01 1.0000000000
|
---|
1970 | })
|
---|
1971 | (type: [am = p]
|
---|
1972 | {exp coef:0} = {
|
---|
1973 | 0.34457000000E-01 1.0000000000
|
---|
1974 | })
|
---|
1975 | (type: [(am = d puream = 1)]
|
---|
1976 | {exp coef:0} = {
|
---|
1977 | 1437.7792000 0.11080000000E-03
|
---|
1978 | 434.26846000 0.10828000000E-02
|
---|
1979 | 168.92699000 0.64065000000E-02
|
---|
1980 | 74.777535000 0.26237900000E-01
|
---|
1981 | 35.516024000 0.78823500000E-01
|
---|
1982 | 17.671051000 0.17706770000
|
---|
1983 | 9.0046110000 0.28396220000
|
---|
1984 | 4.5947730000 0.32947020000
|
---|
1985 | 2.3264860000 0.25890010000
|
---|
1986 | })
|
---|
1987 | (type: [(am = d puream = 1)]
|
---|
1988 | {exp coef:0} = {
|
---|
1989 | 1.1332470000 1.0000000000
|
---|
1990 | })
|
---|
1991 | (type: [(am = d puream = 1)]
|
---|
1992 | {exp coef:0} = {
|
---|
1993 | 0.48130700000 1.0000000000
|
---|
1994 | })
|
---|
1995 | (type: [(am = d puream = 1)]
|
---|
1996 | {exp coef:0} = {
|
---|
1997 | 0.20530000000 1.0000000000
|
---|
1998 | })
|
---|
1999 | (type: [(am = d puream = 1)]
|
---|
2000 | {exp coef:0} = {
|
---|
2001 | 0.10390000000 1.0000000000
|
---|
2002 | })
|
---|
2003 | (type: [(am = f puream = 1)]
|
---|
2004 | {exp coef:0} = {
|
---|
2005 | 0.41300000000 1.0000000000
|
---|
2006 | })
|
---|
2007 | (type: [(am = f puream = 1)]
|
---|
2008 | {exp coef:0} = {
|
---|
2009 | 0.95570000000 1.0000000000
|
---|
2010 | })
|
---|
2011 | (type: [(am = f puream = 1)]
|
---|
2012 | {exp coef:0} = {
|
---|
2013 | 0.22560000000 1.0000000000
|
---|
2014 | })
|
---|
2015 | (type: [(am = g puream = 1)]
|
---|
2016 | {exp coef:0} = {
|
---|
2017 | 0.73950000000 1.0000000000
|
---|
2018 | })
|
---|
2019 | (type: [(am = g puream = 1)]
|
---|
2020 | {exp coef:0} = {
|
---|
2021 | 0.35900000000 1.0000000000
|
---|
2022 | })
|
---|
2023 | ]
|
---|
2024 | )
|
---|