[0b990d] | 1 | %BASIS "aug-cc-pVQZ" CARTESIAN
|
---|
| 2 | basis:(
|
---|
| 3 | %Elements References
|
---|
| 4 | %-------- ----------
|
---|
| 5 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 6 | % He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
|
---|
| 7 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 8 | %Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published)
|
---|
| 9 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
| 10 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
| 11 | %Elements References
|
---|
| 12 | %-------- ---------
|
---|
| 13 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 14 | % He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
|
---|
| 15 | % B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
|
---|
| 16 | % 6769 (1992).
|
---|
| 17 | %Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
| 18 | %
|
---|
| 19 | %
|
---|
| 20 | % BASIS SET: (6s,3p,2d,1f) -> [4s,3p,2d,1f]
|
---|
| 21 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
| 22 | hydrogen: "aug-cc-pVQZ": [
|
---|
| 23 | (type: [am = s]
|
---|
| 24 | {exp coef:0} = {
|
---|
| 25 | 82.640000000 0.20060000000E-02
|
---|
| 26 | 12.410000000 0.15343000000E-01
|
---|
| 27 | 2.8240000000 0.75579000000E-01
|
---|
| 28 | })
|
---|
| 29 | (type: [am = s]
|
---|
| 30 | {exp coef:0} = {
|
---|
| 31 | 0.79770000000 1.0000000000
|
---|
| 32 | })
|
---|
| 33 | (type: [am = s]
|
---|
| 34 | {exp coef:0} = {
|
---|
| 35 | 0.25810000000 1.0000000000
|
---|
| 36 | })
|
---|
| 37 | (type: [am = s]
|
---|
| 38 | {exp coef:0} = {
|
---|
| 39 | 0.89890000000E-01 1.0000000000
|
---|
| 40 | })
|
---|
| 41 | (type: [am = s]
|
---|
| 42 | {exp coef:0} = {
|
---|
| 43 | 0.23630000000E-01 1.0000000000
|
---|
| 44 | })
|
---|
| 45 | (type: [am = p]
|
---|
| 46 | {exp coef:0} = {
|
---|
| 47 | 2.2920000000 1.0000000000
|
---|
| 48 | })
|
---|
| 49 | (type: [am = p]
|
---|
| 50 | {exp coef:0} = {
|
---|
| 51 | 0.83800000000 1.0000000000
|
---|
| 52 | })
|
---|
| 53 | (type: [am = p]
|
---|
| 54 | {exp coef:0} = {
|
---|
| 55 | 0.29200000000 1.0000000000
|
---|
| 56 | })
|
---|
| 57 | (type: [am = p]
|
---|
| 58 | {exp coef:0} = {
|
---|
| 59 | 0.84800000000E-01 1.0000000000
|
---|
| 60 | })
|
---|
| 61 | (type: [(am = d puream = 1)]
|
---|
| 62 | {exp coef:0} = {
|
---|
| 63 | 2.0620000000 1.0000000000
|
---|
| 64 | })
|
---|
| 65 | (type: [(am = d puream = 1)]
|
---|
| 66 | {exp coef:0} = {
|
---|
| 67 | 0.66200000000 1.0000000000
|
---|
| 68 | })
|
---|
| 69 | (type: [(am = d puream = 1)]
|
---|
| 70 | {exp coef:0} = {
|
---|
| 71 | 0.19000000000 1.0000000000
|
---|
| 72 | })
|
---|
| 73 | (type: [(am = f puream = 1)]
|
---|
| 74 | {exp coef:0} = {
|
---|
| 75 | 1.3970000000 1.0000000000
|
---|
| 76 | })
|
---|
| 77 | (type: [(am = f puream = 1)]
|
---|
| 78 | {exp coef:0} = {
|
---|
| 79 | 0.36000000000 1.0000000000
|
---|
| 80 | })
|
---|
| 81 | ]
|
---|
| 82 | %
|
---|
| 83 | % BASIS SET: (7s,3p,2d,1f) -> [4s,3p,2d,1f]
|
---|
| 84 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
| 85 | helium: "aug-cc-pVQZ": [
|
---|
| 86 | (type: [am = s]
|
---|
| 87 | {exp coef:0} = {
|
---|
| 88 | 528.50000000 0.94000000000E-03
|
---|
| 89 | 79.310000000 0.72140000000E-02
|
---|
| 90 | 18.050000000 0.35975000000E-01
|
---|
| 91 | 5.0850000000 0.12778200000
|
---|
| 92 | })
|
---|
| 93 | (type: [am = s]
|
---|
| 94 | {exp coef:0} = {
|
---|
| 95 | 1.6090000000 1.0000000000
|
---|
| 96 | })
|
---|
| 97 | (type: [am = s]
|
---|
| 98 | {exp coef:0} = {
|
---|
| 99 | 0.53630000000 1.0000000000
|
---|
| 100 | })
|
---|
| 101 | (type: [am = s]
|
---|
| 102 | {exp coef:0} = {
|
---|
| 103 | 0.18330000000 1.0000000000
|
---|
| 104 | })
|
---|
| 105 | (type: [am = s]
|
---|
| 106 | {exp coef:0} = {
|
---|
| 107 | 0.48190000000E-01 1.0000000000
|
---|
| 108 | })
|
---|
| 109 | (type: [am = p]
|
---|
| 110 | {exp coef:0} = {
|
---|
| 111 | 5.9940000000 1.0000000000
|
---|
| 112 | })
|
---|
| 113 | (type: [am = p]
|
---|
| 114 | {exp coef:0} = {
|
---|
| 115 | 1.7450000000 1.0000000000
|
---|
| 116 | })
|
---|
| 117 | (type: [am = p]
|
---|
| 118 | {exp coef:0} = {
|
---|
| 119 | 0.56000000000 1.0000000000
|
---|
| 120 | })
|
---|
| 121 | (type: [am = p]
|
---|
| 122 | {exp coef:0} = {
|
---|
| 123 | 0.16260000000 1.0000000000
|
---|
| 124 | })
|
---|
| 125 | (type: [(am = d puream = 1)]
|
---|
| 126 | {exp coef:0} = {
|
---|
| 127 | 4.2990000000 1.0000000000
|
---|
| 128 | })
|
---|
| 129 | (type: [(am = d puream = 1)]
|
---|
| 130 | {exp coef:0} = {
|
---|
| 131 | 1.2230000000 1.0000000000
|
---|
| 132 | })
|
---|
| 133 | (type: [(am = d puream = 1)]
|
---|
| 134 | {exp coef:0} = {
|
---|
| 135 | 0.35100000000 1.0000000000
|
---|
| 136 | })
|
---|
| 137 | (type: [(am = f puream = 1)]
|
---|
| 138 | {exp coef:0} = {
|
---|
| 139 | 2.6800000000 1.0000000000
|
---|
| 140 | })
|
---|
| 141 | (type: [(am = f puream = 1)]
|
---|
| 142 | {exp coef:0} = {
|
---|
| 143 | 0.69060000000 1.0000000000
|
---|
| 144 | })
|
---|
| 145 | ]
|
---|
| 146 | %
|
---|
| 147 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 148 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 149 | boron: "aug-cc-pVQZ": [
|
---|
| 150 | (type: [am = s am = s]
|
---|
| 151 | {exp coef:0 coef:1} = {
|
---|
| 152 | 23870.000000 0.88000000000E-04 -0.18000000000E-04
|
---|
| 153 | 3575.0000000 0.68700000000E-03 -0.13900000000E-03
|
---|
| 154 | 812.80000000 0.36000000000E-02 -0.72500000000E-03
|
---|
| 155 | 229.70000000 0.14949000000E-01 -0.30630000000E-02
|
---|
| 156 | 74.690000000 0.51435000000E-01 -0.10581000000E-01
|
---|
| 157 | 26.810000000 0.14330200000 -0.31365000000E-01
|
---|
| 158 | 10.320000000 0.30093500000 -0.71012000000E-01
|
---|
| 159 | 4.1780000000 0.40352600000 -0.13210300000
|
---|
| 160 | 1.7270000000 0.22534000000 -0.12307200000
|
---|
| 161 | })
|
---|
| 162 | (type: [am = s]
|
---|
| 163 | {exp coef:0} = {
|
---|
| 164 | 0.47040000000 1.0000000000
|
---|
| 165 | })
|
---|
| 166 | (type: [am = s]
|
---|
| 167 | {exp coef:0} = {
|
---|
| 168 | 0.18960000000 1.0000000000
|
---|
| 169 | })
|
---|
| 170 | (type: [am = s]
|
---|
| 171 | {exp coef:0} = {
|
---|
| 172 | 0.73940000000E-01 1.0000000000
|
---|
| 173 | })
|
---|
| 174 | (type: [am = s]
|
---|
| 175 | {exp coef:0} = {
|
---|
| 176 | 0.27210000000E-01 1.0000000000
|
---|
| 177 | })
|
---|
| 178 | (type: [am = p]
|
---|
| 179 | {exp coef:0} = {
|
---|
| 180 | 22.260000000 0.50950000000E-02
|
---|
| 181 | 5.0580000000 0.33206000000E-01
|
---|
| 182 | 1.4870000000 0.13231400000
|
---|
| 183 | })
|
---|
| 184 | (type: [am = p]
|
---|
| 185 | {exp coef:0} = {
|
---|
| 186 | 0.50710000000 1.0000000000
|
---|
| 187 | })
|
---|
| 188 | (type: [am = p]
|
---|
| 189 | {exp coef:0} = {
|
---|
| 190 | 0.18120000000 1.0000000000
|
---|
| 191 | })
|
---|
| 192 | (type: [am = p]
|
---|
| 193 | {exp coef:0} = {
|
---|
| 194 | 0.64630000000E-01 1.0000000000
|
---|
| 195 | })
|
---|
| 196 | (type: [am = p]
|
---|
| 197 | {exp coef:0} = {
|
---|
| 198 | 0.18780000000E-01 1.0000000000
|
---|
| 199 | })
|
---|
| 200 | (type: [(am = d puream = 1)]
|
---|
| 201 | {exp coef:0} = {
|
---|
| 202 | 1.1100000000 1.0000000000
|
---|
| 203 | })
|
---|
| 204 | (type: [(am = d puream = 1)]
|
---|
| 205 | {exp coef:0} = {
|
---|
| 206 | 0.40200000000 1.0000000000
|
---|
| 207 | })
|
---|
| 208 | (type: [(am = d puream = 1)]
|
---|
| 209 | {exp coef:0} = {
|
---|
| 210 | 0.14500000000 1.0000000000
|
---|
| 211 | })
|
---|
| 212 | (type: [(am = d puream = 1)]
|
---|
| 213 | {exp coef:0} = {
|
---|
| 214 | 0.46600000000E-01 1.0000000000
|
---|
| 215 | })
|
---|
| 216 | (type: [(am = f puream = 1)]
|
---|
| 217 | {exp coef:0} = {
|
---|
| 218 | 0.88200000000 1.0000000000
|
---|
| 219 | })
|
---|
| 220 | (type: [(am = f puream = 1)]
|
---|
| 221 | {exp coef:0} = {
|
---|
| 222 | 0.31100000000 1.0000000000
|
---|
| 223 | })
|
---|
| 224 | (type: [(am = f puream = 1)]
|
---|
| 225 | {exp coef:0} = {
|
---|
| 226 | 0.11300000000 1.0000000000
|
---|
| 227 | })
|
---|
| 228 | (type: [(am = g puream = 1)]
|
---|
| 229 | {exp coef:0} = {
|
---|
| 230 | 0.67300000000 1.0000000000
|
---|
| 231 | })
|
---|
| 232 | (type: [(am = g puream = 1)]
|
---|
| 233 | {exp coef:0} = {
|
---|
| 234 | 0.27300000000 1.0000000000
|
---|
| 235 | })
|
---|
| 236 | ]
|
---|
| 237 | %
|
---|
| 238 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 239 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 240 | carbon: "aug-cc-pVQZ": [
|
---|
| 241 | (type: [am = s am = s]
|
---|
| 242 | {exp coef:0 coef:1} = {
|
---|
| 243 | 33980.000000 0.91000000000E-04 -0.19000000000E-04
|
---|
| 244 | 5089.0000000 0.70400000000E-03 -0.15100000000E-03
|
---|
| 245 | 1157.0000000 0.36930000000E-02 -0.78500000000E-03
|
---|
| 246 | 326.60000000 0.15360000000E-01 -0.33240000000E-02
|
---|
| 247 | 106.10000000 0.52929000000E-01 -0.11512000000E-01
|
---|
| 248 | 38.110000000 0.14704300000 -0.34160000000E-01
|
---|
| 249 | 14.750000000 0.30563100000 -0.77173000000E-01
|
---|
| 250 | 6.0350000000 0.39934500000 -0.14149300000
|
---|
| 251 | 2.5300000000 0.21705100000 -0.11801900000
|
---|
| 252 | })
|
---|
| 253 | (type: [am = s]
|
---|
| 254 | {exp coef:0} = {
|
---|
| 255 | 0.73550000000 1.0000000000
|
---|
| 256 | })
|
---|
| 257 | (type: [am = s]
|
---|
| 258 | {exp coef:0} = {
|
---|
| 259 | 0.29050000000 1.0000000000
|
---|
| 260 | })
|
---|
| 261 | (type: [am = s]
|
---|
| 262 | {exp coef:0} = {
|
---|
| 263 | 0.11110000000 1.0000000000
|
---|
| 264 | })
|
---|
| 265 | (type: [am = s]
|
---|
| 266 | {exp coef:0} = {
|
---|
| 267 | 0.41450000000E-01 1.0000000000
|
---|
| 268 | })
|
---|
| 269 | (type: [am = p]
|
---|
| 270 | {exp coef:0} = {
|
---|
| 271 | 34.510000000 0.53780000000E-02
|
---|
| 272 | 7.9150000000 0.36132000000E-01
|
---|
| 273 | 2.3680000000 0.14249300000
|
---|
| 274 | })
|
---|
| 275 | (type: [am = p]
|
---|
| 276 | {exp coef:0} = {
|
---|
| 277 | 0.81320000000 1.0000000000
|
---|
| 278 | })
|
---|
| 279 | (type: [am = p]
|
---|
| 280 | {exp coef:0} = {
|
---|
| 281 | 0.28900000000 1.0000000000
|
---|
| 282 | })
|
---|
| 283 | (type: [am = p]
|
---|
| 284 | {exp coef:0} = {
|
---|
| 285 | 0.10070000000 1.0000000000
|
---|
| 286 | })
|
---|
| 287 | (type: [am = p]
|
---|
| 288 | {exp coef:0} = {
|
---|
| 289 | 0.32180000000E-01 1.0000000000
|
---|
| 290 | })
|
---|
| 291 | (type: [(am = d puream = 1)]
|
---|
| 292 | {exp coef:0} = {
|
---|
| 293 | 1.8480000000 1.0000000000
|
---|
| 294 | })
|
---|
| 295 | (type: [(am = d puream = 1)]
|
---|
| 296 | {exp coef:0} = {
|
---|
| 297 | 0.64900000000 1.0000000000
|
---|
| 298 | })
|
---|
| 299 | (type: [(am = d puream = 1)]
|
---|
| 300 | {exp coef:0} = {
|
---|
| 301 | 0.22800000000 1.0000000000
|
---|
| 302 | })
|
---|
| 303 | (type: [(am = d puream = 1)]
|
---|
| 304 | {exp coef:0} = {
|
---|
| 305 | 0.76600000000E-01 1.0000000000
|
---|
| 306 | })
|
---|
| 307 | (type: [(am = f puream = 1)]
|
---|
| 308 | {exp coef:0} = {
|
---|
| 309 | 1.4190000000 1.0000000000
|
---|
| 310 | })
|
---|
| 311 | (type: [(am = f puream = 1)]
|
---|
| 312 | {exp coef:0} = {
|
---|
| 313 | 0.48500000000 1.0000000000
|
---|
| 314 | })
|
---|
| 315 | (type: [(am = f puream = 1)]
|
---|
| 316 | {exp coef:0} = {
|
---|
| 317 | 0.18700000000 1.0000000000
|
---|
| 318 | })
|
---|
| 319 | (type: [(am = g puream = 1)]
|
---|
| 320 | {exp coef:0} = {
|
---|
| 321 | 1.0110000000 1.0000000000
|
---|
| 322 | })
|
---|
| 323 | (type: [(am = g puream = 1)]
|
---|
| 324 | {exp coef:0} = {
|
---|
| 325 | 0.42400000000 1.0000000000
|
---|
| 326 | })
|
---|
| 327 | ]
|
---|
| 328 | %
|
---|
| 329 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 330 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 331 | nitrogen: "aug-cc-pVQZ": [
|
---|
| 332 | (type: [am = s am = s]
|
---|
| 333 | {exp coef:0 coef:1} = {
|
---|
| 334 | 45840.000000 0.92000000000E-04 -0.20000000000E-04
|
---|
| 335 | 6868.0000000 0.71700000000E-03 -0.15900000000E-03
|
---|
| 336 | 1563.0000000 0.37490000000E-02 -0.82400000000E-03
|
---|
| 337 | 442.40000000 0.15532000000E-01 -0.34780000000E-02
|
---|
| 338 | 144.30000000 0.53146000000E-01 -0.11966000000E-01
|
---|
| 339 | 52.180000000 0.14678700000 -0.35388000000E-01
|
---|
| 340 | 20.340000000 0.30466300000 -0.80077000000E-01
|
---|
| 341 | 8.3810000000 0.39768400000 -0.14672200000
|
---|
| 342 | 3.5290000000 0.21764100000 -0.11636000000
|
---|
| 343 | })
|
---|
| 344 | (type: [am = s]
|
---|
| 345 | {exp coef:0} = {
|
---|
| 346 | 1.0540000000 1.0000000000
|
---|
| 347 | })
|
---|
| 348 | (type: [am = s]
|
---|
| 349 | {exp coef:0} = {
|
---|
| 350 | 0.41180000000 1.0000000000
|
---|
| 351 | })
|
---|
| 352 | (type: [am = s]
|
---|
| 353 | {exp coef:0} = {
|
---|
| 354 | 0.15520000000 1.0000000000
|
---|
| 355 | })
|
---|
| 356 | (type: [am = s]
|
---|
| 357 | {exp coef:0} = {
|
---|
| 358 | 0.54640000000E-01 1.0000000000
|
---|
| 359 | })
|
---|
| 360 | (type: [am = p]
|
---|
| 361 | {exp coef:0} = {
|
---|
| 362 | 49.330000000 0.55330000000E-02
|
---|
| 363 | 11.370000000 0.37962000000E-01
|
---|
| 364 | 3.4350000000 0.14902800000
|
---|
| 365 | })
|
---|
| 366 | (type: [am = p]
|
---|
| 367 | {exp coef:0} = {
|
---|
| 368 | 1.1820000000 1.0000000000
|
---|
| 369 | })
|
---|
| 370 | (type: [am = p]
|
---|
| 371 | {exp coef:0} = {
|
---|
| 372 | 0.41730000000 1.0000000000
|
---|
| 373 | })
|
---|
| 374 | (type: [am = p]
|
---|
| 375 | {exp coef:0} = {
|
---|
| 376 | 0.14280000000 1.0000000000
|
---|
| 377 | })
|
---|
| 378 | (type: [am = p]
|
---|
| 379 | {exp coef:0} = {
|
---|
| 380 | 0.44020000000E-01 1.0000000000
|
---|
| 381 | })
|
---|
| 382 | (type: [(am = d puream = 1)]
|
---|
| 383 | {exp coef:0} = {
|
---|
| 384 | 2.8370000000 1.0000000000
|
---|
| 385 | })
|
---|
| 386 | (type: [(am = d puream = 1)]
|
---|
| 387 | {exp coef:0} = {
|
---|
| 388 | 0.96800000000 1.0000000000
|
---|
| 389 | })
|
---|
| 390 | (type: [(am = d puream = 1)]
|
---|
| 391 | {exp coef:0} = {
|
---|
| 392 | 0.33500000000 1.0000000000
|
---|
| 393 | })
|
---|
| 394 | (type: [(am = d puream = 1)]
|
---|
| 395 | {exp coef:0} = {
|
---|
| 396 | 0.11100000000 1.0000000000
|
---|
| 397 | })
|
---|
| 398 | (type: [(am = f puream = 1)]
|
---|
| 399 | {exp coef:0} = {
|
---|
| 400 | 2.0270000000 1.0000000000
|
---|
| 401 | })
|
---|
| 402 | (type: [(am = f puream = 1)]
|
---|
| 403 | {exp coef:0} = {
|
---|
| 404 | 0.68500000000 1.0000000000
|
---|
| 405 | })
|
---|
| 406 | (type: [(am = f puream = 1)]
|
---|
| 407 | {exp coef:0} = {
|
---|
| 408 | 0.24500000000 1.0000000000
|
---|
| 409 | })
|
---|
| 410 | (type: [(am = g puream = 1)]
|
---|
| 411 | {exp coef:0} = {
|
---|
| 412 | 1.4270000000 1.0000000000
|
---|
| 413 | })
|
---|
| 414 | (type: [(am = g puream = 1)]
|
---|
| 415 | {exp coef:0} = {
|
---|
| 416 | 0.55900000000 1.0000000000
|
---|
| 417 | })
|
---|
| 418 | ]
|
---|
| 419 | %
|
---|
| 420 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 421 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 422 | oxygen: "aug-cc-pVQZ": [
|
---|
| 423 | (type: [am = s am = s]
|
---|
| 424 | {exp coef:0 coef:1} = {
|
---|
| 425 | 61420.000000 0.90000000000E-04 -0.20000000000E-04
|
---|
| 426 | 9199.0000000 0.69800000000E-03 -0.15900000000E-03
|
---|
| 427 | 2091.0000000 0.36640000000E-02 -0.82900000000E-03
|
---|
| 428 | 590.90000000 0.15218000000E-01 -0.35080000000E-02
|
---|
| 429 | 192.30000000 0.52423000000E-01 -0.12156000000E-01
|
---|
| 430 | 69.320000000 0.14592100000 -0.36261000000E-01
|
---|
| 431 | 26.970000000 0.30525800000 -0.82992000000E-01
|
---|
| 432 | 11.100000000 0.39850800000 -0.15209000000
|
---|
| 433 | 4.6820000000 0.21698000000 -0.11533100000
|
---|
| 434 | })
|
---|
| 435 | (type: [am = s]
|
---|
| 436 | {exp coef:0} = {
|
---|
| 437 | 1.4280000000 1.0000000000
|
---|
| 438 | })
|
---|
| 439 | (type: [am = s]
|
---|
| 440 | {exp coef:0} = {
|
---|
| 441 | 0.55470000000 1.0000000000
|
---|
| 442 | })
|
---|
| 443 | (type: [am = s]
|
---|
| 444 | {exp coef:0} = {
|
---|
| 445 | 0.20670000000 1.0000000000
|
---|
| 446 | })
|
---|
| 447 | (type: [am = s]
|
---|
| 448 | {exp coef:0} = {
|
---|
| 449 | 0.69590000000E-01 1.0000000000
|
---|
| 450 | })
|
---|
| 451 | (type: [am = p]
|
---|
| 452 | {exp coef:0} = {
|
---|
| 453 | 63.420000000 0.60440000000E-02
|
---|
| 454 | 14.660000000 0.41799000000E-01
|
---|
| 455 | 4.4590000000 0.16114300000
|
---|
| 456 | })
|
---|
| 457 | (type: [am = p]
|
---|
| 458 | {exp coef:0} = {
|
---|
| 459 | 1.5310000000 1.0000000000
|
---|
| 460 | })
|
---|
| 461 | (type: [am = p]
|
---|
| 462 | {exp coef:0} = {
|
---|
| 463 | 0.53020000000 1.0000000000
|
---|
| 464 | })
|
---|
| 465 | (type: [am = p]
|
---|
| 466 | {exp coef:0} = {
|
---|
| 467 | 0.17500000000 1.0000000000
|
---|
| 468 | })
|
---|
| 469 | (type: [am = p]
|
---|
| 470 | {exp coef:0} = {
|
---|
| 471 | 0.53480000000E-01 1.0000000000
|
---|
| 472 | })
|
---|
| 473 | (type: [(am = d puream = 1)]
|
---|
| 474 | {exp coef:0} = {
|
---|
| 475 | 3.7750000000 1.0000000000
|
---|
| 476 | })
|
---|
| 477 | (type: [(am = d puream = 1)]
|
---|
| 478 | {exp coef:0} = {
|
---|
| 479 | 1.3000000000 1.0000000000
|
---|
| 480 | })
|
---|
| 481 | (type: [(am = d puream = 1)]
|
---|
| 482 | {exp coef:0} = {
|
---|
| 483 | 0.44400000000 1.0000000000
|
---|
| 484 | })
|
---|
| 485 | (type: [(am = d puream = 1)]
|
---|
| 486 | {exp coef:0} = {
|
---|
| 487 | 0.15400000000 1.0000000000
|
---|
| 488 | })
|
---|
| 489 | (type: [(am = f puream = 1)]
|
---|
| 490 | {exp coef:0} = {
|
---|
| 491 | 2.6660000000 1.0000000000
|
---|
| 492 | })
|
---|
| 493 | (type: [(am = f puream = 1)]
|
---|
| 494 | {exp coef:0} = {
|
---|
| 495 | 0.85900000000 1.0000000000
|
---|
| 496 | })
|
---|
| 497 | (type: [(am = f puream = 1)]
|
---|
| 498 | {exp coef:0} = {
|
---|
| 499 | 0.32400000000 1.0000000000
|
---|
| 500 | })
|
---|
| 501 | (type: [(am = g puream = 1)]
|
---|
| 502 | {exp coef:0} = {
|
---|
| 503 | 1.8460000000 1.0000000000
|
---|
| 504 | })
|
---|
| 505 | (type: [(am = g puream = 1)]
|
---|
| 506 | {exp coef:0} = {
|
---|
| 507 | 0.71400000000 1.0000000000
|
---|
| 508 | })
|
---|
| 509 | ]
|
---|
| 510 | %
|
---|
| 511 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 512 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 513 | fluorine: "aug-cc-pVQZ": [
|
---|
| 514 | (type: [am = s am = s]
|
---|
| 515 | {exp coef:0 coef:1} = {
|
---|
| 516 | 74530.000000 0.95000000000E-04 -0.22000000000E-04
|
---|
| 517 | 11170.000000 0.73800000000E-03 -0.17200000000E-03
|
---|
| 518 | 2543.0000000 0.38580000000E-02 -0.89100000000E-03
|
---|
| 519 | 721.00000000 0.15926000000E-01 -0.37480000000E-02
|
---|
| 520 | 235.90000000 0.54289000000E-01 -0.12862000000E-01
|
---|
| 521 | 85.600000000 0.14951300000 -0.38061000000E-01
|
---|
| 522 | 33.550000000 0.30825200000 -0.86239000000E-01
|
---|
| 523 | 13.930000000 0.39485300000 -0.15586500000
|
---|
| 524 | 5.9150000000 0.21103100000 -0.11091400000
|
---|
| 525 | })
|
---|
| 526 | (type: [am = s]
|
---|
| 527 | {exp coef:0} = {
|
---|
| 528 | 1.8430000000 1.0000000000
|
---|
| 529 | })
|
---|
| 530 | (type: [am = s]
|
---|
| 531 | {exp coef:0} = {
|
---|
| 532 | 0.71240000000 1.0000000000
|
---|
| 533 | })
|
---|
| 534 | (type: [am = s]
|
---|
| 535 | {exp coef:0} = {
|
---|
| 536 | 0.26370000000 1.0000000000
|
---|
| 537 | })
|
---|
| 538 | (type: [am = s]
|
---|
| 539 | {exp coef:0} = {
|
---|
| 540 | 0.85940000000E-01 1.0000000000
|
---|
| 541 | })
|
---|
| 542 | (type: [am = p]
|
---|
| 543 | {exp coef:0} = {
|
---|
| 544 | 80.390000000 0.63470000000E-02
|
---|
| 545 | 18.630000000 0.44204000000E-01
|
---|
| 546 | 5.6940000000 0.16851400000
|
---|
| 547 | })
|
---|
| 548 | (type: [am = p]
|
---|
| 549 | {exp coef:0} = {
|
---|
| 550 | 1.9530000000 1.0000000000
|
---|
| 551 | })
|
---|
| 552 | (type: [am = p]
|
---|
| 553 | {exp coef:0} = {
|
---|
| 554 | 0.67020000000 1.0000000000
|
---|
| 555 | })
|
---|
| 556 | (type: [am = p]
|
---|
| 557 | {exp coef:0} = {
|
---|
| 558 | 0.21660000000 1.0000000000
|
---|
| 559 | })
|
---|
| 560 | (type: [am = p]
|
---|
| 561 | {exp coef:0} = {
|
---|
| 562 | 0.65680000000E-01 1.0000000000
|
---|
| 563 | })
|
---|
| 564 | (type: [(am = d puream = 1)]
|
---|
| 565 | {exp coef:0} = {
|
---|
| 566 | 5.0140000000 1.0000000000
|
---|
| 567 | })
|
---|
| 568 | (type: [(am = d puream = 1)]
|
---|
| 569 | {exp coef:0} = {
|
---|
| 570 | 1.7250000000 1.0000000000
|
---|
| 571 | })
|
---|
| 572 | (type: [(am = d puream = 1)]
|
---|
| 573 | {exp coef:0} = {
|
---|
| 574 | 0.58600000000 1.0000000000
|
---|
| 575 | })
|
---|
| 576 | (type: [(am = d puream = 1)]
|
---|
| 577 | {exp coef:0} = {
|
---|
| 578 | 0.20700000000 1.0000000000
|
---|
| 579 | })
|
---|
| 580 | (type: [(am = f puream = 1)]
|
---|
| 581 | {exp coef:0} = {
|
---|
| 582 | 3.5620000000 1.0000000000
|
---|
| 583 | })
|
---|
| 584 | (type: [(am = f puream = 1)]
|
---|
| 585 | {exp coef:0} = {
|
---|
| 586 | 1.1480000000 1.0000000000
|
---|
| 587 | })
|
---|
| 588 | (type: [(am = f puream = 1)]
|
---|
| 589 | {exp coef:0} = {
|
---|
| 590 | 0.46000000000 1.0000000000
|
---|
| 591 | })
|
---|
| 592 | (type: [(am = g puream = 1)]
|
---|
| 593 | {exp coef:0} = {
|
---|
| 594 | 2.3760000000 1.0000000000
|
---|
| 595 | })
|
---|
| 596 | (type: [(am = g puream = 1)]
|
---|
| 597 | {exp coef:0} = {
|
---|
| 598 | 0.92400000000 1.0000000000
|
---|
| 599 | })
|
---|
| 600 | ]
|
---|
| 601 | %
|
---|
| 602 | % BASIS SET: (12s,6p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 603 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 604 | neon: "aug-cc-pVQZ": [
|
---|
| 605 | (type: [am = s am = s]
|
---|
| 606 | {exp coef:0 coef:1} = {
|
---|
| 607 | 99920.000000 0.86000000000E-04 -0.20000000000E-04
|
---|
| 608 | 14960.000000 0.66900000000E-03 -0.15800000000E-03
|
---|
| 609 | 3399.0000000 0.35180000000E-02 -0.82400000000E-03
|
---|
| 610 | 958.90000000 0.14667000000E-01 -0.35000000000E-02
|
---|
| 611 | 311.20000000 0.50962000000E-01 -0.12233000000E-01
|
---|
| 612 | 111.70000000 0.14374400000 -0.37017000000E-01
|
---|
| 613 | 43.320000000 0.30456200000 -0.86113000000E-01
|
---|
| 614 | 17.800000000 0.40010500000 -0.15838100000
|
---|
| 615 | 7.5030000000 0.21864400000 -0.11428800000
|
---|
| 616 | })
|
---|
| 617 | (type: [am = s]
|
---|
| 618 | {exp coef:0} = {
|
---|
| 619 | 2.3370000000 1.0000000000
|
---|
| 620 | })
|
---|
| 621 | (type: [am = s]
|
---|
| 622 | {exp coef:0} = {
|
---|
| 623 | 0.90010000000 1.0000000000
|
---|
| 624 | })
|
---|
| 625 | (type: [am = s]
|
---|
| 626 | {exp coef:0} = {
|
---|
| 627 | 0.33010000000 1.0000000000
|
---|
| 628 | })
|
---|
| 629 | (type: [am = s]
|
---|
| 630 | {exp coef:0} = {
|
---|
| 631 | 0.10540000000 1.0000000000
|
---|
| 632 | })
|
---|
| 633 | (type: [am = p]
|
---|
| 634 | {exp coef:0} = {
|
---|
| 635 | 99.680000000 0.65660000000E-02
|
---|
| 636 | 23.150000000 0.45979000000E-01
|
---|
| 637 | 7.1080000000 0.17341900000
|
---|
| 638 | })
|
---|
| 639 | (type: [am = p]
|
---|
| 640 | {exp coef:0} = {
|
---|
| 641 | 2.4410000000 1.0000000000
|
---|
| 642 | })
|
---|
| 643 | (type: [am = p]
|
---|
| 644 | {exp coef:0} = {
|
---|
| 645 | 0.83390000000 1.0000000000
|
---|
| 646 | })
|
---|
| 647 | (type: [am = p]
|
---|
| 648 | {exp coef:0} = {
|
---|
| 649 | 0.26620000000 1.0000000000
|
---|
| 650 | })
|
---|
| 651 | (type: [am = p]
|
---|
| 652 | {exp coef:0} = {
|
---|
| 653 | 0.81780000000E-01 1.0000000000
|
---|
| 654 | })
|
---|
| 655 | (type: [(am = d puream = 1)]
|
---|
| 656 | {exp coef:0} = {
|
---|
| 657 | 6.4710000000 1.0000000000
|
---|
| 658 | })
|
---|
| 659 | (type: [(am = d puream = 1)]
|
---|
| 660 | {exp coef:0} = {
|
---|
| 661 | 2.2130000000 1.0000000000
|
---|
| 662 | })
|
---|
| 663 | (type: [(am = d puream = 1)]
|
---|
| 664 | {exp coef:0} = {
|
---|
| 665 | 0.74700000000 1.0000000000
|
---|
| 666 | })
|
---|
| 667 | (type: [(am = d puream = 1)]
|
---|
| 668 | {exp coef:0} = {
|
---|
| 669 | 0.27300000000 1.0000000000
|
---|
| 670 | })
|
---|
| 671 | (type: [(am = f puream = 1)]
|
---|
| 672 | {exp coef:0} = {
|
---|
| 673 | 4.6570000000 1.0000000000
|
---|
| 674 | })
|
---|
| 675 | (type: [(am = f puream = 1)]
|
---|
| 676 | {exp coef:0} = {
|
---|
| 677 | 1.5240000000 1.0000000000
|
---|
| 678 | })
|
---|
| 679 | (type: [(am = f puream = 1)]
|
---|
| 680 | {exp coef:0} = {
|
---|
| 681 | 0.68900000000 1.0000000000
|
---|
| 682 | })
|
---|
| 683 | (type: [(am = g puream = 1)]
|
---|
| 684 | {exp coef:0} = {
|
---|
| 685 | 2.9830000000 1.0000000000
|
---|
| 686 | })
|
---|
| 687 | (type: [(am = g puream = 1)]
|
---|
| 688 | {exp coef:0} = {
|
---|
| 689 | 1.2240000000 1.0000000000
|
---|
| 690 | })
|
---|
| 691 | ]
|
---|
| 692 | %
|
---|
| 693 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 694 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 695 | aluminum: "aug-cc-pVQZ": [
|
---|
| 696 | (type: [am = s am = s am = s]
|
---|
| 697 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 698 | 419600.00000 0.27821900000E-04 -0.72375400000E-05 0.16715000000E-05
|
---|
| 699 | 62830.000000 0.21633000000E-03 -0.56173300000E-04 0.12964100000E-04
|
---|
| 700 | 14290.000000 0.11375400000E-02 -0.29652800000E-03 0.68510100000E-04
|
---|
| 701 | 4038.0000000 0.47963500000E-02 -0.12491300000E-02 0.28827400000E-03
|
---|
| 702 | 1312.0000000 0.17238900000E-01 -0.45510100000E-02 0.10527600000E-02
|
---|
| 703 | 470.50000000 0.53806600000E-01 -0.14439300000E-01 0.33387800000E-02
|
---|
| 704 | 181.80000000 0.14132600000 -0.40346400000E-01 0.93921700000E-02
|
---|
| 705 | 74.460000000 0.28926800000 -0.92261800000E-01 0.21604700000E-01
|
---|
| 706 | 31.900000000 0.38482500000 -0.16451000000 0.39587300000E-01
|
---|
| 707 | 13.960000000 0.23285200000 -0.14129600000 0.34918000000E-01
|
---|
| 708 | 5.1800000000 0.29333000000E-01 0.19536500000 -0.52841500000E-01
|
---|
| 709 | 2.2650000000 -0.30057400000E-02 0.57247500000 -0.19187800000
|
---|
| 710 | 0.96640000000 0.16667300000E-02 0.37404100000 -0.25411500000
|
---|
| 711 | })
|
---|
| 712 | (type: [am = s]
|
---|
| 713 | {exp coef:0} = {
|
---|
| 714 | 0.24470000000 1.0000000000
|
---|
| 715 | })
|
---|
| 716 | (type: [am = s]
|
---|
| 717 | {exp coef:0} = {
|
---|
| 718 | 0.11840000000 1.0000000000
|
---|
| 719 | })
|
---|
| 720 | (type: [am = s]
|
---|
| 721 | {exp coef:0} = {
|
---|
| 722 | 0.50210000000E-01 1.0000000000
|
---|
| 723 | })
|
---|
| 724 | (type: [am = s]
|
---|
| 725 | {exp coef:0} = {
|
---|
| 726 | 0.18300000000E-01 1.0000000000
|
---|
| 727 | })
|
---|
| 728 | (type: [am = p am = p]
|
---|
| 729 | {exp coef:0 coef:1} = {
|
---|
| 730 | 891.30000000 0.49175500000E-03 -0.88869500000E-04
|
---|
| 731 | 211.30000000 0.41584300000E-02 -0.74582300000E-03
|
---|
| 732 | 68.280000000 0.21253800000E-01 -0.38702500000E-02
|
---|
| 733 | 25.700000000 0.76405800000E-01 -0.13935000000E-01
|
---|
| 734 | 10.630000000 0.19427700000 -0.36686000000E-01
|
---|
| 735 | 4.6020000000 0.33442800000 -0.62779700000E-01
|
---|
| 736 | 2.0150000000 0.37502600000 -0.78960200000E-01
|
---|
| 737 | 0.87060000000 0.20404100000 -0.28858900000E-01
|
---|
| 738 | })
|
---|
| 739 | (type: [am = p]
|
---|
| 740 | {exp coef:0} = {
|
---|
| 741 | 0.29720000000 1.0000000000
|
---|
| 742 | })
|
---|
| 743 | (type: [am = p]
|
---|
| 744 | {exp coef:0} = {
|
---|
| 745 | 0.11000000000 1.0000000000
|
---|
| 746 | })
|
---|
| 747 | (type: [am = p]
|
---|
| 748 | {exp coef:0} = {
|
---|
| 749 | 0.39890000000E-01 1.0000000000
|
---|
| 750 | })
|
---|
| 751 | (type: [am = p]
|
---|
| 752 | {exp coef:0} = {
|
---|
| 753 | 0.12100000000E-01 1.0000000000
|
---|
| 754 | })
|
---|
| 755 | (type: [(am = d puream = 1)]
|
---|
| 756 | {exp coef:0} = {
|
---|
| 757 | 0.80400000000E-01 1.0000000000
|
---|
| 758 | })
|
---|
| 759 | (type: [(am = d puream = 1)]
|
---|
| 760 | {exp coef:0} = {
|
---|
| 761 | 0.19900000000 1.0000000000
|
---|
| 762 | })
|
---|
| 763 | (type: [(am = d puream = 1)]
|
---|
| 764 | {exp coef:0} = {
|
---|
| 765 | 0.49400000000 1.0000000000
|
---|
| 766 | })
|
---|
| 767 | (type: [(am = d puream = 1)]
|
---|
| 768 | {exp coef:0} = {
|
---|
| 769 | 0.28200000000E-01 1.0000000000
|
---|
| 770 | })
|
---|
| 771 | (type: [(am = f puream = 1)]
|
---|
| 772 | {exp coef:0} = {
|
---|
| 773 | 0.15400000000 1.0000000000
|
---|
| 774 | })
|
---|
| 775 | (type: [(am = f puream = 1)]
|
---|
| 776 | {exp coef:0} = {
|
---|
| 777 | 0.40100000000 1.0000000000
|
---|
| 778 | })
|
---|
| 779 | (type: [(am = f puream = 1)]
|
---|
| 780 | {exp coef:0} = {
|
---|
| 781 | 0.58200000000E-01 1.0000000000
|
---|
| 782 | })
|
---|
| 783 | (type: [(am = g puream = 1)]
|
---|
| 784 | {exp coef:0} = {
|
---|
| 785 | 0.35700000000 1.0000000000
|
---|
| 786 | })
|
---|
| 787 | (type: [(am = g puream = 1)]
|
---|
| 788 | {exp coef:0} = {
|
---|
| 789 | 0.15300000000 1.0000000000
|
---|
| 790 | })
|
---|
| 791 | ]
|
---|
| 792 | %
|
---|
| 793 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 794 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 795 | silicon: "aug-cc-pVQZ": [
|
---|
| 796 | (type: [am = s am = s am = s]
|
---|
| 797 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 798 | 513000.00000 0.26092000000E-04 -0.69488000000E-05 0.17806800000E-05
|
---|
| 799 | 76820.000000 0.20290500000E-03 -0.53964100000E-04 0.13814800000E-04
|
---|
| 800 | 17470.000000 0.10671500000E-02 -0.28471600000E-03 0.73000500000E-04
|
---|
| 801 | 4935.0000000 0.45059700000E-02 -0.12020300000E-02 0.30766600000E-03
|
---|
| 802 | 1602.0000000 0.16235900000E-01 -0.43839700000E-02 0.11256300000E-02
|
---|
| 803 | 574.10000000 0.50891300000E-01 -0.13977600000E-01 0.35843500000E-02
|
---|
| 804 | 221.50000000 0.13515500000 -0.39351600000E-01 0.10172800000E-01
|
---|
| 805 | 90.540000000 0.28129200000 -0.91428300000E-01 0.23752000000E-01
|
---|
| 806 | 38.740000000 0.38533600000 -0.16560900000 0.44348300000E-01
|
---|
| 807 | 16.950000000 0.24565100000 -0.15250500000 0.41904100000E-01
|
---|
| 808 | 6.4520000000 0.34314500000E-01 0.16852400000 -0.50250400000E-01
|
---|
| 809 | 2.8740000000 -0.33488400000E-02 0.56928400000 -0.21657800000
|
---|
| 810 | 1.2500000000 0.18762500000E-02 0.39805600000 -0.28644800000
|
---|
| 811 | })
|
---|
| 812 | (type: [am = s]
|
---|
| 813 | {exp coef:0} = {
|
---|
| 814 | 0.35990000000 1.0000000000
|
---|
| 815 | })
|
---|
| 816 | (type: [am = s]
|
---|
| 817 | {exp coef:0} = {
|
---|
| 818 | 0.16990000000 1.0000000000
|
---|
| 819 | })
|
---|
| 820 | (type: [am = s]
|
---|
| 821 | {exp coef:0} = {
|
---|
| 822 | 0.70660000000E-01 1.0000000000
|
---|
| 823 | })
|
---|
| 824 | (type: [am = s]
|
---|
| 825 | {exp coef:0} = {
|
---|
| 826 | 0.27500000000E-01 1.0000000000
|
---|
| 827 | })
|
---|
| 828 | (type: [am = p am = p]
|
---|
| 829 | {exp coef:0 coef:1} = {
|
---|
| 830 | 1122.0000000 0.44814300000E-03 -0.96488300000E-04
|
---|
| 831 | 266.00000000 0.38163900000E-02 -0.81197100000E-03
|
---|
| 832 | 85.920000000 0.19810500000E-01 -0.43008700000E-02
|
---|
| 833 | 32.330000000 0.72701700000E-01 -0.15750200000E-01
|
---|
| 834 | 13.370000000 0.18983900000 -0.42954100000E-01
|
---|
| 835 | 5.8000000000 0.33567200000 -0.75257400000E-01
|
---|
| 836 | 2.5590000000 0.37936500000 -0.97144600000E-01
|
---|
| 837 | 1.1240000000 0.20119300000 -0.22750700000E-01
|
---|
| 838 | })
|
---|
| 839 | (type: [am = p]
|
---|
| 840 | {exp coef:0} = {
|
---|
| 841 | 0.39880000000 1.0000000000
|
---|
| 842 | })
|
---|
| 843 | (type: [am = p]
|
---|
| 844 | {exp coef:0} = {
|
---|
| 845 | 0.15330000000 1.0000000000
|
---|
| 846 | })
|
---|
| 847 | (type: [am = p]
|
---|
| 848 | {exp coef:0} = {
|
---|
| 849 | 0.57280000000E-01 1.0000000000
|
---|
| 850 | })
|
---|
| 851 | (type: [am = p]
|
---|
| 852 | {exp coef:0} = {
|
---|
| 853 | 0.20000000000E-01 1.0000000000
|
---|
| 854 | })
|
---|
| 855 | (type: [(am = d puream = 1)]
|
---|
| 856 | {exp coef:0} = {
|
---|
| 857 | 0.12000000000 1.0000000000
|
---|
| 858 | })
|
---|
| 859 | (type: [(am = d puream = 1)]
|
---|
| 860 | {exp coef:0} = {
|
---|
| 861 | 0.30200000000 1.0000000000
|
---|
| 862 | })
|
---|
| 863 | (type: [(am = d puream = 1)]
|
---|
| 864 | {exp coef:0} = {
|
---|
| 865 | 0.76000000000 1.0000000000
|
---|
| 866 | })
|
---|
| 867 | (type: [(am = d puream = 1)]
|
---|
| 868 | {exp coef:0} = {
|
---|
| 869 | 0.43500000000E-01 1.0000000000
|
---|
| 870 | })
|
---|
| 871 | (type: [(am = f puream = 1)]
|
---|
| 872 | {exp coef:0} = {
|
---|
| 873 | 0.21200000000 1.0000000000
|
---|
| 874 | })
|
---|
| 875 | (type: [(am = f puream = 1)]
|
---|
| 876 | {exp coef:0} = {
|
---|
| 877 | 0.54100000000 1.0000000000
|
---|
| 878 | })
|
---|
| 879 | (type: [(am = f puream = 1)]
|
---|
| 880 | {exp coef:0} = {
|
---|
| 881 | 0.84600000000E-01 1.0000000000
|
---|
| 882 | })
|
---|
| 883 | (type: [(am = g puream = 1)]
|
---|
| 884 | {exp coef:0} = {
|
---|
| 885 | 0.46100000000 1.0000000000
|
---|
| 886 | })
|
---|
| 887 | (type: [(am = g puream = 1)]
|
---|
| 888 | {exp coef:0} = {
|
---|
| 889 | 0.21200000000 1.0000000000
|
---|
| 890 | })
|
---|
| 891 | ]
|
---|
| 892 | %
|
---|
| 893 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 894 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 895 | phosphorus: "aug-cc-pVQZ": [
|
---|
| 896 | (type: [am = s am = s am = s]
|
---|
| 897 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 898 | 615200.00000 0.24745000000E-04 -0.67220500000E-05 0.18474000000E-05
|
---|
| 899 | 92120.000000 0.19246500000E-03 -0.52231100000E-04 0.14338000000E-04
|
---|
| 900 | 20950.000000 0.10120200000E-02 -0.27536100000E-03 0.75722800000E-04
|
---|
| 901 | 5920.0000000 0.42726100000E-02 -0.11630700000E-02 0.31920500000E-03
|
---|
| 902 | 1922.0000000 0.15416100000E-01 -0.42428100000E-02 0.11685100000E-02
|
---|
| 903 | 688.00000000 0.48597600000E-01 -0.13611400000E-01 0.37426700000E-02
|
---|
| 904 | 265.00000000 0.13006000000 -0.38511400000E-01 0.10681700000E-01
|
---|
| 905 | 108.20000000 0.27451400000 -0.90664300000E-01 0.25265700000E-01
|
---|
| 906 | 46.220000000 0.38540200000 -0.16658400000 0.47928300000E-01
|
---|
| 907 | 20.230000000 0.25593400000 -0.16144700000 0.47709600000E-01
|
---|
| 908 | 7.8590000000 0.39123700000E-01 0.14678100000 -0.46652500000E-01
|
---|
| 909 | 3.5470000000 -0.36801000000E-02 0.56668200000 -0.23496800000
|
---|
| 910 | 1.5640000000 0.20821100000E-02 0.41643300000 -0.31133700000
|
---|
| 911 | })
|
---|
| 912 | (type: [am = s]
|
---|
| 913 | {exp coef:0} = {
|
---|
| 914 | 0.48880000000 1.0000000000
|
---|
| 915 | })
|
---|
| 916 | (type: [am = s]
|
---|
| 917 | {exp coef:0} = {
|
---|
| 918 | 0.22660000000 1.0000000000
|
---|
| 919 | })
|
---|
| 920 | (type: [am = s]
|
---|
| 921 | {exp coef:0} = {
|
---|
| 922 | 0.93310000000E-01 1.0000000000
|
---|
| 923 | })
|
---|
| 924 | (type: [am = s]
|
---|
| 925 | {exp coef:0} = {
|
---|
| 926 | 0.35400000000E-01 1.0000000000
|
---|
| 927 | })
|
---|
| 928 | (type: [am = p am = p]
|
---|
| 929 | {exp coef:0 coef:1} = {
|
---|
| 930 | 1367.0000000 0.42101500000E-03 -0.10082700000E-03
|
---|
| 931 | 324.00000000 0.36098500000E-02 -0.85449900000E-03
|
---|
| 932 | 104.60000000 0.18921700000E-01 -0.45711600000E-02
|
---|
| 933 | 39.370000000 0.70556000000E-01 -0.17032700000E-01
|
---|
| 934 | 16.260000000 0.18815700000 -0.47520400000E-01
|
---|
| 935 | 7.0560000000 0.33870900000 -0.85278600000E-01
|
---|
| 936 | 3.1300000000 0.38194300000 -0.10967600000
|
---|
| 937 | 1.3940000000 0.19526100000 -0.16118100000E-01
|
---|
| 938 | })
|
---|
| 939 | (type: [am = p]
|
---|
| 940 | {exp coef:0} = {
|
---|
| 941 | 0.51790000000 1.0000000000
|
---|
| 942 | })
|
---|
| 943 | (type: [am = p]
|
---|
| 944 | {exp coef:0} = {
|
---|
| 945 | 0.20320000000 1.0000000000
|
---|
| 946 | })
|
---|
| 947 | (type: [am = p]
|
---|
| 948 | {exp coef:0} = {
|
---|
| 949 | 0.76980000000E-01 1.0000000000
|
---|
| 950 | })
|
---|
| 951 | (type: [am = p]
|
---|
| 952 | {exp coef:0} = {
|
---|
| 953 | 0.27200000000E-01 1.0000000000
|
---|
| 954 | })
|
---|
| 955 | (type: [(am = d puream = 1)]
|
---|
| 956 | {exp coef:0} = {
|
---|
| 957 | 0.16500000000 1.0000000000
|
---|
| 958 | })
|
---|
| 959 | (type: [(am = d puream = 1)]
|
---|
| 960 | {exp coef:0} = {
|
---|
| 961 | 0.41300000000 1.0000000000
|
---|
| 962 | })
|
---|
| 963 | (type: [(am = d puream = 1)]
|
---|
| 964 | {exp coef:0} = {
|
---|
| 965 | 1.0360000000 1.0000000000
|
---|
| 966 | })
|
---|
| 967 | (type: [(am = d puream = 1)]
|
---|
| 968 | {exp coef:0} = {
|
---|
| 969 | 0.59400000000E-01 1.0000000000
|
---|
| 970 | })
|
---|
| 971 | (type: [(am = f puream = 1)]
|
---|
| 972 | {exp coef:0} = {
|
---|
| 973 | 0.28000000000 1.0000000000
|
---|
| 974 | })
|
---|
| 975 | (type: [(am = f puream = 1)]
|
---|
| 976 | {exp coef:0} = {
|
---|
| 977 | 0.70300000000 1.0000000000
|
---|
| 978 | })
|
---|
| 979 | (type: [(am = f puream = 1)]
|
---|
| 980 | {exp coef:0} = {
|
---|
| 981 | 0.10900000000 1.0000000000
|
---|
| 982 | })
|
---|
| 983 | (type: [(am = g puream = 1)]
|
---|
| 984 | {exp coef:0} = {
|
---|
| 985 | 0.59700000000 1.0000000000
|
---|
| 986 | })
|
---|
| 987 | (type: [(am = g puream = 1)]
|
---|
| 988 | {exp coef:0} = {
|
---|
| 989 | 0.25000000000 1.0000000000
|
---|
| 990 | })
|
---|
| 991 | ]
|
---|
| 992 | %
|
---|
| 993 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 994 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 995 | sulfur: "aug-cc-pVQZ": [
|
---|
| 996 | (type: [am = s am = s am = s]
|
---|
| 997 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 998 | 727800.00000 0.23602500000E-04 -0.65217900000E-05 0.18940600000E-05
|
---|
| 999 | 109000.00000 0.18348200000E-03 -0.50663100000E-04 0.14694800000E-04
|
---|
| 1000 | 24800.000000 0.96427800000E-03 -0.26683300000E-03 0.77546000000E-04
|
---|
| 1001 | 7014.0000000 0.40653700000E-02 -0.11260100000E-02 0.32650900000E-03
|
---|
| 1002 | 2278.0000000 0.14697300000E-01 -0.41118600000E-02 0.11968600000E-02
|
---|
| 1003 | 814.70000000 0.46508100000E-01 -0.13245400000E-01 0.38479900000E-02
|
---|
| 1004 | 313.40000000 0.12550800000 -0.37700400000E-01 0.11053900000E-01
|
---|
| 1005 | 127.70000000 0.26843300000 -0.89855400000E-01 0.26464500000E-01
|
---|
| 1006 | 54.480000000 0.38480900000 -0.16709800000 0.50877100000E-01
|
---|
| 1007 | 23.850000000 0.26537200000 -0.16935400000 0.53003000000E-01
|
---|
| 1008 | 9.4280000000 0.43732600000E-01 0.12782400000 -0.42551800000E-01
|
---|
| 1009 | 4.2900000000 -0.37880700000E-02 0.56486200000 -0.25085300000
|
---|
| 1010 | 1.9090000000 0.21808300000E-02 0.43176700000 -0.33315200000
|
---|
| 1011 | })
|
---|
| 1012 | (type: [am = s]
|
---|
| 1013 | {exp coef:0} = {
|
---|
| 1014 | 0.62700000000 1.0000000000
|
---|
| 1015 | })
|
---|
| 1016 | (type: [am = s]
|
---|
| 1017 | {exp coef:0} = {
|
---|
| 1018 | 0.28730000000 1.0000000000
|
---|
| 1019 | })
|
---|
| 1020 | (type: [am = s]
|
---|
| 1021 | {exp coef:0} = {
|
---|
| 1022 | 0.11720000000 1.0000000000
|
---|
| 1023 | })
|
---|
| 1024 | (type: [am = s]
|
---|
| 1025 | {exp coef:0} = {
|
---|
| 1026 | 0.42800000000E-01 1.0000000000
|
---|
| 1027 | })
|
---|
| 1028 | (type: [am = p am = p]
|
---|
| 1029 | {exp coef:0 coef:1} = {
|
---|
| 1030 | 1546.0000000 0.44118300000E-03 -0.11311000000E-03
|
---|
| 1031 | 366.40000000 0.37757100000E-02 -0.95858100000E-03
|
---|
| 1032 | 118.40000000 0.19836000000E-01 -0.51347100000E-02
|
---|
| 1033 | 44.530000000 0.74206300000E-01 -0.19264100000E-01
|
---|
| 1034 | 18.380000000 0.19732700000 -0.53598000000E-01
|
---|
| 1035 | 7.9650000000 0.35185100000 -0.96033300000E-01
|
---|
| 1036 | 3.5410000000 0.37868700000 -0.11818300000
|
---|
| 1037 | 1.5910000000 0.17093100000 0.92319400000E-02
|
---|
| 1038 | })
|
---|
| 1039 | (type: [am = p]
|
---|
| 1040 | {exp coef:0} = {
|
---|
| 1041 | 0.62050000000 1.0000000000
|
---|
| 1042 | })
|
---|
| 1043 | (type: [am = p]
|
---|
| 1044 | {exp coef:0} = {
|
---|
| 1045 | 0.24200000000 1.0000000000
|
---|
| 1046 | })
|
---|
| 1047 | (type: [am = p]
|
---|
| 1048 | {exp coef:0} = {
|
---|
| 1049 | 0.90140000000E-01 1.0000000000
|
---|
| 1050 | })
|
---|
| 1051 | (type: [am = p]
|
---|
| 1052 | {exp coef:0} = {
|
---|
| 1053 | 0.31700000000E-01 1.0000000000
|
---|
| 1054 | })
|
---|
| 1055 | (type: [(am = d puream = 1)]
|
---|
| 1056 | {exp coef:0} = {
|
---|
| 1057 | 0.20300000000 1.0000000000
|
---|
| 1058 | })
|
---|
| 1059 | (type: [(am = d puream = 1)]
|
---|
| 1060 | {exp coef:0} = {
|
---|
| 1061 | 0.50400000000 1.0000000000
|
---|
| 1062 | })
|
---|
| 1063 | (type: [(am = d puream = 1)]
|
---|
| 1064 | {exp coef:0} = {
|
---|
| 1065 | 1.2500000000 1.0000000000
|
---|
| 1066 | })
|
---|
| 1067 | (type: [(am = d puream = 1)]
|
---|
| 1068 | {exp coef:0} = {
|
---|
| 1069 | 0.74800000000E-01 1.0000000000
|
---|
| 1070 | })
|
---|
| 1071 | (type: [(am = f puream = 1)]
|
---|
| 1072 | {exp coef:0} = {
|
---|
| 1073 | 0.33500000000 1.0000000000
|
---|
| 1074 | })
|
---|
| 1075 | (type: [(am = f puream = 1)]
|
---|
| 1076 | {exp coef:0} = {
|
---|
| 1077 | 0.86900000000 1.0000000000
|
---|
| 1078 | })
|
---|
| 1079 | (type: [(am = f puream = 1)]
|
---|
| 1080 | {exp coef:0} = {
|
---|
| 1081 | 0.14000000000 1.0000000000
|
---|
| 1082 | })
|
---|
| 1083 | (type: [(am = g puream = 1)]
|
---|
| 1084 | {exp coef:0} = {
|
---|
| 1085 | 0.68300000000 1.0000000000
|
---|
| 1086 | })
|
---|
| 1087 | (type: [(am = g puream = 1)]
|
---|
| 1088 | {exp coef:0} = {
|
---|
| 1089 | 0.29700000000 1.0000000000
|
---|
| 1090 | })
|
---|
| 1091 | ]
|
---|
| 1092 | %
|
---|
| 1093 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 1094 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1095 | chlorine: "aug-cc-pVQZ": [
|
---|
| 1096 | (type: [am = s am = s am = s]
|
---|
| 1097 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1098 | 834900.00000 0.23168800000E-04 -0.64964900000E-05 0.19664500000E-05
|
---|
| 1099 | 125000.00000 0.18015400000E-03 -0.50489500000E-04 0.15262000000E-04
|
---|
| 1100 | 28430.000000 0.94778200000E-03 -0.26611300000E-03 0.80608600000E-04
|
---|
| 1101 | 8033.0000000 0.40013900000E-02 -0.11249900000E-02 0.33996000000E-03
|
---|
| 1102 | 2608.0000000 0.14462900000E-01 -0.41049700000E-02 0.12455100000E-02
|
---|
| 1103 | 933.90000000 0.45658600000E-01 -0.13198700000E-01 0.39961200000E-02
|
---|
| 1104 | 360.00000000 0.12324800000 -0.37534200000E-01 0.11475100000E-01
|
---|
| 1105 | 147.00000000 0.26436900000 -0.89723300000E-01 0.27550400000E-01
|
---|
| 1106 | 62.880000000 0.38298900000 -0.16767100000 0.53291700000E-01
|
---|
| 1107 | 27.600000000 0.27093400000 -0.17476300000 0.57124600000E-01
|
---|
| 1108 | 11.080000000 0.47140400000E-01 0.11490900000 -0.39520100000E-01
|
---|
| 1109 | 5.0750000000 -0.37176600000E-02 0.56361800000 -0.26434300000
|
---|
| 1110 | 2.2780000000 0.21915800000E-02 0.44160600000 -0.34929100000
|
---|
| 1111 | })
|
---|
| 1112 | (type: [am = s]
|
---|
| 1113 | {exp coef:0} = {
|
---|
| 1114 | 0.77750000000 1.0000000000
|
---|
| 1115 | })
|
---|
| 1116 | (type: [am = s]
|
---|
| 1117 | {exp coef:0} = {
|
---|
| 1118 | 0.35270000000 1.0000000000
|
---|
| 1119 | })
|
---|
| 1120 | (type: [am = s]
|
---|
| 1121 | {exp coef:0} = {
|
---|
| 1122 | 0.14310000000 1.0000000000
|
---|
| 1123 | })
|
---|
| 1124 | (type: [am = s]
|
---|
| 1125 | {exp coef:0} = {
|
---|
| 1126 | 0.51900000000E-01 1.0000000000
|
---|
| 1127 | })
|
---|
| 1128 | (type: [am = p am = p]
|
---|
| 1129 | {exp coef:0 coef:1} = {
|
---|
| 1130 | 1703.0000000 0.47403900000E-03 -0.12826600000E-03
|
---|
| 1131 | 403.60000000 0.40641200000E-02 -0.10935600000E-02
|
---|
| 1132 | 130.30000000 0.21335500000E-01 -0.58342900000E-02
|
---|
| 1133 | 49.050000000 0.79461100000E-01 -0.21925800000E-01
|
---|
| 1134 | 20.260000000 0.20892700000 -0.60138500000E-01
|
---|
| 1135 | 8.7870000000 0.36494500000 -0.10692900000
|
---|
| 1136 | 3.9190000000 0.37172500000 -0.12245400000
|
---|
| 1137 | 1.7650000000 0.14629200000 0.38361900000E-01
|
---|
| 1138 | })
|
---|
| 1139 | (type: [am = p]
|
---|
| 1140 | {exp coef:0} = {
|
---|
| 1141 | 0.72070000000 1.0000000000
|
---|
| 1142 | })
|
---|
| 1143 | (type: [am = p]
|
---|
| 1144 | {exp coef:0} = {
|
---|
| 1145 | 0.28390000000 1.0000000000
|
---|
| 1146 | })
|
---|
| 1147 | (type: [am = p]
|
---|
| 1148 | {exp coef:0} = {
|
---|
| 1149 | 0.10600000000 1.0000000000
|
---|
| 1150 | })
|
---|
| 1151 | (type: [am = p]
|
---|
| 1152 | {exp coef:0} = {
|
---|
| 1153 | 0.37600000000E-01 1.0000000000
|
---|
| 1154 | })
|
---|
| 1155 | (type: [(am = d puream = 1)]
|
---|
| 1156 | {exp coef:0} = {
|
---|
| 1157 | 0.25400000000 1.0000000000
|
---|
| 1158 | })
|
---|
| 1159 | (type: [(am = d puream = 1)]
|
---|
| 1160 | {exp coef:0} = {
|
---|
| 1161 | 0.62800000000 1.0000000000
|
---|
| 1162 | })
|
---|
| 1163 | (type: [(am = d puream = 1)]
|
---|
| 1164 | {exp coef:0} = {
|
---|
| 1165 | 1.5510000000 1.0000000000
|
---|
| 1166 | })
|
---|
| 1167 | (type: [(am = d puream = 1)]
|
---|
| 1168 | {exp coef:0} = {
|
---|
| 1169 | 0.95200000000E-01 1.0000000000
|
---|
| 1170 | })
|
---|
| 1171 | (type: [(am = f puream = 1)]
|
---|
| 1172 | {exp coef:0} = {
|
---|
| 1173 | 0.42300000000 1.0000000000
|
---|
| 1174 | })
|
---|
| 1175 | (type: [(am = f puream = 1)]
|
---|
| 1176 | {exp coef:0} = {
|
---|
| 1177 | 1.0890000000 1.0000000000
|
---|
| 1178 | })
|
---|
| 1179 | (type: [(am = f puream = 1)]
|
---|
| 1180 | {exp coef:0} = {
|
---|
| 1181 | 0.21700000000 1.0000000000
|
---|
| 1182 | })
|
---|
| 1183 | (type: [(am = g puream = 1)]
|
---|
| 1184 | {exp coef:0} = {
|
---|
| 1185 | 0.82700000000 1.0000000000
|
---|
| 1186 | })
|
---|
| 1187 | (type: [(am = g puream = 1)]
|
---|
| 1188 | {exp coef:0} = {
|
---|
| 1189 | 0.37800000000 1.0000000000
|
---|
| 1190 | })
|
---|
| 1191 | ]
|
---|
| 1192 | %
|
---|
| 1193 | % BASIS SET: (16s,11p,3d,2f,1g) -> [6s,5p,3d,2f,1g]
|
---|
| 1194 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1195 | argon: "aug-cc-pVQZ": [
|
---|
| 1196 | (type: [am = s am = s am = s]
|
---|
| 1197 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1198 | 950600.00000 0.22754500000E-04 -0.64620100000E-05 0.20205600000E-05
|
---|
| 1199 | 142300.00000 0.17694500000E-03 -0.50234600000E-04 0.15685100000E-04
|
---|
| 1200 | 32360.000000 0.93128200000E-03 -0.26480400000E-03 0.82861700000E-04
|
---|
| 1201 | 9145.0000000 0.39286000000E-02 -0.11189500000E-02 0.34926400000E-03
|
---|
| 1202 | 2970.0000000 0.14206400000E-01 -0.40827600000E-02 0.12797600000E-02
|
---|
| 1203 | 1064.0000000 0.44811400000E-01 -0.13121600000E-01 0.41036500000E-02
|
---|
| 1204 | 410.80000000 0.12100100000 -0.37285500000E-01 0.11778900000E-01
|
---|
| 1205 | 168.00000000 0.26057900000 -0.89470900000E-01 0.28386800000E-01
|
---|
| 1206 | 71.990000000 0.38136400000 -0.16805400000 0.55240600000E-01
|
---|
| 1207 | 31.670000000 0.27605800000 -0.17959400000 0.60749200000E-01
|
---|
| 1208 | 12.890000000 0.50517900000E-01 0.10295300000 -0.36201200000E-01
|
---|
| 1209 | 5.9290000000 -0.35986600000E-02 0.56263000000 -0.27539800000
|
---|
| 1210 | 2.6780000000 0.21879800000E-02 0.45035500000 -0.36284500000
|
---|
| 1211 | })
|
---|
| 1212 | (type: [am = s]
|
---|
| 1213 | {exp coef:0} = {
|
---|
| 1214 | 0.94160000000 1.0000000000
|
---|
| 1215 | })
|
---|
| 1216 | (type: [am = s]
|
---|
| 1217 | {exp coef:0} = {
|
---|
| 1218 | 0.42390000000 1.0000000000
|
---|
| 1219 | })
|
---|
| 1220 | (type: [am = s]
|
---|
| 1221 | {exp coef:0} = {
|
---|
| 1222 | 0.17140000000 1.0000000000
|
---|
| 1223 | })
|
---|
| 1224 | (type: [am = s]
|
---|
| 1225 | {exp coef:0} = {
|
---|
| 1226 | 0.61000000000E-01 1.0000000000
|
---|
| 1227 | })
|
---|
| 1228 | (type: [am = p am = p]
|
---|
| 1229 | {exp coef:0 coef:1} = {
|
---|
| 1230 | 1890.0000000 0.49575200000E-03 -0.13886300000E-03
|
---|
| 1231 | 447.80000000 0.42517200000E-02 -0.11887000000E-02
|
---|
| 1232 | 144.60000000 0.22327700000E-01 -0.63255300000E-02
|
---|
| 1233 | 54.460000000 0.83087800000E-01 -0.23881300000E-01
|
---|
| 1234 | 22.510000000 0.21711000000 -0.64923800000E-01
|
---|
| 1235 | 9.7740000000 0.37450700000 -0.11544400000
|
---|
| 1236 | 4.3680000000 0.36644500000 -0.12365100000
|
---|
| 1237 | 1.9590000000 0.12924500000 0.64905500000E-01
|
---|
| 1238 | })
|
---|
| 1239 | (type: [am = p]
|
---|
| 1240 | {exp coef:0} = {
|
---|
| 1241 | 0.82600000000 1.0000000000
|
---|
| 1242 | })
|
---|
| 1243 | (type: [am = p]
|
---|
| 1244 | {exp coef:0} = {
|
---|
| 1245 | 0.32970000000 1.0000000000
|
---|
| 1246 | })
|
---|
| 1247 | (type: [am = p]
|
---|
| 1248 | {exp coef:0} = {
|
---|
| 1249 | 0.12420000000 1.0000000000
|
---|
| 1250 | })
|
---|
| 1251 | (type: [am = p]
|
---|
| 1252 | {exp coef:0} = {
|
---|
| 1253 | 0.43500000000E-01 1.0000000000
|
---|
| 1254 | })
|
---|
| 1255 | (type: [(am = d puream = 1)]
|
---|
| 1256 | {exp coef:0} = {
|
---|
| 1257 | 0.31100000000 1.0000000000
|
---|
| 1258 | })
|
---|
| 1259 | (type: [(am = d puream = 1)]
|
---|
| 1260 | {exp coef:0} = {
|
---|
| 1261 | 0.76300000000 1.0000000000
|
---|
| 1262 | })
|
---|
| 1263 | (type: [(am = d puream = 1)]
|
---|
| 1264 | {exp coef:0} = {
|
---|
| 1265 | 1.8730000000 1.0000000000
|
---|
| 1266 | })
|
---|
| 1267 | (type: [(am = d puream = 1)]
|
---|
| 1268 | {exp coef:0} = {
|
---|
| 1269 | 0.11600000000 1.0000000000
|
---|
| 1270 | })
|
---|
| 1271 | (type: [(am = f puream = 1)]
|
---|
| 1272 | {exp coef:0} = {
|
---|
| 1273 | 0.54300000000 1.0000000000
|
---|
| 1274 | })
|
---|
| 1275 | (type: [(am = f puream = 1)]
|
---|
| 1276 | {exp coef:0} = {
|
---|
| 1277 | 1.3250000000 1.0000000000
|
---|
| 1278 | })
|
---|
| 1279 | (type: [(am = f puream = 1)]
|
---|
| 1280 | {exp coef:0} = {
|
---|
| 1281 | 0.29400000000 1.0000000000
|
---|
| 1282 | })
|
---|
| 1283 | (type: [(am = g puream = 1)]
|
---|
| 1284 | {exp coef:0} = {
|
---|
| 1285 | 1.0070000000 1.0000000000
|
---|
| 1286 | })
|
---|
| 1287 | (type: [(am = g puream = 1)]
|
---|
| 1288 | {exp coef:0} = {
|
---|
| 1289 | 0.45900000000 1.0000000000
|
---|
| 1290 | })
|
---|
| 1291 | ]
|
---|
| 1292 | %
|
---|
| 1293 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
| 1294 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1295 | gallium: "aug-cc-pVQZ": [
|
---|
| 1296 | (type: [am = s am = s am = s am = s]
|
---|
| 1297 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 1298 | 11274496.000 0.41000000000E-05 -0.13000000000E-05 0.50000000000E-06 -0.10000000000E-06
|
---|
| 1299 | 1688053.4000 0.31600000000E-04 -0.98000000000E-05 0.37000000000E-05 -0.90000000000E-06
|
---|
| 1300 | 384140.83000 0.16620000000E-03 -0.51500000000E-04 0.19700000000E-04 -0.46000000000E-05
|
---|
| 1301 | 108807.03000 0.70170000000E-03 -0.21760000000E-03 0.83000000000E-04 -0.19300000000E-04
|
---|
| 1302 | 35497.691000 0.25508000000E-02 -0.79320000000E-03 0.30290000000E-03 -0.70500000000E-04
|
---|
| 1303 | 12815.104000 0.82653000000E-02 -0.25821000000E-02 0.98500000000E-03 -0.22900000000E-03
|
---|
| 1304 | 4998.1087000 0.24195000000E-01 -0.76652000000E-02 0.29341000000E-02 -0.68350000000E-03
|
---|
| 1305 | 2072.8848000 0.63657200000E-01 -0.20756700000E-01 0.79572000000E-02 -0.18505000000E-02
|
---|
| 1306 | 903.74582000 0.14576510000 -0.50775800000E-01 0.19676100000E-01 -0.45930000000E-02
|
---|
| 1307 | 410.44307000 0.27033130000 -0.10738020000 0.42178300000E-01 -0.98343000000E-02
|
---|
| 1308 | 192.60636000 0.34915710000 -0.18065200000 0.73864500000E-01 -0.17384900000E-01
|
---|
| 1309 | 92.049678000 0.23744330000 -0.17367010000 0.74753100000E-01 -0.17575200000E-01
|
---|
| 1310 | 42.047811000 0.48083300000E-01 0.11082510000 -0.53410800000E-01 0.12525400000E-01
|
---|
| 1311 | 21.069217000 -0.22966000000E-02 0.54183660000 -0.35739190000 0.90340000000E-01
|
---|
| 1312 | 10.447915000 0.17904000000E-02 0.44678990000 -0.42507130000 0.11047210000
|
---|
| 1313 | 4.7776580000 -0.82760000000E-03 0.76210500000E-01 0.20109920000 -0.61211900000E-01
|
---|
| 1314 | 2.2825660000 0.35430000000E-03 -0.93710000000E-03 0.71459660000 -0.25617680000
|
---|
| 1315 | 1.0353030000 -0.14110000000E-03 0.17806000000E-02 0.36881490000 -0.26037720000
|
---|
| 1316 | })
|
---|
| 1317 | (type: [am = s]
|
---|
| 1318 | {exp coef:0} = {
|
---|
| 1319 | 0.25767400000 1.0000000000
|
---|
| 1320 | })
|
---|
| 1321 | (type: [am = s]
|
---|
| 1322 | {exp coef:0} = {
|
---|
| 1323 | 0.11917900000 1.0000000000
|
---|
| 1324 | })
|
---|
| 1325 | (type: [am = s]
|
---|
| 1326 | {exp coef:0} = {
|
---|
| 1327 | 0.51294000000E-01 1.0000000000
|
---|
| 1328 | })
|
---|
| 1329 | (type: [am = s]
|
---|
| 1330 | {exp coef:0} = {
|
---|
| 1331 | 0.18475000000E-01 1.0000000000
|
---|
| 1332 | })
|
---|
| 1333 | (type: [am = p am = p am = p]
|
---|
| 1334 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1335 | 22059.771000 0.54700000000E-04 -0.20700000000E-04 0.34000000000E-05
|
---|
| 1336 | 5222.3129000 0.48650000000E-03 -0.18460000000E-03 0.30000000000E-04
|
---|
| 1337 | 1696.0601000 0.27990000000E-02 -0.10640000000E-02 0.17500000000E-03
|
---|
| 1338 | 648.76573000 0.12239600000E-01 -0.46946000000E-02 0.76420000000E-03
|
---|
| 1339 | 275.10267000 0.42747600000E-01 -0.16648600000E-01 0.27458000000E-02
|
---|
| 1340 | 125.34634000 0.11871870000 -0.47811400000E-01 0.78140000000E-02
|
---|
| 1341 | 60.054334000 0.24858280000 -0.10453030000 0.17421500000E-01
|
---|
| 1342 | 29.723768000 0.36016220000 -0.16129650000 0.26485200000E-01
|
---|
| 1343 | 15.039781000 0.29501710000 -0.11431700000 0.19395000000E-01
|
---|
| 1344 | 7.5722730000 0.98479400000E-01 0.14590560000 -0.31312900000E-01
|
---|
| 1345 | 3.7386760000 0.87671000000E-02 0.42719890000 -0.80163400000E-01
|
---|
| 1346 | 1.7967880000 0.13961000000E-02 0.42404150000 -0.10017290000
|
---|
| 1347 | 0.82991000000 0.77000000000E-04 0.15994400000 -0.10587800000E-01
|
---|
| 1348 | })
|
---|
| 1349 | (type: [am = p]
|
---|
| 1350 | {exp coef:0} = {
|
---|
| 1351 | 0.27287400000 1.0000000000
|
---|
| 1352 | })
|
---|
| 1353 | (type: [am = p]
|
---|
| 1354 | {exp coef:0} = {
|
---|
| 1355 | 0.10154000000 1.0000000000
|
---|
| 1356 | })
|
---|
| 1357 | (type: [am = p]
|
---|
| 1358 | {exp coef:0} = {
|
---|
| 1359 | 0.37658000000E-01 1.0000000000
|
---|
| 1360 | })
|
---|
| 1361 | (type: [am = p]
|
---|
| 1362 | {exp coef:0} = {
|
---|
| 1363 | 0.11406000000E-01 1.0000000000
|
---|
| 1364 | })
|
---|
| 1365 | (type: [(am = d puream = 1)]
|
---|
| 1366 | {exp coef:0} = {
|
---|
| 1367 | 766.43696000 0.17450000000E-03
|
---|
| 1368 | 231.00425000 0.16577000000E-02
|
---|
| 1369 | 89.781238000 0.92899000000E-02
|
---|
| 1370 | 39.546681000 0.34890500000E-01
|
---|
| 1371 | 18.607583000 0.96345300000E-01
|
---|
| 1372 | 9.1512870000 0.19557030000
|
---|
| 1373 | 4.5650050000 0.28359420000
|
---|
| 1374 | 2.2530660000 0.30825150000
|
---|
| 1375 | 1.0867230000 0.25196200000
|
---|
| 1376 | })
|
---|
| 1377 | (type: [(am = d puream = 1)]
|
---|
| 1378 | {exp coef:0} = {
|
---|
| 1379 | 0.50330400000 1.0000000000
|
---|
| 1380 | })
|
---|
| 1381 | (type: [(am = d puream = 1)]
|
---|
| 1382 | {exp coef:0} = {
|
---|
| 1383 | 0.21228300000 1.0000000000
|
---|
| 1384 | })
|
---|
| 1385 | (type: [(am = d puream = 1)]
|
---|
| 1386 | {exp coef:0} = {
|
---|
| 1387 | 0.82800000000E-01 1.0000000000
|
---|
| 1388 | })
|
---|
| 1389 | (type: [(am = d puream = 1)]
|
---|
| 1390 | {exp coef:0} = {
|
---|
| 1391 | 0.27900000000E-01 1.0000000000
|
---|
| 1392 | })
|
---|
| 1393 | (type: [(am = f puream = 1)]
|
---|
| 1394 | {exp coef:0} = {
|
---|
| 1395 | 0.18100000000 1.0000000000
|
---|
| 1396 | })
|
---|
| 1397 | (type: [(am = f puream = 1)]
|
---|
| 1398 | {exp coef:0} = {
|
---|
| 1399 | 0.47100000000 1.0000000000
|
---|
| 1400 | })
|
---|
| 1401 | (type: [(am = f puream = 1)]
|
---|
| 1402 | {exp coef:0} = {
|
---|
| 1403 | 0.65500000000E-01 1.0000000000
|
---|
| 1404 | })
|
---|
| 1405 | (type: [(am = g puream = 1)]
|
---|
| 1406 | {exp coef:0} = {
|
---|
| 1407 | 0.40320000000 1.0000000000
|
---|
| 1408 | })
|
---|
| 1409 | (type: [(am = g puream = 1)]
|
---|
| 1410 | {exp coef:0} = {
|
---|
| 1411 | 0.16800000000 1.0000000000
|
---|
| 1412 | })
|
---|
| 1413 | ]
|
---|
| 1414 | %
|
---|
| 1415 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
| 1416 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1417 | germanium: "aug-cc-pVQZ": [
|
---|
| 1418 | (type: [am = s am = s am = s am = s]
|
---|
| 1419 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 1420 | 12360507.000 0.39000000000E-05 -0.12000000000E-05 0.50000000000E-06 -0.10000000000E-06
|
---|
| 1421 | 1850697.8000 0.30500000000E-04 -0.95000000000E-05 0.37000000000E-05 -0.90000000000E-06
|
---|
| 1422 | 421131.42000 0.16050000000E-03 -0.49900000000E-04 0.19200000000E-04 -0.49000000000E-05
|
---|
| 1423 | 119278.26000 0.67760000000E-03 -0.21090000000E-03 0.81300000000E-04 -0.20800000000E-04
|
---|
| 1424 | 38912.277000 0.24637000000E-02 -0.76860000000E-03 0.29650000000E-03 -0.76100000000E-04
|
---|
| 1425 | 14048.682000 0.79835000000E-02 -0.25025000000E-02 0.96480000000E-03 -0.24720000000E-03
|
---|
| 1426 | 5480.6992000 0.23377400000E-01 -0.74259000000E-02 0.28715000000E-02 -0.73730000000E-03
|
---|
| 1427 | 2274.2055000 0.61574200000E-01 -0.20124900000E-01 0.77973000000E-02 -0.19981000000E-02
|
---|
| 1428 | 992.24129000 0.14150760000 -0.49298600000E-01 0.19292200000E-01 -0.49640000000E-02
|
---|
| 1429 | 450.99966000 0.26469420000 -0.10486830000 0.41620000000E-01 -0.10693000000E-01
|
---|
| 1430 | 211.82024000 0.34832570000 -0.17832750000 0.73536800000E-01 -0.19084300000E-01
|
---|
| 1431 | 101.41102000 0.24541960000 -0.17895810000 0.77832000000E-01 -0.20164300000E-01
|
---|
| 1432 | 46.914090000 0.53564600000E-01 0.87384200000E-01 -0.42358200000E-01 0.10836200000E-01
|
---|
| 1433 | 23.508950000 -0.18380000000E-02 0.52709200000 -0.34475370000 0.96211000000E-01
|
---|
| 1434 | 11.681311000 0.18049000000E-02 0.46795510000 -0.44567130000 0.12799790000
|
---|
| 1435 | 5.4345260000 -0.84760000000E-03 0.89220600000E-01 0.15115440000 -0.50606500000E-01
|
---|
| 1436 | 2.6088080000 0.36680000000E-03 -0.34230000000E-03 0.71742950000 -0.28529170000
|
---|
| 1437 | 1.1984420000 -0.15420000000E-03 0.19144000000E-02 0.40356340000 -0.30653590000
|
---|
| 1438 | })
|
---|
| 1439 | (type: [am = s]
|
---|
| 1440 | {exp coef:0} = {
|
---|
| 1441 | 0.32980800000 1.0000000000
|
---|
| 1442 | })
|
---|
| 1443 | (type: [am = s]
|
---|
| 1444 | {exp coef:0} = {
|
---|
| 1445 | 0.15543300000 1.0000000000
|
---|
| 1446 | })
|
---|
| 1447 | (type: [am = s]
|
---|
| 1448 | {exp coef:0} = {
|
---|
| 1449 | 0.66913000000E-01 1.0000000000
|
---|
| 1450 | })
|
---|
| 1451 | (type: [am = s]
|
---|
| 1452 | {exp coef:0} = {
|
---|
| 1453 | 0.26390000000E-01 1.0000000000
|
---|
| 1454 | })
|
---|
| 1455 | (type: [am = p am = p am = p]
|
---|
| 1456 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1457 | 24017.466000 0.53100000000E-04 -0.20400000000E-04 0.40000000000E-05
|
---|
| 1458 | 5685.7175000 0.47200000000E-03 -0.18180000000E-03 0.35700000000E-04
|
---|
| 1459 | 1846.4859000 0.27187000000E-02 -0.10491000000E-02 0.20800000000E-03
|
---|
| 1460 | 706.24981000 0.11914500000E-01 -0.46392000000E-02 0.91210000000E-03
|
---|
| 1461 | 299.45610000 0.41762500000E-01 -0.16509000000E-01 0.32823000000E-02
|
---|
| 1462 | 136.43904000 0.11658940000 -0.47660900000E-01 0.94139000000E-02
|
---|
| 1463 | 65.390155000 0.24583380000 -0.10496780000 0.21091700000E-01
|
---|
| 1464 | 32.393735000 0.35912610000 -0.16337450000 0.32500000000E-01
|
---|
| 1465 | 16.415616000 0.29779290000 -0.11809980000 0.23997200000E-01
|
---|
| 1466 | 8.2877870000 0.10177080000 0.14201780000 -0.37118600000E-01
|
---|
| 1467 | 4.1126340000 0.94072000000E-02 0.42743240000 -0.98813000000E-01
|
---|
| 1468 | 1.9988540000 0.14350000000E-02 0.42561670000 -0.12356590000
|
---|
| 1469 | 0.94429100000 0.35400000000E-04 0.15820340000 -0.11013300000E-01
|
---|
| 1470 | })
|
---|
| 1471 | (type: [am = p]
|
---|
| 1472 | {exp coef:0} = {
|
---|
| 1473 | 0.34121100000 1.0000000000
|
---|
| 1474 | })
|
---|
| 1475 | (type: [am = p]
|
---|
| 1476 | {exp coef:0} = {
|
---|
| 1477 | 0.13435000000 1.0000000000
|
---|
| 1478 | })
|
---|
| 1479 | (type: [am = p]
|
---|
| 1480 | {exp coef:0} = {
|
---|
| 1481 | 0.51735000000E-01 1.0000000000
|
---|
| 1482 | })
|
---|
| 1483 | (type: [am = p]
|
---|
| 1484 | {exp coef:0} = {
|
---|
| 1485 | 0.18550000000E-01 1.0000000000
|
---|
| 1486 | })
|
---|
| 1487 | (type: [(am = d puream = 1)]
|
---|
| 1488 | {exp coef:0} = {
|
---|
| 1489 | 864.67411000 0.16450000000E-03
|
---|
| 1490 | 261.03763000 0.15654000000E-02
|
---|
| 1491 | 101.77030000 0.87954000000E-02
|
---|
| 1492 | 45.116641000 0.33185200000E-01
|
---|
| 1493 | 21.430686000 0.91953700000E-01
|
---|
| 1494 | 10.659861000 0.18920170000
|
---|
| 1495 | 5.3922870000 0.28058920000
|
---|
| 1496 | 2.7044970000 0.31174740000
|
---|
| 1497 | 1.3285440000 0.25541970000
|
---|
| 1498 | })
|
---|
| 1499 | (type: [(am = d puream = 1)]
|
---|
| 1500 | {exp coef:0} = {
|
---|
| 1501 | 0.62645200000 1.0000000000
|
---|
| 1502 | })
|
---|
| 1503 | (type: [(am = d puream = 1)]
|
---|
| 1504 | {exp coef:0} = {
|
---|
| 1505 | 0.26601300000 1.0000000000
|
---|
| 1506 | })
|
---|
| 1507 | (type: [(am = d puream = 1)]
|
---|
| 1508 | {exp coef:0} = {
|
---|
| 1509 | 0.10630000000 1.0000000000
|
---|
| 1510 | })
|
---|
| 1511 | (type: [(am = d puream = 1)]
|
---|
| 1512 | {exp coef:0} = {
|
---|
| 1513 | 0.39700000000E-01 1.0000000000
|
---|
| 1514 | })
|
---|
| 1515 | (type: [(am = f puream = 1)]
|
---|
| 1516 | {exp coef:0} = {
|
---|
| 1517 | 0.54920000000 1.0000000000
|
---|
| 1518 | })
|
---|
| 1519 | (type: [(am = f puream = 1)]
|
---|
| 1520 | {exp coef:0} = {
|
---|
| 1521 | 0.21900000000 1.0000000000
|
---|
| 1522 | })
|
---|
| 1523 | (type: [(am = f puream = 1)]
|
---|
| 1524 | {exp coef:0} = {
|
---|
| 1525 | 0.88400000000E-01 1.0000000000
|
---|
| 1526 | })
|
---|
| 1527 | (type: [(am = g puream = 1)]
|
---|
| 1528 | {exp coef:0} = {
|
---|
| 1529 | 0.46810000000 1.0000000000
|
---|
| 1530 | })
|
---|
| 1531 | (type: [(am = g puream = 1)]
|
---|
| 1532 | {exp coef:0} = {
|
---|
| 1533 | 0.21430000000 1.0000000000
|
---|
| 1534 | })
|
---|
| 1535 | ]
|
---|
| 1536 | %
|
---|
| 1537 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
| 1538 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1539 | arsenic: "aug-cc-pVQZ": [
|
---|
| 1540 | (type: [am = s am = s am = s am = s]
|
---|
| 1541 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 1542 | 13600341.000 0.38000000000E-05 -0.12000000000E-05 0.50000000000E-06 -0.10000000000E-06
|
---|
| 1543 | 2036507.3000 0.29200000000E-04 -0.91000000000E-05 0.36000000000E-05 -0.10000000000E-05
|
---|
| 1544 | 463432.78000 0.15380000000E-03 -0.48000000000E-04 0.18700000000E-04 -0.52000000000E-05
|
---|
| 1545 | 131259.94000 0.64960000000E-03 -0.20280000000E-03 0.79000000000E-04 -0.21700000000E-04
|
---|
| 1546 | 42819.192000 0.23625000000E-02 -0.73920000000E-03 0.28810000000E-03 -0.79400000000E-04
|
---|
| 1547 | 15457.019000 0.76609000000E-02 -0.24089000000E-02 0.93860000000E-03 -0.25830000000E-03
|
---|
| 1548 | 6028.4583000 0.22467200000E-01 -0.71538000000E-02 0.27946000000E-02 -0.77090000000E-03
|
---|
| 1549 | 2500.5599000 0.59342500000E-01 -0.19433300000E-01 0.76098000000E-02 -0.20946000000E-02
|
---|
| 1550 | 1090.6149000 0.13710150000 -0.47747100000E-01 0.18869900000E-01 -0.52164000000E-02
|
---|
| 1551 | 495.62154000 0.25894720000 -0.10226390000 0.41006300000E-01 -0.11316300000E-01
|
---|
| 1552 | 232.81669000 0.34728470000 -0.17583260000 0.73127500000E-01 -0.20393500000E-01
|
---|
| 1553 | 111.63118000 0.25342470000 -0.18374940000 0.80719400000E-01 -0.22466400000E-01
|
---|
| 1554 | 52.269950000 0.59626600000E-01 0.64827600000E-01 -0.31630000000E-01 0.85590000000E-02
|
---|
| 1555 | 26.149878000 -0.11861000000E-02 0.51092810000 -0.33173760000 0.99569200000E-01
|
---|
| 1556 | 13.018757000 0.17791000000E-02 0.48731430000 -0.46382210000 0.14345010000
|
---|
| 1557 | 6.1554320000 -0.84550000000E-03 0.10336360000 0.10369900000 -0.37190100000E-01
|
---|
| 1558 | 2.9591270000 0.36600000000E-03 0.63550000000E-03 0.71829860000 -0.30853680000
|
---|
| 1559 | 1.3738740000 -0.16220000000E-03 0.19766000000E-02 0.43533050000 -0.34786490000
|
---|
| 1560 | })
|
---|
| 1561 | (type: [am = s]
|
---|
| 1562 | {exp coef:0} = {
|
---|
| 1563 | 0.40885000000 1.0000000000
|
---|
| 1564 | })
|
---|
| 1565 | (type: [am = s]
|
---|
| 1566 | {exp coef:0} = {
|
---|
| 1567 | 0.19451100000 1.0000000000
|
---|
| 1568 | })
|
---|
| 1569 | (type: [am = s]
|
---|
| 1570 | {exp coef:0} = {
|
---|
| 1571 | 0.83641000000E-01 1.0000000000
|
---|
| 1572 | })
|
---|
| 1573 | (type: [am = s]
|
---|
| 1574 | {exp coef:0} = {
|
---|
| 1575 | 0.32499000000E-01 1.0000000000
|
---|
| 1576 | })
|
---|
| 1577 | (type: [am = p am = p am = p]
|
---|
| 1578 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1579 | 25570.418000 0.53300000000E-04 -0.20800000000E-04 0.46000000000E-05
|
---|
| 1580 | 6052.9237000 0.47440000000E-03 -0.18550000000E-03 0.41200000000E-04
|
---|
| 1581 | 1965.7002000 0.27330000000E-02 -0.10704000000E-02 0.23930000000E-03
|
---|
| 1582 | 751.77229000 0.11987100000E-01 -0.47392000000E-02 0.10531000000E-02
|
---|
| 1583 | 318.68140000 0.42076600000E-01 -0.16888500000E-01 0.37863000000E-02
|
---|
| 1584 | 145.14749000 0.11758910000 -0.48844500000E-01 0.10910100000E-01
|
---|
| 1585 | 69.541162000 0.24787470000 -0.10759890000 0.24385300000E-01
|
---|
| 1586 | 34.451376000 0.36051480000 -0.16693760000 0.37648200000E-01
|
---|
| 1587 | 17.460610000 0.29559210000 -0.11692140000 0.26513700000E-01
|
---|
| 1588 | 8.8086090000 0.99216300000E-01 0.15145050000 -0.44546400000E-01
|
---|
| 1589 | 4.3786460000 0.87866000000E-02 0.43717310000 -0.11676810000
|
---|
| 1590 | 2.1444050000 0.14462000000E-02 0.41970780000 -0.14094410000
|
---|
| 1591 | 1.0293500000 -0.44700000000E-04 0.14376360000 -0.12121000000E-02
|
---|
| 1592 | })
|
---|
| 1593 | (type: [am = p]
|
---|
| 1594 | {exp coef:0} = {
|
---|
| 1595 | 0.40463600000 1.0000000000
|
---|
| 1596 | })
|
---|
| 1597 | (type: [am = p]
|
---|
| 1598 | {exp coef:0} = {
|
---|
| 1599 | 0.16562200000 1.0000000000
|
---|
| 1600 | })
|
---|
| 1601 | (type: [am = p]
|
---|
| 1602 | {exp coef:0} = {
|
---|
| 1603 | 0.65610000000E-01 1.0000000000
|
---|
| 1604 | })
|
---|
| 1605 | (type: [am = p]
|
---|
| 1606 | {exp coef:0} = {
|
---|
| 1607 | 0.23698000000E-01 1.0000000000
|
---|
| 1608 | })
|
---|
| 1609 | (type: [(am = d puream = 1)]
|
---|
| 1610 | {exp coef:0} = {
|
---|
| 1611 | 996.97960000 0.14620000000E-03
|
---|
| 1612 | 300.98518000 0.14034000000E-02
|
---|
| 1613 | 117.23473000 0.80195000000E-02
|
---|
| 1614 | 51.956904000 0.31004800000E-01
|
---|
| 1615 | 24.689440000 0.87847800000E-01
|
---|
| 1616 | 12.295171000 0.18522500000
|
---|
| 1617 | 6.2446520000 0.28082510000
|
---|
| 1618 | 3.1554600000 0.31631980000
|
---|
| 1619 | 1.5680490000 0.25711920000
|
---|
| 1620 | })
|
---|
| 1621 | (type: [(am = d puream = 1)]
|
---|
| 1622 | {exp coef:0} = {
|
---|
| 1623 | 0.74864700000 1.0000000000
|
---|
| 1624 | })
|
---|
| 1625 | (type: [(am = d puream = 1)]
|
---|
| 1626 | {exp coef:0} = {
|
---|
| 1627 | 0.31912500000 1.0000000000
|
---|
| 1628 | })
|
---|
| 1629 | (type: [(am = d puream = 1)]
|
---|
| 1630 | {exp coef:0} = {
|
---|
| 1631 | 0.13000000000 1.0000000000
|
---|
| 1632 | })
|
---|
| 1633 | (type: [(am = d puream = 1)]
|
---|
| 1634 | {exp coef:0} = {
|
---|
| 1635 | 0.53100000000E-01 1.0000000000
|
---|
| 1636 | })
|
---|
| 1637 | (type: [(am = f puream = 1)]
|
---|
| 1638 | {exp coef:0} = {
|
---|
| 1639 | 0.26400000000 1.0000000000
|
---|
| 1640 | })
|
---|
| 1641 | (type: [(am = f puream = 1)]
|
---|
| 1642 | {exp coef:0} = {
|
---|
| 1643 | 0.64400000000 1.0000000000
|
---|
| 1644 | })
|
---|
| 1645 | (type: [(am = f puream = 1)]
|
---|
| 1646 | {exp coef:0} = {
|
---|
| 1647 | 0.11320000000 1.0000000000
|
---|
| 1648 | })
|
---|
| 1649 | (type: [(am = g puream = 1)]
|
---|
| 1650 | {exp coef:0} = {
|
---|
| 1651 | 0.54650000000 1.0000000000
|
---|
| 1652 | })
|
---|
| 1653 | (type: [(am = g puream = 1)]
|
---|
| 1654 | {exp coef:0} = {
|
---|
| 1655 | 0.23900000000 1.0000000000
|
---|
| 1656 | })
|
---|
| 1657 | ]
|
---|
| 1658 | %
|
---|
| 1659 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
| 1660 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1661 | selenium: "aug-cc-pVQZ": [
|
---|
| 1662 | (type: [am = s am = s am = s am = s]
|
---|
| 1663 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 1664 | 15011000.000 0.36000000000E-05 -0.11000000000E-05 0.40000000000E-06 -0.10000000000E-06
|
---|
| 1665 | 2247500.0000 0.27900000000E-04 -0.87000000000E-05 0.34000000000E-05 -0.10000000000E-05
|
---|
| 1666 | 511450.00000 0.14660000000E-03 -0.45900000000E-04 0.18100000000E-04 -0.53000000000E-05
|
---|
| 1667 | 144870.00000 0.61900000000E-03 -0.19390000000E-03 0.76300000000E-04 -0.22300000000E-04
|
---|
| 1668 | 47261.000000 0.22514000000E-02 -0.70640000000E-03 0.27810000000E-03 -0.81400000000E-04
|
---|
| 1669 | 17062.000000 0.73030000000E-02 -0.23030000000E-02 0.90680000000E-03 -0.26490000000E-03
|
---|
| 1670 | 6654.5000000 0.21444200000E-01 -0.68425000000E-02 0.26999000000E-02 -0.79060000000E-03
|
---|
| 1671 | 2759.8000000 0.56812200000E-01 -0.18633500000E-01 0.73726000000E-02 -0.21539000000E-02
|
---|
| 1672 | 1203.2000000 0.13208070000 -0.45951200000E-01 0.18336000000E-01 -0.53812000000E-02
|
---|
| 1673 | 546.53000000 0.25234690000 -0.99219300000E-01 0.40181200000E-01 -0.11769400000E-01
|
---|
| 1674 | 256.63000000 0.34592960000 -0.17288130000 0.72486400000E-01 -0.21462900000E-01
|
---|
| 1675 | 123.14000000 0.26238900000 -0.18849730000 0.83562600000E-01 -0.24690400000E-01
|
---|
| 1676 | 58.263000000 0.66793800000E-01 0.42261000000E-01 -0.20759200000E-01 0.57774000000E-02
|
---|
| 1677 | 29.023000000 -0.33320000000E-03 0.49367910000 -0.31835350000 0.10152090000
|
---|
| 1678 | 14.465000000 0.17275000000E-02 0.50528180000 -0.47983330000 0.15785700000
|
---|
| 1679 | 6.9348000000 -0.82990000000E-03 0.11841500000 0.59281900000E-01 -0.22421900000E-01
|
---|
| 1680 | 3.3299000000 0.35780000000E-03 0.19567000000E-02 0.71741160000 -0.32907760000
|
---|
| 1681 | 1.5600000000 -0.16660000000E-03 0.19648000000E-02 0.46386360000 -0.38734430000
|
---|
| 1682 | })
|
---|
| 1683 | (type: [am = s]
|
---|
| 1684 | {exp coef:0} = {
|
---|
| 1685 | 0.49291000000 1.0000000000
|
---|
| 1686 | })
|
---|
| 1687 | (type: [am = s]
|
---|
| 1688 | {exp coef:0} = {
|
---|
| 1689 | 0.23525000000 1.0000000000
|
---|
| 1690 | })
|
---|
| 1691 | (type: [am = s]
|
---|
| 1692 | {exp coef:0} = {
|
---|
| 1693 | 0.10037000000 1.0000000000
|
---|
| 1694 | })
|
---|
| 1695 | (type: [am = s]
|
---|
| 1696 | {exp coef:0} = {
|
---|
| 1697 | 0.38152000000E-01 1.0000000000
|
---|
| 1698 | })
|
---|
| 1699 | (type: [am = p am = p am = p]
|
---|
| 1700 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1701 | 25217.000000 0.61000000000E-04 -0.24100000000E-04 0.58000000000E-05
|
---|
| 1702 | 5969.9000000 0.54240000000E-03 -0.21520000000E-03 0.52000000000E-04
|
---|
| 1703 | 1938.9000000 0.31174000000E-02 -0.12386000000E-02 0.29980000000E-03
|
---|
| 1704 | 741.66000000 0.13597700000E-01 -0.54607000000E-02 0.13201000000E-02
|
---|
| 1705 | 314.50000000 0.47278800000E-01 -0.19293600000E-01 0.46857000000E-02
|
---|
| 1706 | 143.31000000 0.12978560000 -0.54971500000E-01 0.13373700000E-01
|
---|
| 1707 | 68.650000000 0.26573830000 -0.11779520000 0.28924500000E-01
|
---|
| 1708 | 33.995000000 0.36735440000 -0.17407820000 0.42945400000E-01
|
---|
| 1709 | 17.185000000 0.27478050000 -0.95579800000E-01 0.22327200000E-01
|
---|
| 1710 | 8.5740000000 0.79167900000E-01 0.20597140000 -0.63603100000E-01
|
---|
| 1711 | 4.2206000000 0.51349000000E-02 0.47354310000 -0.14361470000
|
---|
| 1712 | 2.0521000000 0.13319000000E-02 0.38319220000 -0.14472930000
|
---|
| 1713 | 0.96156000000 -0.20330000000E-03 0.92087200000E-01 0.63038000000E-01
|
---|
| 1714 | })
|
---|
| 1715 | (type: [am = p]
|
---|
| 1716 | {exp coef:0} = {
|
---|
| 1717 | 0.42151000000 1.0000000000
|
---|
| 1718 | })
|
---|
| 1719 | (type: [am = p]
|
---|
| 1720 | {exp coef:0} = {
|
---|
| 1721 | 0.17626000000 1.0000000000
|
---|
| 1722 | })
|
---|
| 1723 | (type: [am = p]
|
---|
| 1724 | {exp coef:0} = {
|
---|
| 1725 | 0.70663000000E-01 1.0000000000
|
---|
| 1726 | })
|
---|
| 1727 | (type: [am = p]
|
---|
| 1728 | {exp coef:0} = {
|
---|
| 1729 | 0.26569000000E-01 1.0000000000
|
---|
| 1730 | })
|
---|
| 1731 | (type: [(am = d puream = 1)]
|
---|
| 1732 | {exp coef:0} = {
|
---|
| 1733 | 1143.4000000 0.13010000000E-03
|
---|
| 1734 | 345.33000000 0.12573000000E-02
|
---|
| 1735 | 134.46000000 0.72882000000E-02
|
---|
| 1736 | 59.567000000 0.28864700000E-01
|
---|
| 1737 | 28.283000000 0.83898700000E-01
|
---|
| 1738 | 14.061000000 0.18197710000
|
---|
| 1739 | 7.1390000000 0.28260570000
|
---|
| 1740 | 3.6148000000 0.32204530000
|
---|
| 1741 | 1.8072000000 0.25816330000
|
---|
| 1742 | })
|
---|
| 1743 | (type: [(am = d puream = 1)]
|
---|
| 1744 | {exp coef:0} = {
|
---|
| 1745 | 0.86944000000 1.0000000000
|
---|
| 1746 | })
|
---|
| 1747 | (type: [(am = d puream = 1)]
|
---|
| 1748 | {exp coef:0} = {
|
---|
| 1749 | 0.37036000000 1.0000000000
|
---|
| 1750 | })
|
---|
| 1751 | (type: [(am = d puream = 1)]
|
---|
| 1752 | {exp coef:0} = {
|
---|
| 1753 | 0.15300000000 1.0000000000
|
---|
| 1754 | })
|
---|
| 1755 | (type: [(am = d puream = 1)]
|
---|
| 1756 | {exp coef:0} = {
|
---|
| 1757 | 0.61900000000E-01 1.0000000000
|
---|
| 1758 | })
|
---|
| 1759 | (type: [(am = f puream = 1)]
|
---|
| 1760 | {exp coef:0} = {
|
---|
| 1761 | 0.28400000000 1.0000000000
|
---|
| 1762 | })
|
---|
| 1763 | (type: [(am = f puream = 1)]
|
---|
| 1764 | {exp coef:0} = {
|
---|
| 1765 | 0.70970000000 1.0000000000
|
---|
| 1766 | })
|
---|
| 1767 | (type: [(am = f puream = 1)]
|
---|
| 1768 | {exp coef:0} = {
|
---|
| 1769 | 0.12400000000 1.0000000000
|
---|
| 1770 | })
|
---|
| 1771 | (type: [(am = g puream = 1)]
|
---|
| 1772 | {exp coef:0} = {
|
---|
| 1773 | 0.57300000000 1.0000000000
|
---|
| 1774 | })
|
---|
| 1775 | (type: [(am = g puream = 1)]
|
---|
| 1776 | {exp coef:0} = {
|
---|
| 1777 | 0.26300000000 1.0000000000
|
---|
| 1778 | })
|
---|
| 1779 | ]
|
---|
| 1780 | %
|
---|
| 1781 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
| 1782 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1783 | bromine: "aug-cc-pVQZ": [
|
---|
| 1784 | (type: [am = s am = s am = s am = s]
|
---|
| 1785 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 1786 | 16475000.000 0.34000000000E-05 -0.11000000000E-05 0.40000000000E-06 -0.10000000000E-06
|
---|
| 1787 | 2466600.0000 0.26700000000E-04 -0.84000000000E-05 0.33000000000E-05 -0.10000000000E-05
|
---|
| 1788 | 561310.00000 0.14040000000E-03 -0.44100000000E-04 0.17500000000E-04 -0.54000000000E-05
|
---|
| 1789 | 158990.00000 0.59270000000E-03 -0.18620000000E-03 0.74000000000E-04 -0.22700000000E-04
|
---|
| 1790 | 51869.000000 0.21561000000E-02 -0.67830000000E-03 0.26970000000E-03 -0.82700000000E-04
|
---|
| 1791 | 18726.000000 0.69959000000E-02 -0.22122000000E-02 0.87990000000E-03 -0.26940000000E-03
|
---|
| 1792 | 7303.6000000 0.20564500000E-01 -0.65752000000E-02 0.26198000000E-02 -0.80420000000E-03
|
---|
| 1793 | 3029.1000000 0.54589300000E-01 -0.17932800000E-01 0.71671000000E-02 -0.21949000000E-02
|
---|
| 1794 | 1320.8000000 0.12752260000 -0.44332100000E-01 0.17856100000E-01 -0.54939000000E-02
|
---|
| 1795 | 600.03000000 0.24597800000 -0.96347800000E-01 0.39396000000E-01 -0.12096000000E-01
|
---|
| 1796 | 281.90000000 0.34365080000 -0.16968140000 0.71710200000E-01 -0.22262300000E-01
|
---|
| 1797 | 135.54000000 0.27025300000 -0.19207690000 0.85887700000E-01 -0.26606300000E-01
|
---|
| 1798 | 64.870000000 0.74479500000E-01 0.20873100000E-01 -0.10386100000E-01 0.27580000000E-02
|
---|
| 1799 | 32.129000000 0.87870000000E-03 0.47449960000 -0.30401350000 0.10168030000
|
---|
| 1800 | 16.037000000 0.15755000000E-02 0.52149070000 -0.49331780000 0.17041320000
|
---|
| 1801 | 7.7849000000 -0.76020000000E-03 0.13480010000 0.16089000000E-01 -0.62220000000E-02
|
---|
| 1802 | 3.7247000000 0.32110000000E-03 0.36614000000E-02 0.71466860000 -0.34525700000
|
---|
| 1803 | 1.7583000000 -0.15860000000E-03 0.18840000000E-02 0.49047950000 -0.42348400000
|
---|
| 1804 | })
|
---|
| 1805 | (type: [am = s]
|
---|
| 1806 | {exp coef:0} = {
|
---|
| 1807 | 0.58331000000 1.0000000000
|
---|
| 1808 | })
|
---|
| 1809 | (type: [am = s]
|
---|
| 1810 | {exp coef:0} = {
|
---|
| 1811 | 0.27856000000 1.0000000000
|
---|
| 1812 | })
|
---|
| 1813 | (type: [am = s]
|
---|
| 1814 | {exp coef:0} = {
|
---|
| 1815 | 0.11829000000 1.0000000000
|
---|
| 1816 | })
|
---|
| 1817 | (type: [am = s]
|
---|
| 1818 | {exp coef:0} = {
|
---|
| 1819 | 0.44270000000E-01 1.0000000000
|
---|
| 1820 | })
|
---|
| 1821 | (type: [am = p am = p am = p]
|
---|
| 1822 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1823 | 26607.000000 0.61900000000E-04 -0.24800000000E-04 0.64000000000E-05
|
---|
| 1824 | 6298.2000000 0.54990000000E-03 -0.22120000000E-03 0.57200000000E-04
|
---|
| 1825 | 2045.2000000 0.31620000000E-02 -0.12736000000E-02 0.32970000000E-03
|
---|
| 1826 | 782.16000000 0.13797900000E-01 -0.56179000000E-02 0.14562000000E-02
|
---|
| 1827 | 331.63000000 0.47981200000E-01 -0.19860000000E-01 0.51591000000E-02
|
---|
| 1828 | 151.11000000 0.13157100000 -0.56553100000E-01 0.14761700000E-01
|
---|
| 1829 | 72.392000000 0.26858610000 -0.12094790000 0.31769400000E-01
|
---|
| 1830 | 35.862000000 0.36834730000 -0.17730980000 0.47068000000E-01
|
---|
| 1831 | 18.134000000 0.27113630000 -0.92147200000E-01 0.22387100000E-01
|
---|
| 1832 | 9.0430000000 0.76222200000E-01 0.21876830000 -0.72025400000E-01
|
---|
| 1833 | 4.4500000000 0.46749000000E-02 0.48546700000 -0.16264290000
|
---|
| 1834 | 2.1661000000 0.12565000000E-02 0.37219700000 -0.14965030000
|
---|
| 1835 | 0.99628000000 -0.23570000000E-03 0.77690700000E-01 0.10645170000
|
---|
| 1836 | })
|
---|
| 1837 | (type: [am = p]
|
---|
| 1838 | {exp coef:0} = {
|
---|
| 1839 | 0.45443000000 1.0000000000
|
---|
| 1840 | })
|
---|
| 1841 | (type: [am = p]
|
---|
| 1842 | {exp coef:0} = {
|
---|
| 1843 | 0.19404000000 1.0000000000
|
---|
| 1844 | })
|
---|
| 1845 | (type: [am = p]
|
---|
| 1846 | {exp coef:0} = {
|
---|
| 1847 | 0.78997000000E-01 1.0000000000
|
---|
| 1848 | })
|
---|
| 1849 | (type: [am = p]
|
---|
| 1850 | {exp coef:0} = {
|
---|
| 1851 | 0.30513000000E-01 1.0000000000
|
---|
| 1852 | })
|
---|
| 1853 | (type: [(am = d puream = 1)]
|
---|
| 1854 | {exp coef:0} = {
|
---|
| 1855 | 1289.6000000 0.11900000000E-03
|
---|
| 1856 | 389.75000000 0.11551000000E-02
|
---|
| 1857 | 151.76000000 0.67648000000E-02
|
---|
| 1858 | 67.223000000 0.27301700000E-01
|
---|
| 1859 | 31.913000000 0.80929800000E-01
|
---|
| 1860 | 15.857000000 0.17940110000
|
---|
| 1861 | 8.0545000000 0.28400860000
|
---|
| 1862 | 4.0887000000 0.32667970000
|
---|
| 1863 | 2.0556000000 0.25849000000
|
---|
| 1864 | })
|
---|
| 1865 | (type: [(am = d puream = 1)]
|
---|
| 1866 | {exp coef:0} = {
|
---|
| 1867 | 0.99509000000 1.0000000000
|
---|
| 1868 | })
|
---|
| 1869 | (type: [(am = d puream = 1)]
|
---|
| 1870 | {exp coef:0} = {
|
---|
| 1871 | 0.42313000000 1.0000000000
|
---|
| 1872 | })
|
---|
| 1873 | (type: [(am = d puream = 1)]
|
---|
| 1874 | {exp coef:0} = {
|
---|
| 1875 | 0.17790000000 1.0000000000
|
---|
| 1876 | })
|
---|
| 1877 | (type: [(am = d puream = 1)]
|
---|
| 1878 | {exp coef:0} = {
|
---|
| 1879 | 0.82900000000E-01 1.0000000000
|
---|
| 1880 | })
|
---|
| 1881 | (type: [(am = f puream = 1)]
|
---|
| 1882 | {exp coef:0} = {
|
---|
| 1883 | 0.34070000000 1.0000000000
|
---|
| 1884 | })
|
---|
| 1885 | (type: [(am = f puream = 1)]
|
---|
| 1886 | {exp coef:0} = {
|
---|
| 1887 | 0.82570000000 1.0000000000
|
---|
| 1888 | })
|
---|
| 1889 | (type: [(am = f puream = 1)]
|
---|
| 1890 | {exp coef:0} = {
|
---|
| 1891 | 0.17480000000 1.0000000000
|
---|
| 1892 | })
|
---|
| 1893 | (type: [(am = g puream = 1)]
|
---|
| 1894 | {exp coef:0} = {
|
---|
| 1895 | 0.64910000000 1.0000000000
|
---|
| 1896 | })
|
---|
| 1897 | (type: [(am = g puream = 1)]
|
---|
| 1898 | {exp coef:0} = {
|
---|
| 1899 | 0.31100000000 1.0000000000
|
---|
| 1900 | })
|
---|
| 1901 | ]
|
---|
| 1902 | %
|
---|
| 1903 | % BASIS SET: (21s,16p,12d,2f,1g) -> [7s,6p,4d,2f,1g]
|
---|
| 1904 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f,1g)
|
---|
| 1905 | krypton: "aug-cc-pVQZ": [
|
---|
| 1906 | (type: [am = s am = s am = s am = s]
|
---|
| 1907 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 1908 | 18226108.000 0.32000000000E-05 -0.10000000000E-05 0.40000000000E-06 -0.10000000000E-06
|
---|
| 1909 | 2728802.5000 0.25200000000E-04 -0.79000000000E-05 0.32000000000E-05 -0.10000000000E-05
|
---|
| 1910 | 620997.71000 0.13280000000E-03 -0.41800000000E-04 0.16800000000E-04 -0.53000000000E-05
|
---|
| 1911 | 175899.58000 0.56070000000E-03 -0.17660000000E-03 0.70900000000E-04 -0.22600000000E-04
|
---|
| 1912 | 57387.497000 0.20401000000E-02 -0.64340000000E-03 0.25820000000E-03 -0.82300000000E-04
|
---|
| 1913 | 20717.181000 0.66235000000E-02 -0.20999000000E-02 0.84330000000E-03 -0.26840000000E-03
|
---|
| 1914 | 8078.8899000 0.19499600000E-01 -0.62453000000E-02 0.25115000000E-02 -0.80140000000E-03
|
---|
| 1915 | 3349.5170000 0.51936400000E-01 -0.17080400000E-01 0.68921000000E-02 -0.21937000000E-02
|
---|
| 1916 | 1459.7812000 0.12211660000 -0.42381500000E-01 0.17222000000E-01 -0.55074000000E-02
|
---|
| 1917 | 662.89391000 0.23836530000 -0.92867900000E-01 0.38315900000E-01 -0.12226600000E-01
|
---|
| 1918 | 311.39215000 0.34070510000 -0.16573900000 0.70543800000E-01 -0.22761700000E-01
|
---|
| 1919 | 149.93751000 0.27928550000 -0.19550880000 0.88071700000E-01 -0.28360600000E-01
|
---|
| 1920 | 72.498249000 0.84099200000E-01 -0.16409000000E-02 0.63280000000E-03 -0.75650000000E-03
|
---|
| 1921 | 35.569354000 0.25042000000E-02 0.45300710000 -0.28810650000 0.10013650000
|
---|
| 1922 | 17.766633000 0.13574000000E-02 0.53707510000 -0.50497970000 0.18153320000
|
---|
| 1923 | 8.7123830000 -0.65910000000E-03 0.15289710000 -0.26777300000E-01 0.11186700000E-01
|
---|
| 1924 | 4.1449710000 0.27010000000E-03 0.57411000000E-02 0.70987180000 -0.35758430000
|
---|
| 1925 | 1.9696490000 -0.14360000000E-03 0.17414000000E-02 0.51580200000 -0.45723050000
|
---|
| 1926 | })
|
---|
| 1927 | (type: [am = s]
|
---|
| 1928 | {exp coef:0} = {
|
---|
| 1929 | 0.67995200000 1.0000000000
|
---|
| 1930 | })
|
---|
| 1931 | (type: [am = s]
|
---|
| 1932 | {exp coef:0} = {
|
---|
| 1933 | 0.32450200000 1.0000000000
|
---|
| 1934 | })
|
---|
| 1935 | (type: [am = s]
|
---|
| 1936 | {exp coef:0} = {
|
---|
| 1937 | 0.13744100000 1.0000000000
|
---|
| 1938 | })
|
---|
| 1939 | (type: [am = s]
|
---|
| 1940 | {exp coef:0} = {
|
---|
| 1941 | 0.50388000000E-01 1.0000000000
|
---|
| 1942 | })
|
---|
| 1943 | (type: [am = p am = p am = p]
|
---|
| 1944 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1945 | 28600.831000 0.60500000000E-04 -0.24600000000E-04 0.67000000000E-05
|
---|
| 1946 | 6770.9912000 0.53780000000E-03 -0.21920000000E-03 0.59600000000E-04
|
---|
| 1947 | 2199.0489000 0.30934000000E-02 -0.12628000000E-02 0.34320000000E-03
|
---|
| 1948 | 841.17957000 0.13515000000E-01 -0.55756000000E-02 0.15190000000E-02
|
---|
| 1949 | 356.76633000 0.47095900000E-01 -0.19754600000E-01 0.53881000000E-02
|
---|
| 1950 | 162.63620000 0.12962000000 -0.56448800000E-01 0.15493500000E-01
|
---|
| 1951 | 77.966035000 0.26611080000 -0.12149230000 0.33517600000E-01
|
---|
| 1952 | 38.661489000 0.36780580000 -0.17949070000 0.50191100000E-01
|
---|
| 1953 | 19.576791000 0.27403720000 -0.96231400000E-01 0.24455000000E-01
|
---|
| 1954 | 9.7917610000 0.78711300000E-01 0.21631900000 -0.75295300000E-01
|
---|
| 1955 | 4.8353830000 0.49842000000E-02 0.48997210000 -0.17605340000
|
---|
| 1956 | 2.3681250000 0.12267000000E-02 0.37267580000 -0.15707240000
|
---|
| 1957 | 1.0899960000 -0.24480000000E-03 0.75008800000E-01 0.13045790000
|
---|
| 1958 | })
|
---|
| 1959 | (type: [am = p]
|
---|
| 1960 | {exp coef:0} = {
|
---|
| 1961 | 0.50458800000 1.0000000000
|
---|
| 1962 | })
|
---|
| 1963 | (type: [am = p]
|
---|
| 1964 | {exp coef:0} = {
|
---|
| 1965 | 0.21845500000 1.0000000000
|
---|
| 1966 | })
|
---|
| 1967 | (type: [am = p]
|
---|
| 1968 | {exp coef:0} = {
|
---|
| 1969 | 0.89959000000E-01 1.0000000000
|
---|
| 1970 | })
|
---|
| 1971 | (type: [am = p]
|
---|
| 1972 | {exp coef:0} = {
|
---|
| 1973 | 0.34457000000E-01 1.0000000000
|
---|
| 1974 | })
|
---|
| 1975 | (type: [(am = d puream = 1)]
|
---|
| 1976 | {exp coef:0} = {
|
---|
| 1977 | 1437.7792000 0.11080000000E-03
|
---|
| 1978 | 434.26846000 0.10828000000E-02
|
---|
| 1979 | 168.92699000 0.64065000000E-02
|
---|
| 1980 | 74.777535000 0.26237900000E-01
|
---|
| 1981 | 35.516024000 0.78823500000E-01
|
---|
| 1982 | 17.671051000 0.17706770000
|
---|
| 1983 | 9.0046110000 0.28396220000
|
---|
| 1984 | 4.5947730000 0.32947020000
|
---|
| 1985 | 2.3264860000 0.25890010000
|
---|
| 1986 | })
|
---|
| 1987 | (type: [(am = d puream = 1)]
|
---|
| 1988 | {exp coef:0} = {
|
---|
| 1989 | 1.1332470000 1.0000000000
|
---|
| 1990 | })
|
---|
| 1991 | (type: [(am = d puream = 1)]
|
---|
| 1992 | {exp coef:0} = {
|
---|
| 1993 | 0.48130700000 1.0000000000
|
---|
| 1994 | })
|
---|
| 1995 | (type: [(am = d puream = 1)]
|
---|
| 1996 | {exp coef:0} = {
|
---|
| 1997 | 0.20530000000 1.0000000000
|
---|
| 1998 | })
|
---|
| 1999 | (type: [(am = d puream = 1)]
|
---|
| 2000 | {exp coef:0} = {
|
---|
| 2001 | 0.10390000000 1.0000000000
|
---|
| 2002 | })
|
---|
| 2003 | (type: [(am = f puream = 1)]
|
---|
| 2004 | {exp coef:0} = {
|
---|
| 2005 | 0.41300000000 1.0000000000
|
---|
| 2006 | })
|
---|
| 2007 | (type: [(am = f puream = 1)]
|
---|
| 2008 | {exp coef:0} = {
|
---|
| 2009 | 0.95570000000 1.0000000000
|
---|
| 2010 | })
|
---|
| 2011 | (type: [(am = f puream = 1)]
|
---|
| 2012 | {exp coef:0} = {
|
---|
| 2013 | 0.22560000000 1.0000000000
|
---|
| 2014 | })
|
---|
| 2015 | (type: [(am = g puream = 1)]
|
---|
| 2016 | {exp coef:0} = {
|
---|
| 2017 | 0.73950000000 1.0000000000
|
---|
| 2018 | })
|
---|
| 2019 | (type: [(am = g puream = 1)]
|
---|
| 2020 | {exp coef:0} = {
|
---|
| 2021 | 0.35900000000 1.0000000000
|
---|
| 2022 | })
|
---|
| 2023 | ]
|
---|
| 2024 | )
|
---|