1 | %BASIS "aug-cc-pV5Z" CARTESIAN
|
---|
2 | basis:(
|
---|
3 | %Elements References
|
---|
4 | %-------- ----------
|
---|
5 | %H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
6 | %He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
|
---|
7 | %Li : Unofficial set from D. Feller.
|
---|
8 | %B - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
9 | %Na - Mg: Unofficial set from D. Feller.
|
---|
10 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
11 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
12 | %Elements References
|
---|
13 | %-------- ---------
|
---|
14 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
15 | % Diffuse s exponent - S. Mielke
|
---|
16 | % He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
|
---|
17 | % B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
|
---|
18 | % 6769 (1992).
|
---|
19 | %Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
20 | %
|
---|
21 | %
|
---|
22 | % BASIS SET: (8s,4p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
23 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g)
|
---|
24 | hydrogen: "aug-cc-pV5Z": [
|
---|
25 | (type: [am = s]
|
---|
26 | {exp coef:0} = {
|
---|
27 | 402.00000000 0.27900000000E-03
|
---|
28 | 60.240000000 0.21650000000E-02
|
---|
29 | 13.730000000 0.11201000000E-01
|
---|
30 | 3.9050000000 0.44878000000E-01
|
---|
31 | })
|
---|
32 | (type: [am = s]
|
---|
33 | {exp coef:0} = {
|
---|
34 | 1.2830000000 1.0000000000
|
---|
35 | })
|
---|
36 | (type: [am = s]
|
---|
37 | {exp coef:0} = {
|
---|
38 | 0.46550000000 1.0000000000
|
---|
39 | })
|
---|
40 | (type: [am = s]
|
---|
41 | {exp coef:0} = {
|
---|
42 | 0.18110000000 1.0000000000
|
---|
43 | })
|
---|
44 | (type: [am = s]
|
---|
45 | {exp coef:0} = {
|
---|
46 | 0.72790000000E-01 1.0000000000
|
---|
47 | })
|
---|
48 | (type: [am = s]
|
---|
49 | {exp coef:0} = {
|
---|
50 | 0.20700000000E-01 1.0000000000
|
---|
51 | })
|
---|
52 | (type: [am = p]
|
---|
53 | {exp coef:0} = {
|
---|
54 | 4.5160000000 1.0000000000
|
---|
55 | })
|
---|
56 | (type: [am = p]
|
---|
57 | {exp coef:0} = {
|
---|
58 | 1.7120000000 1.0000000000
|
---|
59 | })
|
---|
60 | (type: [am = p]
|
---|
61 | {exp coef:0} = {
|
---|
62 | 0.64900000000 1.0000000000
|
---|
63 | })
|
---|
64 | (type: [am = p]
|
---|
65 | {exp coef:0} = {
|
---|
66 | 0.24600000000 1.0000000000
|
---|
67 | })
|
---|
68 | (type: [am = p]
|
---|
69 | {exp coef:0} = {
|
---|
70 | 0.74400000000E-01 1.0000000000
|
---|
71 | })
|
---|
72 | (type: [(am = d puream = 1)]
|
---|
73 | {exp coef:0} = {
|
---|
74 | 2.9500000000 1.0000000000
|
---|
75 | })
|
---|
76 | (type: [(am = d puream = 1)]
|
---|
77 | {exp coef:0} = {
|
---|
78 | 1.2060000000 1.0000000000
|
---|
79 | })
|
---|
80 | (type: [(am = d puream = 1)]
|
---|
81 | {exp coef:0} = {
|
---|
82 | 0.49300000000 1.0000000000
|
---|
83 | })
|
---|
84 | (type: [(am = d puream = 1)]
|
---|
85 | {exp coef:0} = {
|
---|
86 | 0.15600000000 1.0000000000
|
---|
87 | })
|
---|
88 | (type: [(am = f puream = 1)]
|
---|
89 | {exp coef:0} = {
|
---|
90 | 2.5060000000 1.0000000000
|
---|
91 | })
|
---|
92 | (type: [(am = f puream = 1)]
|
---|
93 | {exp coef:0} = {
|
---|
94 | 0.87500000000 1.0000000000
|
---|
95 | })
|
---|
96 | (type: [(am = f puream = 1)]
|
---|
97 | {exp coef:0} = {
|
---|
98 | 0.27400000000 1.0000000000
|
---|
99 | })
|
---|
100 | (type: [(am = g puream = 1)]
|
---|
101 | {exp coef:0} = {
|
---|
102 | 2.3580000000 1.0000000000
|
---|
103 | })
|
---|
104 | (type: [(am = g puream = 1)]
|
---|
105 | {exp coef:0} = {
|
---|
106 | 0.54300000000 1.0000000000
|
---|
107 | })
|
---|
108 | ]
|
---|
109 | %
|
---|
110 | % BASIS SET: (8s,4p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
111 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g)
|
---|
112 | helium: "aug-cc-pV5Z": [
|
---|
113 | (type: [am = s]
|
---|
114 | {exp coef:0} = {
|
---|
115 | 1145.0000000 0.35900000000E-03
|
---|
116 | 171.70000000 0.27710000000E-02
|
---|
117 | 39.070000000 0.14251000000E-01
|
---|
118 | 11.040000000 0.55566000000E-01
|
---|
119 | })
|
---|
120 | (type: [am = s]
|
---|
121 | {exp coef:0} = {
|
---|
122 | 3.5660000000 1.0000000000
|
---|
123 | })
|
---|
124 | (type: [am = s]
|
---|
125 | {exp coef:0} = {
|
---|
126 | 1.2400000000 1.0000000000
|
---|
127 | })
|
---|
128 | (type: [am = s]
|
---|
129 | {exp coef:0} = {
|
---|
130 | 0.44730000000 1.0000000000
|
---|
131 | })
|
---|
132 | (type: [am = s]
|
---|
133 | {exp coef:0} = {
|
---|
134 | 0.16400000000 1.0000000000
|
---|
135 | })
|
---|
136 | (type: [am = s]
|
---|
137 | {exp coef:0} = {
|
---|
138 | 0.46640000000E-01 1.0000000000
|
---|
139 | })
|
---|
140 | (type: [am = p]
|
---|
141 | {exp coef:0} = {
|
---|
142 | 10.153000000 1.0000000000
|
---|
143 | })
|
---|
144 | (type: [am = p]
|
---|
145 | {exp coef:0} = {
|
---|
146 | 3.6270000000 1.0000000000
|
---|
147 | })
|
---|
148 | (type: [am = p]
|
---|
149 | {exp coef:0} = {
|
---|
150 | 1.2960000000 1.0000000000
|
---|
151 | })
|
---|
152 | (type: [am = p]
|
---|
153 | {exp coef:0} = {
|
---|
154 | 0.46300000000 1.0000000000
|
---|
155 | })
|
---|
156 | (type: [am = p]
|
---|
157 | {exp coef:0} = {
|
---|
158 | 0.14000000000 1.0000000000
|
---|
159 | })
|
---|
160 | (type: [(am = d puream = 1)]
|
---|
161 | {exp coef:0} = {
|
---|
162 | 7.6660000000 1.0000000000
|
---|
163 | })
|
---|
164 | (type: [(am = d puream = 1)]
|
---|
165 | {exp coef:0} = {
|
---|
166 | 2.6470000000 1.0000000000
|
---|
167 | })
|
---|
168 | (type: [(am = d puream = 1)]
|
---|
169 | {exp coef:0} = {
|
---|
170 | 0.91400000000 1.0000000000
|
---|
171 | })
|
---|
172 | (type: [(am = d puream = 1)]
|
---|
173 | {exp coef:0} = {
|
---|
174 | 0.28920000000 1.0000000000
|
---|
175 | })
|
---|
176 | (type: [(am = f puream = 1)]
|
---|
177 | {exp coef:0} = {
|
---|
178 | 5.4110000000 1.0000000000
|
---|
179 | })
|
---|
180 | (type: [(am = f puream = 1)]
|
---|
181 | {exp coef:0} = {
|
---|
182 | 1.7070000000 1.0000000000
|
---|
183 | })
|
---|
184 | (type: [(am = f puream = 1)]
|
---|
185 | {exp coef:0} = {
|
---|
186 | 0.53450000000 1.0000000000
|
---|
187 | })
|
---|
188 | (type: [(am = g puream = 1)]
|
---|
189 | {exp coef:0} = {
|
---|
190 | 3.4300000000 1.0000000000
|
---|
191 | })
|
---|
192 | (type: [(am = g puream = 1)]
|
---|
193 | {exp coef:0} = {
|
---|
194 | 0.78990000000 1.0000000000
|
---|
195 | })
|
---|
196 | ]
|
---|
197 | %
|
---|
198 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
199 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
200 | boron: "aug-cc-pV5Z": [
|
---|
201 | (type: [am = s am = s]
|
---|
202 | {exp coef:0 coef:1} = {
|
---|
203 | 68260.000000 0.24000000000E-04 -0.50000000000E-05
|
---|
204 | 10230.000000 0.18500000000E-03 -0.37000000000E-04
|
---|
205 | 2328.0000000 0.97000000000E-03 -0.19600000000E-03
|
---|
206 | 660.40000000 0.40560000000E-02 -0.82400000000E-03
|
---|
207 | 216.20000000 0.14399000000E-01 -0.29230000000E-02
|
---|
208 | 78.600000000 0.43901000000E-01 -0.91380000000E-02
|
---|
209 | 30.980000000 0.11305700000 -0.24105000000E-01
|
---|
210 | 12.960000000 0.23382500000 -0.54755000000E-01
|
---|
211 | 5.6590000000 0.35396000000 -0.96943000000E-01
|
---|
212 | 2.5560000000 0.30154700000 -0.13748500000
|
---|
213 | })
|
---|
214 | (type: [am = s]
|
---|
215 | {exp coef:0} = {
|
---|
216 | 1.1750000000 1.0000000000
|
---|
217 | })
|
---|
218 | (type: [am = s]
|
---|
219 | {exp coef:0} = {
|
---|
220 | 0.42490000000 1.0000000000
|
---|
221 | })
|
---|
222 | (type: [am = s]
|
---|
223 | {exp coef:0} = {
|
---|
224 | 0.17120000000 1.0000000000
|
---|
225 | })
|
---|
226 | (type: [am = s]
|
---|
227 | {exp coef:0} = {
|
---|
228 | 0.69130000000E-01 1.0000000000
|
---|
229 | })
|
---|
230 | (type: [am = s]
|
---|
231 | {exp coef:0} = {
|
---|
232 | 0.26100000000E-01 1.0000000000
|
---|
233 | })
|
---|
234 | (type: [am = p]
|
---|
235 | {exp coef:0} = {
|
---|
236 | 66.440000000 0.83800000000E-03
|
---|
237 | 15.710000000 0.64090000000E-02
|
---|
238 | 4.9360000000 0.28081000000E-01
|
---|
239 | 1.7700000000 0.92152000000E-01
|
---|
240 | })
|
---|
241 | (type: [am = p]
|
---|
242 | {exp coef:0} = {
|
---|
243 | 0.70080000000 1.0000000000
|
---|
244 | })
|
---|
245 | (type: [am = p]
|
---|
246 | {exp coef:0} = {
|
---|
247 | 0.29010000000 1.0000000000
|
---|
248 | })
|
---|
249 | (type: [am = p]
|
---|
250 | {exp coef:0} = {
|
---|
251 | 0.12110000000 1.0000000000
|
---|
252 | })
|
---|
253 | (type: [am = p]
|
---|
254 | {exp coef:0} = {
|
---|
255 | 0.49730000000E-01 1.0000000000
|
---|
256 | })
|
---|
257 | (type: [am = p]
|
---|
258 | {exp coef:0} = {
|
---|
259 | 0.15700000000E-01 1.0000000000
|
---|
260 | })
|
---|
261 | (type: [(am = d puream = 1)]
|
---|
262 | {exp coef:0} = {
|
---|
263 | 2.0100000000 1.0000000000
|
---|
264 | })
|
---|
265 | (type: [(am = d puream = 1)]
|
---|
266 | {exp coef:0} = {
|
---|
267 | 0.79600000000 1.0000000000
|
---|
268 | })
|
---|
269 | (type: [(am = d puream = 1)]
|
---|
270 | {exp coef:0} = {
|
---|
271 | 0.31600000000 1.0000000000
|
---|
272 | })
|
---|
273 | (type: [(am = d puream = 1)]
|
---|
274 | {exp coef:0} = {
|
---|
275 | 0.12500000000 1.0000000000
|
---|
276 | })
|
---|
277 | (type: [(am = d puream = 1)]
|
---|
278 | {exp coef:0} = {
|
---|
279 | 0.43100000000E-01 1.0000000000
|
---|
280 | })
|
---|
281 | (type: [(am = f puream = 1)]
|
---|
282 | {exp coef:0} = {
|
---|
283 | 1.2150000000 1.0000000000
|
---|
284 | })
|
---|
285 | (type: [(am = f puream = 1)]
|
---|
286 | {exp coef:0} = {
|
---|
287 | 0.52500000000 1.0000000000
|
---|
288 | })
|
---|
289 | (type: [(am = f puream = 1)]
|
---|
290 | {exp coef:0} = {
|
---|
291 | 0.22700000000 1.0000000000
|
---|
292 | })
|
---|
293 | (type: [(am = f puream = 1)]
|
---|
294 | {exp coef:0} = {
|
---|
295 | 0.84300000000E-01 1.0000000000
|
---|
296 | })
|
---|
297 | (type: [(am = g puream = 1)]
|
---|
298 | {exp coef:0} = {
|
---|
299 | 1.1240000000 1.0000000000
|
---|
300 | })
|
---|
301 | (type: [(am = g puream = 1)]
|
---|
302 | {exp coef:0} = {
|
---|
303 | 0.46100000000 1.0000000000
|
---|
304 | })
|
---|
305 | (type: [(am = g puream = 1)]
|
---|
306 | {exp coef:0} = {
|
---|
307 | 0.20200000000 1.0000000000
|
---|
308 | })
|
---|
309 | (type: [(am = h puream = 1)]
|
---|
310 | {exp coef:0} = {
|
---|
311 | 0.83400000000 1.0000000000
|
---|
312 | })
|
---|
313 | (type: [(am = h puream = 1)]
|
---|
314 | {exp coef:0} = {
|
---|
315 | 0.38400000000 1.0000000000
|
---|
316 | })
|
---|
317 | ]
|
---|
318 | %
|
---|
319 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
320 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
321 | carbon: "aug-cc-pV5Z": [
|
---|
322 | (type: [am = s am = s]
|
---|
323 | {exp coef:0 coef:1} = {
|
---|
324 | 96770.000000 0.25000000000E-04 -0.50000000000E-05
|
---|
325 | 14500.000000 0.19000000000E-03 -0.41000000000E-04
|
---|
326 | 3300.0000000 0.10000000000E-02 -0.21300000000E-03
|
---|
327 | 935.80000000 0.41830000000E-02 -0.89700000000E-03
|
---|
328 | 306.20000000 0.14859000000E-01 -0.31870000000E-02
|
---|
329 | 111.30000000 0.45301000000E-01 -0.99610000000E-02
|
---|
330 | 43.900000000 0.11650400000 -0.26375000000E-01
|
---|
331 | 18.400000000 0.24024900000 -0.60001000000E-01
|
---|
332 | 8.0540000000 0.35879900000 -0.10682500000
|
---|
333 | 3.6370000000 0.29394100000 -0.14416600000
|
---|
334 | })
|
---|
335 | (type: [am = s]
|
---|
336 | {exp coef:0} = {
|
---|
337 | 1.6560000000 1.0000000000
|
---|
338 | })
|
---|
339 | (type: [am = s]
|
---|
340 | {exp coef:0} = {
|
---|
341 | 0.63330000000 1.0000000000
|
---|
342 | })
|
---|
343 | (type: [am = s]
|
---|
344 | {exp coef:0} = {
|
---|
345 | 0.25450000000 1.0000000000
|
---|
346 | })
|
---|
347 | (type: [am = s]
|
---|
348 | {exp coef:0} = {
|
---|
349 | 0.10190000000 1.0000000000
|
---|
350 | })
|
---|
351 | (type: [am = s]
|
---|
352 | {exp coef:0} = {
|
---|
353 | 0.39400000000E-01 1.0000000000
|
---|
354 | })
|
---|
355 | (type: [am = p]
|
---|
356 | {exp coef:0} = {
|
---|
357 | 101.80000000 0.89100000000E-03
|
---|
358 | 24.040000000 0.69760000000E-02
|
---|
359 | 7.5710000000 0.31669000000E-01
|
---|
360 | 2.7320000000 0.10400600000
|
---|
361 | })
|
---|
362 | (type: [am = p]
|
---|
363 | {exp coef:0} = {
|
---|
364 | 1.0850000000 1.0000000000
|
---|
365 | })
|
---|
366 | (type: [am = p]
|
---|
367 | {exp coef:0} = {
|
---|
368 | 0.44960000000 1.0000000000
|
---|
369 | })
|
---|
370 | (type: [am = p]
|
---|
371 | {exp coef:0} = {
|
---|
372 | 0.18760000000 1.0000000000
|
---|
373 | })
|
---|
374 | (type: [am = p]
|
---|
375 | {exp coef:0} = {
|
---|
376 | 0.76060000000E-01 1.0000000000
|
---|
377 | })
|
---|
378 | (type: [am = p]
|
---|
379 | {exp coef:0} = {
|
---|
380 | 0.27200000000E-01 1.0000000000
|
---|
381 | })
|
---|
382 | (type: [(am = d puream = 1)]
|
---|
383 | {exp coef:0} = {
|
---|
384 | 3.1340000000 1.0000000000
|
---|
385 | })
|
---|
386 | (type: [(am = d puream = 1)]
|
---|
387 | {exp coef:0} = {
|
---|
388 | 1.2330000000 1.0000000000
|
---|
389 | })
|
---|
390 | (type: [(am = d puream = 1)]
|
---|
391 | {exp coef:0} = {
|
---|
392 | 0.48500000000 1.0000000000
|
---|
393 | })
|
---|
394 | (type: [(am = d puream = 1)]
|
---|
395 | {exp coef:0} = {
|
---|
396 | 0.19100000000 1.0000000000
|
---|
397 | })
|
---|
398 | (type: [(am = d puream = 1)]
|
---|
399 | {exp coef:0} = {
|
---|
400 | 0.70100000000E-01 1.0000000000
|
---|
401 | })
|
---|
402 | (type: [(am = f puream = 1)]
|
---|
403 | {exp coef:0} = {
|
---|
404 | 2.0060000000 1.0000000000
|
---|
405 | })
|
---|
406 | (type: [(am = f puream = 1)]
|
---|
407 | {exp coef:0} = {
|
---|
408 | 0.83800000000 1.0000000000
|
---|
409 | })
|
---|
410 | (type: [(am = f puream = 1)]
|
---|
411 | {exp coef:0} = {
|
---|
412 | 0.35000000000 1.0000000000
|
---|
413 | })
|
---|
414 | (type: [(am = f puream = 1)]
|
---|
415 | {exp coef:0} = {
|
---|
416 | 0.13800000000 1.0000000000
|
---|
417 | })
|
---|
418 | (type: [(am = g puream = 1)]
|
---|
419 | {exp coef:0} = {
|
---|
420 | 1.7530000000 1.0000000000
|
---|
421 | })
|
---|
422 | (type: [(am = g puream = 1)]
|
---|
423 | {exp coef:0} = {
|
---|
424 | 0.67800000000 1.0000000000
|
---|
425 | })
|
---|
426 | (type: [(am = g puream = 1)]
|
---|
427 | {exp coef:0} = {
|
---|
428 | 0.31900000000 1.0000000000
|
---|
429 | })
|
---|
430 | (type: [(am = h puream = 1)]
|
---|
431 | {exp coef:0} = {
|
---|
432 | 1.2590000000 1.0000000000
|
---|
433 | })
|
---|
434 | (type: [(am = h puream = 1)]
|
---|
435 | {exp coef:0} = {
|
---|
436 | 0.58600000000 1.0000000000
|
---|
437 | })
|
---|
438 | ]
|
---|
439 | %
|
---|
440 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
441 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
442 | nitrogen: "aug-cc-pV5Z": [
|
---|
443 | (type: [am = s am = s]
|
---|
444 | {exp coef:0 coef:1} = {
|
---|
445 | 129200.00000 0.25000000000E-04 -0.60000000000E-05
|
---|
446 | 19350.000000 0.19700000000E-03 -0.43000000000E-04
|
---|
447 | 4404.0000000 0.10320000000E-02 -0.22700000000E-03
|
---|
448 | 1248.0000000 0.43250000000E-02 -0.95800000000E-03
|
---|
449 | 408.00000000 0.15380000000E-01 -0.34160000000E-02
|
---|
450 | 148.20000000 0.46867000000E-01 -0.10667000000E-01
|
---|
451 | 58.500000000 0.12011600000 -0.28279000000E-01
|
---|
452 | 24.590000000 0.24569500000 -0.64020000000E-01
|
---|
453 | 10.810000000 0.36137900000 -0.11393200000
|
---|
454 | 4.8820000000 0.28728300000 -0.14699500000
|
---|
455 | })
|
---|
456 | (type: [am = s]
|
---|
457 | {exp coef:0} = {
|
---|
458 | 2.1950000000 1.0000000000
|
---|
459 | })
|
---|
460 | (type: [am = s]
|
---|
461 | {exp coef:0} = {
|
---|
462 | 0.87150000000 1.0000000000
|
---|
463 | })
|
---|
464 | (type: [am = s]
|
---|
465 | {exp coef:0} = {
|
---|
466 | 0.35040000000 1.0000000000
|
---|
467 | })
|
---|
468 | (type: [am = s]
|
---|
469 | {exp coef:0} = {
|
---|
470 | 0.13970000000 1.0000000000
|
---|
471 | })
|
---|
472 | (type: [am = s]
|
---|
473 | {exp coef:0} = {
|
---|
474 | 0.51800000000E-01 1.0000000000
|
---|
475 | })
|
---|
476 | (type: [am = p]
|
---|
477 | {exp coef:0} = {
|
---|
478 | 147.00000000 0.89200000000E-03
|
---|
479 | 34.760000000 0.70820000000E-02
|
---|
480 | 11.000000000 0.32816000000E-01
|
---|
481 | 3.9950000000 0.10820900000
|
---|
482 | })
|
---|
483 | (type: [am = p]
|
---|
484 | {exp coef:0} = {
|
---|
485 | 1.5870000000 1.0000000000
|
---|
486 | })
|
---|
487 | (type: [am = p]
|
---|
488 | {exp coef:0} = {
|
---|
489 | 0.65330000000 1.0000000000
|
---|
490 | })
|
---|
491 | (type: [am = p]
|
---|
492 | {exp coef:0} = {
|
---|
493 | 0.26860000000 1.0000000000
|
---|
494 | })
|
---|
495 | (type: [am = p]
|
---|
496 | {exp coef:0} = {
|
---|
497 | 0.10670000000 1.0000000000
|
---|
498 | })
|
---|
499 | (type: [am = p]
|
---|
500 | {exp coef:0} = {
|
---|
501 | 0.36900000000E-01 1.0000000000
|
---|
502 | })
|
---|
503 | (type: [(am = d puream = 1)]
|
---|
504 | {exp coef:0} = {
|
---|
505 | 4.6470000000 1.0000000000
|
---|
506 | })
|
---|
507 | (type: [(am = d puream = 1)]
|
---|
508 | {exp coef:0} = {
|
---|
509 | 1.8130000000 1.0000000000
|
---|
510 | })
|
---|
511 | (type: [(am = d puream = 1)]
|
---|
512 | {exp coef:0} = {
|
---|
513 | 0.70700000000 1.0000000000
|
---|
514 | })
|
---|
515 | (type: [(am = d puream = 1)]
|
---|
516 | {exp coef:0} = {
|
---|
517 | 0.27600000000 1.0000000000
|
---|
518 | })
|
---|
519 | (type: [(am = d puream = 1)]
|
---|
520 | {exp coef:0} = {
|
---|
521 | 0.97100000000E-01 1.0000000000
|
---|
522 | })
|
---|
523 | (type: [(am = f puream = 1)]
|
---|
524 | {exp coef:0} = {
|
---|
525 | 2.9420000000 1.0000000000
|
---|
526 | })
|
---|
527 | (type: [(am = f puream = 1)]
|
---|
528 | {exp coef:0} = {
|
---|
529 | 1.2040000000 1.0000000000
|
---|
530 | })
|
---|
531 | (type: [(am = f puream = 1)]
|
---|
532 | {exp coef:0} = {
|
---|
533 | 0.49300000000 1.0000000000
|
---|
534 | })
|
---|
535 | (type: [(am = f puream = 1)]
|
---|
536 | {exp coef:0} = {
|
---|
537 | 0.19200000000 1.0000000000
|
---|
538 | })
|
---|
539 | (type: [(am = g puream = 1)]
|
---|
540 | {exp coef:0} = {
|
---|
541 | 2.5110000000 1.0000000000
|
---|
542 | })
|
---|
543 | (type: [(am = g puream = 1)]
|
---|
544 | {exp coef:0} = {
|
---|
545 | 0.94200000000 1.0000000000
|
---|
546 | })
|
---|
547 | (type: [(am = g puream = 1)]
|
---|
548 | {exp coef:0} = {
|
---|
549 | 0.43600000000 1.0000000000
|
---|
550 | })
|
---|
551 | (type: [(am = h puream = 1)]
|
---|
552 | {exp coef:0} = {
|
---|
553 | 1.7680000000 1.0000000000
|
---|
554 | })
|
---|
555 | (type: [(am = h puream = 1)]
|
---|
556 | {exp coef:0} = {
|
---|
557 | 0.78800000000 1.0000000000
|
---|
558 | })
|
---|
559 | ]
|
---|
560 | %
|
---|
561 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
562 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
563 | oxygen: "aug-cc-pV5Z": [
|
---|
564 | (type: [am = s am = s]
|
---|
565 | {exp coef:0 coef:1} = {
|
---|
566 | 164200.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
567 | 24590.000000 0.20500000000E-03 -0.46000000000E-04
|
---|
568 | 5592.0000000 0.10760000000E-02 -0.24400000000E-03
|
---|
569 | 1582.0000000 0.45220000000E-02 -0.10310000000E-02
|
---|
570 | 516.10000000 0.16108000000E-01 -0.36880000000E-02
|
---|
571 | 187.20000000 0.49085000000E-01 -0.11514000000E-01
|
---|
572 | 73.930000000 0.12485700000 -0.30435000000E-01
|
---|
573 | 31.220000000 0.25168600000 -0.68147000000E-01
|
---|
574 | 13.810000000 0.36242000000 -0.12036800000
|
---|
575 | 6.2560000000 0.27905100000 -0.14826000000
|
---|
576 | })
|
---|
577 | (type: [am = s]
|
---|
578 | {exp coef:0} = {
|
---|
579 | 2.7760000000 1.0000000000
|
---|
580 | })
|
---|
581 | (type: [am = s]
|
---|
582 | {exp coef:0} = {
|
---|
583 | 1.1380000000 1.0000000000
|
---|
584 | })
|
---|
585 | (type: [am = s]
|
---|
586 | {exp coef:0} = {
|
---|
587 | 0.46000000000 1.0000000000
|
---|
588 | })
|
---|
589 | (type: [am = s]
|
---|
590 | {exp coef:0} = {
|
---|
591 | 0.18290000000 1.0000000000
|
---|
592 | })
|
---|
593 | (type: [am = s]
|
---|
594 | {exp coef:0} = {
|
---|
595 | 0.65500000000E-01 1.0000000000
|
---|
596 | })
|
---|
597 | (type: [am = p]
|
---|
598 | {exp coef:0} = {
|
---|
599 | 195.50000000 0.91800000000E-03
|
---|
600 | 46.160000000 0.73880000000E-02
|
---|
601 | 14.580000000 0.34958000000E-01
|
---|
602 | 5.2960000000 0.11543100000
|
---|
603 | })
|
---|
604 | (type: [am = p]
|
---|
605 | {exp coef:0} = {
|
---|
606 | 2.0940000000 1.0000000000
|
---|
607 | })
|
---|
608 | (type: [am = p]
|
---|
609 | {exp coef:0} = {
|
---|
610 | 0.84710000000 1.0000000000
|
---|
611 | })
|
---|
612 | (type: [am = p]
|
---|
613 | {exp coef:0} = {
|
---|
614 | 0.33680000000 1.0000000000
|
---|
615 | })
|
---|
616 | (type: [am = p]
|
---|
617 | {exp coef:0} = {
|
---|
618 | 0.12850000000 1.0000000000
|
---|
619 | })
|
---|
620 | (type: [am = p]
|
---|
621 | {exp coef:0} = {
|
---|
622 | 0.44600000000E-01 1.0000000000
|
---|
623 | })
|
---|
624 | (type: [(am = d puream = 1)]
|
---|
625 | {exp coef:0} = {
|
---|
626 | 5.8790000000 1.0000000000
|
---|
627 | })
|
---|
628 | (type: [(am = d puream = 1)]
|
---|
629 | {exp coef:0} = {
|
---|
630 | 2.3070000000 1.0000000000
|
---|
631 | })
|
---|
632 | (type: [(am = d puream = 1)]
|
---|
633 | {exp coef:0} = {
|
---|
634 | 0.90500000000 1.0000000000
|
---|
635 | })
|
---|
636 | (type: [(am = d puream = 1)]
|
---|
637 | {exp coef:0} = {
|
---|
638 | 0.35500000000 1.0000000000
|
---|
639 | })
|
---|
640 | (type: [(am = d puream = 1)]
|
---|
641 | {exp coef:0} = {
|
---|
642 | 0.13100000000 1.0000000000
|
---|
643 | })
|
---|
644 | (type: [(am = f puream = 1)]
|
---|
645 | {exp coef:0} = {
|
---|
646 | 4.0160000000 1.0000000000
|
---|
647 | })
|
---|
648 | (type: [(am = f puream = 1)]
|
---|
649 | {exp coef:0} = {
|
---|
650 | 1.5540000000 1.0000000000
|
---|
651 | })
|
---|
652 | (type: [(am = f puream = 1)]
|
---|
653 | {exp coef:0} = {
|
---|
654 | 0.60100000000 1.0000000000
|
---|
655 | })
|
---|
656 | (type: [(am = f puream = 1)]
|
---|
657 | {exp coef:0} = {
|
---|
658 | 0.23700000000 1.0000000000
|
---|
659 | })
|
---|
660 | (type: [(am = g puream = 1)]
|
---|
661 | {exp coef:0} = {
|
---|
662 | 3.3500000000 1.0000000000
|
---|
663 | })
|
---|
664 | (type: [(am = g puream = 1)]
|
---|
665 | {exp coef:0} = {
|
---|
666 | 1.1890000000 1.0000000000
|
---|
667 | })
|
---|
668 | (type: [(am = g puream = 1)]
|
---|
669 | {exp coef:0} = {
|
---|
670 | 0.51700000000 1.0000000000
|
---|
671 | })
|
---|
672 | (type: [(am = h puream = 1)]
|
---|
673 | {exp coef:0} = {
|
---|
674 | 2.3190000000 1.0000000000
|
---|
675 | })
|
---|
676 | (type: [(am = h puream = 1)]
|
---|
677 | {exp coef:0} = {
|
---|
678 | 1.0240000000 1.0000000000
|
---|
679 | })
|
---|
680 | ]
|
---|
681 | %
|
---|
682 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
683 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
684 | fluorine: "aug-cc-pV5Z": [
|
---|
685 | (type: [am = s am = s]
|
---|
686 | {exp coef:0 coef:1} = {
|
---|
687 | 211400.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
688 | 31660.000000 0.20100000000E-03 -0.47000000000E-04
|
---|
689 | 7202.0000000 0.10560000000E-02 -0.24400000000E-03
|
---|
690 | 2040.0000000 0.44320000000E-02 -0.10310000000E-02
|
---|
691 | 666.40000000 0.15766000000E-01 -0.36830000000E-02
|
---|
692 | 242.00000000 0.48112000000E-01 -0.11513000000E-01
|
---|
693 | 95.530000000 0.12323200000 -0.30663000000E-01
|
---|
694 | 40.230000000 0.25151900000 -0.69572000000E-01
|
---|
695 | 17.720000000 0.36452500000 -0.12399200000
|
---|
696 | 8.0050000000 0.27976600000 -0.15021400000
|
---|
697 | })
|
---|
698 | (type: [am = s]
|
---|
699 | {exp coef:0} = {
|
---|
700 | 3.5380000000 1.0000000000
|
---|
701 | })
|
---|
702 | (type: [am = s]
|
---|
703 | {exp coef:0} = {
|
---|
704 | 1.4580000000 1.0000000000
|
---|
705 | })
|
---|
706 | (type: [am = s]
|
---|
707 | {exp coef:0} = {
|
---|
708 | 0.58870000000 1.0000000000
|
---|
709 | })
|
---|
710 | (type: [am = s]
|
---|
711 | {exp coef:0} = {
|
---|
712 | 0.23240000000 1.0000000000
|
---|
713 | })
|
---|
714 | (type: [am = s]
|
---|
715 | {exp coef:0} = {
|
---|
716 | 0.80600000000E-01 1.0000000000
|
---|
717 | })
|
---|
718 | (type: [am = p]
|
---|
719 | {exp coef:0} = {
|
---|
720 | 241.90000000 0.10020000000E-02
|
---|
721 | 57.170000000 0.80540000000E-02
|
---|
722 | 18.130000000 0.38048000000E-01
|
---|
723 | 6.6240000000 0.12377900000
|
---|
724 | })
|
---|
725 | (type: [am = p]
|
---|
726 | {exp coef:0} = {
|
---|
727 | 2.6220000000 1.0000000000
|
---|
728 | })
|
---|
729 | (type: [am = p]
|
---|
730 | {exp coef:0} = {
|
---|
731 | 1.0570000000 1.0000000000
|
---|
732 | })
|
---|
733 | (type: [am = p]
|
---|
734 | {exp coef:0} = {
|
---|
735 | 0.41760000000 1.0000000000
|
---|
736 | })
|
---|
737 | (type: [am = p]
|
---|
738 | {exp coef:0} = {
|
---|
739 | 0.15740000000 1.0000000000
|
---|
740 | })
|
---|
741 | (type: [am = p]
|
---|
742 | {exp coef:0} = {
|
---|
743 | 0.55000000000E-01 1.0000000000
|
---|
744 | })
|
---|
745 | (type: [(am = d puream = 1)]
|
---|
746 | {exp coef:0} = {
|
---|
747 | 7.7600000000 1.0000000000
|
---|
748 | })
|
---|
749 | (type: [(am = d puream = 1)]
|
---|
750 | {exp coef:0} = {
|
---|
751 | 3.0320000000 1.0000000000
|
---|
752 | })
|
---|
753 | (type: [(am = d puream = 1)]
|
---|
754 | {exp coef:0} = {
|
---|
755 | 1.1850000000 1.0000000000
|
---|
756 | })
|
---|
757 | (type: [(am = d puream = 1)]
|
---|
758 | {exp coef:0} = {
|
---|
759 | 0.46300000000 1.0000000000
|
---|
760 | })
|
---|
761 | (type: [(am = d puream = 1)]
|
---|
762 | {exp coef:0} = {
|
---|
763 | 0.17200000000 1.0000000000
|
---|
764 | })
|
---|
765 | (type: [(am = f puream = 1)]
|
---|
766 | {exp coef:0} = {
|
---|
767 | 5.3980000000 1.0000000000
|
---|
768 | })
|
---|
769 | (type: [(am = f puream = 1)]
|
---|
770 | {exp coef:0} = {
|
---|
771 | 2.0780000000 1.0000000000
|
---|
772 | })
|
---|
773 | (type: [(am = f puream = 1)]
|
---|
774 | {exp coef:0} = {
|
---|
775 | 0.80000000000 1.0000000000
|
---|
776 | })
|
---|
777 | (type: [(am = f puream = 1)]
|
---|
778 | {exp coef:0} = {
|
---|
779 | 0.33100000000 1.0000000000
|
---|
780 | })
|
---|
781 | (type: [(am = g puream = 1)]
|
---|
782 | {exp coef:0} = {
|
---|
783 | 4.3380000000 1.0000000000
|
---|
784 | })
|
---|
785 | (type: [(am = g puream = 1)]
|
---|
786 | {exp coef:0} = {
|
---|
787 | 1.5130000000 1.0000000000
|
---|
788 | })
|
---|
789 | (type: [(am = g puream = 1)]
|
---|
790 | {exp coef:0} = {
|
---|
791 | 0.66300000000 1.0000000000
|
---|
792 | })
|
---|
793 | (type: [(am = h puream = 1)]
|
---|
794 | {exp coef:0} = {
|
---|
795 | 2.9950000000 1.0000000000
|
---|
796 | })
|
---|
797 | (type: [(am = h puream = 1)]
|
---|
798 | {exp coef:0} = {
|
---|
799 | 1.3260000000 1.0000000000
|
---|
800 | })
|
---|
801 | ]
|
---|
802 | %
|
---|
803 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
804 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
805 | neon: "aug-cc-pV5Z": [
|
---|
806 | (type: [am = s am = s]
|
---|
807 | {exp coef:0 coef:1} = {
|
---|
808 | 262700.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
809 | 39350.000000 0.20000000000E-03 -0.47000000000E-04
|
---|
810 | 8955.0000000 0.10500000000E-02 -0.24700000000E-03
|
---|
811 | 2538.0000000 0.44000000000E-02 -0.10380000000E-02
|
---|
812 | 829.90000000 0.15649000000E-01 -0.37110000000E-02
|
---|
813 | 301.50000000 0.47758000000E-01 -0.11593000000E-01
|
---|
814 | 119.00000000 0.12294300000 -0.31086000000E-01
|
---|
815 | 50.000000000 0.25248300000 -0.70972000000E-01
|
---|
816 | 21.980000000 0.36631400000 -0.12726600000
|
---|
817 | 9.8910000000 0.27961700000 -0.15123100000
|
---|
818 | })
|
---|
819 | (type: [am = s]
|
---|
820 | {exp coef:0} = {
|
---|
821 | 4.3270000000 1.0000000000
|
---|
822 | })
|
---|
823 | (type: [am = s]
|
---|
824 | {exp coef:0} = {
|
---|
825 | 1.8040000000 1.0000000000
|
---|
826 | })
|
---|
827 | (type: [am = s]
|
---|
828 | {exp coef:0} = {
|
---|
829 | 0.72880000000 1.0000000000
|
---|
830 | })
|
---|
831 | (type: [am = s]
|
---|
832 | {exp coef:0} = {
|
---|
833 | 0.28670000000 1.0000000000
|
---|
834 | })
|
---|
835 | (type: [am = s]
|
---|
836 | {exp coef:0} = {
|
---|
837 | 0.95700000000E-01 1.0000000000
|
---|
838 | })
|
---|
839 | (type: [am = p]
|
---|
840 | {exp coef:0} = {
|
---|
841 | 299.10000000 0.10380000000E-02
|
---|
842 | 70.730000000 0.83750000000E-02
|
---|
843 | 22.480000000 0.39693000000E-01
|
---|
844 | 8.2460000000 0.12805600000
|
---|
845 | })
|
---|
846 | (type: [am = p]
|
---|
847 | {exp coef:0} = {
|
---|
848 | 3.2690000000 1.0000000000
|
---|
849 | })
|
---|
850 | (type: [am = p]
|
---|
851 | {exp coef:0} = {
|
---|
852 | 1.3150000000 1.0000000000
|
---|
853 | })
|
---|
854 | (type: [am = p]
|
---|
855 | {exp coef:0} = {
|
---|
856 | 0.51580000000 1.0000000000
|
---|
857 | })
|
---|
858 | (type: [am = p]
|
---|
859 | {exp coef:0} = {
|
---|
860 | 0.19180000000 1.0000000000
|
---|
861 | })
|
---|
862 | (type: [am = p]
|
---|
863 | {exp coef:0} = {
|
---|
864 | 0.65400000000E-01 1.0000000000
|
---|
865 | })
|
---|
866 | (type: [(am = d puream = 1)]
|
---|
867 | {exp coef:0} = {
|
---|
868 | 9.8370000000 1.0000000000
|
---|
869 | })
|
---|
870 | (type: [(am = d puream = 1)]
|
---|
871 | {exp coef:0} = {
|
---|
872 | 3.8440000000 1.0000000000
|
---|
873 | })
|
---|
874 | (type: [(am = d puream = 1)]
|
---|
875 | {exp coef:0} = {
|
---|
876 | 1.5020000000 1.0000000000
|
---|
877 | })
|
---|
878 | (type: [(am = d puream = 1)]
|
---|
879 | {exp coef:0} = {
|
---|
880 | 0.58700000000 1.0000000000
|
---|
881 | })
|
---|
882 | (type: [(am = d puream = 1)]
|
---|
883 | {exp coef:0} = {
|
---|
884 | 0.21300000000 1.0000000000
|
---|
885 | })
|
---|
886 | (type: [(am = f puream = 1)]
|
---|
887 | {exp coef:0} = {
|
---|
888 | 7.0900000000 1.0000000000
|
---|
889 | })
|
---|
890 | (type: [(am = f puream = 1)]
|
---|
891 | {exp coef:0} = {
|
---|
892 | 2.7380000000 1.0000000000
|
---|
893 | })
|
---|
894 | (type: [(am = f puream = 1)]
|
---|
895 | {exp coef:0} = {
|
---|
896 | 1.0570000000 1.0000000000
|
---|
897 | })
|
---|
898 | (type: [(am = f puream = 1)]
|
---|
899 | {exp coef:0} = {
|
---|
900 | 0.42500000000 1.0000000000
|
---|
901 | })
|
---|
902 | (type: [(am = g puream = 1)]
|
---|
903 | {exp coef:0} = {
|
---|
904 | 5.4600000000 1.0000000000
|
---|
905 | })
|
---|
906 | (type: [(am = g puream = 1)]
|
---|
907 | {exp coef:0} = {
|
---|
908 | 1.8800000000 1.0000000000
|
---|
909 | })
|
---|
910 | (type: [(am = g puream = 1)]
|
---|
911 | {exp coef:0} = {
|
---|
912 | 0.80900000000 1.0000000000
|
---|
913 | })
|
---|
914 | (type: [(am = h puream = 1)]
|
---|
915 | {exp coef:0} = {
|
---|
916 | 3.7760000000 1.0000000000
|
---|
917 | })
|
---|
918 | (type: [(am = h puream = 1)]
|
---|
919 | {exp coef:0} = {
|
---|
920 | 1.6280000000 1.0000000000
|
---|
921 | })
|
---|
922 | ]
|
---|
923 | %
|
---|
924 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
925 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
926 | aluminum: "aug-cc-pV5Z": [
|
---|
927 | (type: [am = s am = s am = s]
|
---|
928 | {exp coef:0 coef:1 coef:2} = {
|
---|
929 | 3269000.0000 0.21396200000E-05 -0.55602600000E-06 0.12842300000E-06
|
---|
930 | 489400.00000 0.16626400000E-04 -0.43230300000E-05 0.99751400000E-06
|
---|
931 | 111400.00000 0.87516800000E-04 -0.22741300000E-04 0.52548000000E-05
|
---|
932 | 31560.000000 0.36899000000E-03 -0.96011600000E-04 0.22145000000E-04
|
---|
933 | 10320.000000 0.13390300000E-02 -0.34837600000E-03 0.80546400000E-04
|
---|
934 | 3731.0000000 0.43563600000E-02 -0.11383600000E-02 0.26250600000E-03
|
---|
935 | 1456.0000000 0.12895500000E-01 -0.33874400000E-02 0.78422000000E-03
|
---|
936 | 604.10000000 0.34820100000E-01 -0.93150500000E-02 0.21503900000E-02
|
---|
937 | 263.50000000 0.84353000000E-01 -0.23302300000E-01 0.54197400000E-02
|
---|
938 | 119.80000000 0.17590700000 -0.52348600000E-01 0.12168600000E-01
|
---|
939 | 56.320000000 0.29209100000 -0.99949900000E-01 0.23682300000E-01
|
---|
940 | 27.190000000 0.32822000000 -0.15056000000 0.36093700000E-01
|
---|
941 | 13.260000000 0.18692700000 -0.11912100000 0.30328400000E-01
|
---|
942 | 6.0520000000 0.31043000000E-01 0.10809100000 -0.30903400000E-01
|
---|
943 | 2.9810000000 -0.50892200000E-03 0.41112900000 -0.11912600000
|
---|
944 | 1.4760000000 0.14883600000E-02 0.45721400000 -0.21114500000
|
---|
945 | })
|
---|
946 | (type: [am = s]
|
---|
947 | {exp coef:0} = {
|
---|
948 | 0.73340000000 1.0000000000
|
---|
949 | })
|
---|
950 | (type: [am = s]
|
---|
951 | {exp coef:0} = {
|
---|
952 | 0.24470000000 1.0000000000
|
---|
953 | })
|
---|
954 | (type: [am = s]
|
---|
955 | {exp coef:0} = {
|
---|
956 | 0.10880000000 1.0000000000
|
---|
957 | })
|
---|
958 | (type: [am = s]
|
---|
959 | {exp coef:0} = {
|
---|
960 | 0.46720000000E-01 1.0000000000
|
---|
961 | })
|
---|
962 | (type: [am = s]
|
---|
963 | {exp coef:0} = {
|
---|
964 | 0.17700000000E-01 1.0000000000
|
---|
965 | })
|
---|
966 | (type: [am = p am = p]
|
---|
967 | {exp coef:0 coef:1} = {
|
---|
968 | 1461.0000000 0.20861300000E-03 -0.37194700000E-04
|
---|
969 | 346.20000000 0.18100500000E-02 -0.32856300000E-03
|
---|
970 | 112.20000000 0.97343300000E-02 -0.17426400000E-02
|
---|
971 | 42.510000000 0.37826600000E-01 -0.69482800000E-02
|
---|
972 | 17.720000000 0.11089800000 -0.20280700000E-01
|
---|
973 | 7.8520000000 0.23429500000 -0.44865700000E-01
|
---|
974 | 3.5710000000 0.34524500000 -0.64327800000E-01
|
---|
975 | 1.6370000000 0.33143000000 -0.75266600000E-01
|
---|
976 | })
|
---|
977 | (type: [am = p]
|
---|
978 | {exp coef:0} = {
|
---|
979 | 0.73820000000 1.0000000000
|
---|
980 | })
|
---|
981 | (type: [am = p]
|
---|
982 | {exp coef:0} = {
|
---|
983 | 0.25770000000 1.0000000000
|
---|
984 | })
|
---|
985 | (type: [am = p]
|
---|
986 | {exp coef:0} = {
|
---|
987 | 0.97730000000E-01 1.0000000000
|
---|
988 | })
|
---|
989 | (type: [am = p]
|
---|
990 | {exp coef:0} = {
|
---|
991 | 0.36900000000E-01 1.0000000000
|
---|
992 | })
|
---|
993 | (type: [am = p]
|
---|
994 | {exp coef:0} = {
|
---|
995 | 0.11500000000E-01 1.0000000000
|
---|
996 | })
|
---|
997 | (type: [(am = d puream = 1)]
|
---|
998 | {exp coef:0} = {
|
---|
999 | 1.3170000000 1.0000000000
|
---|
1000 | })
|
---|
1001 | (type: [(am = d puream = 1)]
|
---|
1002 | {exp coef:0} = {
|
---|
1003 | 0.52600000000 1.0000000000
|
---|
1004 | })
|
---|
1005 | (type: [(am = d puream = 1)]
|
---|
1006 | {exp coef:0} = {
|
---|
1007 | 0.21000000000 1.0000000000
|
---|
1008 | })
|
---|
1009 | (type: [(am = d puream = 1)]
|
---|
1010 | {exp coef:0} = {
|
---|
1011 | 0.84000000000E-01 1.0000000000
|
---|
1012 | })
|
---|
1013 | (type: [(am = d puream = 1)]
|
---|
1014 | {exp coef:0} = {
|
---|
1015 | 0.29400000000E-01 1.0000000000
|
---|
1016 | })
|
---|
1017 | (type: [(am = f puream = 1)]
|
---|
1018 | {exp coef:0} = {
|
---|
1019 | 0.13000000000 1.0000000000
|
---|
1020 | })
|
---|
1021 | (type: [(am = f puream = 1)]
|
---|
1022 | {exp coef:0} = {
|
---|
1023 | 0.25800000000 1.0000000000
|
---|
1024 | })
|
---|
1025 | (type: [(am = f puream = 1)]
|
---|
1026 | {exp coef:0} = {
|
---|
1027 | 0.51300000000 1.0000000000
|
---|
1028 | })
|
---|
1029 | (type: [(am = f puream = 1)]
|
---|
1030 | {exp coef:0} = {
|
---|
1031 | 0.50900000000E-01 1.0000000000
|
---|
1032 | })
|
---|
1033 | (type: [(am = g puream = 1)]
|
---|
1034 | {exp coef:0} = {
|
---|
1035 | 0.25200000000 1.0000000000
|
---|
1036 | })
|
---|
1037 | (type: [(am = g puream = 1)]
|
---|
1038 | {exp coef:0} = {
|
---|
1039 | 0.54300000000 1.0000000000
|
---|
1040 | })
|
---|
1041 | (type: [(am = g puream = 1)]
|
---|
1042 | {exp coef:0} = {
|
---|
1043 | 0.10690000000 1.0000000000
|
---|
1044 | })
|
---|
1045 | (type: [(am = h puream = 1)]
|
---|
1046 | {exp coef:0} = {
|
---|
1047 | 0.44600000000 1.0000000000
|
---|
1048 | })
|
---|
1049 | (type: [(am = h puream = 1)]
|
---|
1050 | {exp coef:0} = {
|
---|
1051 | 0.22700000000 1.0000000000
|
---|
1052 | })
|
---|
1053 | ]
|
---|
1054 | %
|
---|
1055 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
1056 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
1057 | silicon: "aug-cc-pV5Z": [
|
---|
1058 | (type: [am = s am = s am = s]
|
---|
1059 | {exp coef:0 coef:1 coef:2} = {
|
---|
1060 | 3948000.0000 0.20371200000E-05 -0.54208500000E-06 0.13890700000E-06
|
---|
1061 | 591100.00000 0.15839400000E-04 -0.42167700000E-05 0.10795300000E-05
|
---|
1062 | 134500.00000 0.83359000000E-04 -0.22181300000E-04 0.56862800000E-05
|
---|
1063 | 38120.000000 0.35136100000E-03 -0.93602800000E-04 0.23953700000E-04
|
---|
1064 | 12460.000000 0.12766000000E-02 -0.34011600000E-03 0.87240900000E-04
|
---|
1065 | 4504.0000000 0.41519100000E-02 -0.11106100000E-02 0.28416300000E-03
|
---|
1066 | 1758.0000000 0.12303000000E-01 -0.33087800000E-02 0.84984000000E-03
|
---|
1067 | 729.10000000 0.33310200000E-01 -0.91160200000E-02 0.23352700000E-02
|
---|
1068 | 318.00000000 0.80984500000E-01 -0.22879000000E-01 0.59046600000E-02
|
---|
1069 | 144.60000000 0.17029000000 -0.51711900000E-01 0.13346100000E-01
|
---|
1070 | 67.970000000 0.28687900000 -0.99909100000E-01 0.26288900000E-01
|
---|
1071 | 32.820000000 0.33034000000 -0.15274700000 0.40742600000E-01
|
---|
1072 | 16.030000000 0.19660200000 -0.12750800000 0.36147600000E-01
|
---|
1073 | 7.3960000000 0.35453500000E-01 0.94696300000E-01 -0.30392300000E-01
|
---|
1074 | 3.6610000000 -0.53520400000E-03 0.41403600000 -0.13596100000
|
---|
1075 | 1.8230000000 0.16146500000E-02 0.46793400000 -0.25014400000
|
---|
1076 | })
|
---|
1077 | (type: [am = s]
|
---|
1078 | {exp coef:0} = {
|
---|
1079 | 0.91470000000 1.0000000000
|
---|
1080 | })
|
---|
1081 | (type: [am = s]
|
---|
1082 | {exp coef:0} = {
|
---|
1083 | 0.33930000000 1.0000000000
|
---|
1084 | })
|
---|
1085 | (type: [am = s]
|
---|
1086 | {exp coef:0} = {
|
---|
1087 | 0.15000000000 1.0000000000
|
---|
1088 | })
|
---|
1089 | (type: [am = s]
|
---|
1090 | {exp coef:0} = {
|
---|
1091 | 0.64380000000E-01 1.0000000000
|
---|
1092 | })
|
---|
1093 | (type: [am = s]
|
---|
1094 | {exp coef:0} = {
|
---|
1095 | 0.26000000000E-01 1.0000000000
|
---|
1096 | })
|
---|
1097 | (type: [am = p am = p]
|
---|
1098 | {exp coef:0 coef:1} = {
|
---|
1099 | 1780.0000000 0.20120600000E-03 -0.42715200000E-04
|
---|
1100 | 421.80000000 0.17493700000E-02 -0.37703900000E-03
|
---|
1101 | 136.70000000 0.94814100000E-02 -0.20224000000E-02
|
---|
1102 | 51.810000000 0.37231300000E-01 -0.81283300000E-02
|
---|
1103 | 21.600000000 0.11076300000 -0.24227200000E-01
|
---|
1104 | 9.5630000000 0.23793300000 -0.54382500000E-01
|
---|
1105 | 4.3500000000 0.35369100000 -0.79905100000E-01
|
---|
1106 | 2.0060000000 0.32883900000 -0.88895800000E-01
|
---|
1107 | })
|
---|
1108 | (type: [am = p]
|
---|
1109 | {exp coef:0} = {
|
---|
1110 | 0.92050000000 1.0000000000
|
---|
1111 | })
|
---|
1112 | (type: [am = p]
|
---|
1113 | {exp coef:0} = {
|
---|
1114 | 0.35000000000 1.0000000000
|
---|
1115 | })
|
---|
1116 | (type: [am = p]
|
---|
1117 | {exp coef:0} = {
|
---|
1118 | 0.13810000000 1.0000000000
|
---|
1119 | })
|
---|
1120 | (type: [am = p]
|
---|
1121 | {exp coef:0} = {
|
---|
1122 | 0.53380000000E-01 1.0000000000
|
---|
1123 | })
|
---|
1124 | (type: [am = p]
|
---|
1125 | {exp coef:0} = {
|
---|
1126 | 0.19200000000E-01 1.0000000000
|
---|
1127 | })
|
---|
1128 | (type: [(am = d puream = 1)]
|
---|
1129 | {exp coef:0} = {
|
---|
1130 | 0.12600000000 1.0000000000
|
---|
1131 | })
|
---|
1132 | (type: [(am = d puream = 1)]
|
---|
1133 | {exp coef:0} = {
|
---|
1134 | 0.32100000000 1.0000000000
|
---|
1135 | })
|
---|
1136 | (type: [(am = d puream = 1)]
|
---|
1137 | {exp coef:0} = {
|
---|
1138 | 0.81700000000 1.0000000000
|
---|
1139 | })
|
---|
1140 | (type: [(am = d puream = 1)]
|
---|
1141 | {exp coef:0} = {
|
---|
1142 | 2.0820000000 1.0000000000
|
---|
1143 | })
|
---|
1144 | (type: [(am = d puream = 1)]
|
---|
1145 | {exp coef:0} = {
|
---|
1146 | 0.46800000000E-01 1.0000000000
|
---|
1147 | })
|
---|
1148 | (type: [(am = f puream = 1)]
|
---|
1149 | {exp coef:0} = {
|
---|
1150 | 0.16900000000 1.0000000000
|
---|
1151 | })
|
---|
1152 | (type: [(am = f puream = 1)]
|
---|
1153 | {exp coef:0} = {
|
---|
1154 | 0.34100000000 1.0000000000
|
---|
1155 | })
|
---|
1156 | (type: [(am = f puream = 1)]
|
---|
1157 | {exp coef:0} = {
|
---|
1158 | 0.68800000000 1.0000000000
|
---|
1159 | })
|
---|
1160 | (type: [(am = f puream = 1)]
|
---|
1161 | {exp coef:0} = {
|
---|
1162 | 0.73500000000E-01 1.0000000000
|
---|
1163 | })
|
---|
1164 | (type: [(am = g puream = 1)]
|
---|
1165 | {exp coef:0} = {
|
---|
1166 | 0.32000000000 1.0000000000
|
---|
1167 | })
|
---|
1168 | (type: [(am = g puream = 1)]
|
---|
1169 | {exp coef:0} = {
|
---|
1170 | 0.70500000000 1.0000000000
|
---|
1171 | })
|
---|
1172 | (type: [(am = g puream = 1)]
|
---|
1173 | {exp coef:0} = {
|
---|
1174 | 0.15100000000 1.0000000000
|
---|
1175 | })
|
---|
1176 | (type: [(am = h puream = 1)]
|
---|
1177 | {exp coef:0} = {
|
---|
1178 | 0.58300000000 1.0000000000
|
---|
1179 | })
|
---|
1180 | (type: [(am = h puream = 1)]
|
---|
1181 | {exp coef:0} = {
|
---|
1182 | 0.32300000000 1.0000000000
|
---|
1183 | })
|
---|
1184 | ]
|
---|
1185 | %
|
---|
1186 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
1187 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
1188 | phosphorus: "aug-cc-pV5Z": [
|
---|
1189 | (type: [am = s am = s am = s]
|
---|
1190 | {exp coef:0 coef:1 coef:2} = {
|
---|
1191 | 4666000.0000 0.19675900000E-05 -0.53415300000E-06 0.14677600000E-06
|
---|
1192 | 698600.00000 0.15296300000E-04 -0.41542200000E-05 0.11406400000E-05
|
---|
1193 | 159000.00000 0.80482600000E-04 -0.21848400000E-04 0.60056800000E-05
|
---|
1194 | 45040.000000 0.33973700000E-03 -0.92327200000E-04 0.25342700000E-04
|
---|
1195 | 14720.000000 0.12329100000E-02 -0.33510900000E-03 0.92160600000E-04
|
---|
1196 | 5323.0000000 0.40134500000E-02 -0.10950800000E-02 0.30056300000E-03
|
---|
1197 | 2076.0000000 0.11912400000E-01 -0.32679800000E-02 0.89988400000E-03
|
---|
1198 | 861.10000000 0.32251100000E-01 -0.89995100000E-02 0.24735400000E-02
|
---|
1199 | 375.70000000 0.78664300000E-01 -0.22652800000E-01 0.62681200000E-02
|
---|
1200 | 170.80000000 0.16645800000 -0.51465000000E-01 0.14259800000E-01
|
---|
1201 | 80.290000000 0.28303900000 -0.10018600000 0.28276900000E-01
|
---|
1202 | 38.770000000 0.33194200000 -0.15507500000 0.44512400000E-01
|
---|
1203 | 18.930000000 0.20335200000 -0.13381800000 0.40721700000E-01
|
---|
1204 | 8.7960000000 0.38318300000E-01 0.87836100000E-01 -0.30190800000E-01
|
---|
1205 | 4.3580000000 -0.38472000000E-03 0.42258100000 -0.15289400000
|
---|
1206 | 2.1740000000 0.15874400000E-02 0.47489900000 -0.28241100000
|
---|
1207 | })
|
---|
1208 | (type: [am = s]
|
---|
1209 | {exp coef:0} = {
|
---|
1210 | 1.0950000000 1.0000000000
|
---|
1211 | })
|
---|
1212 | (type: [am = s]
|
---|
1213 | {exp coef:0} = {
|
---|
1214 | 0.44000000000 1.0000000000
|
---|
1215 | })
|
---|
1216 | (type: [am = s]
|
---|
1217 | {exp coef:0} = {
|
---|
1218 | 0.19450000000 1.0000000000
|
---|
1219 | })
|
---|
1220 | (type: [am = s]
|
---|
1221 | {exp coef:0} = {
|
---|
1222 | 0.83760000000E-01 1.0000000000
|
---|
1223 | })
|
---|
1224 | (type: [am = s]
|
---|
1225 | {exp coef:0} = {
|
---|
1226 | 0.33500000000E-01 1.0000000000
|
---|
1227 | })
|
---|
1228 | (type: [am = p am = p]
|
---|
1229 | {exp coef:0 coef:1} = {
|
---|
1230 | 2010.0000000 0.21591500000E-03 -0.51144400000E-04
|
---|
1231 | 476.30000000 0.18753600000E-02 -0.44835600000E-03
|
---|
1232 | 154.40000000 0.10174200000E-01 -0.24234000000E-02
|
---|
1233 | 58.510000000 0.39985600000E-01 -0.96982600000E-02
|
---|
1234 | 24.400000000 0.11856300000 -0.29096500000E-01
|
---|
1235 | 10.800000000 0.25181600000 -0.64172600000E-01
|
---|
1236 | 4.9130000000 0.36656500000 -0.94507100000E-01
|
---|
1237 | 2.2690000000 0.31617700000 -0.93470000000E-01
|
---|
1238 | })
|
---|
1239 | (type: [am = p]
|
---|
1240 | {exp coef:0} = {
|
---|
1241 | 1.0430000000 1.0000000000
|
---|
1242 | })
|
---|
1243 | (type: [am = p]
|
---|
1244 | {exp coef:0} = {
|
---|
1245 | 0.43130000000 1.0000000000
|
---|
1246 | })
|
---|
1247 | (type: [am = p]
|
---|
1248 | {exp coef:0} = {
|
---|
1249 | 0.17670000000 1.0000000000
|
---|
1250 | })
|
---|
1251 | (type: [am = p]
|
---|
1252 | {exp coef:0} = {
|
---|
1253 | 0.70090000000E-01 1.0000000000
|
---|
1254 | })
|
---|
1255 | (type: [am = p]
|
---|
1256 | {exp coef:0} = {
|
---|
1257 | 0.25300000000E-01 1.0000000000
|
---|
1258 | })
|
---|
1259 | (type: [(am = d puream = 1)]
|
---|
1260 | {exp coef:0} = {
|
---|
1261 | 0.16600000000 1.0000000000
|
---|
1262 | })
|
---|
1263 | (type: [(am = d puream = 1)]
|
---|
1264 | {exp coef:0} = {
|
---|
1265 | 0.41800000000 1.0000000000
|
---|
1266 | })
|
---|
1267 | (type: [(am = d puream = 1)]
|
---|
1268 | {exp coef:0} = {
|
---|
1269 | 1.0540000000 1.0000000000
|
---|
1270 | })
|
---|
1271 | (type: [(am = d puream = 1)]
|
---|
1272 | {exp coef:0} = {
|
---|
1273 | 2.6560000000 1.0000000000
|
---|
1274 | })
|
---|
1275 | (type: [(am = d puream = 1)]
|
---|
1276 | {exp coef:0} = {
|
---|
1277 | 0.62400000000E-01 1.0000000000
|
---|
1278 | })
|
---|
1279 | (type: [(am = f puream = 1)]
|
---|
1280 | {exp coef:0} = {
|
---|
1281 | 0.21900000000 1.0000000000
|
---|
1282 | })
|
---|
1283 | (type: [(am = f puream = 1)]
|
---|
1284 | {exp coef:0} = {
|
---|
1285 | 0.45000000000 1.0000000000
|
---|
1286 | })
|
---|
1287 | (type: [(am = f puream = 1)]
|
---|
1288 | {exp coef:0} = {
|
---|
1289 | 0.92300000000 1.0000000000
|
---|
1290 | })
|
---|
1291 | (type: [(am = f puream = 1)]
|
---|
1292 | {exp coef:0} = {
|
---|
1293 | 0.95000000000E-01 1.0000000000
|
---|
1294 | })
|
---|
1295 | (type: [(am = g puream = 1)]
|
---|
1296 | {exp coef:0} = {
|
---|
1297 | 0.41200000000 1.0000000000
|
---|
1298 | })
|
---|
1299 | (type: [(am = g puream = 1)]
|
---|
1300 | {exp coef:0} = {
|
---|
1301 | 0.90300000000 1.0000000000
|
---|
1302 | })
|
---|
1303 | (type: [(am = g puream = 1)]
|
---|
1304 | {exp coef:0} = {
|
---|
1305 | 0.18400000000 1.0000000000
|
---|
1306 | })
|
---|
1307 | (type: [(am = h puream = 1)]
|
---|
1308 | {exp coef:0} = {
|
---|
1309 | 0.74500000000 1.0000000000
|
---|
1310 | })
|
---|
1311 | (type: [(am = h puream = 1)]
|
---|
1312 | {exp coef:0} = {
|
---|
1313 | 0.37200000000 1.0000000000
|
---|
1314 | })
|
---|
1315 | ]
|
---|
1316 | %
|
---|
1317 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
1318 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
1319 | sulfur: "aug-cc-pV5Z": [
|
---|
1320 | (type: [am = s am = s am = s]
|
---|
1321 | {exp coef:0 coef:1 coef:2} = {
|
---|
1322 | 5481000.0000 0.18933800000E-05 -0.52291200000E-06 0.15182300000E-06
|
---|
1323 | 820600.00000 0.14721100000E-04 -0.40669000000E-05 0.11800800000E-05
|
---|
1324 | 186700.00000 0.77508400000E-04 -0.21406500000E-04 0.62169900000E-05
|
---|
1325 | 52880.000000 0.32722400000E-03 -0.90454000000E-04 0.26240500000E-04
|
---|
1326 | 17250.000000 0.11936500000E-02 -0.33008000000E-03 0.95904000000E-04
|
---|
1327 | 6226.0000000 0.38839300000E-02 -0.10778200000E-02 0.31267800000E-03
|
---|
1328 | 2429.0000000 0.11533600000E-01 -0.32187400000E-02 0.93632200000E-03
|
---|
1329 | 1007.0000000 0.31274800000E-01 -0.88721700000E-02 0.25779000000E-02
|
---|
1330 | 439.50000000 0.76438700000E-01 -0.22377100000E-01 0.65412100000E-02
|
---|
1331 | 199.80000000 0.16270000000 -0.51057700000E-01 0.14963000000E-01
|
---|
1332 | 93.920000000 0.27932800000 -0.10022500000 0.29894000000E-01
|
---|
1333 | 45.340000000 0.33314500000 -0.15679500000 0.47694600000E-01
|
---|
1334 | 22.150000000 0.20983600000 -0.13974800000 0.44955600000E-01
|
---|
1335 | 10.340000000 0.41597400000E-01 0.81005900000E-01 -0.29300900000E-01
|
---|
1336 | 5.1190000000 -0.45055200000E-03 0.43088300000 -0.16891600000
|
---|
1337 | 2.5530000000 0.16885500000E-02 0.48168800000 -0.31101400000
|
---|
1338 | })
|
---|
1339 | (type: [am = s]
|
---|
1340 | {exp coef:0} = {
|
---|
1341 | 1.2820000000 1.0000000000
|
---|
1342 | })
|
---|
1343 | (type: [am = s]
|
---|
1344 | {exp coef:0} = {
|
---|
1345 | 0.54500000000 1.0000000000
|
---|
1346 | })
|
---|
1347 | (type: [am = s]
|
---|
1348 | {exp coef:0} = {
|
---|
1349 | 0.24110000000 1.0000000000
|
---|
1350 | })
|
---|
1351 | (type: [am = s]
|
---|
1352 | {exp coef:0} = {
|
---|
1353 | 0.10350000000 1.0000000000
|
---|
1354 | })
|
---|
1355 | (type: [am = s]
|
---|
1356 | {exp coef:0} = {
|
---|
1357 | 0.42000000000E-01 1.0000000000
|
---|
1358 | })
|
---|
1359 | (type: [am = p am = p]
|
---|
1360 | {exp coef:0 coef:1} = {
|
---|
1361 | 2200.0000000 0.23904900000E-03 -0.60856200000E-04
|
---|
1362 | 521.40000000 0.20768600000E-02 -0.53041900000E-03
|
---|
1363 | 169.00000000 0.11236300000E-01 -0.28791500000E-02
|
---|
1364 | 64.050000000 0.44069000000E-01 -0.11439700000E-01
|
---|
1365 | 26.720000000 0.12916800000 -0.34276400000E-01
|
---|
1366 | 11.830000000 0.26908300000 -0.73581100000E-01
|
---|
1367 | 5.3780000000 0.37861100000 -0.10778200000
|
---|
1368 | 2.4820000000 0.29677900000 -0.87976900000E-01
|
---|
1369 | })
|
---|
1370 | (type: [am = p]
|
---|
1371 | {exp coef:0} = {
|
---|
1372 | 1.1160000000 1.0000000000
|
---|
1373 | })
|
---|
1374 | (type: [am = p]
|
---|
1375 | {exp coef:0} = {
|
---|
1376 | 0.48480000000 1.0000000000
|
---|
1377 | })
|
---|
1378 | (type: [am = p]
|
---|
1379 | {exp coef:0} = {
|
---|
1380 | 0.20060000000 1.0000000000
|
---|
1381 | })
|
---|
1382 | (type: [am = p]
|
---|
1383 | {exp coef:0} = {
|
---|
1384 | 0.79510000000E-01 1.0000000000
|
---|
1385 | })
|
---|
1386 | (type: [am = p]
|
---|
1387 | {exp coef:0} = {
|
---|
1388 | 0.29400000000E-01 1.0000000000
|
---|
1389 | })
|
---|
1390 | (type: [(am = d puream = 1)]
|
---|
1391 | {exp coef:0} = {
|
---|
1392 | 0.20500000000 1.0000000000
|
---|
1393 | })
|
---|
1394 | (type: [(am = d puream = 1)]
|
---|
1395 | {exp coef:0} = {
|
---|
1396 | 0.51200000000 1.0000000000
|
---|
1397 | })
|
---|
1398 | (type: [(am = d puream = 1)]
|
---|
1399 | {exp coef:0} = {
|
---|
1400 | 1.2810000000 1.0000000000
|
---|
1401 | })
|
---|
1402 | (type: [(am = d puream = 1)]
|
---|
1403 | {exp coef:0} = {
|
---|
1404 | 3.2030000000 1.0000000000
|
---|
1405 | })
|
---|
1406 | (type: [(am = d puream = 1)]
|
---|
1407 | {exp coef:0} = {
|
---|
1408 | 0.79400000000E-01 1.0000000000
|
---|
1409 | })
|
---|
1410 | (type: [(am = f puream = 1)]
|
---|
1411 | {exp coef:0} = {
|
---|
1412 | 0.25500000000 1.0000000000
|
---|
1413 | })
|
---|
1414 | (type: [(am = f puream = 1)]
|
---|
1415 | {exp coef:0} = {
|
---|
1416 | 0.52900000000 1.0000000000
|
---|
1417 | })
|
---|
1418 | (type: [(am = f puream = 1)]
|
---|
1419 | {exp coef:0} = {
|
---|
1420 | 1.0960000000 1.0000000000
|
---|
1421 | })
|
---|
1422 | (type: [(am = f puream = 1)]
|
---|
1423 | {exp coef:0} = {
|
---|
1424 | 0.11880000000 1.0000000000
|
---|
1425 | })
|
---|
1426 | (type: [(am = g puream = 1)]
|
---|
1427 | {exp coef:0} = {
|
---|
1428 | 0.46300000000 1.0000000000
|
---|
1429 | })
|
---|
1430 | (type: [(am = g puream = 1)]
|
---|
1431 | {exp coef:0} = {
|
---|
1432 | 1.0710000000 1.0000000000
|
---|
1433 | })
|
---|
1434 | (type: [(am = g puream = 1)]
|
---|
1435 | {exp coef:0} = {
|
---|
1436 | 0.22000000000 1.0000000000
|
---|
1437 | })
|
---|
1438 | (type: [(am = h puream = 1)]
|
---|
1439 | {exp coef:0} = {
|
---|
1440 | 0.87200000000 1.0000000000
|
---|
1441 | })
|
---|
1442 | (type: [(am = h puream = 1)]
|
---|
1443 | {exp coef:0} = {
|
---|
1444 | 0.47200000000 1.0000000000
|
---|
1445 | })
|
---|
1446 | ]
|
---|
1447 | %
|
---|
1448 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
1449 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
1450 | chlorine: "aug-cc-pV5Z": [
|
---|
1451 | (type: [am = s am = s am = s]
|
---|
1452 | {exp coef:0 coef:1 coef:2} = {
|
---|
1453 | 6410000.0000 0.18135000000E-05 -0.50830300000E-06 0.15380800000E-06
|
---|
1454 | 959600.00000 0.14111800000E-04 -0.39563300000E-05 0.11965400000E-05
|
---|
1455 | 218300.00000 0.74240600000E-04 -0.20809500000E-04 0.62982800000E-05
|
---|
1456 | 61810.000000 0.31413100000E-03 -0.88117500000E-04 0.26645000000E-04
|
---|
1457 | 20140.000000 0.11464200000E-02 -0.32174200000E-03 0.97416200000E-04
|
---|
1458 | 7264.0000000 0.37388800000E-02 -0.10527700000E-02 0.31836000000E-03
|
---|
1459 | 2832.0000000 0.11094600000E-01 -0.31418300000E-02 0.95237700000E-03
|
---|
1460 | 1175.0000000 0.30115200000E-01 -0.86636300000E-02 0.26243000000E-02
|
---|
1461 | 512.60000000 0.73914500000E-01 -0.21935300000E-01 0.66816000000E-02
|
---|
1462 | 233.00000000 0.15825800000 -0.50258400000E-01 0.15359500000E-01
|
---|
1463 | 109.50000000 0.27475300000 -0.99541400000E-01 0.30943200000E-01
|
---|
1464 | 52.860000000 0.33406600000 -0.15764700000 0.50063800000E-01
|
---|
1465 | 25.840000000 0.21758900000 -0.14602400000 0.48978200000E-01
|
---|
1466 | 12.170000000 0.45727800000E-01 0.69223000000E-01 -0.26080700000E-01
|
---|
1467 | 6.0300000000 -0.13473900000E-03 0.43041200000 -0.17842600000
|
---|
1468 | 3.0120000000 0.16393300000E-02 0.49080200000 -0.33232400000
|
---|
1469 | })
|
---|
1470 | (type: [am = s]
|
---|
1471 | {exp coef:0} = {
|
---|
1472 | 1.5110000000 1.0000000000
|
---|
1473 | })
|
---|
1474 | (type: [am = s]
|
---|
1475 | {exp coef:0} = {
|
---|
1476 | 0.66040000000 1.0000000000
|
---|
1477 | })
|
---|
1478 | (type: [am = s]
|
---|
1479 | {exp coef:0} = {
|
---|
1480 | 0.29260000000 1.0000000000
|
---|
1481 | })
|
---|
1482 | (type: [am = s]
|
---|
1483 | {exp coef:0} = {
|
---|
1484 | 0.12540000000 1.0000000000
|
---|
1485 | })
|
---|
1486 | (type: [am = s]
|
---|
1487 | {exp coef:0} = {
|
---|
1488 | 0.47900000000E-01 1.0000000000
|
---|
1489 | })
|
---|
1490 | (type: [am = p am = p]
|
---|
1491 | {exp coef:0 coef:1} = {
|
---|
1492 | 2548.0000000 0.23570200000E-03 -0.63541000000E-04
|
---|
1493 | 603.70000000 0.20515800000E-02 -0.55325900000E-03
|
---|
1494 | 195.60000000 0.11154300000E-01 -0.30279500000E-02
|
---|
1495 | 74.150000000 0.43981600000E-01 -0.12065000000E-01
|
---|
1496 | 30.940000000 0.12999400000 -0.36634800000E-01
|
---|
1497 | 13.690000000 0.27295900000 -0.79076400000E-01
|
---|
1498 | 6.2290000000 0.38369000000 -0.11742200000
|
---|
1499 | 2.8780000000 0.29187000000 -0.86094300000E-01
|
---|
1500 | })
|
---|
1501 | (type: [am = p]
|
---|
1502 | {exp coef:0} = {
|
---|
1503 | 1.2820000000 1.0000000000
|
---|
1504 | })
|
---|
1505 | (type: [am = p]
|
---|
1506 | {exp coef:0} = {
|
---|
1507 | 0.56410000000 1.0000000000
|
---|
1508 | })
|
---|
1509 | (type: [am = p]
|
---|
1510 | {exp coef:0} = {
|
---|
1511 | 0.23480000000 1.0000000000
|
---|
1512 | })
|
---|
1513 | (type: [am = p]
|
---|
1514 | {exp coef:0} = {
|
---|
1515 | 0.93120000000E-01 1.0000000000
|
---|
1516 | })
|
---|
1517 | (type: [am = p]
|
---|
1518 | {exp coef:0} = {
|
---|
1519 | 0.34800000000E-01 1.0000000000
|
---|
1520 | })
|
---|
1521 | (type: [(am = d puream = 1)]
|
---|
1522 | {exp coef:0} = {
|
---|
1523 | 0.25000000000 1.0000000000
|
---|
1524 | })
|
---|
1525 | (type: [(am = d puream = 1)]
|
---|
1526 | {exp coef:0} = {
|
---|
1527 | 0.61800000000 1.0000000000
|
---|
1528 | })
|
---|
1529 | (type: [(am = d puream = 1)]
|
---|
1530 | {exp coef:0} = {
|
---|
1531 | 1.5290000000 1.0000000000
|
---|
1532 | })
|
---|
1533 | (type: [(am = d puream = 1)]
|
---|
1534 | {exp coef:0} = {
|
---|
1535 | 3.7810000000 1.0000000000
|
---|
1536 | })
|
---|
1537 | (type: [(am = d puream = 1)]
|
---|
1538 | {exp coef:0} = {
|
---|
1539 | 0.10030000000 1.0000000000
|
---|
1540 | })
|
---|
1541 | (type: [(am = f puream = 1)]
|
---|
1542 | {exp coef:0} = {
|
---|
1543 | 0.32000000000 1.0000000000
|
---|
1544 | })
|
---|
1545 | (type: [(am = f puream = 1)]
|
---|
1546 | {exp coef:0} = {
|
---|
1547 | 0.65600000000 1.0000000000
|
---|
1548 | })
|
---|
1549 | (type: [(am = f puream = 1)]
|
---|
1550 | {exp coef:0} = {
|
---|
1551 | 1.3450000000 1.0000000000
|
---|
1552 | })
|
---|
1553 | (type: [(am = f puream = 1)]
|
---|
1554 | {exp coef:0} = {
|
---|
1555 | 0.16400000000 1.0000000000
|
---|
1556 | })
|
---|
1557 | (type: [(am = g puream = 1)]
|
---|
1558 | {exp coef:0} = {
|
---|
1559 | 0.55600000000 1.0000000000
|
---|
1560 | })
|
---|
1561 | (type: [(am = g puream = 1)]
|
---|
1562 | {exp coef:0} = {
|
---|
1563 | 1.3020000000 1.0000000000
|
---|
1564 | })
|
---|
1565 | (type: [(am = g puream = 1)]
|
---|
1566 | {exp coef:0} = {
|
---|
1567 | 0.27700000000 1.0000000000
|
---|
1568 | })
|
---|
1569 | (type: [(am = h puream = 1)]
|
---|
1570 | {exp coef:0} = {
|
---|
1571 | 1.0530000000 1.0000000000
|
---|
1572 | })
|
---|
1573 | (type: [(am = h puream = 1)]
|
---|
1574 | {exp coef:0} = {
|
---|
1575 | 0.60700000000 1.0000000000
|
---|
1576 | })
|
---|
1577 | ]
|
---|
1578 | %
|
---|
1579 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
1580 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
1581 | argon: "aug-cc-pV5Z": [
|
---|
1582 | (type: [am = s am = s am = s]
|
---|
1583 | {exp coef:0 coef:1 coef:2} = {
|
---|
1584 | 7401000.0000 0.17500000000E-05 -0.50000000000E-06 0.16000000000E-06
|
---|
1585 | 1108000.0000 0.13610000000E-04 -0.38700000000E-05 0.12100000000E-05
|
---|
1586 | 252100.00000 0.71630000000E-04 -0.20340000000E-04 0.63600000000E-05
|
---|
1587 | 71380.000000 0.30303000000E-03 -0.86090000000E-04 0.26890000000E-04
|
---|
1588 | 23260.000000 0.11060800000E-02 -0.31444000000E-03 0.98340000000E-04
|
---|
1589 | 8390.0000000 0.36067100000E-02 -0.10284100000E-02 0.32129000000E-03
|
---|
1590 | 3271.0000000 0.10713210000E-01 -0.30726700000E-02 0.96200000000E-03
|
---|
1591 | 1357.0000000 0.29106770000E-01 -0.84753200000E-02 0.26524500000E-02
|
---|
1592 | 592.00000000 0.71660110000E-01 -0.21520080000E-01 0.67703500000E-02
|
---|
1593 | 269.10000000 0.15414053000 -0.49449320000E-01 0.15617270000E-01
|
---|
1594 | 126.50000000 0.27041707000 -0.98775920000E-01 0.31716660000E-01
|
---|
1595 | 61.030000000 0.33485470000 -0.15830822000 0.51997420000E-01
|
---|
1596 | 29.860000000 0.22434631000 -0.15140298000 0.52475140000E-01
|
---|
1597 | 14.170000000 0.50002840000E-01 0.58242640000E-01 -0.22641470000E-01
|
---|
1598 | 7.0220000000 0.64590000000E-04 0.42938305000 -0.18606229000
|
---|
1599 | 3.5110000000 0.16864100000E-02 0.49908884000 -0.35014547000
|
---|
1600 | })
|
---|
1601 | (type: [am = s]
|
---|
1602 | {exp coef:0} = {
|
---|
1603 | 1.7580000000 1.0000000000
|
---|
1604 | })
|
---|
1605 | (type: [am = s]
|
---|
1606 | {exp coef:0} = {
|
---|
1607 | 0.78410000000 1.0000000000
|
---|
1608 | })
|
---|
1609 | (type: [am = s]
|
---|
1610 | {exp coef:0} = {
|
---|
1611 | 0.34800000000 1.0000000000
|
---|
1612 | })
|
---|
1613 | (type: [am = s]
|
---|
1614 | {exp coef:0} = {
|
---|
1615 | 0.14910000000 1.0000000000
|
---|
1616 | })
|
---|
1617 | (type: [am = s]
|
---|
1618 | {exp coef:0} = {
|
---|
1619 | 0.53800000000E-01 1.0000000000
|
---|
1620 | })
|
---|
1621 | (type: [am = p am = p]
|
---|
1622 | {exp coef:0 coef:1} = {
|
---|
1623 | 2927.0000000 0.23199000000E-03 -0.64910000000E-04
|
---|
1624 | 693.50000000 0.20232900000E-02 -0.56531000000E-03
|
---|
1625 | 224.70000000 0.11034010000E-01 -0.31098800000E-02
|
---|
1626 | 85.170000000 0.43839700000E-01 -0.12469640000E-01
|
---|
1627 | 35.530000000 0.13035904000 -0.38224650000E-01
|
---|
1628 | 15.730000000 0.27574991000 -0.83079180000E-01
|
---|
1629 | 7.1650000000 0.38764330000 -0.12459409000
|
---|
1630 | 3.3220000000 0.28740741000 -0.83297130000E-01
|
---|
1631 | })
|
---|
1632 | (type: [am = p]
|
---|
1633 | {exp coef:0} = {
|
---|
1634 | 1.4780000000 1.0000000000
|
---|
1635 | })
|
---|
1636 | (type: [am = p]
|
---|
1637 | {exp coef:0} = {
|
---|
1638 | 0.65520000000 1.0000000000
|
---|
1639 | })
|
---|
1640 | (type: [am = p]
|
---|
1641 | {exp coef:0} = {
|
---|
1642 | 0.27510000000 1.0000000000
|
---|
1643 | })
|
---|
1644 | (type: [am = p]
|
---|
1645 | {exp coef:0} = {
|
---|
1646 | 0.10970000000 1.0000000000
|
---|
1647 | })
|
---|
1648 | (type: [am = p]
|
---|
1649 | {exp coef:0} = {
|
---|
1650 | 0.40200000000E-01 1.0000000000
|
---|
1651 | })
|
---|
1652 | (type: [(am = d puream = 1)]
|
---|
1653 | {exp coef:0} = {
|
---|
1654 | 0.30900000000 1.0000000000
|
---|
1655 | })
|
---|
1656 | (type: [(am = d puream = 1)]
|
---|
1657 | {exp coef:0} = {
|
---|
1658 | 0.77000000000 1.0000000000
|
---|
1659 | })
|
---|
1660 | (type: [(am = d puream = 1)]
|
---|
1661 | {exp coef:0} = {
|
---|
1662 | 1.9170000000 1.0000000000
|
---|
1663 | })
|
---|
1664 | (type: [(am = d puream = 1)]
|
---|
1665 | {exp coef:0} = {
|
---|
1666 | 4.7760000000 1.0000000000
|
---|
1667 | })
|
---|
1668 | (type: [(am = d puream = 1)]
|
---|
1669 | {exp coef:0} = {
|
---|
1670 | 0.12100000000 1.0000000000
|
---|
1671 | })
|
---|
1672 | (type: [(am = f puream = 1)]
|
---|
1673 | {exp coef:0} = {
|
---|
1674 | 0.40800000000 1.0000000000
|
---|
1675 | })
|
---|
1676 | (type: [(am = f puream = 1)]
|
---|
1677 | {exp coef:0} = {
|
---|
1678 | 0.82500000000 1.0000000000
|
---|
1679 | })
|
---|
1680 | (type: [(am = f puream = 1)]
|
---|
1681 | {exp coef:0} = {
|
---|
1682 | 1.6680000000 1.0000000000
|
---|
1683 | })
|
---|
1684 | (type: [(am = f puream = 1)]
|
---|
1685 | {exp coef:0} = {
|
---|
1686 | 0.20900000000 1.0000000000
|
---|
1687 | })
|
---|
1688 | (type: [(am = g puream = 1)]
|
---|
1689 | {exp coef:0} = {
|
---|
1690 | 0.66500000000 1.0000000000
|
---|
1691 | })
|
---|
1692 | (type: [(am = g puream = 1)]
|
---|
1693 | {exp coef:0} = {
|
---|
1694 | 1.5620000000 1.0000000000
|
---|
1695 | })
|
---|
1696 | (type: [(am = g puream = 1)]
|
---|
1697 | {exp coef:0} = {
|
---|
1698 | 0.33400000000 1.0000000000
|
---|
1699 | })
|
---|
1700 | (type: [(am = h puream = 1)]
|
---|
1701 | {exp coef:0} = {
|
---|
1702 | 1.2640000000 1.0000000000
|
---|
1703 | })
|
---|
1704 | (type: [(am = h puream = 1)]
|
---|
1705 | {exp coef:0} = {
|
---|
1706 | 0.74200000000 1.0000000000
|
---|
1707 | })
|
---|
1708 | ]
|
---|
1709 | %
|
---|
1710 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
1711 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
1712 | gallium: "aug-cc-pV5Z": [
|
---|
1713 | (type: [am = s am = s am = s am = s]
|
---|
1714 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
1715 | 108615220.00 0.24000000000E-06 -0.70000000000E-07 0.30000000000E-07 -0.70000000000E-08
|
---|
1716 | 16264540.000 0.18600000000E-05 -0.58000000000E-06 0.22000000000E-06 -0.51000000000E-07
|
---|
1717 | 3700111.6000 0.98000000000E-05 -0.30300000000E-05 0.11600000000E-05 -0.27000000000E-06
|
---|
1718 | 1047169.1000 0.41520000000E-04 -0.12870000000E-04 0.49100000000E-05 -0.11420000000E-05
|
---|
1719 | 341067.57000 0.15205000000E-03 -0.47140000000E-04 0.17980000000E-04 -0.41830000000E-05
|
---|
1720 | 122771.54000 0.50077000000E-03 -0.15530000000E-03 0.59200000000E-04 -0.13781000000E-04
|
---|
1721 | 47659.578000 0.15187000000E-02 -0.47180000000E-03 0.18010000000E-03 -0.41882000000E-04
|
---|
1722 | 19633.354000 0.43025000000E-02 -0.13405000000E-02 0.51140000000E-03 -0.11902300000E-03
|
---|
1723 | 8488.7347000 0.11452300000E-01 -0.35955000000E-02 0.13740000000E-02 -0.31960000000E-03
|
---|
1724 | 3823.1381000 0.28564000000E-01 -0.91016000000E-02 0.34818000000E-02 -0.81070000000E-03
|
---|
1725 | 1784.4755000 0.65748500000E-01 -0.21636000000E-01 0.83169000000E-02 -0.19360000000E-02
|
---|
1726 | 860.05305000 0.13528950000 -0.47336500000E-01 0.18318000000E-01 -0.42722000000E-02
|
---|
1727 | 426.69867000 0.23455140000 -0.92499700000E-01 0.36390300000E-01 -0.84945000000E-02
|
---|
1728 | 217.26161000 0.30783510000 -0.15043510000 0.60808300000E-01 -0.14270900000E-01
|
---|
1729 | 112.96987000 0.25299470000 -0.17212270000 0.73293900000E-01 -0.17268100000E-01
|
---|
1730 | 59.449441000 0.96010400000E-01 -0.44017900000E-01 0.19741600000E-01 -0.47782000000E-02
|
---|
1731 | 30.782256000 0.97885000000E-02 0.29738280000 -0.16129700000 0.39492700000E-01
|
---|
1732 | 16.423212000 0.59120000000E-03 0.52797480000 -0.40219480000 0.10272000000
|
---|
1733 | 8.7578890000 -0.55400000000E-04 0.30089050000 -0.29272480000 0.77352900000E-01
|
---|
1734 | 4.4096290000 0.13800000000E-04 0.45881900000E-01 0.27069420000 -0.84956500000E-01
|
---|
1735 | 2.2494490000 -0.64200000000E-04 0.12828000000E-02 0.63597590000 -0.22198340000
|
---|
1736 | 1.1261150000 0.16900000000E-04 0.12588000000E-02 0.37024890000 -0.25320890000
|
---|
1737 | })
|
---|
1738 | (type: [am = s]
|
---|
1739 | {exp coef:0} = {
|
---|
1740 | 0.51548600000 1.0000000000
|
---|
1741 | })
|
---|
1742 | (type: [am = s]
|
---|
1743 | {exp coef:0} = {
|
---|
1744 | 0.24257800000 1.0000000000
|
---|
1745 | })
|
---|
1746 | (type: [am = s]
|
---|
1747 | {exp coef:0} = {
|
---|
1748 | 0.10708600000 1.0000000000
|
---|
1749 | })
|
---|
1750 | (type: [am = s]
|
---|
1751 | {exp coef:0} = {
|
---|
1752 | 0.46988000000E-01 1.0000000000
|
---|
1753 | })
|
---|
1754 | (type: [am = s]
|
---|
1755 | {exp coef:0} = {
|
---|
1756 | 0.17301000000E-01 1.0000000000
|
---|
1757 | })
|
---|
1758 | (type: [am = p am = p am = p]
|
---|
1759 | {exp coef:0 coef:1 coef:2} = {
|
---|
1760 | 32152.190000 0.28300000000E-04 -0.10700000000E-04 0.17000000000E-05
|
---|
1761 | 7609.3842000 0.25290000000E-03 -0.95800000000E-04 0.15800000000E-04
|
---|
1762 | 2471.4744000 0.14686000000E-02 -0.55820000000E-03 0.90800000000E-04
|
---|
1763 | 946.06363000 0.65627000000E-02 -0.25040000000E-02 0.41200000000E-03
|
---|
1764 | 401.94711000 0.23802300000E-01 -0.91996000000E-02 0.14984000000E-02
|
---|
1765 | 183.64688000 0.70894500000E-01 -0.27997300000E-01 0.46252000000E-02
|
---|
1766 | 88.533264000 0.16763840000 -0.68874600000E-01 0.11271300000E-01
|
---|
1767 | 44.270355000 0.29597540000 -0.12738430000 0.21321200000E-01
|
---|
1768 | 22.723083000 0.34886100000 -0.15858890000 0.25952300000E-01
|
---|
1769 | 11.823141000 0.21754960000 -0.42496800000E-01 0.66320000000E-02
|
---|
1770 | 6.0421350000 0.52051100000E-01 0.24414400000 -0.50170400000E-01
|
---|
1771 | 3.0317540000 0.34378000000E-02 0.44591110000 -0.84297700000E-01
|
---|
1772 | 1.4933660000 0.98330000000E-03 0.35295220000 -0.90302300000E-01
|
---|
1773 | })
|
---|
1774 | (type: [am = p]
|
---|
1775 | {exp coef:0} = {
|
---|
1776 | 0.70972700000 1.0000000000
|
---|
1777 | })
|
---|
1778 | (type: [am = p]
|
---|
1779 | {exp coef:0} = {
|
---|
1780 | 0.24859300000 1.0000000000
|
---|
1781 | })
|
---|
1782 | (type: [am = p]
|
---|
1783 | {exp coef:0} = {
|
---|
1784 | 0.94395000000E-01 1.0000000000
|
---|
1785 | })
|
---|
1786 | (type: [am = p]
|
---|
1787 | {exp coef:0} = {
|
---|
1788 | 0.35887000000E-01 1.0000000000
|
---|
1789 | })
|
---|
1790 | (type: [am = p]
|
---|
1791 | {exp coef:0} = {
|
---|
1792 | 0.11050000000E-01 1.0000000000
|
---|
1793 | })
|
---|
1794 | (type: [(am = d puream = 1)]
|
---|
1795 | {exp coef:0} = {
|
---|
1796 | 1040.5046000 0.89200000000E-04
|
---|
1797 | 314.59714000 0.86250000000E-03
|
---|
1798 | 122.78760000 0.50094000000E-02
|
---|
1799 | 54.760369000 0.19964900000E-01
|
---|
1800 | 26.298944000 0.58321400000E-01
|
---|
1801 | 13.263445000 0.13168680000
|
---|
1802 | 6.8850650000 0.22186760000
|
---|
1803 | 3.5795250000 0.28250590000
|
---|
1804 | 1.8315640000 0.28319890000
|
---|
1805 | })
|
---|
1806 | (type: [(am = d puream = 1)]
|
---|
1807 | {exp coef:0} = {
|
---|
1808 | 0.91290900000 1.0000000000
|
---|
1809 | })
|
---|
1810 | (type: [(am = d puream = 1)]
|
---|
1811 | {exp coef:0} = {
|
---|
1812 | 0.43534000000 1.0000000000
|
---|
1813 | })
|
---|
1814 | (type: [(am = d puream = 1)]
|
---|
1815 | {exp coef:0} = {
|
---|
1816 | 0.18851800000 1.0000000000
|
---|
1817 | })
|
---|
1818 | (type: [(am = d puream = 1)]
|
---|
1819 | {exp coef:0} = {
|
---|
1820 | 0.75800000000E-01 1.0000000000
|
---|
1821 | })
|
---|
1822 | (type: [(am = d puream = 1)]
|
---|
1823 | {exp coef:0} = {
|
---|
1824 | 0.26000000000E-01 1.0000000000
|
---|
1825 | })
|
---|
1826 | (type: [(am = f puream = 1)]
|
---|
1827 | {exp coef:0} = {
|
---|
1828 | 0.13400000000 1.0000000000
|
---|
1829 | })
|
---|
1830 | (type: [(am = f puream = 1)]
|
---|
1831 | {exp coef:0} = {
|
---|
1832 | 0.28260000000 1.0000000000
|
---|
1833 | })
|
---|
1834 | (type: [(am = f puream = 1)]
|
---|
1835 | {exp coef:0} = {
|
---|
1836 | 0.59600000000 1.0000000000
|
---|
1837 | })
|
---|
1838 | (type: [(am = f puream = 1)]
|
---|
1839 | {exp coef:0} = {
|
---|
1840 | 0.51100000000E-01 1.0000000000
|
---|
1841 | })
|
---|
1842 | (type: [(am = g puream = 1)]
|
---|
1843 | {exp coef:0} = {
|
---|
1844 | 0.27500000000 1.0000000000
|
---|
1845 | })
|
---|
1846 | (type: [(am = g puream = 1)]
|
---|
1847 | {exp coef:0} = {
|
---|
1848 | 0.61460000000 1.0000000000
|
---|
1849 | })
|
---|
1850 | (type: [(am = g puream = 1)]
|
---|
1851 | {exp coef:0} = {
|
---|
1852 | 0.11400000000 1.0000000000
|
---|
1853 | })
|
---|
1854 | (type: [(am = h puream = 1)]
|
---|
1855 | {exp coef:0} = {
|
---|
1856 | 0.49860000000 1.0000000000
|
---|
1857 | })
|
---|
1858 | (type: [(am = h puream = 1)]
|
---|
1859 | {exp coef:0} = {
|
---|
1860 | 0.25400000000 1.0000000000
|
---|
1861 | })
|
---|
1862 | ]
|
---|
1863 | %
|
---|
1864 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
1865 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
1866 | germanium: "aug-cc-pV5Z": [
|
---|
1867 | (type: [am = s am = s am = s am = s]
|
---|
1868 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
1869 | 122001190.00 0.22000000000E-06 -0.70000000000E-07 0.30000000000E-07 -0.70000000000E-08
|
---|
1870 | 18257470.000 0.17500000000E-05 -0.54000000000E-06 0.21000000000E-06 -0.54000000000E-07
|
---|
1871 | 4150821.5000 0.92000000000E-05 -0.28600000000E-05 0.11000000000E-05 -0.28300000000E-06
|
---|
1872 | 1174101.8000 0.38990000000E-04 -0.12130000000E-04 0.46700000000E-05 -0.11200000000E-05
|
---|
1873 | 382309.15000 0.14280000000E-03 -0.44430000000E-04 0.17130000000E-04 -0.43910000000E-05
|
---|
1874 | 137607.96000 0.47030000000E-03 -0.14640000000E-03 0.56400000000E-04 -0.14461000000E-04
|
---|
1875 | 53419.242000 0.14267000000E-02 -0.44470000000E-03 0.17150000000E-03 -0.43965000000E-04
|
---|
1876 | 22005.756000 0.40434000000E-02 -0.12637000000E-02 0.48720000000E-03 -0.12490000000E-03
|
---|
1877 | 9513.8479000 0.10773200000E-01 -0.33920000000E-02 0.13097000000E-02 -0.33580000000E-03
|
---|
1878 | 4284.1756000 0.26927300000E-01 -0.85979000000E-02 0.33232000000E-02 -0.85250000000E-03
|
---|
1879 | 1999.1664000 0.62237400000E-01 -0.20496400000E-01 0.79591000000E-02 -0.20424000000E-02
|
---|
1880 | 963.24716000 0.12903820000 -0.45057100000E-01 0.17609700000E-01 -0.45245000000E-02
|
---|
1881 | 477.80500000 0.22673120000 -0.88792200000E-01 0.35257600000E-01 -0.90744000000E-02
|
---|
1882 | 243.31589000 0.30489030000 -0.14662990000 0.59768700000E-01 -0.15448300000E-01
|
---|
1883 | 126.63999000 0.26176620000 -0.17431400000 0.74740600000E-01 -0.19433800000E-01
|
---|
1884 | 66.783579000 0.10763480000 -0.61165600000E-01 0.27786300000E-01 -0.73289000000E-02
|
---|
1885 | 34.416084000 0.12623400000E-01 0.27166900000 -0.14728780000 0.39648500000E-01
|
---|
1886 | 18.372814000 0.39180000000E-03 0.52802260000 -0.39742020000 0.11217960000
|
---|
1887 | 9.8054610000 0.81200000000E-04 0.32401380000 -0.32056660000 0.93568600000E-01
|
---|
1888 | 4.9694030000 -0.48900000000E-04 0.54417700000E-01 0.23319680000 -0.80645900000E-01
|
---|
1889 | 2.5486230000 -0.31700000000E-04 0.14463000000E-02 0.64248900000 -0.25011090000
|
---|
1890 | 1.2845940000 -0.10900000000E-05 0.14248000000E-02 0.39666840000 -0.29780990000
|
---|
1891 | })
|
---|
1892 | (type: [am = s]
|
---|
1893 | {exp coef:0} = {
|
---|
1894 | 0.58335300000 1.0000000000
|
---|
1895 | })
|
---|
1896 | (type: [am = s]
|
---|
1897 | {exp coef:0} = {
|
---|
1898 | 0.29343900000 1.0000000000
|
---|
1899 | })
|
---|
1900 | (type: [am = s]
|
---|
1901 | {exp coef:0} = {
|
---|
1902 | 0.13267200000 1.0000000000
|
---|
1903 | })
|
---|
1904 | (type: [am = s]
|
---|
1905 | {exp coef:0} = {
|
---|
1906 | 0.59239000000E-01 1.0000000000
|
---|
1907 | })
|
---|
1908 | (type: [am = s]
|
---|
1909 | {exp coef:0} = {
|
---|
1910 | 0.24274000000E-01 1.0000000000
|
---|
1911 | })
|
---|
1912 | (type: [am = p am = p am = p]
|
---|
1913 | {exp coef:0 coef:1 coef:2} = {
|
---|
1914 | 32314.970000 0.31600000000E-04 -0.12200000000E-04 0.24000000000E-05
|
---|
1915 | 7648.2002000 0.28200000000E-03 -0.10840000000E-03 0.21400000000E-04
|
---|
1916 | 2484.2114000 0.16353000000E-02 -0.63110000000E-03 0.12430000000E-03
|
---|
1917 | 951.00305000 0.72864000000E-02 -0.28243000000E-02 0.55890000000E-03
|
---|
1918 | 404.04833000 0.26293100000E-01 -0.10331700000E-01 0.20383000000E-02
|
---|
1919 | 184.60354000 0.77594300000E-01 -0.31210200000E-01 0.62016000000E-02
|
---|
1920 | 88.964128000 0.18036530000 -0.75595400000E-01 0.15010600000E-01
|
---|
1921 | 44.447742000 0.30953540000 -0.13629440000 0.27412700000E-01
|
---|
1922 | 22.799075000 0.34547520000 -0.15901500000 0.31779600000E-01
|
---|
1923 | 11.835928000 0.19632900000 -0.14980500000E-01 0.92280000000E-03
|
---|
1924 | 6.0112940000 0.40906800000E-01 0.28682250000 -0.69834200000E-01
|
---|
1925 | 2.9957840000 0.24197000000E-02 0.46266560000 -0.11196000000
|
---|
1926 | 1.4695700000 0.80030000000E-03 0.31685050000 -0.99356500000E-01
|
---|
1927 | })
|
---|
1928 | (type: [am = p]
|
---|
1929 | {exp coef:0} = {
|
---|
1930 | 0.69068100000 1.0000000000
|
---|
1931 | })
|
---|
1932 | (type: [am = p]
|
---|
1933 | {exp coef:0} = {
|
---|
1934 | 0.28616000000 1.0000000000
|
---|
1935 | })
|
---|
1936 | (type: [am = p]
|
---|
1937 | {exp coef:0} = {
|
---|
1938 | 0.11774200000 1.0000000000
|
---|
1939 | })
|
---|
1940 | (type: [am = p]
|
---|
1941 | {exp coef:0} = {
|
---|
1942 | 0.47385000000E-01 1.0000000000
|
---|
1943 | })
|
---|
1944 | (type: [am = p]
|
---|
1945 | {exp coef:0} = {
|
---|
1946 | 0.17593000000E-01 1.0000000000
|
---|
1947 | })
|
---|
1948 | (type: [(am = d puream = 1)]
|
---|
1949 | {exp coef:0} = {
|
---|
1950 | 1226.7982000 0.76300000000E-04
|
---|
1951 | 371.23223000 0.74250000000E-03
|
---|
1952 | 144.89099000 0.43756000000E-02
|
---|
1953 | 64.604130000 0.17925700000E-01
|
---|
1954 | 31.039737000 0.53925300000E-01
|
---|
1955 | 15.643870000 0.12571910000
|
---|
1956 | 8.1258220000 0.21915660000
|
---|
1957 | 4.2397620000 0.28606620000
|
---|
1958 | 2.1863860000 0.28965040000
|
---|
1959 | })
|
---|
1960 | (type: [(am = d puream = 1)]
|
---|
1961 | {exp coef:0} = {
|
---|
1962 | 1.1038710000 1.0000000000
|
---|
1963 | })
|
---|
1964 | (type: [(am = d puream = 1)]
|
---|
1965 | {exp coef:0} = {
|
---|
1966 | 0.53381100000 1.0000000000
|
---|
1967 | })
|
---|
1968 | (type: [(am = d puream = 1)]
|
---|
1969 | {exp coef:0} = {
|
---|
1970 | 0.23135500000 1.0000000000
|
---|
1971 | })
|
---|
1972 | (type: [(am = d puream = 1)]
|
---|
1973 | {exp coef:0} = {
|
---|
1974 | 0.95300000000E-01 1.0000000000
|
---|
1975 | })
|
---|
1976 | (type: [(am = d puream = 1)]
|
---|
1977 | {exp coef:0} = {
|
---|
1978 | 0.36400000000E-01 1.0000000000
|
---|
1979 | })
|
---|
1980 | (type: [(am = f puream = 1)]
|
---|
1981 | {exp coef:0} = {
|
---|
1982 | 0.16300000000 1.0000000000
|
---|
1983 | })
|
---|
1984 | (type: [(am = f puream = 1)]
|
---|
1985 | {exp coef:0} = {
|
---|
1986 | 0.32970000000 1.0000000000
|
---|
1987 | })
|
---|
1988 | (type: [(am = f puream = 1)]
|
---|
1989 | {exp coef:0} = {
|
---|
1990 | 0.67090000000 1.0000000000
|
---|
1991 | })
|
---|
1992 | (type: [(am = f puream = 1)]
|
---|
1993 | {exp coef:0} = {
|
---|
1994 | 0.70500000000E-01 1.0000000000
|
---|
1995 | })
|
---|
1996 | (type: [(am = g puream = 1)]
|
---|
1997 | {exp coef:0} = {
|
---|
1998 | 0.31600000000 1.0000000000
|
---|
1999 | })
|
---|
2000 | (type: [(am = g puream = 1)]
|
---|
2001 | {exp coef:0} = {
|
---|
2002 | 0.70340000000 1.0000000000
|
---|
2003 | })
|
---|
2004 | (type: [(am = g puream = 1)]
|
---|
2005 | {exp coef:0} = {
|
---|
2006 | 0.14600000000 1.0000000000
|
---|
2007 | })
|
---|
2008 | (type: [(am = h puream = 1)]
|
---|
2009 | {exp coef:0} = {
|
---|
2010 | 0.58150000000 1.0000000000
|
---|
2011 | })
|
---|
2012 | (type: [(am = h puream = 1)]
|
---|
2013 | {exp coef:0} = {
|
---|
2014 | 0.32000000000 1.0000000000
|
---|
2015 | })
|
---|
2016 | ]
|
---|
2017 | %
|
---|
2018 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
2019 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
2020 | arsenic: "aug-cc-pV5Z": [
|
---|
2021 | (type: [am = s am = s am = s am = s]
|
---|
2022 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
2023 | 137507530.00 0.21000000000E-06 -0.70000000000E-07 0.30000000000E-07 -0.70000000000E-08
|
---|
2024 | 20515052.000 0.16300000000E-05 -0.51000000000E-06 0.20000000000E-06 -0.55000000000E-07
|
---|
2025 | 4648716.4000 0.86500000000E-05 -0.27000000000E-05 0.10500000000E-05 -0.28900000000E-06
|
---|
2026 | 1311264.6000 0.36760000000E-04 -0.11470000000E-04 0.44700000000E-05 -0.12300000000E-05
|
---|
2027 | 426185.86000 0.13488000000E-03 -0.42100000000E-04 0.16400000000E-04 -0.45170000000E-05
|
---|
2028 | 153237.06000 0.44460000000E-03 -0.13880000000E-03 0.54040000000E-04 -0.14884000000E-04
|
---|
2029 | 59459.404000 0.13488000000E-02 -0.42180000000E-03 0.16430000000E-03 -0.45265000000E-04
|
---|
2030 | 24492.812000 0.38231000000E-02 -0.11984000000E-02 0.46690000000E-03 -0.12858200000E-03
|
---|
2031 | 10590.253000 0.10190800000E-01 -0.32174000000E-02 0.12552000000E-02 -0.34580100000E-03
|
---|
2032 | 4769.7841000 0.25502700000E-01 -0.81598000000E-02 0.31869000000E-02 -0.87803100000E-03
|
---|
2033 | 2226.3698000 0.59110400000E-01 -0.19483400000E-01 0.76432000000E-02 -0.21073000000E-02
|
---|
2034 | 1073.0862000 0.12328880000 -0.42978700000E-01 0.16966900000E-01 -0.46817000000E-02
|
---|
2035 | 532.50059000 0.21917430000 -0.85298700000E-01 0.34190900000E-01 -0.94558000000E-02
|
---|
2036 | 271.29755000 0.30136120000 -0.14284020000 0.58728700000E-01 -0.16299000000E-01
|
---|
2037 | 141.31195000 0.26948920000 -0.17572820000 0.75885600000E-01 -0.21213800000E-01
|
---|
2038 | 74.584433000 0.11912700000 -0.76412700000E-01 0.35061400000E-01 -0.98944000000E-02
|
---|
2039 | 38.298338000 0.15698000000E-01 0.24665750000 -0.13386230000 0.38637900000E-01
|
---|
2040 | 20.469130000 0.20470000000E-03 0.52538240000 -0.39136340000 0.11888930000
|
---|
2041 | 10.939578000 0.22360000000E-03 0.34597240000 -0.34628200000 0.10889900000
|
---|
2042 | 5.5903670000 -0.11680000000E-03 0.63953300000E-01 0.19413270000 -0.72207900000E-01
|
---|
2043 | 2.8828590000 0.41900000000E-05 0.18299000000E-02 0.64519860000 -0.27180000000
|
---|
2044 | 1.4660860000 -0.21670000000E-04 0.15645000000E-02 0.42348130000 -0.33716620000
|
---|
2045 | })
|
---|
2046 | (type: [am = s]
|
---|
2047 | {exp coef:0} = {
|
---|
2048 | 0.67483900000 1.0000000000
|
---|
2049 | })
|
---|
2050 | (type: [am = s]
|
---|
2051 | {exp coef:0} = {
|
---|
2052 | 0.34639900000 1.0000000000
|
---|
2053 | })
|
---|
2054 | (type: [am = s]
|
---|
2055 | {exp coef:0} = {
|
---|
2056 | 0.15928900000 1.0000000000
|
---|
2057 | })
|
---|
2058 | (type: [am = s]
|
---|
2059 | {exp coef:0} = {
|
---|
2060 | 0.72109000000E-01 1.0000000000
|
---|
2061 | })
|
---|
2062 | (type: [am = s]
|
---|
2063 | {exp coef:0} = {
|
---|
2064 | 0.29418000000E-01 1.0000000000
|
---|
2065 | })
|
---|
2066 | (type: [am = p am = p am = p]
|
---|
2067 | {exp coef:0 coef:1 coef:2} = {
|
---|
2068 | 34166.161000 0.32200000000E-04 -0.12600000000E-04 0.28000000000E-05
|
---|
2069 | 8086.5608000 0.28680000000E-03 -0.11190000000E-03 0.24900000000E-04
|
---|
2070 | 2626.5114000 0.16633000000E-02 -0.65160000000E-03 0.14510000000E-03
|
---|
2071 | 1005.3950000 0.74125000000E-02 -0.29173000000E-02 0.65040000000E-03
|
---|
2072 | 427.12735000 0.26751200000E-01 -0.10673800000E-01 0.23818000000E-02
|
---|
2073 | 195.15113000 0.78894400000E-01 -0.32245500000E-01 0.72207000000E-02
|
---|
2074 | 94.054308000 0.18299160000 -0.77973100000E-01 0.17531800000E-01
|
---|
2075 | 46.999880000 0.31249410000 -0.14010380000 0.31741400000E-01
|
---|
2076 | 24.117457000 0.34453220000 -0.16071320000 0.36544900000E-01
|
---|
2077 | 12.519982000 0.19164360000 -0.76703000000E-02 -0.16024000000E-02
|
---|
2078 | 6.3573250000 0.38713600000E-01 0.30079830000 -0.82464400000E-01
|
---|
2079 | 3.1680520000 0.22418000000E-02 0.47158780000 -0.13443720000
|
---|
2080 | 1.5534810000 0.72090000000E-03 0.30320640000 -0.10516860000
|
---|
2081 | })
|
---|
2082 | (type: [am = p]
|
---|
2083 | {exp coef:0} = {
|
---|
2084 | 0.71032500000 1.0000000000
|
---|
2085 | })
|
---|
2086 | (type: [am = p]
|
---|
2087 | {exp coef:0} = {
|
---|
2088 | 0.32095500000 1.0000000000
|
---|
2089 | })
|
---|
2090 | (type: [am = p]
|
---|
2091 | {exp coef:0} = {
|
---|
2092 | 0.13935700000 1.0000000000
|
---|
2093 | })
|
---|
2094 | (type: [am = p]
|
---|
2095 | {exp coef:0} = {
|
---|
2096 | 0.58410000000E-01 1.0000000000
|
---|
2097 | })
|
---|
2098 | (type: [am = p]
|
---|
2099 | {exp coef:0} = {
|
---|
2100 | 0.22043000000E-01 1.0000000000
|
---|
2101 | })
|
---|
2102 | (type: [(am = d puream = 1)]
|
---|
2103 | {exp coef:0} = {
|
---|
2104 | 1424.4506000 0.66600000000E-04
|
---|
2105 | 431.06676000 0.65370000000E-03
|
---|
2106 | 168.12864000 0.39041000000E-02
|
---|
2107 | 74.866724000 0.16391900000E-01
|
---|
2108 | 35.945855000 0.50623200000E-01
|
---|
2109 | 18.098474000 0.12110210000
|
---|
2110 | 9.4057800000 0.21681690000
|
---|
2111 | 4.9239040000 0.28874520000
|
---|
2112 | 2.5564930000 0.29477690000
|
---|
2113 | })
|
---|
2114 | (type: [(am = d puream = 1)]
|
---|
2115 | {exp coef:0} = {
|
---|
2116 | 1.3042330000 1.0000000000
|
---|
2117 | })
|
---|
2118 | (type: [(am = d puream = 1)]
|
---|
2119 | {exp coef:0} = {
|
---|
2120 | 0.63711800000 1.0000000000
|
---|
2121 | })
|
---|
2122 | (type: [(am = d puream = 1)]
|
---|
2123 | {exp coef:0} = {
|
---|
2124 | 0.27579500000 1.0000000000
|
---|
2125 | })
|
---|
2126 | (type: [(am = d puream = 1)]
|
---|
2127 | {exp coef:0} = {
|
---|
2128 | 0.11530000000 1.0000000000
|
---|
2129 | })
|
---|
2130 | (type: [(am = d puream = 1)]
|
---|
2131 | {exp coef:0} = {
|
---|
2132 | 0.48800000000E-01 1.0000000000
|
---|
2133 | })
|
---|
2134 | (type: [(am = f puream = 1)]
|
---|
2135 | {exp coef:0} = {
|
---|
2136 | 0.19600000000 1.0000000000
|
---|
2137 | })
|
---|
2138 | (type: [(am = f puream = 1)]
|
---|
2139 | {exp coef:0} = {
|
---|
2140 | 0.38590000000 1.0000000000
|
---|
2141 | })
|
---|
2142 | (type: [(am = f puream = 1)]
|
---|
2143 | {exp coef:0} = {
|
---|
2144 | 0.75990000000 1.0000000000
|
---|
2145 | })
|
---|
2146 | (type: [(am = f puream = 1)]
|
---|
2147 | {exp coef:0} = {
|
---|
2148 | 0.89900000000E-01 1.0000000000
|
---|
2149 | })
|
---|
2150 | (type: [(am = g puream = 1)]
|
---|
2151 | {exp coef:0} = {
|
---|
2152 | 0.37000000000 1.0000000000
|
---|
2153 | })
|
---|
2154 | (type: [(am = g puream = 1)]
|
---|
2155 | {exp coef:0} = {
|
---|
2156 | 0.80920000000 1.0000000000
|
---|
2157 | })
|
---|
2158 | (type: [(am = g puream = 1)]
|
---|
2159 | {exp coef:0} = {
|
---|
2160 | 0.16550000000 1.0000000000
|
---|
2161 | })
|
---|
2162 | (type: [(am = h puream = 1)]
|
---|
2163 | {exp coef:0} = {
|
---|
2164 | 0.67730000000 1.0000000000
|
---|
2165 | })
|
---|
2166 | (type: [(am = h puream = 1)]
|
---|
2167 | {exp coef:0} = {
|
---|
2168 | 0.36680000000 1.0000000000
|
---|
2169 | })
|
---|
2170 | ]
|
---|
2171 | %
|
---|
2172 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
2173 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
2174 | selenium: "aug-cc-pV5Z": [
|
---|
2175 | (type: [am = s am = s am = s am = s]
|
---|
2176 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
2177 | 154432250.00 0.19000000000E-06 -0.60000000000E-07 0.20000000000E-07 -0.70000000000E-08
|
---|
2178 | 23129212.000 0.15100000000E-05 -0.47000000000E-06 0.19000000000E-06 -0.54000000000E-07
|
---|
2179 | 5261792.9000 0.79600000000E-05 -0.24900000000E-05 0.98000000000E-06 -0.28700000000E-06
|
---|
2180 | 1488816.7000 0.33750000000E-04 -0.10560000000E-04 0.41500000000E-05 -0.12140000000E-05
|
---|
2181 | 484656.56000 0.12372000000E-03 -0.38730000000E-04 0.15240000000E-04 -0.44560000000E-05
|
---|
2182 | 174270.63000 0.40839000000E-03 -0.12786000000E-03 0.50310000000E-04 -0.14706000000E-04
|
---|
2183 | 67529.090000 0.12431000000E-02 -0.38980000000E-03 0.15346000000E-03 -0.44871000000E-04
|
---|
2184 | 27750.837000 0.35389000000E-02 -0.11123000000E-02 0.43780000000E-03 -0.12798900000E-03
|
---|
2185 | 11964.216000 0.94822000000E-02 -0.30007000000E-02 0.11827000000E-02 -0.34570200000E-03
|
---|
2186 | 5370.7148000 0.23890100000E-01 -0.76563000000E-02 0.30208000000E-02 -0.88340000000E-03
|
---|
2187 | 2497.3194000 0.55875700000E-01 -0.18422100000E-01 0.72992000000E-02 -0.21363000000E-02
|
---|
2188 | 1198.7679000 0.11791040000 -0.41018400000E-01 0.16352800000E-01 -0.47892000000E-02
|
---|
2189 | 592.58026000 0.21279620000 -0.82302600000E-01 0.33296200000E-01 -0.97758000000E-02
|
---|
2190 | 300.97708000 0.29893040000 -0.13988400000 0.58013900000E-01 -0.17087700000E-01
|
---|
2191 | 156.46024000 0.27656510000 -0.17703370000 0.77023300000E-01 -0.22865600000E-01
|
---|
2192 | 82.476086000 0.12929410000 -0.88776100000E-01 0.41106500000E-01 -0.12302800000E-01
|
---|
2193 | 42.270887000 0.18587500000E-01 0.22515370000 -0.12257820000 0.37525400000E-01
|
---|
2194 | 22.630220000 0.77300000000E-04 0.52071710000 -0.38533970000 0.12443420000
|
---|
2195 | 12.122374000 0.34270000000E-03 0.36450930000 -0.36750730000 0.12311950000
|
---|
2196 | 6.2491700000 -0.17530000000E-03 0.73616900000E-01 0.15743400000 -0.62433000000E-01
|
---|
2197 | 3.2426780000 0.35700000000E-04 0.23540000000E-02 0.64408720000 -0.28948340000
|
---|
2198 | 1.6663620000 -0.40650000000E-04 0.16947000000E-02 0.44822090000 -0.37443990000
|
---|
2199 | })
|
---|
2200 | (type: [am = s]
|
---|
2201 | {exp coef:0} = {
|
---|
2202 | 0.78726400000 1.0000000000
|
---|
2203 | })
|
---|
2204 | (type: [am = s]
|
---|
2205 | {exp coef:0} = {
|
---|
2206 | 0.40297200000 1.0000000000
|
---|
2207 | })
|
---|
2208 | (type: [am = s]
|
---|
2209 | {exp coef:0} = {
|
---|
2210 | 0.18709600000 1.0000000000
|
---|
2211 | })
|
---|
2212 | (type: [am = s]
|
---|
2213 | {exp coef:0} = {
|
---|
2214 | 0.84706000000E-01 1.0000000000
|
---|
2215 | })
|
---|
2216 | (type: [am = s]
|
---|
2217 | {exp coef:0} = {
|
---|
2218 | 0.33935000000E-01 1.0000000000
|
---|
2219 | })
|
---|
2220 | (type: [am = p am = p am = p]
|
---|
2221 | {exp coef:0 coef:1 coef:2} = {
|
---|
2222 | 36511.337000 0.32000000000E-04 -0.12700000000E-04 0.31000000000E-05
|
---|
2223 | 8640.5510000 0.28540000000E-03 -0.11300000000E-03 0.27300000000E-04
|
---|
2224 | 2805.6911000 0.16567000000E-02 -0.65820000000E-03 0.15930000000E-03
|
---|
2225 | 1073.4961000 0.73955000000E-02 -0.29528000000E-02 0.71360000000E-03
|
---|
2226 | 455.77475000 0.26754300000E-01 -0.10828900000E-01 0.26260000000E-02
|
---|
2227 | 208.09432000 0.79098900000E-01 -0.32812400000E-01 0.79667000000E-02
|
---|
2228 | 100.23111000 0.18379670000 -0.79507000000E-01 0.19444000000E-01
|
---|
2229 | 50.073522000 0.31380410000 -0.14302740000 0.35132800000E-01
|
---|
2230 | 25.700262000 0.34436500000 -0.16277870000 0.40402800000E-01
|
---|
2231 | 13.346792000 0.18985910000 -0.42983000000E-02 -0.33969000000E-02
|
---|
2232 | 6.7870510000 0.37919300000E-01 0.30918290000 -0.92099900000E-01
|
---|
2233 | 3.3916540000 0.21781000000E-02 0.47760130000 -0.15350900000
|
---|
2234 | 1.6703270000 0.65900000000E-03 0.29285260000 -0.10587050000
|
---|
2235 | })
|
---|
2236 | (type: [am = p]
|
---|
2237 | {exp coef:0} = {
|
---|
2238 | 0.75259900000 1.0000000000
|
---|
2239 | })
|
---|
2240 | (type: [am = p]
|
---|
2241 | {exp coef:0} = {
|
---|
2242 | 0.34681300000 1.0000000000
|
---|
2243 | })
|
---|
2244 | (type: [am = p]
|
---|
2245 | {exp coef:0} = {
|
---|
2246 | 0.15185500000 1.0000000000
|
---|
2247 | })
|
---|
2248 | (type: [am = p]
|
---|
2249 | {exp coef:0} = {
|
---|
2250 | 0.63856000000E-01 1.0000000000
|
---|
2251 | })
|
---|
2252 | (type: [am = p]
|
---|
2253 | {exp coef:0} = {
|
---|
2254 | 0.24975000000E-01 1.0000000000
|
---|
2255 | })
|
---|
2256 | (type: [(am = d puream = 1)]
|
---|
2257 | {exp coef:0} = {
|
---|
2258 | 1635.0663000 0.59100000000E-04
|
---|
2259 | 494.67266000 0.58400000000E-03
|
---|
2260 | 192.84388000 0.35256000000E-02
|
---|
2261 | 85.782195000 0.15112700000E-01
|
---|
2262 | 41.149966000 0.47844600000E-01
|
---|
2263 | 20.678170000 0.11743450000
|
---|
2264 | 10.726386000 0.21590740000
|
---|
2265 | 5.6124540000 0.29292160000
|
---|
2266 | 2.9203760000 0.30008640000
|
---|
2267 | })
|
---|
2268 | (type: [(am = d puream = 1)]
|
---|
2269 | {exp coef:0} = {
|
---|
2270 | 1.4981840000 1.0000000000
|
---|
2271 | })
|
---|
2272 | (type: [(am = d puream = 1)]
|
---|
2273 | {exp coef:0} = {
|
---|
2274 | 0.73599900000 1.0000000000
|
---|
2275 | })
|
---|
2276 | (type: [(am = d puream = 1)]
|
---|
2277 | {exp coef:0} = {
|
---|
2278 | 0.31600400000 1.0000000000
|
---|
2279 | })
|
---|
2280 | (type: [(am = d puream = 1)]
|
---|
2281 | {exp coef:0} = {
|
---|
2282 | 0.13310000000 1.0000000000
|
---|
2283 | })
|
---|
2284 | (type: [(am = d puream = 1)]
|
---|
2285 | {exp coef:0} = {
|
---|
2286 | 0.54800000000E-01 1.0000000000
|
---|
2287 | })
|
---|
2288 | (type: [(am = f puream = 1)]
|
---|
2289 | {exp coef:0} = {
|
---|
2290 | 0.21000000000 1.0000000000
|
---|
2291 | })
|
---|
2292 | (type: [(am = f puream = 1)]
|
---|
2293 | {exp coef:0} = {
|
---|
2294 | 0.42110000000 1.0000000000
|
---|
2295 | })
|
---|
2296 | (type: [(am = f puream = 1)]
|
---|
2297 | {exp coef:0} = {
|
---|
2298 | 0.84420000000 1.0000000000
|
---|
2299 | })
|
---|
2300 | (type: [(am = f puream = 1)]
|
---|
2301 | {exp coef:0} = {
|
---|
2302 | 0.99200000000E-01 1.0000000000
|
---|
2303 | })
|
---|
2304 | (type: [(am = g puream = 1)]
|
---|
2305 | {exp coef:0} = {
|
---|
2306 | 0.38500000000 1.0000000000
|
---|
2307 | })
|
---|
2308 | (type: [(am = g puream = 1)]
|
---|
2309 | {exp coef:0} = {
|
---|
2310 | 0.86590000000 1.0000000000
|
---|
2311 | })
|
---|
2312 | (type: [(am = g puream = 1)]
|
---|
2313 | {exp coef:0} = {
|
---|
2314 | 0.18300000000 1.0000000000
|
---|
2315 | })
|
---|
2316 | (type: [(am = h puream = 1)]
|
---|
2317 | {exp coef:0} = {
|
---|
2318 | 0.72350000000 1.0000000000
|
---|
2319 | })
|
---|
2320 | (type: [(am = h puream = 1)]
|
---|
2321 | {exp coef:0} = {
|
---|
2322 | 0.40200000000 1.0000000000
|
---|
2323 | })
|
---|
2324 | ]
|
---|
2325 | %
|
---|
2326 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
2327 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
2328 | bromine: "aug-cc-pV5Z": [
|
---|
2329 | (type: [am = s am = s am = s am = s]
|
---|
2330 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
2331 | 165735150.00 0.19000000000E-06 -0.60000000000E-07 0.20000000000E-07 -0.70000000000E-08
|
---|
2332 | 24774379.000 0.14900000000E-05 -0.47000000000E-06 0.19000000000E-06 -0.57000000000E-07
|
---|
2333 | 5628202.0000 0.78800000000E-05 -0.24700000000E-05 0.98000000000E-06 -0.30100000000E-06
|
---|
2334 | 1591899.7000 0.33390000000E-04 -0.10480000000E-04 0.41600000000E-05 -0.12760000000E-05
|
---|
2335 | 518263.80000 0.12231000000E-03 -0.38400000000E-04 0.15260000000E-04 -0.46780000000E-05
|
---|
2336 | 186490.92000 0.40321000000E-03 -0.12660000000E-03 0.50310000000E-04 -0.15416000000E-04
|
---|
2337 | 72332.493000 0.12256400000E-02 -0.38545000000E-03 0.15325000000E-03 -0.46975000000E-04
|
---|
2338 | 29761.135000 0.34823500000E-02 -0.10976100000E-02 0.43637000000E-03 -0.13372100000E-03
|
---|
2339 | 12851.712000 0.93085600000E-02 -0.29537900000E-02 0.11758000000E-02 -0.36048500000E-03
|
---|
2340 | 5780.9430000 0.23388300000E-01 -0.75146000000E-02 0.29946000000E-02 -0.91797600000E-03
|
---|
2341 | 2695.0098000 0.54553000000E-01 -0.18023000000E-01 0.72119000000E-02 -0.22129000000E-02
|
---|
2342 | 1297.6604000 0.11494790000 -0.40025500000E-01 0.16115100000E-01 -0.49473000000E-02
|
---|
2343 | 643.63493000 0.20792250000 -0.80291900000E-01 0.32794300000E-01 -0.10095100000E-01
|
---|
2344 | 327.95194000 0.29515960000 -0.13721660000 0.57430900000E-01 -0.17732400000E-01
|
---|
2345 | 170.92262000 0.27987660000 -0.17694390000 0.77618700000E-01 -0.24165300000E-01
|
---|
2346 | 90.250141000 0.13697520000 -0.97703300000E-01 0.45646400000E-01 -0.14318000000E-01
|
---|
2347 | 46.292467000 0.21215400000E-01 0.20676330000 -0.11311710000 0.36281200000E-01
|
---|
2348 | 24.848661000 -0.25400000000E-04 0.51484190000 -0.37955960000 0.12865520000
|
---|
2349 | 13.347137000 0.45700000000E-03 0.37992060000 -0.38514940000 0.13568880000
|
---|
2350 | 6.9482580000 -0.23480000000E-03 0.83012800000E-01 0.12368510000 -0.51676400000E-01
|
---|
2351 | 3.6250750000 0.68580000000E-04 0.32157000000E-02 0.64061380000 -0.30307240000
|
---|
2352 | 1.8821530000 -0.61160000000E-04 0.17129000000E-02 0.47074360000 -0.40738380000
|
---|
2353 | })
|
---|
2354 | (type: [am = s]
|
---|
2355 | {exp coef:0} = {
|
---|
2356 | 0.91082200000 1.0000000000
|
---|
2357 | })
|
---|
2358 | (type: [am = s]
|
---|
2359 | {exp coef:0} = {
|
---|
2360 | 0.46395700000 1.0000000000
|
---|
2361 | })
|
---|
2362 | (type: [am = s]
|
---|
2363 | {exp coef:0} = {
|
---|
2364 | 0.21693300000 1.0000000000
|
---|
2365 | })
|
---|
2366 | (type: [am = s]
|
---|
2367 | {exp coef:0} = {
|
---|
2368 | 0.98406000000E-01 1.0000000000
|
---|
2369 | })
|
---|
2370 | (type: [am = s]
|
---|
2371 | {exp coef:0} = {
|
---|
2372 | 0.39106000000E-01 1.0000000000
|
---|
2373 | })
|
---|
2374 | (type: [am = p am = p am = p]
|
---|
2375 | {exp coef:0 coef:1 coef:2} = {
|
---|
2376 | 39391.530000 0.31200000000E-04 -0.12500000000E-04 0.32000000000E-05
|
---|
2377 | 9325.2225000 0.27800000000E-03 -0.11160000000E-03 0.28800000000E-04
|
---|
2378 | 3028.9943000 0.16138000000E-02 -0.64990000000E-03 0.16840000000E-03
|
---|
2379 | 1159.5145000 0.72049000000E-02 -0.29159000000E-02 0.75430000000E-03
|
---|
2380 | 492.68131000 0.26087300000E-01 -0.10700900000E-01 0.27801000000E-02
|
---|
2381 | 225.17451000 0.77297100000E-01 -0.32495100000E-01 0.84462000000E-02
|
---|
2382 | 108.59326000 0.18047750000 -0.79112300000E-01 0.20737600000E-01
|
---|
2383 | 54.336079000 0.31061260000 -0.14352520000 0.37754200000E-01
|
---|
2384 | 27.936650000 0.34542970000 -0.16582480000 0.44206200000E-01
|
---|
2385 | 14.539626000 0.19485150000 -0.10659100000E-01 -0.21775000000E-02
|
---|
2386 | 7.4213070000 0.40386000000E-01 0.30506620000 -0.97953000000E-01
|
---|
2387 | 3.7303890000 0.23091000000E-02 0.48135630000 -0.16926560000
|
---|
2388 | 1.8541270000 0.67150000000E-03 0.29427690000 -0.11174900000
|
---|
2389 | })
|
---|
2390 | (type: [am = p]
|
---|
2391 | {exp coef:0} = {
|
---|
2392 | 0.84533700000 1.0000000000
|
---|
2393 | })
|
---|
2394 | (type: [am = p]
|
---|
2395 | {exp coef:0} = {
|
---|
2396 | 0.39215200000 1.0000000000
|
---|
2397 | })
|
---|
2398 | (type: [am = p]
|
---|
2399 | {exp coef:0} = {
|
---|
2400 | 0.17276700000 1.0000000000
|
---|
2401 | })
|
---|
2402 | (type: [am = p]
|
---|
2403 | {exp coef:0} = {
|
---|
2404 | 0.72908000000E-01 1.0000000000
|
---|
2405 | })
|
---|
2406 | (type: [am = p]
|
---|
2407 | {exp coef:0} = {
|
---|
2408 | 0.29052000000E-01 1.0000000000
|
---|
2409 | })
|
---|
2410 | (type: [(am = d puream = 1)]
|
---|
2411 | {exp coef:0} = {
|
---|
2412 | 1850.6354000 0.53800000000E-04
|
---|
2413 | 557.07125000 0.54020000000E-03
|
---|
2414 | 216.48687000 0.33012000000E-02
|
---|
2415 | 96.138850000 0.14355100000E-01
|
---|
2416 | 46.126380000 0.46116800000E-01
|
---|
2417 | 23.201164000 0.11478730000
|
---|
2418 | 12.055926000 0.21453690000
|
---|
2419 | 6.3255450000 0.29531310000
|
---|
2420 | 3.3049220000 0.30409380000
|
---|
2421 | })
|
---|
2422 | (type: [(am = d puream = 1)]
|
---|
2423 | {exp coef:0} = {
|
---|
2424 | 1.7042530000 1.0000000000
|
---|
2425 | })
|
---|
2426 | (type: [(am = d puream = 1)]
|
---|
2427 | {exp coef:0} = {
|
---|
2428 | 0.83994000000 1.0000000000
|
---|
2429 | })
|
---|
2430 | (type: [(am = d puream = 1)]
|
---|
2431 | {exp coef:0} = {
|
---|
2432 | 0.35695300000 1.0000000000
|
---|
2433 | })
|
---|
2434 | (type: [(am = d puream = 1)]
|
---|
2435 | {exp coef:0} = {
|
---|
2436 | 0.15200000000 1.0000000000
|
---|
2437 | })
|
---|
2438 | (type: [(am = d puream = 1)]
|
---|
2439 | {exp coef:0} = {
|
---|
2440 | 0.78100000000E-01 1.0000000000
|
---|
2441 | })
|
---|
2442 | (type: [(am = f puream = 1)]
|
---|
2443 | {exp coef:0} = {
|
---|
2444 | 0.25500000000 1.0000000000
|
---|
2445 | })
|
---|
2446 | (type: [(am = f puream = 1)]
|
---|
2447 | {exp coef:0} = {
|
---|
2448 | 0.49550000000 1.0000000000
|
---|
2449 | })
|
---|
2450 | (type: [(am = f puream = 1)]
|
---|
2451 | {exp coef:0} = {
|
---|
2452 | 0.96270000000 1.0000000000
|
---|
2453 | })
|
---|
2454 | (type: [(am = f puream = 1)]
|
---|
2455 | {exp coef:0} = {
|
---|
2456 | 0.13880000000 1.0000000000
|
---|
2457 | })
|
---|
2458 | (type: [(am = g puream = 1)]
|
---|
2459 | {exp coef:0} = {
|
---|
2460 | 0.43900000000 1.0000000000
|
---|
2461 | })
|
---|
2462 | (type: [(am = g puream = 1)]
|
---|
2463 | {exp coef:0} = {
|
---|
2464 | 0.97680000000 1.0000000000
|
---|
2465 | })
|
---|
2466 | (type: [(am = g puream = 1)]
|
---|
2467 | {exp coef:0} = {
|
---|
2468 | 0.21900000000 1.0000000000
|
---|
2469 | })
|
---|
2470 | (type: [(am = h puream = 1)]
|
---|
2471 | {exp coef:0} = {
|
---|
2472 | 0.81930000000 1.0000000000
|
---|
2473 | })
|
---|
2474 | (type: [(am = h puream = 1)]
|
---|
2475 | {exp coef:0} = {
|
---|
2476 | 0.49100000000 1.0000000000
|
---|
2477 | })
|
---|
2478 | ]
|
---|
2479 | %
|
---|
2480 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
2481 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
2482 | krypton: "aug-cc-pV5Z": [
|
---|
2483 | (type: [am = s am = s am = s am = s]
|
---|
2484 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
2485 | 182822090.00 0.18000000000E-06 -0.57000000000E-06 0.20000000000E-07 -0.60000000000E-08
|
---|
2486 | 27356156.000 0.14200000000E-05 -0.45000000000E-06 0.18000000000E-06 -0.57000000000E-07
|
---|
2487 | 6221170.4000 0.74600000000E-05 -0.23500000000E-05 0.94000000000E-06 -0.30000000000E-06
|
---|
2488 | 1760277.9000 0.31590000000E-04 -0.99400000000E-05 0.39900000000E-05 -0.12700000000E-05
|
---|
2489 | 573193.82000 0.11575000000E-03 -0.36400000000E-04 0.14620000000E-04 -0.46580000000E-05
|
---|
2490 | 206258.45000 0.38150000000E-03 -0.12010000000E-03 0.48190000000E-04 -0.15347000000E-04
|
---|
2491 | 80026.669000 0.11590000000E-02 -0.36540000000E-03 0.14670000000E-03 -0.46736000000E-04
|
---|
2492 | 32939.084000 0.32934000000E-02 -0.10407000000E-02 0.41770000000E-03 -0.13302200000E-03
|
---|
2493 | 14222.633000 0.88161000000E-02 -0.28038000000E-02 0.11267000000E-02 -0.35906200000E-03
|
---|
2494 | 6393.0707000 0.22218000000E-01 -0.71509000000E-02 0.28769000000E-02 -0.91650000000E-03
|
---|
2495 | 2976.4538000 0.52088100000E-01 -0.17220400000E-01 0.69549000000E-02 -0.22184000000E-02
|
---|
2496 | 1430.5254000 0.11063560000 -0.38480000000E-01 0.15636500000E-01 -0.49883000000E-02
|
---|
2497 | 707.92621000 0.20253260000 -0.77862800000E-01 0.32080100000E-01 -0.10266100000E-01
|
---|
2498 | 359.84847000 0.29263500000 -0.13474230000 0.56868900000E-01 -0.18244500000E-01
|
---|
2499 | 187.14965000 0.28512240000 -0.17761480000 0.78484500000E-01 -0.25411000000E-01
|
---|
2500 | 98.634523000 0.14550640000 -0.10684130000 0.50339800000E-01 -0.16393100000E-01
|
---|
2501 | 50.547869000 0.23993900000E-01 0.18961320000 -0.10427420000 0.34697700000E-01
|
---|
2502 | 27.167004000 -0.94900000000E-04 0.50918710000 -0.37437610000 0.13212830000
|
---|
2503 | 14.615098000 0.55780000000E-03 0.39398590000 -0.40111310000 0.14709250000
|
---|
2504 | 7.6513520000 -0.28700000000E-03 0.91903200000E-01 0.96838800000E-01 -0.41821600000E-01
|
---|
2505 | 3.9972630000 0.96600000000E-04 0.39195000000E-02 0.64287760000 -0.31952400000
|
---|
2506 | 2.0858530000 -0.78400000000E-04 0.17496000000E-02 0.48606000000 -0.43632860000
|
---|
2507 | })
|
---|
2508 | (type: [am = s]
|
---|
2509 | {exp coef:0} = {
|
---|
2510 | 1.0147970000 1.0000000000
|
---|
2511 | })
|
---|
2512 | (type: [am = s]
|
---|
2513 | {exp coef:0} = {
|
---|
2514 | 0.51978800000 1.0000000000
|
---|
2515 | })
|
---|
2516 | (type: [am = s]
|
---|
2517 | {exp coef:0} = {
|
---|
2518 | 0.24510300000 1.0000000000
|
---|
2519 | })
|
---|
2520 | (type: [am = s]
|
---|
2521 | {exp coef:0} = {
|
---|
2522 | 0.11189600000 1.0000000000
|
---|
2523 | })
|
---|
2524 | (type: [am = s]
|
---|
2525 | {exp coef:0} = {
|
---|
2526 | 0.44277000000E-01 1.0000000000
|
---|
2527 | })
|
---|
2528 | (type: [am = p am = p am = p]
|
---|
2529 | {exp coef:0 coef:1 coef:2} = {
|
---|
2530 | 42993.056000 0.29700000000E-04 -0.12100000000E-04 0.33000000000E-05
|
---|
2531 | 10173.723000 0.26510000000E-03 -0.10780000000E-03 0.29300000000E-04
|
---|
2532 | 3303.1057000 0.15416000000E-02 -0.62900000000E-03 0.17130000000E-03
|
---|
2533 | 1263.5400000 0.69065000000E-02 -0.28323000000E-02 0.76950000000E-03
|
---|
2534 | 536.36546000 0.25139700000E-01 -0.10446200000E-01 0.28514000000E-02
|
---|
2535 | 244.87617000 0.75012400000E-01 -0.31940000000E-01 0.87204000000E-02
|
---|
2536 | 117.99117000 0.17674330000 -0.78459900000E-01 0.21618100000E-01
|
---|
2537 | 59.021248000 0.30751350000 -0.14397190000 0.39802400000E-01
|
---|
2538 | 30.356067000 0.34706440000 -0.16917030000 0.47477500000E-01
|
---|
2539 | 15.819977000 0.20028020000 -0.17596600000E-01 -0.47730000000E-03
|
---|
2540 | 8.1045800000 0.43050800000E-01 0.30026490000 -0.10218910000
|
---|
2541 | 4.0979640000 0.24772000000E-02 0.48476610000 -0.18236110000
|
---|
2542 | 2.0560610000 0.67890000000E-03 0.29672480000 -0.11733630000
|
---|
2543 | })
|
---|
2544 | (type: [am = p]
|
---|
2545 | {exp coef:0} = {
|
---|
2546 | 0.95214500000 1.0000000000
|
---|
2547 | })
|
---|
2548 | (type: [am = p]
|
---|
2549 | {exp coef:0} = {
|
---|
2550 | 0.44477400000 1.0000000000
|
---|
2551 | })
|
---|
2552 | (type: [am = p]
|
---|
2553 | {exp coef:0} = {
|
---|
2554 | 0.19749600000 1.0000000000
|
---|
2555 | })
|
---|
2556 | (type: [am = p]
|
---|
2557 | {exp coef:0} = {
|
---|
2558 | 0.83823000000E-01 1.0000000000
|
---|
2559 | })
|
---|
2560 | (type: [am = p]
|
---|
2561 | {exp coef:0} = {
|
---|
2562 | 0.33129000000E-01 1.0000000000
|
---|
2563 | })
|
---|
2564 | (type: [(am = d puream = 1)]
|
---|
2565 | {exp coef:0} = {
|
---|
2566 | 2067.4360000 0.49600000000E-04
|
---|
2567 | 625.69371000 0.49440000000E-03
|
---|
2568 | 243.94679000 0.30265000000E-02
|
---|
2569 | 108.42373000 0.13346100000E-01
|
---|
2570 | 52.005216000 0.43786900000E-01
|
---|
2571 | 26.115405000 0.11143880000
|
---|
2572 | 13.546748000 0.21303410000
|
---|
2573 | 7.1058100000 0.29792410000
|
---|
2574 | 3.7215540000 0.30796600000
|
---|
2575 | })
|
---|
2576 | (type: [(am = d puream = 1)]
|
---|
2577 | {exp coef:0} = {
|
---|
2578 | 1.9291200000 1.0000000000
|
---|
2579 | })
|
---|
2580 | (type: [(am = d puream = 1)]
|
---|
2581 | {exp coef:0} = {
|
---|
2582 | 0.95582600000 1.0000000000
|
---|
2583 | })
|
---|
2584 | (type: [(am = d puream = 1)]
|
---|
2585 | {exp coef:0} = {
|
---|
2586 | 0.40519700000 1.0000000000
|
---|
2587 | })
|
---|
2588 | (type: [(am = d puream = 1)]
|
---|
2589 | {exp coef:0} = {
|
---|
2590 | 0.17410000000 1.0000000000
|
---|
2591 | })
|
---|
2592 | (type: [(am = d puream = 1)]
|
---|
2593 | {exp coef:0} = {
|
---|
2594 | 0.10140000000 1.0000000000
|
---|
2595 | })
|
---|
2596 | (type: [(am = f puream = 1)]
|
---|
2597 | {exp coef:0} = {
|
---|
2598 | 0.31500000000 1.0000000000
|
---|
2599 | })
|
---|
2600 | (type: [(am = f puream = 1)]
|
---|
2601 | {exp coef:0} = {
|
---|
2602 | 0.58700000000 1.0000000000
|
---|
2603 | })
|
---|
2604 | (type: [(am = f puream = 1)]
|
---|
2605 | {exp coef:0} = {
|
---|
2606 | 1.0940000000 1.0000000000
|
---|
2607 | })
|
---|
2608 | (type: [(am = f puream = 1)]
|
---|
2609 | {exp coef:0} = {
|
---|
2610 | 0.17840000000 1.0000000000
|
---|
2611 | })
|
---|
2612 | (type: [(am = g puream = 1)]
|
---|
2613 | {exp coef:0} = {
|
---|
2614 | 0.50100000000 1.0000000000
|
---|
2615 | })
|
---|
2616 | (type: [(am = g puream = 1)]
|
---|
2617 | {exp coef:0} = {
|
---|
2618 | 1.1040000000 1.0000000000
|
---|
2619 | })
|
---|
2620 | (type: [(am = g puream = 1)]
|
---|
2621 | {exp coef:0} = {
|
---|
2622 | 0.25500000000 1.0000000000
|
---|
2623 | })
|
---|
2624 | (type: [(am = h puream = 1)]
|
---|
2625 | {exp coef:0} = {
|
---|
2626 | 0.93030000000 1.0000000000
|
---|
2627 | })
|
---|
2628 | (type: [(am = h puream = 1)]
|
---|
2629 | {exp coef:0} = {
|
---|
2630 | 0.58000000000 1.0000000000
|
---|
2631 | })
|
---|
2632 | ]
|
---|
2633 | )
|
---|