source: ThirdParty/mpqc_open/lib/basis/aug-cc-pv5z.kv@ 536b13

Action_Thermostats Add_AtomRandomPerturbation Add_SelectAtomByNameAction Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_StructOpt_integration_tests AutomationFragmentation_failures Candidate_v1.6.1 ChangeBugEmailaddress ChemicalSpaceEvaluator Docu_Python_wait EmpiricalPotential_contain_HomologyGraph_documentation Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns ForceAnnealing_oldresults ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion Gui_displays_atomic_force_velocity IndependentFragmentGrids_IntegrationTest JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks RotateToPrincipalAxisSystem_UndoRedo StoppableMakroAction TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps
Last change on this file since 536b13 was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 85.5 KB
Line 
1%BASIS "aug-cc-pV5Z" CARTESIAN
2basis:(
3%Elements References
4%-------- ----------
5%H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
6%He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
7%Li : Unofficial set from D. Feller.
8%B - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
9%Na - Mg: Unofficial set from D. Feller.
10%Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
11%Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
12%Elements References
13%-------- ---------
14% H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
15% Diffuse s exponent - S. Mielke
16% He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
17% B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
18% 6769 (1992).
19%Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
20%
21%
22% BASIS SET: (8s,4p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
23% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g)
24 hydrogen: "aug-cc-pV5Z": [
25 (type: [am = s]
26 {exp coef:0} = {
27 402.00000000 0.27900000000E-03
28 60.240000000 0.21650000000E-02
29 13.730000000 0.11201000000E-01
30 3.9050000000 0.44878000000E-01
31 })
32 (type: [am = s]
33 {exp coef:0} = {
34 1.2830000000 1.0000000000
35 })
36 (type: [am = s]
37 {exp coef:0} = {
38 0.46550000000 1.0000000000
39 })
40 (type: [am = s]
41 {exp coef:0} = {
42 0.18110000000 1.0000000000
43 })
44 (type: [am = s]
45 {exp coef:0} = {
46 0.72790000000E-01 1.0000000000
47 })
48 (type: [am = s]
49 {exp coef:0} = {
50 0.20700000000E-01 1.0000000000
51 })
52 (type: [am = p]
53 {exp coef:0} = {
54 4.5160000000 1.0000000000
55 })
56 (type: [am = p]
57 {exp coef:0} = {
58 1.7120000000 1.0000000000
59 })
60 (type: [am = p]
61 {exp coef:0} = {
62 0.64900000000 1.0000000000
63 })
64 (type: [am = p]
65 {exp coef:0} = {
66 0.24600000000 1.0000000000
67 })
68 (type: [am = p]
69 {exp coef:0} = {
70 0.74400000000E-01 1.0000000000
71 })
72 (type: [(am = d puream = 1)]
73 {exp coef:0} = {
74 2.9500000000 1.0000000000
75 })
76 (type: [(am = d puream = 1)]
77 {exp coef:0} = {
78 1.2060000000 1.0000000000
79 })
80 (type: [(am = d puream = 1)]
81 {exp coef:0} = {
82 0.49300000000 1.0000000000
83 })
84 (type: [(am = d puream = 1)]
85 {exp coef:0} = {
86 0.15600000000 1.0000000000
87 })
88 (type: [(am = f puream = 1)]
89 {exp coef:0} = {
90 2.5060000000 1.0000000000
91 })
92 (type: [(am = f puream = 1)]
93 {exp coef:0} = {
94 0.87500000000 1.0000000000
95 })
96 (type: [(am = f puream = 1)]
97 {exp coef:0} = {
98 0.27400000000 1.0000000000
99 })
100 (type: [(am = g puream = 1)]
101 {exp coef:0} = {
102 2.3580000000 1.0000000000
103 })
104 (type: [(am = g puream = 1)]
105 {exp coef:0} = {
106 0.54300000000 1.0000000000
107 })
108 ]
109%
110% BASIS SET: (8s,4p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
111% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g)
112 helium: "aug-cc-pV5Z": [
113 (type: [am = s]
114 {exp coef:0} = {
115 1145.0000000 0.35900000000E-03
116 171.70000000 0.27710000000E-02
117 39.070000000 0.14251000000E-01
118 11.040000000 0.55566000000E-01
119 })
120 (type: [am = s]
121 {exp coef:0} = {
122 3.5660000000 1.0000000000
123 })
124 (type: [am = s]
125 {exp coef:0} = {
126 1.2400000000 1.0000000000
127 })
128 (type: [am = s]
129 {exp coef:0} = {
130 0.44730000000 1.0000000000
131 })
132 (type: [am = s]
133 {exp coef:0} = {
134 0.16400000000 1.0000000000
135 })
136 (type: [am = s]
137 {exp coef:0} = {
138 0.46640000000E-01 1.0000000000
139 })
140 (type: [am = p]
141 {exp coef:0} = {
142 10.153000000 1.0000000000
143 })
144 (type: [am = p]
145 {exp coef:0} = {
146 3.6270000000 1.0000000000
147 })
148 (type: [am = p]
149 {exp coef:0} = {
150 1.2960000000 1.0000000000
151 })
152 (type: [am = p]
153 {exp coef:0} = {
154 0.46300000000 1.0000000000
155 })
156 (type: [am = p]
157 {exp coef:0} = {
158 0.14000000000 1.0000000000
159 })
160 (type: [(am = d puream = 1)]
161 {exp coef:0} = {
162 7.6660000000 1.0000000000
163 })
164 (type: [(am = d puream = 1)]
165 {exp coef:0} = {
166 2.6470000000 1.0000000000
167 })
168 (type: [(am = d puream = 1)]
169 {exp coef:0} = {
170 0.91400000000 1.0000000000
171 })
172 (type: [(am = d puream = 1)]
173 {exp coef:0} = {
174 0.28920000000 1.0000000000
175 })
176 (type: [(am = f puream = 1)]
177 {exp coef:0} = {
178 5.4110000000 1.0000000000
179 })
180 (type: [(am = f puream = 1)]
181 {exp coef:0} = {
182 1.7070000000 1.0000000000
183 })
184 (type: [(am = f puream = 1)]
185 {exp coef:0} = {
186 0.53450000000 1.0000000000
187 })
188 (type: [(am = g puream = 1)]
189 {exp coef:0} = {
190 3.4300000000 1.0000000000
191 })
192 (type: [(am = g puream = 1)]
193 {exp coef:0} = {
194 0.78990000000 1.0000000000
195 })
196 ]
197%
198% BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
199% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
200 boron: "aug-cc-pV5Z": [
201 (type: [am = s am = s]
202 {exp coef:0 coef:1} = {
203 68260.000000 0.24000000000E-04 -0.50000000000E-05
204 10230.000000 0.18500000000E-03 -0.37000000000E-04
205 2328.0000000 0.97000000000E-03 -0.19600000000E-03
206 660.40000000 0.40560000000E-02 -0.82400000000E-03
207 216.20000000 0.14399000000E-01 -0.29230000000E-02
208 78.600000000 0.43901000000E-01 -0.91380000000E-02
209 30.980000000 0.11305700000 -0.24105000000E-01
210 12.960000000 0.23382500000 -0.54755000000E-01
211 5.6590000000 0.35396000000 -0.96943000000E-01
212 2.5560000000 0.30154700000 -0.13748500000
213 })
214 (type: [am = s]
215 {exp coef:0} = {
216 1.1750000000 1.0000000000
217 })
218 (type: [am = s]
219 {exp coef:0} = {
220 0.42490000000 1.0000000000
221 })
222 (type: [am = s]
223 {exp coef:0} = {
224 0.17120000000 1.0000000000
225 })
226 (type: [am = s]
227 {exp coef:0} = {
228 0.69130000000E-01 1.0000000000
229 })
230 (type: [am = s]
231 {exp coef:0} = {
232 0.26100000000E-01 1.0000000000
233 })
234 (type: [am = p]
235 {exp coef:0} = {
236 66.440000000 0.83800000000E-03
237 15.710000000 0.64090000000E-02
238 4.9360000000 0.28081000000E-01
239 1.7700000000 0.92152000000E-01
240 })
241 (type: [am = p]
242 {exp coef:0} = {
243 0.70080000000 1.0000000000
244 })
245 (type: [am = p]
246 {exp coef:0} = {
247 0.29010000000 1.0000000000
248 })
249 (type: [am = p]
250 {exp coef:0} = {
251 0.12110000000 1.0000000000
252 })
253 (type: [am = p]
254 {exp coef:0} = {
255 0.49730000000E-01 1.0000000000
256 })
257 (type: [am = p]
258 {exp coef:0} = {
259 0.15700000000E-01 1.0000000000
260 })
261 (type: [(am = d puream = 1)]
262 {exp coef:0} = {
263 2.0100000000 1.0000000000
264 })
265 (type: [(am = d puream = 1)]
266 {exp coef:0} = {
267 0.79600000000 1.0000000000
268 })
269 (type: [(am = d puream = 1)]
270 {exp coef:0} = {
271 0.31600000000 1.0000000000
272 })
273 (type: [(am = d puream = 1)]
274 {exp coef:0} = {
275 0.12500000000 1.0000000000
276 })
277 (type: [(am = d puream = 1)]
278 {exp coef:0} = {
279 0.43100000000E-01 1.0000000000
280 })
281 (type: [(am = f puream = 1)]
282 {exp coef:0} = {
283 1.2150000000 1.0000000000
284 })
285 (type: [(am = f puream = 1)]
286 {exp coef:0} = {
287 0.52500000000 1.0000000000
288 })
289 (type: [(am = f puream = 1)]
290 {exp coef:0} = {
291 0.22700000000 1.0000000000
292 })
293 (type: [(am = f puream = 1)]
294 {exp coef:0} = {
295 0.84300000000E-01 1.0000000000
296 })
297 (type: [(am = g puream = 1)]
298 {exp coef:0} = {
299 1.1240000000 1.0000000000
300 })
301 (type: [(am = g puream = 1)]
302 {exp coef:0} = {
303 0.46100000000 1.0000000000
304 })
305 (type: [(am = g puream = 1)]
306 {exp coef:0} = {
307 0.20200000000 1.0000000000
308 })
309 (type: [(am = h puream = 1)]
310 {exp coef:0} = {
311 0.83400000000 1.0000000000
312 })
313 (type: [(am = h puream = 1)]
314 {exp coef:0} = {
315 0.38400000000 1.0000000000
316 })
317 ]
318%
319% BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
320% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
321 carbon: "aug-cc-pV5Z": [
322 (type: [am = s am = s]
323 {exp coef:0 coef:1} = {
324 96770.000000 0.25000000000E-04 -0.50000000000E-05
325 14500.000000 0.19000000000E-03 -0.41000000000E-04
326 3300.0000000 0.10000000000E-02 -0.21300000000E-03
327 935.80000000 0.41830000000E-02 -0.89700000000E-03
328 306.20000000 0.14859000000E-01 -0.31870000000E-02
329 111.30000000 0.45301000000E-01 -0.99610000000E-02
330 43.900000000 0.11650400000 -0.26375000000E-01
331 18.400000000 0.24024900000 -0.60001000000E-01
332 8.0540000000 0.35879900000 -0.10682500000
333 3.6370000000 0.29394100000 -0.14416600000
334 })
335 (type: [am = s]
336 {exp coef:0} = {
337 1.6560000000 1.0000000000
338 })
339 (type: [am = s]
340 {exp coef:0} = {
341 0.63330000000 1.0000000000
342 })
343 (type: [am = s]
344 {exp coef:0} = {
345 0.25450000000 1.0000000000
346 })
347 (type: [am = s]
348 {exp coef:0} = {
349 0.10190000000 1.0000000000
350 })
351 (type: [am = s]
352 {exp coef:0} = {
353 0.39400000000E-01 1.0000000000
354 })
355 (type: [am = p]
356 {exp coef:0} = {
357 101.80000000 0.89100000000E-03
358 24.040000000 0.69760000000E-02
359 7.5710000000 0.31669000000E-01
360 2.7320000000 0.10400600000
361 })
362 (type: [am = p]
363 {exp coef:0} = {
364 1.0850000000 1.0000000000
365 })
366 (type: [am = p]
367 {exp coef:0} = {
368 0.44960000000 1.0000000000
369 })
370 (type: [am = p]
371 {exp coef:0} = {
372 0.18760000000 1.0000000000
373 })
374 (type: [am = p]
375 {exp coef:0} = {
376 0.76060000000E-01 1.0000000000
377 })
378 (type: [am = p]
379 {exp coef:0} = {
380 0.27200000000E-01 1.0000000000
381 })
382 (type: [(am = d puream = 1)]
383 {exp coef:0} = {
384 3.1340000000 1.0000000000
385 })
386 (type: [(am = d puream = 1)]
387 {exp coef:0} = {
388 1.2330000000 1.0000000000
389 })
390 (type: [(am = d puream = 1)]
391 {exp coef:0} = {
392 0.48500000000 1.0000000000
393 })
394 (type: [(am = d puream = 1)]
395 {exp coef:0} = {
396 0.19100000000 1.0000000000
397 })
398 (type: [(am = d puream = 1)]
399 {exp coef:0} = {
400 0.70100000000E-01 1.0000000000
401 })
402 (type: [(am = f puream = 1)]
403 {exp coef:0} = {
404 2.0060000000 1.0000000000
405 })
406 (type: [(am = f puream = 1)]
407 {exp coef:0} = {
408 0.83800000000 1.0000000000
409 })
410 (type: [(am = f puream = 1)]
411 {exp coef:0} = {
412 0.35000000000 1.0000000000
413 })
414 (type: [(am = f puream = 1)]
415 {exp coef:0} = {
416 0.13800000000 1.0000000000
417 })
418 (type: [(am = g puream = 1)]
419 {exp coef:0} = {
420 1.7530000000 1.0000000000
421 })
422 (type: [(am = g puream = 1)]
423 {exp coef:0} = {
424 0.67800000000 1.0000000000
425 })
426 (type: [(am = g puream = 1)]
427 {exp coef:0} = {
428 0.31900000000 1.0000000000
429 })
430 (type: [(am = h puream = 1)]
431 {exp coef:0} = {
432 1.2590000000 1.0000000000
433 })
434 (type: [(am = h puream = 1)]
435 {exp coef:0} = {
436 0.58600000000 1.0000000000
437 })
438 ]
439%
440% BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
441% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
442 nitrogen: "aug-cc-pV5Z": [
443 (type: [am = s am = s]
444 {exp coef:0 coef:1} = {
445 129200.00000 0.25000000000E-04 -0.60000000000E-05
446 19350.000000 0.19700000000E-03 -0.43000000000E-04
447 4404.0000000 0.10320000000E-02 -0.22700000000E-03
448 1248.0000000 0.43250000000E-02 -0.95800000000E-03
449 408.00000000 0.15380000000E-01 -0.34160000000E-02
450 148.20000000 0.46867000000E-01 -0.10667000000E-01
451 58.500000000 0.12011600000 -0.28279000000E-01
452 24.590000000 0.24569500000 -0.64020000000E-01
453 10.810000000 0.36137900000 -0.11393200000
454 4.8820000000 0.28728300000 -0.14699500000
455 })
456 (type: [am = s]
457 {exp coef:0} = {
458 2.1950000000 1.0000000000
459 })
460 (type: [am = s]
461 {exp coef:0} = {
462 0.87150000000 1.0000000000
463 })
464 (type: [am = s]
465 {exp coef:0} = {
466 0.35040000000 1.0000000000
467 })
468 (type: [am = s]
469 {exp coef:0} = {
470 0.13970000000 1.0000000000
471 })
472 (type: [am = s]
473 {exp coef:0} = {
474 0.51800000000E-01 1.0000000000
475 })
476 (type: [am = p]
477 {exp coef:0} = {
478 147.00000000 0.89200000000E-03
479 34.760000000 0.70820000000E-02
480 11.000000000 0.32816000000E-01
481 3.9950000000 0.10820900000
482 })
483 (type: [am = p]
484 {exp coef:0} = {
485 1.5870000000 1.0000000000
486 })
487 (type: [am = p]
488 {exp coef:0} = {
489 0.65330000000 1.0000000000
490 })
491 (type: [am = p]
492 {exp coef:0} = {
493 0.26860000000 1.0000000000
494 })
495 (type: [am = p]
496 {exp coef:0} = {
497 0.10670000000 1.0000000000
498 })
499 (type: [am = p]
500 {exp coef:0} = {
501 0.36900000000E-01 1.0000000000
502 })
503 (type: [(am = d puream = 1)]
504 {exp coef:0} = {
505 4.6470000000 1.0000000000
506 })
507 (type: [(am = d puream = 1)]
508 {exp coef:0} = {
509 1.8130000000 1.0000000000
510 })
511 (type: [(am = d puream = 1)]
512 {exp coef:0} = {
513 0.70700000000 1.0000000000
514 })
515 (type: [(am = d puream = 1)]
516 {exp coef:0} = {
517 0.27600000000 1.0000000000
518 })
519 (type: [(am = d puream = 1)]
520 {exp coef:0} = {
521 0.97100000000E-01 1.0000000000
522 })
523 (type: [(am = f puream = 1)]
524 {exp coef:0} = {
525 2.9420000000 1.0000000000
526 })
527 (type: [(am = f puream = 1)]
528 {exp coef:0} = {
529 1.2040000000 1.0000000000
530 })
531 (type: [(am = f puream = 1)]
532 {exp coef:0} = {
533 0.49300000000 1.0000000000
534 })
535 (type: [(am = f puream = 1)]
536 {exp coef:0} = {
537 0.19200000000 1.0000000000
538 })
539 (type: [(am = g puream = 1)]
540 {exp coef:0} = {
541 2.5110000000 1.0000000000
542 })
543 (type: [(am = g puream = 1)]
544 {exp coef:0} = {
545 0.94200000000 1.0000000000
546 })
547 (type: [(am = g puream = 1)]
548 {exp coef:0} = {
549 0.43600000000 1.0000000000
550 })
551 (type: [(am = h puream = 1)]
552 {exp coef:0} = {
553 1.7680000000 1.0000000000
554 })
555 (type: [(am = h puream = 1)]
556 {exp coef:0} = {
557 0.78800000000 1.0000000000
558 })
559 ]
560%
561% BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
562% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
563 oxygen: "aug-cc-pV5Z": [
564 (type: [am = s am = s]
565 {exp coef:0 coef:1} = {
566 164200.00000 0.26000000000E-04 -0.60000000000E-05
567 24590.000000 0.20500000000E-03 -0.46000000000E-04
568 5592.0000000 0.10760000000E-02 -0.24400000000E-03
569 1582.0000000 0.45220000000E-02 -0.10310000000E-02
570 516.10000000 0.16108000000E-01 -0.36880000000E-02
571 187.20000000 0.49085000000E-01 -0.11514000000E-01
572 73.930000000 0.12485700000 -0.30435000000E-01
573 31.220000000 0.25168600000 -0.68147000000E-01
574 13.810000000 0.36242000000 -0.12036800000
575 6.2560000000 0.27905100000 -0.14826000000
576 })
577 (type: [am = s]
578 {exp coef:0} = {
579 2.7760000000 1.0000000000
580 })
581 (type: [am = s]
582 {exp coef:0} = {
583 1.1380000000 1.0000000000
584 })
585 (type: [am = s]
586 {exp coef:0} = {
587 0.46000000000 1.0000000000
588 })
589 (type: [am = s]
590 {exp coef:0} = {
591 0.18290000000 1.0000000000
592 })
593 (type: [am = s]
594 {exp coef:0} = {
595 0.65500000000E-01 1.0000000000
596 })
597 (type: [am = p]
598 {exp coef:0} = {
599 195.50000000 0.91800000000E-03
600 46.160000000 0.73880000000E-02
601 14.580000000 0.34958000000E-01
602 5.2960000000 0.11543100000
603 })
604 (type: [am = p]
605 {exp coef:0} = {
606 2.0940000000 1.0000000000
607 })
608 (type: [am = p]
609 {exp coef:0} = {
610 0.84710000000 1.0000000000
611 })
612 (type: [am = p]
613 {exp coef:0} = {
614 0.33680000000 1.0000000000
615 })
616 (type: [am = p]
617 {exp coef:0} = {
618 0.12850000000 1.0000000000
619 })
620 (type: [am = p]
621 {exp coef:0} = {
622 0.44600000000E-01 1.0000000000
623 })
624 (type: [(am = d puream = 1)]
625 {exp coef:0} = {
626 5.8790000000 1.0000000000
627 })
628 (type: [(am = d puream = 1)]
629 {exp coef:0} = {
630 2.3070000000 1.0000000000
631 })
632 (type: [(am = d puream = 1)]
633 {exp coef:0} = {
634 0.90500000000 1.0000000000
635 })
636 (type: [(am = d puream = 1)]
637 {exp coef:0} = {
638 0.35500000000 1.0000000000
639 })
640 (type: [(am = d puream = 1)]
641 {exp coef:0} = {
642 0.13100000000 1.0000000000
643 })
644 (type: [(am = f puream = 1)]
645 {exp coef:0} = {
646 4.0160000000 1.0000000000
647 })
648 (type: [(am = f puream = 1)]
649 {exp coef:0} = {
650 1.5540000000 1.0000000000
651 })
652 (type: [(am = f puream = 1)]
653 {exp coef:0} = {
654 0.60100000000 1.0000000000
655 })
656 (type: [(am = f puream = 1)]
657 {exp coef:0} = {
658 0.23700000000 1.0000000000
659 })
660 (type: [(am = g puream = 1)]
661 {exp coef:0} = {
662 3.3500000000 1.0000000000
663 })
664 (type: [(am = g puream = 1)]
665 {exp coef:0} = {
666 1.1890000000 1.0000000000
667 })
668 (type: [(am = g puream = 1)]
669 {exp coef:0} = {
670 0.51700000000 1.0000000000
671 })
672 (type: [(am = h puream = 1)]
673 {exp coef:0} = {
674 2.3190000000 1.0000000000
675 })
676 (type: [(am = h puream = 1)]
677 {exp coef:0} = {
678 1.0240000000 1.0000000000
679 })
680 ]
681%
682% BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
683% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
684 fluorine: "aug-cc-pV5Z": [
685 (type: [am = s am = s]
686 {exp coef:0 coef:1} = {
687 211400.00000 0.26000000000E-04 -0.60000000000E-05
688 31660.000000 0.20100000000E-03 -0.47000000000E-04
689 7202.0000000 0.10560000000E-02 -0.24400000000E-03
690 2040.0000000 0.44320000000E-02 -0.10310000000E-02
691 666.40000000 0.15766000000E-01 -0.36830000000E-02
692 242.00000000 0.48112000000E-01 -0.11513000000E-01
693 95.530000000 0.12323200000 -0.30663000000E-01
694 40.230000000 0.25151900000 -0.69572000000E-01
695 17.720000000 0.36452500000 -0.12399200000
696 8.0050000000 0.27976600000 -0.15021400000
697 })
698 (type: [am = s]
699 {exp coef:0} = {
700 3.5380000000 1.0000000000
701 })
702 (type: [am = s]
703 {exp coef:0} = {
704 1.4580000000 1.0000000000
705 })
706 (type: [am = s]
707 {exp coef:0} = {
708 0.58870000000 1.0000000000
709 })
710 (type: [am = s]
711 {exp coef:0} = {
712 0.23240000000 1.0000000000
713 })
714 (type: [am = s]
715 {exp coef:0} = {
716 0.80600000000E-01 1.0000000000
717 })
718 (type: [am = p]
719 {exp coef:0} = {
720 241.90000000 0.10020000000E-02
721 57.170000000 0.80540000000E-02
722 18.130000000 0.38048000000E-01
723 6.6240000000 0.12377900000
724 })
725 (type: [am = p]
726 {exp coef:0} = {
727 2.6220000000 1.0000000000
728 })
729 (type: [am = p]
730 {exp coef:0} = {
731 1.0570000000 1.0000000000
732 })
733 (type: [am = p]
734 {exp coef:0} = {
735 0.41760000000 1.0000000000
736 })
737 (type: [am = p]
738 {exp coef:0} = {
739 0.15740000000 1.0000000000
740 })
741 (type: [am = p]
742 {exp coef:0} = {
743 0.55000000000E-01 1.0000000000
744 })
745 (type: [(am = d puream = 1)]
746 {exp coef:0} = {
747 7.7600000000 1.0000000000
748 })
749 (type: [(am = d puream = 1)]
750 {exp coef:0} = {
751 3.0320000000 1.0000000000
752 })
753 (type: [(am = d puream = 1)]
754 {exp coef:0} = {
755 1.1850000000 1.0000000000
756 })
757 (type: [(am = d puream = 1)]
758 {exp coef:0} = {
759 0.46300000000 1.0000000000
760 })
761 (type: [(am = d puream = 1)]
762 {exp coef:0} = {
763 0.17200000000 1.0000000000
764 })
765 (type: [(am = f puream = 1)]
766 {exp coef:0} = {
767 5.3980000000 1.0000000000
768 })
769 (type: [(am = f puream = 1)]
770 {exp coef:0} = {
771 2.0780000000 1.0000000000
772 })
773 (type: [(am = f puream = 1)]
774 {exp coef:0} = {
775 0.80000000000 1.0000000000
776 })
777 (type: [(am = f puream = 1)]
778 {exp coef:0} = {
779 0.33100000000 1.0000000000
780 })
781 (type: [(am = g puream = 1)]
782 {exp coef:0} = {
783 4.3380000000 1.0000000000
784 })
785 (type: [(am = g puream = 1)]
786 {exp coef:0} = {
787 1.5130000000 1.0000000000
788 })
789 (type: [(am = g puream = 1)]
790 {exp coef:0} = {
791 0.66300000000 1.0000000000
792 })
793 (type: [(am = h puream = 1)]
794 {exp coef:0} = {
795 2.9950000000 1.0000000000
796 })
797 (type: [(am = h puream = 1)]
798 {exp coef:0} = {
799 1.3260000000 1.0000000000
800 })
801 ]
802%
803% BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
804% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
805 neon: "aug-cc-pV5Z": [
806 (type: [am = s am = s]
807 {exp coef:0 coef:1} = {
808 262700.00000 0.26000000000E-04 -0.60000000000E-05
809 39350.000000 0.20000000000E-03 -0.47000000000E-04
810 8955.0000000 0.10500000000E-02 -0.24700000000E-03
811 2538.0000000 0.44000000000E-02 -0.10380000000E-02
812 829.90000000 0.15649000000E-01 -0.37110000000E-02
813 301.50000000 0.47758000000E-01 -0.11593000000E-01
814 119.00000000 0.12294300000 -0.31086000000E-01
815 50.000000000 0.25248300000 -0.70972000000E-01
816 21.980000000 0.36631400000 -0.12726600000
817 9.8910000000 0.27961700000 -0.15123100000
818 })
819 (type: [am = s]
820 {exp coef:0} = {
821 4.3270000000 1.0000000000
822 })
823 (type: [am = s]
824 {exp coef:0} = {
825 1.8040000000 1.0000000000
826 })
827 (type: [am = s]
828 {exp coef:0} = {
829 0.72880000000 1.0000000000
830 })
831 (type: [am = s]
832 {exp coef:0} = {
833 0.28670000000 1.0000000000
834 })
835 (type: [am = s]
836 {exp coef:0} = {
837 0.95700000000E-01 1.0000000000
838 })
839 (type: [am = p]
840 {exp coef:0} = {
841 299.10000000 0.10380000000E-02
842 70.730000000 0.83750000000E-02
843 22.480000000 0.39693000000E-01
844 8.2460000000 0.12805600000
845 })
846 (type: [am = p]
847 {exp coef:0} = {
848 3.2690000000 1.0000000000
849 })
850 (type: [am = p]
851 {exp coef:0} = {
852 1.3150000000 1.0000000000
853 })
854 (type: [am = p]
855 {exp coef:0} = {
856 0.51580000000 1.0000000000
857 })
858 (type: [am = p]
859 {exp coef:0} = {
860 0.19180000000 1.0000000000
861 })
862 (type: [am = p]
863 {exp coef:0} = {
864 0.65400000000E-01 1.0000000000
865 })
866 (type: [(am = d puream = 1)]
867 {exp coef:0} = {
868 9.8370000000 1.0000000000
869 })
870 (type: [(am = d puream = 1)]
871 {exp coef:0} = {
872 3.8440000000 1.0000000000
873 })
874 (type: [(am = d puream = 1)]
875 {exp coef:0} = {
876 1.5020000000 1.0000000000
877 })
878 (type: [(am = d puream = 1)]
879 {exp coef:0} = {
880 0.58700000000 1.0000000000
881 })
882 (type: [(am = d puream = 1)]
883 {exp coef:0} = {
884 0.21300000000 1.0000000000
885 })
886 (type: [(am = f puream = 1)]
887 {exp coef:0} = {
888 7.0900000000 1.0000000000
889 })
890 (type: [(am = f puream = 1)]
891 {exp coef:0} = {
892 2.7380000000 1.0000000000
893 })
894 (type: [(am = f puream = 1)]
895 {exp coef:0} = {
896 1.0570000000 1.0000000000
897 })
898 (type: [(am = f puream = 1)]
899 {exp coef:0} = {
900 0.42500000000 1.0000000000
901 })
902 (type: [(am = g puream = 1)]
903 {exp coef:0} = {
904 5.4600000000 1.0000000000
905 })
906 (type: [(am = g puream = 1)]
907 {exp coef:0} = {
908 1.8800000000 1.0000000000
909 })
910 (type: [(am = g puream = 1)]
911 {exp coef:0} = {
912 0.80900000000 1.0000000000
913 })
914 (type: [(am = h puream = 1)]
915 {exp coef:0} = {
916 3.7760000000 1.0000000000
917 })
918 (type: [(am = h puream = 1)]
919 {exp coef:0} = {
920 1.6280000000 1.0000000000
921 })
922 ]
923%
924% BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
925% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
926 aluminum: "aug-cc-pV5Z": [
927 (type: [am = s am = s am = s]
928 {exp coef:0 coef:1 coef:2} = {
929 3269000.0000 0.21396200000E-05 -0.55602600000E-06 0.12842300000E-06
930 489400.00000 0.16626400000E-04 -0.43230300000E-05 0.99751400000E-06
931 111400.00000 0.87516800000E-04 -0.22741300000E-04 0.52548000000E-05
932 31560.000000 0.36899000000E-03 -0.96011600000E-04 0.22145000000E-04
933 10320.000000 0.13390300000E-02 -0.34837600000E-03 0.80546400000E-04
934 3731.0000000 0.43563600000E-02 -0.11383600000E-02 0.26250600000E-03
935 1456.0000000 0.12895500000E-01 -0.33874400000E-02 0.78422000000E-03
936 604.10000000 0.34820100000E-01 -0.93150500000E-02 0.21503900000E-02
937 263.50000000 0.84353000000E-01 -0.23302300000E-01 0.54197400000E-02
938 119.80000000 0.17590700000 -0.52348600000E-01 0.12168600000E-01
939 56.320000000 0.29209100000 -0.99949900000E-01 0.23682300000E-01
940 27.190000000 0.32822000000 -0.15056000000 0.36093700000E-01
941 13.260000000 0.18692700000 -0.11912100000 0.30328400000E-01
942 6.0520000000 0.31043000000E-01 0.10809100000 -0.30903400000E-01
943 2.9810000000 -0.50892200000E-03 0.41112900000 -0.11912600000
944 1.4760000000 0.14883600000E-02 0.45721400000 -0.21114500000
945 })
946 (type: [am = s]
947 {exp coef:0} = {
948 0.73340000000 1.0000000000
949 })
950 (type: [am = s]
951 {exp coef:0} = {
952 0.24470000000 1.0000000000
953 })
954 (type: [am = s]
955 {exp coef:0} = {
956 0.10880000000 1.0000000000
957 })
958 (type: [am = s]
959 {exp coef:0} = {
960 0.46720000000E-01 1.0000000000
961 })
962 (type: [am = s]
963 {exp coef:0} = {
964 0.17700000000E-01 1.0000000000
965 })
966 (type: [am = p am = p]
967 {exp coef:0 coef:1} = {
968 1461.0000000 0.20861300000E-03 -0.37194700000E-04
969 346.20000000 0.18100500000E-02 -0.32856300000E-03
970 112.20000000 0.97343300000E-02 -0.17426400000E-02
971 42.510000000 0.37826600000E-01 -0.69482800000E-02
972 17.720000000 0.11089800000 -0.20280700000E-01
973 7.8520000000 0.23429500000 -0.44865700000E-01
974 3.5710000000 0.34524500000 -0.64327800000E-01
975 1.6370000000 0.33143000000 -0.75266600000E-01
976 })
977 (type: [am = p]
978 {exp coef:0} = {
979 0.73820000000 1.0000000000
980 })
981 (type: [am = p]
982 {exp coef:0} = {
983 0.25770000000 1.0000000000
984 })
985 (type: [am = p]
986 {exp coef:0} = {
987 0.97730000000E-01 1.0000000000
988 })
989 (type: [am = p]
990 {exp coef:0} = {
991 0.36900000000E-01 1.0000000000
992 })
993 (type: [am = p]
994 {exp coef:0} = {
995 0.11500000000E-01 1.0000000000
996 })
997 (type: [(am = d puream = 1)]
998 {exp coef:0} = {
999 1.3170000000 1.0000000000
1000 })
1001 (type: [(am = d puream = 1)]
1002 {exp coef:0} = {
1003 0.52600000000 1.0000000000
1004 })
1005 (type: [(am = d puream = 1)]
1006 {exp coef:0} = {
1007 0.21000000000 1.0000000000
1008 })
1009 (type: [(am = d puream = 1)]
1010 {exp coef:0} = {
1011 0.84000000000E-01 1.0000000000
1012 })
1013 (type: [(am = d puream = 1)]
1014 {exp coef:0} = {
1015 0.29400000000E-01 1.0000000000
1016 })
1017 (type: [(am = f puream = 1)]
1018 {exp coef:0} = {
1019 0.13000000000 1.0000000000
1020 })
1021 (type: [(am = f puream = 1)]
1022 {exp coef:0} = {
1023 0.25800000000 1.0000000000
1024 })
1025 (type: [(am = f puream = 1)]
1026 {exp coef:0} = {
1027 0.51300000000 1.0000000000
1028 })
1029 (type: [(am = f puream = 1)]
1030 {exp coef:0} = {
1031 0.50900000000E-01 1.0000000000
1032 })
1033 (type: [(am = g puream = 1)]
1034 {exp coef:0} = {
1035 0.25200000000 1.0000000000
1036 })
1037 (type: [(am = g puream = 1)]
1038 {exp coef:0} = {
1039 0.54300000000 1.0000000000
1040 })
1041 (type: [(am = g puream = 1)]
1042 {exp coef:0} = {
1043 0.10690000000 1.0000000000
1044 })
1045 (type: [(am = h puream = 1)]
1046 {exp coef:0} = {
1047 0.44600000000 1.0000000000
1048 })
1049 (type: [(am = h puream = 1)]
1050 {exp coef:0} = {
1051 0.22700000000 1.0000000000
1052 })
1053 ]
1054%
1055% BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
1056% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
1057 silicon: "aug-cc-pV5Z": [
1058 (type: [am = s am = s am = s]
1059 {exp coef:0 coef:1 coef:2} = {
1060 3948000.0000 0.20371200000E-05 -0.54208500000E-06 0.13890700000E-06
1061 591100.00000 0.15839400000E-04 -0.42167700000E-05 0.10795300000E-05
1062 134500.00000 0.83359000000E-04 -0.22181300000E-04 0.56862800000E-05
1063 38120.000000 0.35136100000E-03 -0.93602800000E-04 0.23953700000E-04
1064 12460.000000 0.12766000000E-02 -0.34011600000E-03 0.87240900000E-04
1065 4504.0000000 0.41519100000E-02 -0.11106100000E-02 0.28416300000E-03
1066 1758.0000000 0.12303000000E-01 -0.33087800000E-02 0.84984000000E-03
1067 729.10000000 0.33310200000E-01 -0.91160200000E-02 0.23352700000E-02
1068 318.00000000 0.80984500000E-01 -0.22879000000E-01 0.59046600000E-02
1069 144.60000000 0.17029000000 -0.51711900000E-01 0.13346100000E-01
1070 67.970000000 0.28687900000 -0.99909100000E-01 0.26288900000E-01
1071 32.820000000 0.33034000000 -0.15274700000 0.40742600000E-01
1072 16.030000000 0.19660200000 -0.12750800000 0.36147600000E-01
1073 7.3960000000 0.35453500000E-01 0.94696300000E-01 -0.30392300000E-01
1074 3.6610000000 -0.53520400000E-03 0.41403600000 -0.13596100000
1075 1.8230000000 0.16146500000E-02 0.46793400000 -0.25014400000
1076 })
1077 (type: [am = s]
1078 {exp coef:0} = {
1079 0.91470000000 1.0000000000
1080 })
1081 (type: [am = s]
1082 {exp coef:0} = {
1083 0.33930000000 1.0000000000
1084 })
1085 (type: [am = s]
1086 {exp coef:0} = {
1087 0.15000000000 1.0000000000
1088 })
1089 (type: [am = s]
1090 {exp coef:0} = {
1091 0.64380000000E-01 1.0000000000
1092 })
1093 (type: [am = s]
1094 {exp coef:0} = {
1095 0.26000000000E-01 1.0000000000
1096 })
1097 (type: [am = p am = p]
1098 {exp coef:0 coef:1} = {
1099 1780.0000000 0.20120600000E-03 -0.42715200000E-04
1100 421.80000000 0.17493700000E-02 -0.37703900000E-03
1101 136.70000000 0.94814100000E-02 -0.20224000000E-02
1102 51.810000000 0.37231300000E-01 -0.81283300000E-02
1103 21.600000000 0.11076300000 -0.24227200000E-01
1104 9.5630000000 0.23793300000 -0.54382500000E-01
1105 4.3500000000 0.35369100000 -0.79905100000E-01
1106 2.0060000000 0.32883900000 -0.88895800000E-01
1107 })
1108 (type: [am = p]
1109 {exp coef:0} = {
1110 0.92050000000 1.0000000000
1111 })
1112 (type: [am = p]
1113 {exp coef:0} = {
1114 0.35000000000 1.0000000000
1115 })
1116 (type: [am = p]
1117 {exp coef:0} = {
1118 0.13810000000 1.0000000000
1119 })
1120 (type: [am = p]
1121 {exp coef:0} = {
1122 0.53380000000E-01 1.0000000000
1123 })
1124 (type: [am = p]
1125 {exp coef:0} = {
1126 0.19200000000E-01 1.0000000000
1127 })
1128 (type: [(am = d puream = 1)]
1129 {exp coef:0} = {
1130 0.12600000000 1.0000000000
1131 })
1132 (type: [(am = d puream = 1)]
1133 {exp coef:0} = {
1134 0.32100000000 1.0000000000
1135 })
1136 (type: [(am = d puream = 1)]
1137 {exp coef:0} = {
1138 0.81700000000 1.0000000000
1139 })
1140 (type: [(am = d puream = 1)]
1141 {exp coef:0} = {
1142 2.0820000000 1.0000000000
1143 })
1144 (type: [(am = d puream = 1)]
1145 {exp coef:0} = {
1146 0.46800000000E-01 1.0000000000
1147 })
1148 (type: [(am = f puream = 1)]
1149 {exp coef:0} = {
1150 0.16900000000 1.0000000000
1151 })
1152 (type: [(am = f puream = 1)]
1153 {exp coef:0} = {
1154 0.34100000000 1.0000000000
1155 })
1156 (type: [(am = f puream = 1)]
1157 {exp coef:0} = {
1158 0.68800000000 1.0000000000
1159 })
1160 (type: [(am = f puream = 1)]
1161 {exp coef:0} = {
1162 0.73500000000E-01 1.0000000000
1163 })
1164 (type: [(am = g puream = 1)]
1165 {exp coef:0} = {
1166 0.32000000000 1.0000000000
1167 })
1168 (type: [(am = g puream = 1)]
1169 {exp coef:0} = {
1170 0.70500000000 1.0000000000
1171 })
1172 (type: [(am = g puream = 1)]
1173 {exp coef:0} = {
1174 0.15100000000 1.0000000000
1175 })
1176 (type: [(am = h puream = 1)]
1177 {exp coef:0} = {
1178 0.58300000000 1.0000000000
1179 })
1180 (type: [(am = h puream = 1)]
1181 {exp coef:0} = {
1182 0.32300000000 1.0000000000
1183 })
1184 ]
1185%
1186% BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
1187% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
1188 phosphorus: "aug-cc-pV5Z": [
1189 (type: [am = s am = s am = s]
1190 {exp coef:0 coef:1 coef:2} = {
1191 4666000.0000 0.19675900000E-05 -0.53415300000E-06 0.14677600000E-06
1192 698600.00000 0.15296300000E-04 -0.41542200000E-05 0.11406400000E-05
1193 159000.00000 0.80482600000E-04 -0.21848400000E-04 0.60056800000E-05
1194 45040.000000 0.33973700000E-03 -0.92327200000E-04 0.25342700000E-04
1195 14720.000000 0.12329100000E-02 -0.33510900000E-03 0.92160600000E-04
1196 5323.0000000 0.40134500000E-02 -0.10950800000E-02 0.30056300000E-03
1197 2076.0000000 0.11912400000E-01 -0.32679800000E-02 0.89988400000E-03
1198 861.10000000 0.32251100000E-01 -0.89995100000E-02 0.24735400000E-02
1199 375.70000000 0.78664300000E-01 -0.22652800000E-01 0.62681200000E-02
1200 170.80000000 0.16645800000 -0.51465000000E-01 0.14259800000E-01
1201 80.290000000 0.28303900000 -0.10018600000 0.28276900000E-01
1202 38.770000000 0.33194200000 -0.15507500000 0.44512400000E-01
1203 18.930000000 0.20335200000 -0.13381800000 0.40721700000E-01
1204 8.7960000000 0.38318300000E-01 0.87836100000E-01 -0.30190800000E-01
1205 4.3580000000 -0.38472000000E-03 0.42258100000 -0.15289400000
1206 2.1740000000 0.15874400000E-02 0.47489900000 -0.28241100000
1207 })
1208 (type: [am = s]
1209 {exp coef:0} = {
1210 1.0950000000 1.0000000000
1211 })
1212 (type: [am = s]
1213 {exp coef:0} = {
1214 0.44000000000 1.0000000000
1215 })
1216 (type: [am = s]
1217 {exp coef:0} = {
1218 0.19450000000 1.0000000000
1219 })
1220 (type: [am = s]
1221 {exp coef:0} = {
1222 0.83760000000E-01 1.0000000000
1223 })
1224 (type: [am = s]
1225 {exp coef:0} = {
1226 0.33500000000E-01 1.0000000000
1227 })
1228 (type: [am = p am = p]
1229 {exp coef:0 coef:1} = {
1230 2010.0000000 0.21591500000E-03 -0.51144400000E-04
1231 476.30000000 0.18753600000E-02 -0.44835600000E-03
1232 154.40000000 0.10174200000E-01 -0.24234000000E-02
1233 58.510000000 0.39985600000E-01 -0.96982600000E-02
1234 24.400000000 0.11856300000 -0.29096500000E-01
1235 10.800000000 0.25181600000 -0.64172600000E-01
1236 4.9130000000 0.36656500000 -0.94507100000E-01
1237 2.2690000000 0.31617700000 -0.93470000000E-01
1238 })
1239 (type: [am = p]
1240 {exp coef:0} = {
1241 1.0430000000 1.0000000000
1242 })
1243 (type: [am = p]
1244 {exp coef:0} = {
1245 0.43130000000 1.0000000000
1246 })
1247 (type: [am = p]
1248 {exp coef:0} = {
1249 0.17670000000 1.0000000000
1250 })
1251 (type: [am = p]
1252 {exp coef:0} = {
1253 0.70090000000E-01 1.0000000000
1254 })
1255 (type: [am = p]
1256 {exp coef:0} = {
1257 0.25300000000E-01 1.0000000000
1258 })
1259 (type: [(am = d puream = 1)]
1260 {exp coef:0} = {
1261 0.16600000000 1.0000000000
1262 })
1263 (type: [(am = d puream = 1)]
1264 {exp coef:0} = {
1265 0.41800000000 1.0000000000
1266 })
1267 (type: [(am = d puream = 1)]
1268 {exp coef:0} = {
1269 1.0540000000 1.0000000000
1270 })
1271 (type: [(am = d puream = 1)]
1272 {exp coef:0} = {
1273 2.6560000000 1.0000000000
1274 })
1275 (type: [(am = d puream = 1)]
1276 {exp coef:0} = {
1277 0.62400000000E-01 1.0000000000
1278 })
1279 (type: [(am = f puream = 1)]
1280 {exp coef:0} = {
1281 0.21900000000 1.0000000000
1282 })
1283 (type: [(am = f puream = 1)]
1284 {exp coef:0} = {
1285 0.45000000000 1.0000000000
1286 })
1287 (type: [(am = f puream = 1)]
1288 {exp coef:0} = {
1289 0.92300000000 1.0000000000
1290 })
1291 (type: [(am = f puream = 1)]
1292 {exp coef:0} = {
1293 0.95000000000E-01 1.0000000000
1294 })
1295 (type: [(am = g puream = 1)]
1296 {exp coef:0} = {
1297 0.41200000000 1.0000000000
1298 })
1299 (type: [(am = g puream = 1)]
1300 {exp coef:0} = {
1301 0.90300000000 1.0000000000
1302 })
1303 (type: [(am = g puream = 1)]
1304 {exp coef:0} = {
1305 0.18400000000 1.0000000000
1306 })
1307 (type: [(am = h puream = 1)]
1308 {exp coef:0} = {
1309 0.74500000000 1.0000000000
1310 })
1311 (type: [(am = h puream = 1)]
1312 {exp coef:0} = {
1313 0.37200000000 1.0000000000
1314 })
1315 ]
1316%
1317% BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
1318% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
1319 sulfur: "aug-cc-pV5Z": [
1320 (type: [am = s am = s am = s]
1321 {exp coef:0 coef:1 coef:2} = {
1322 5481000.0000 0.18933800000E-05 -0.52291200000E-06 0.15182300000E-06
1323 820600.00000 0.14721100000E-04 -0.40669000000E-05 0.11800800000E-05
1324 186700.00000 0.77508400000E-04 -0.21406500000E-04 0.62169900000E-05
1325 52880.000000 0.32722400000E-03 -0.90454000000E-04 0.26240500000E-04
1326 17250.000000 0.11936500000E-02 -0.33008000000E-03 0.95904000000E-04
1327 6226.0000000 0.38839300000E-02 -0.10778200000E-02 0.31267800000E-03
1328 2429.0000000 0.11533600000E-01 -0.32187400000E-02 0.93632200000E-03
1329 1007.0000000 0.31274800000E-01 -0.88721700000E-02 0.25779000000E-02
1330 439.50000000 0.76438700000E-01 -0.22377100000E-01 0.65412100000E-02
1331 199.80000000 0.16270000000 -0.51057700000E-01 0.14963000000E-01
1332 93.920000000 0.27932800000 -0.10022500000 0.29894000000E-01
1333 45.340000000 0.33314500000 -0.15679500000 0.47694600000E-01
1334 22.150000000 0.20983600000 -0.13974800000 0.44955600000E-01
1335 10.340000000 0.41597400000E-01 0.81005900000E-01 -0.29300900000E-01
1336 5.1190000000 -0.45055200000E-03 0.43088300000 -0.16891600000
1337 2.5530000000 0.16885500000E-02 0.48168800000 -0.31101400000
1338 })
1339 (type: [am = s]
1340 {exp coef:0} = {
1341 1.2820000000 1.0000000000
1342 })
1343 (type: [am = s]
1344 {exp coef:0} = {
1345 0.54500000000 1.0000000000
1346 })
1347 (type: [am = s]
1348 {exp coef:0} = {
1349 0.24110000000 1.0000000000
1350 })
1351 (type: [am = s]
1352 {exp coef:0} = {
1353 0.10350000000 1.0000000000
1354 })
1355 (type: [am = s]
1356 {exp coef:0} = {
1357 0.42000000000E-01 1.0000000000
1358 })
1359 (type: [am = p am = p]
1360 {exp coef:0 coef:1} = {
1361 2200.0000000 0.23904900000E-03 -0.60856200000E-04
1362 521.40000000 0.20768600000E-02 -0.53041900000E-03
1363 169.00000000 0.11236300000E-01 -0.28791500000E-02
1364 64.050000000 0.44069000000E-01 -0.11439700000E-01
1365 26.720000000 0.12916800000 -0.34276400000E-01
1366 11.830000000 0.26908300000 -0.73581100000E-01
1367 5.3780000000 0.37861100000 -0.10778200000
1368 2.4820000000 0.29677900000 -0.87976900000E-01
1369 })
1370 (type: [am = p]
1371 {exp coef:0} = {
1372 1.1160000000 1.0000000000
1373 })
1374 (type: [am = p]
1375 {exp coef:0} = {
1376 0.48480000000 1.0000000000
1377 })
1378 (type: [am = p]
1379 {exp coef:0} = {
1380 0.20060000000 1.0000000000
1381 })
1382 (type: [am = p]
1383 {exp coef:0} = {
1384 0.79510000000E-01 1.0000000000
1385 })
1386 (type: [am = p]
1387 {exp coef:0} = {
1388 0.29400000000E-01 1.0000000000
1389 })
1390 (type: [(am = d puream = 1)]
1391 {exp coef:0} = {
1392 0.20500000000 1.0000000000
1393 })
1394 (type: [(am = d puream = 1)]
1395 {exp coef:0} = {
1396 0.51200000000 1.0000000000
1397 })
1398 (type: [(am = d puream = 1)]
1399 {exp coef:0} = {
1400 1.2810000000 1.0000000000
1401 })
1402 (type: [(am = d puream = 1)]
1403 {exp coef:0} = {
1404 3.2030000000 1.0000000000
1405 })
1406 (type: [(am = d puream = 1)]
1407 {exp coef:0} = {
1408 0.79400000000E-01 1.0000000000
1409 })
1410 (type: [(am = f puream = 1)]
1411 {exp coef:0} = {
1412 0.25500000000 1.0000000000
1413 })
1414 (type: [(am = f puream = 1)]
1415 {exp coef:0} = {
1416 0.52900000000 1.0000000000
1417 })
1418 (type: [(am = f puream = 1)]
1419 {exp coef:0} = {
1420 1.0960000000 1.0000000000
1421 })
1422 (type: [(am = f puream = 1)]
1423 {exp coef:0} = {
1424 0.11880000000 1.0000000000
1425 })
1426 (type: [(am = g puream = 1)]
1427 {exp coef:0} = {
1428 0.46300000000 1.0000000000
1429 })
1430 (type: [(am = g puream = 1)]
1431 {exp coef:0} = {
1432 1.0710000000 1.0000000000
1433 })
1434 (type: [(am = g puream = 1)]
1435 {exp coef:0} = {
1436 0.22000000000 1.0000000000
1437 })
1438 (type: [(am = h puream = 1)]
1439 {exp coef:0} = {
1440 0.87200000000 1.0000000000
1441 })
1442 (type: [(am = h puream = 1)]
1443 {exp coef:0} = {
1444 0.47200000000 1.0000000000
1445 })
1446 ]
1447%
1448% BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
1449% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
1450 chlorine: "aug-cc-pV5Z": [
1451 (type: [am = s am = s am = s]
1452 {exp coef:0 coef:1 coef:2} = {
1453 6410000.0000 0.18135000000E-05 -0.50830300000E-06 0.15380800000E-06
1454 959600.00000 0.14111800000E-04 -0.39563300000E-05 0.11965400000E-05
1455 218300.00000 0.74240600000E-04 -0.20809500000E-04 0.62982800000E-05
1456 61810.000000 0.31413100000E-03 -0.88117500000E-04 0.26645000000E-04
1457 20140.000000 0.11464200000E-02 -0.32174200000E-03 0.97416200000E-04
1458 7264.0000000 0.37388800000E-02 -0.10527700000E-02 0.31836000000E-03
1459 2832.0000000 0.11094600000E-01 -0.31418300000E-02 0.95237700000E-03
1460 1175.0000000 0.30115200000E-01 -0.86636300000E-02 0.26243000000E-02
1461 512.60000000 0.73914500000E-01 -0.21935300000E-01 0.66816000000E-02
1462 233.00000000 0.15825800000 -0.50258400000E-01 0.15359500000E-01
1463 109.50000000 0.27475300000 -0.99541400000E-01 0.30943200000E-01
1464 52.860000000 0.33406600000 -0.15764700000 0.50063800000E-01
1465 25.840000000 0.21758900000 -0.14602400000 0.48978200000E-01
1466 12.170000000 0.45727800000E-01 0.69223000000E-01 -0.26080700000E-01
1467 6.0300000000 -0.13473900000E-03 0.43041200000 -0.17842600000
1468 3.0120000000 0.16393300000E-02 0.49080200000 -0.33232400000
1469 })
1470 (type: [am = s]
1471 {exp coef:0} = {
1472 1.5110000000 1.0000000000
1473 })
1474 (type: [am = s]
1475 {exp coef:0} = {
1476 0.66040000000 1.0000000000
1477 })
1478 (type: [am = s]
1479 {exp coef:0} = {
1480 0.29260000000 1.0000000000
1481 })
1482 (type: [am = s]
1483 {exp coef:0} = {
1484 0.12540000000 1.0000000000
1485 })
1486 (type: [am = s]
1487 {exp coef:0} = {
1488 0.47900000000E-01 1.0000000000
1489 })
1490 (type: [am = p am = p]
1491 {exp coef:0 coef:1} = {
1492 2548.0000000 0.23570200000E-03 -0.63541000000E-04
1493 603.70000000 0.20515800000E-02 -0.55325900000E-03
1494 195.60000000 0.11154300000E-01 -0.30279500000E-02
1495 74.150000000 0.43981600000E-01 -0.12065000000E-01
1496 30.940000000 0.12999400000 -0.36634800000E-01
1497 13.690000000 0.27295900000 -0.79076400000E-01
1498 6.2290000000 0.38369000000 -0.11742200000
1499 2.8780000000 0.29187000000 -0.86094300000E-01
1500 })
1501 (type: [am = p]
1502 {exp coef:0} = {
1503 1.2820000000 1.0000000000
1504 })
1505 (type: [am = p]
1506 {exp coef:0} = {
1507 0.56410000000 1.0000000000
1508 })
1509 (type: [am = p]
1510 {exp coef:0} = {
1511 0.23480000000 1.0000000000
1512 })
1513 (type: [am = p]
1514 {exp coef:0} = {
1515 0.93120000000E-01 1.0000000000
1516 })
1517 (type: [am = p]
1518 {exp coef:0} = {
1519 0.34800000000E-01 1.0000000000
1520 })
1521 (type: [(am = d puream = 1)]
1522 {exp coef:0} = {
1523 0.25000000000 1.0000000000
1524 })
1525 (type: [(am = d puream = 1)]
1526 {exp coef:0} = {
1527 0.61800000000 1.0000000000
1528 })
1529 (type: [(am = d puream = 1)]
1530 {exp coef:0} = {
1531 1.5290000000 1.0000000000
1532 })
1533 (type: [(am = d puream = 1)]
1534 {exp coef:0} = {
1535 3.7810000000 1.0000000000
1536 })
1537 (type: [(am = d puream = 1)]
1538 {exp coef:0} = {
1539 0.10030000000 1.0000000000
1540 })
1541 (type: [(am = f puream = 1)]
1542 {exp coef:0} = {
1543 0.32000000000 1.0000000000
1544 })
1545 (type: [(am = f puream = 1)]
1546 {exp coef:0} = {
1547 0.65600000000 1.0000000000
1548 })
1549 (type: [(am = f puream = 1)]
1550 {exp coef:0} = {
1551 1.3450000000 1.0000000000
1552 })
1553 (type: [(am = f puream = 1)]
1554 {exp coef:0} = {
1555 0.16400000000 1.0000000000
1556 })
1557 (type: [(am = g puream = 1)]
1558 {exp coef:0} = {
1559 0.55600000000 1.0000000000
1560 })
1561 (type: [(am = g puream = 1)]
1562 {exp coef:0} = {
1563 1.3020000000 1.0000000000
1564 })
1565 (type: [(am = g puream = 1)]
1566 {exp coef:0} = {
1567 0.27700000000 1.0000000000
1568 })
1569 (type: [(am = h puream = 1)]
1570 {exp coef:0} = {
1571 1.0530000000 1.0000000000
1572 })
1573 (type: [(am = h puream = 1)]
1574 {exp coef:0} = {
1575 0.60700000000 1.0000000000
1576 })
1577 ]
1578%
1579% BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
1580% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
1581 argon: "aug-cc-pV5Z": [
1582 (type: [am = s am = s am = s]
1583 {exp coef:0 coef:1 coef:2} = {
1584 7401000.0000 0.17500000000E-05 -0.50000000000E-06 0.16000000000E-06
1585 1108000.0000 0.13610000000E-04 -0.38700000000E-05 0.12100000000E-05
1586 252100.00000 0.71630000000E-04 -0.20340000000E-04 0.63600000000E-05
1587 71380.000000 0.30303000000E-03 -0.86090000000E-04 0.26890000000E-04
1588 23260.000000 0.11060800000E-02 -0.31444000000E-03 0.98340000000E-04
1589 8390.0000000 0.36067100000E-02 -0.10284100000E-02 0.32129000000E-03
1590 3271.0000000 0.10713210000E-01 -0.30726700000E-02 0.96200000000E-03
1591 1357.0000000 0.29106770000E-01 -0.84753200000E-02 0.26524500000E-02
1592 592.00000000 0.71660110000E-01 -0.21520080000E-01 0.67703500000E-02
1593 269.10000000 0.15414053000 -0.49449320000E-01 0.15617270000E-01
1594 126.50000000 0.27041707000 -0.98775920000E-01 0.31716660000E-01
1595 61.030000000 0.33485470000 -0.15830822000 0.51997420000E-01
1596 29.860000000 0.22434631000 -0.15140298000 0.52475140000E-01
1597 14.170000000 0.50002840000E-01 0.58242640000E-01 -0.22641470000E-01
1598 7.0220000000 0.64590000000E-04 0.42938305000 -0.18606229000
1599 3.5110000000 0.16864100000E-02 0.49908884000 -0.35014547000
1600 })
1601 (type: [am = s]
1602 {exp coef:0} = {
1603 1.7580000000 1.0000000000
1604 })
1605 (type: [am = s]
1606 {exp coef:0} = {
1607 0.78410000000 1.0000000000
1608 })
1609 (type: [am = s]
1610 {exp coef:0} = {
1611 0.34800000000 1.0000000000
1612 })
1613 (type: [am = s]
1614 {exp coef:0} = {
1615 0.14910000000 1.0000000000
1616 })
1617 (type: [am = s]
1618 {exp coef:0} = {
1619 0.53800000000E-01 1.0000000000
1620 })
1621 (type: [am = p am = p]
1622 {exp coef:0 coef:1} = {
1623 2927.0000000 0.23199000000E-03 -0.64910000000E-04
1624 693.50000000 0.20232900000E-02 -0.56531000000E-03
1625 224.70000000 0.11034010000E-01 -0.31098800000E-02
1626 85.170000000 0.43839700000E-01 -0.12469640000E-01
1627 35.530000000 0.13035904000 -0.38224650000E-01
1628 15.730000000 0.27574991000 -0.83079180000E-01
1629 7.1650000000 0.38764330000 -0.12459409000
1630 3.3220000000 0.28740741000 -0.83297130000E-01
1631 })
1632 (type: [am = p]
1633 {exp coef:0} = {
1634 1.4780000000 1.0000000000
1635 })
1636 (type: [am = p]
1637 {exp coef:0} = {
1638 0.65520000000 1.0000000000
1639 })
1640 (type: [am = p]
1641 {exp coef:0} = {
1642 0.27510000000 1.0000000000
1643 })
1644 (type: [am = p]
1645 {exp coef:0} = {
1646 0.10970000000 1.0000000000
1647 })
1648 (type: [am = p]
1649 {exp coef:0} = {
1650 0.40200000000E-01 1.0000000000
1651 })
1652 (type: [(am = d puream = 1)]
1653 {exp coef:0} = {
1654 0.30900000000 1.0000000000
1655 })
1656 (type: [(am = d puream = 1)]
1657 {exp coef:0} = {
1658 0.77000000000 1.0000000000
1659 })
1660 (type: [(am = d puream = 1)]
1661 {exp coef:0} = {
1662 1.9170000000 1.0000000000
1663 })
1664 (type: [(am = d puream = 1)]
1665 {exp coef:0} = {
1666 4.7760000000 1.0000000000
1667 })
1668 (type: [(am = d puream = 1)]
1669 {exp coef:0} = {
1670 0.12100000000 1.0000000000
1671 })
1672 (type: [(am = f puream = 1)]
1673 {exp coef:0} = {
1674 0.40800000000 1.0000000000
1675 })
1676 (type: [(am = f puream = 1)]
1677 {exp coef:0} = {
1678 0.82500000000 1.0000000000
1679 })
1680 (type: [(am = f puream = 1)]
1681 {exp coef:0} = {
1682 1.6680000000 1.0000000000
1683 })
1684 (type: [(am = f puream = 1)]
1685 {exp coef:0} = {
1686 0.20900000000 1.0000000000
1687 })
1688 (type: [(am = g puream = 1)]
1689 {exp coef:0} = {
1690 0.66500000000 1.0000000000
1691 })
1692 (type: [(am = g puream = 1)]
1693 {exp coef:0} = {
1694 1.5620000000 1.0000000000
1695 })
1696 (type: [(am = g puream = 1)]
1697 {exp coef:0} = {
1698 0.33400000000 1.0000000000
1699 })
1700 (type: [(am = h puream = 1)]
1701 {exp coef:0} = {
1702 1.2640000000 1.0000000000
1703 })
1704 (type: [(am = h puream = 1)]
1705 {exp coef:0} = {
1706 0.74200000000 1.0000000000
1707 })
1708 ]
1709%
1710% BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
1711% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
1712 gallium: "aug-cc-pV5Z": [
1713 (type: [am = s am = s am = s am = s]
1714 {exp coef:0 coef:1 coef:2 coef:3} = {
1715 108615220.00 0.24000000000E-06 -0.70000000000E-07 0.30000000000E-07 -0.70000000000E-08
1716 16264540.000 0.18600000000E-05 -0.58000000000E-06 0.22000000000E-06 -0.51000000000E-07
1717 3700111.6000 0.98000000000E-05 -0.30300000000E-05 0.11600000000E-05 -0.27000000000E-06
1718 1047169.1000 0.41520000000E-04 -0.12870000000E-04 0.49100000000E-05 -0.11420000000E-05
1719 341067.57000 0.15205000000E-03 -0.47140000000E-04 0.17980000000E-04 -0.41830000000E-05
1720 122771.54000 0.50077000000E-03 -0.15530000000E-03 0.59200000000E-04 -0.13781000000E-04
1721 47659.578000 0.15187000000E-02 -0.47180000000E-03 0.18010000000E-03 -0.41882000000E-04
1722 19633.354000 0.43025000000E-02 -0.13405000000E-02 0.51140000000E-03 -0.11902300000E-03
1723 8488.7347000 0.11452300000E-01 -0.35955000000E-02 0.13740000000E-02 -0.31960000000E-03
1724 3823.1381000 0.28564000000E-01 -0.91016000000E-02 0.34818000000E-02 -0.81070000000E-03
1725 1784.4755000 0.65748500000E-01 -0.21636000000E-01 0.83169000000E-02 -0.19360000000E-02
1726 860.05305000 0.13528950000 -0.47336500000E-01 0.18318000000E-01 -0.42722000000E-02
1727 426.69867000 0.23455140000 -0.92499700000E-01 0.36390300000E-01 -0.84945000000E-02
1728 217.26161000 0.30783510000 -0.15043510000 0.60808300000E-01 -0.14270900000E-01
1729 112.96987000 0.25299470000 -0.17212270000 0.73293900000E-01 -0.17268100000E-01
1730 59.449441000 0.96010400000E-01 -0.44017900000E-01 0.19741600000E-01 -0.47782000000E-02
1731 30.782256000 0.97885000000E-02 0.29738280000 -0.16129700000 0.39492700000E-01
1732 16.423212000 0.59120000000E-03 0.52797480000 -0.40219480000 0.10272000000
1733 8.7578890000 -0.55400000000E-04 0.30089050000 -0.29272480000 0.77352900000E-01
1734 4.4096290000 0.13800000000E-04 0.45881900000E-01 0.27069420000 -0.84956500000E-01
1735 2.2494490000 -0.64200000000E-04 0.12828000000E-02 0.63597590000 -0.22198340000
1736 1.1261150000 0.16900000000E-04 0.12588000000E-02 0.37024890000 -0.25320890000
1737 })
1738 (type: [am = s]
1739 {exp coef:0} = {
1740 0.51548600000 1.0000000000
1741 })
1742 (type: [am = s]
1743 {exp coef:0} = {
1744 0.24257800000 1.0000000000
1745 })
1746 (type: [am = s]
1747 {exp coef:0} = {
1748 0.10708600000 1.0000000000
1749 })
1750 (type: [am = s]
1751 {exp coef:0} = {
1752 0.46988000000E-01 1.0000000000
1753 })
1754 (type: [am = s]
1755 {exp coef:0} = {
1756 0.17301000000E-01 1.0000000000
1757 })
1758 (type: [am = p am = p am = p]
1759 {exp coef:0 coef:1 coef:2} = {
1760 32152.190000 0.28300000000E-04 -0.10700000000E-04 0.17000000000E-05
1761 7609.3842000 0.25290000000E-03 -0.95800000000E-04 0.15800000000E-04
1762 2471.4744000 0.14686000000E-02 -0.55820000000E-03 0.90800000000E-04
1763 946.06363000 0.65627000000E-02 -0.25040000000E-02 0.41200000000E-03
1764 401.94711000 0.23802300000E-01 -0.91996000000E-02 0.14984000000E-02
1765 183.64688000 0.70894500000E-01 -0.27997300000E-01 0.46252000000E-02
1766 88.533264000 0.16763840000 -0.68874600000E-01 0.11271300000E-01
1767 44.270355000 0.29597540000 -0.12738430000 0.21321200000E-01
1768 22.723083000 0.34886100000 -0.15858890000 0.25952300000E-01
1769 11.823141000 0.21754960000 -0.42496800000E-01 0.66320000000E-02
1770 6.0421350000 0.52051100000E-01 0.24414400000 -0.50170400000E-01
1771 3.0317540000 0.34378000000E-02 0.44591110000 -0.84297700000E-01
1772 1.4933660000 0.98330000000E-03 0.35295220000 -0.90302300000E-01
1773 })
1774 (type: [am = p]
1775 {exp coef:0} = {
1776 0.70972700000 1.0000000000
1777 })
1778 (type: [am = p]
1779 {exp coef:0} = {
1780 0.24859300000 1.0000000000
1781 })
1782 (type: [am = p]
1783 {exp coef:0} = {
1784 0.94395000000E-01 1.0000000000
1785 })
1786 (type: [am = p]
1787 {exp coef:0} = {
1788 0.35887000000E-01 1.0000000000
1789 })
1790 (type: [am = p]
1791 {exp coef:0} = {
1792 0.11050000000E-01 1.0000000000
1793 })
1794 (type: [(am = d puream = 1)]
1795 {exp coef:0} = {
1796 1040.5046000 0.89200000000E-04
1797 314.59714000 0.86250000000E-03
1798 122.78760000 0.50094000000E-02
1799 54.760369000 0.19964900000E-01
1800 26.298944000 0.58321400000E-01
1801 13.263445000 0.13168680000
1802 6.8850650000 0.22186760000
1803 3.5795250000 0.28250590000
1804 1.8315640000 0.28319890000
1805 })
1806 (type: [(am = d puream = 1)]
1807 {exp coef:0} = {
1808 0.91290900000 1.0000000000
1809 })
1810 (type: [(am = d puream = 1)]
1811 {exp coef:0} = {
1812 0.43534000000 1.0000000000
1813 })
1814 (type: [(am = d puream = 1)]
1815 {exp coef:0} = {
1816 0.18851800000 1.0000000000
1817 })
1818 (type: [(am = d puream = 1)]
1819 {exp coef:0} = {
1820 0.75800000000E-01 1.0000000000
1821 })
1822 (type: [(am = d puream = 1)]
1823 {exp coef:0} = {
1824 0.26000000000E-01 1.0000000000
1825 })
1826 (type: [(am = f puream = 1)]
1827 {exp coef:0} = {
1828 0.13400000000 1.0000000000
1829 })
1830 (type: [(am = f puream = 1)]
1831 {exp coef:0} = {
1832 0.28260000000 1.0000000000
1833 })
1834 (type: [(am = f puream = 1)]
1835 {exp coef:0} = {
1836 0.59600000000 1.0000000000
1837 })
1838 (type: [(am = f puream = 1)]
1839 {exp coef:0} = {
1840 0.51100000000E-01 1.0000000000
1841 })
1842 (type: [(am = g puream = 1)]
1843 {exp coef:0} = {
1844 0.27500000000 1.0000000000
1845 })
1846 (type: [(am = g puream = 1)]
1847 {exp coef:0} = {
1848 0.61460000000 1.0000000000
1849 })
1850 (type: [(am = g puream = 1)]
1851 {exp coef:0} = {
1852 0.11400000000 1.0000000000
1853 })
1854 (type: [(am = h puream = 1)]
1855 {exp coef:0} = {
1856 0.49860000000 1.0000000000
1857 })
1858 (type: [(am = h puream = 1)]
1859 {exp coef:0} = {
1860 0.25400000000 1.0000000000
1861 })
1862 ]
1863%
1864% BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
1865% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
1866 germanium: "aug-cc-pV5Z": [
1867 (type: [am = s am = s am = s am = s]
1868 {exp coef:0 coef:1 coef:2 coef:3} = {
1869 122001190.00 0.22000000000E-06 -0.70000000000E-07 0.30000000000E-07 -0.70000000000E-08
1870 18257470.000 0.17500000000E-05 -0.54000000000E-06 0.21000000000E-06 -0.54000000000E-07
1871 4150821.5000 0.92000000000E-05 -0.28600000000E-05 0.11000000000E-05 -0.28300000000E-06
1872 1174101.8000 0.38990000000E-04 -0.12130000000E-04 0.46700000000E-05 -0.11200000000E-05
1873 382309.15000 0.14280000000E-03 -0.44430000000E-04 0.17130000000E-04 -0.43910000000E-05
1874 137607.96000 0.47030000000E-03 -0.14640000000E-03 0.56400000000E-04 -0.14461000000E-04
1875 53419.242000 0.14267000000E-02 -0.44470000000E-03 0.17150000000E-03 -0.43965000000E-04
1876 22005.756000 0.40434000000E-02 -0.12637000000E-02 0.48720000000E-03 -0.12490000000E-03
1877 9513.8479000 0.10773200000E-01 -0.33920000000E-02 0.13097000000E-02 -0.33580000000E-03
1878 4284.1756000 0.26927300000E-01 -0.85979000000E-02 0.33232000000E-02 -0.85250000000E-03
1879 1999.1664000 0.62237400000E-01 -0.20496400000E-01 0.79591000000E-02 -0.20424000000E-02
1880 963.24716000 0.12903820000 -0.45057100000E-01 0.17609700000E-01 -0.45245000000E-02
1881 477.80500000 0.22673120000 -0.88792200000E-01 0.35257600000E-01 -0.90744000000E-02
1882 243.31589000 0.30489030000 -0.14662990000 0.59768700000E-01 -0.15448300000E-01
1883 126.63999000 0.26176620000 -0.17431400000 0.74740600000E-01 -0.19433800000E-01
1884 66.783579000 0.10763480000 -0.61165600000E-01 0.27786300000E-01 -0.73289000000E-02
1885 34.416084000 0.12623400000E-01 0.27166900000 -0.14728780000 0.39648500000E-01
1886 18.372814000 0.39180000000E-03 0.52802260000 -0.39742020000 0.11217960000
1887 9.8054610000 0.81200000000E-04 0.32401380000 -0.32056660000 0.93568600000E-01
1888 4.9694030000 -0.48900000000E-04 0.54417700000E-01 0.23319680000 -0.80645900000E-01
1889 2.5486230000 -0.31700000000E-04 0.14463000000E-02 0.64248900000 -0.25011090000
1890 1.2845940000 -0.10900000000E-05 0.14248000000E-02 0.39666840000 -0.29780990000
1891 })
1892 (type: [am = s]
1893 {exp coef:0} = {
1894 0.58335300000 1.0000000000
1895 })
1896 (type: [am = s]
1897 {exp coef:0} = {
1898 0.29343900000 1.0000000000
1899 })
1900 (type: [am = s]
1901 {exp coef:0} = {
1902 0.13267200000 1.0000000000
1903 })
1904 (type: [am = s]
1905 {exp coef:0} = {
1906 0.59239000000E-01 1.0000000000
1907 })
1908 (type: [am = s]
1909 {exp coef:0} = {
1910 0.24274000000E-01 1.0000000000
1911 })
1912 (type: [am = p am = p am = p]
1913 {exp coef:0 coef:1 coef:2} = {
1914 32314.970000 0.31600000000E-04 -0.12200000000E-04 0.24000000000E-05
1915 7648.2002000 0.28200000000E-03 -0.10840000000E-03 0.21400000000E-04
1916 2484.2114000 0.16353000000E-02 -0.63110000000E-03 0.12430000000E-03
1917 951.00305000 0.72864000000E-02 -0.28243000000E-02 0.55890000000E-03
1918 404.04833000 0.26293100000E-01 -0.10331700000E-01 0.20383000000E-02
1919 184.60354000 0.77594300000E-01 -0.31210200000E-01 0.62016000000E-02
1920 88.964128000 0.18036530000 -0.75595400000E-01 0.15010600000E-01
1921 44.447742000 0.30953540000 -0.13629440000 0.27412700000E-01
1922 22.799075000 0.34547520000 -0.15901500000 0.31779600000E-01
1923 11.835928000 0.19632900000 -0.14980500000E-01 0.92280000000E-03
1924 6.0112940000 0.40906800000E-01 0.28682250000 -0.69834200000E-01
1925 2.9957840000 0.24197000000E-02 0.46266560000 -0.11196000000
1926 1.4695700000 0.80030000000E-03 0.31685050000 -0.99356500000E-01
1927 })
1928 (type: [am = p]
1929 {exp coef:0} = {
1930 0.69068100000 1.0000000000
1931 })
1932 (type: [am = p]
1933 {exp coef:0} = {
1934 0.28616000000 1.0000000000
1935 })
1936 (type: [am = p]
1937 {exp coef:0} = {
1938 0.11774200000 1.0000000000
1939 })
1940 (type: [am = p]
1941 {exp coef:0} = {
1942 0.47385000000E-01 1.0000000000
1943 })
1944 (type: [am = p]
1945 {exp coef:0} = {
1946 0.17593000000E-01 1.0000000000
1947 })
1948 (type: [(am = d puream = 1)]
1949 {exp coef:0} = {
1950 1226.7982000 0.76300000000E-04
1951 371.23223000 0.74250000000E-03
1952 144.89099000 0.43756000000E-02
1953 64.604130000 0.17925700000E-01
1954 31.039737000 0.53925300000E-01
1955 15.643870000 0.12571910000
1956 8.1258220000 0.21915660000
1957 4.2397620000 0.28606620000
1958 2.1863860000 0.28965040000
1959 })
1960 (type: [(am = d puream = 1)]
1961 {exp coef:0} = {
1962 1.1038710000 1.0000000000
1963 })
1964 (type: [(am = d puream = 1)]
1965 {exp coef:0} = {
1966 0.53381100000 1.0000000000
1967 })
1968 (type: [(am = d puream = 1)]
1969 {exp coef:0} = {
1970 0.23135500000 1.0000000000
1971 })
1972 (type: [(am = d puream = 1)]
1973 {exp coef:0} = {
1974 0.95300000000E-01 1.0000000000
1975 })
1976 (type: [(am = d puream = 1)]
1977 {exp coef:0} = {
1978 0.36400000000E-01 1.0000000000
1979 })
1980 (type: [(am = f puream = 1)]
1981 {exp coef:0} = {
1982 0.16300000000 1.0000000000
1983 })
1984 (type: [(am = f puream = 1)]
1985 {exp coef:0} = {
1986 0.32970000000 1.0000000000
1987 })
1988 (type: [(am = f puream = 1)]
1989 {exp coef:0} = {
1990 0.67090000000 1.0000000000
1991 })
1992 (type: [(am = f puream = 1)]
1993 {exp coef:0} = {
1994 0.70500000000E-01 1.0000000000
1995 })
1996 (type: [(am = g puream = 1)]
1997 {exp coef:0} = {
1998 0.31600000000 1.0000000000
1999 })
2000 (type: [(am = g puream = 1)]
2001 {exp coef:0} = {
2002 0.70340000000 1.0000000000
2003 })
2004 (type: [(am = g puream = 1)]
2005 {exp coef:0} = {
2006 0.14600000000 1.0000000000
2007 })
2008 (type: [(am = h puream = 1)]
2009 {exp coef:0} = {
2010 0.58150000000 1.0000000000
2011 })
2012 (type: [(am = h puream = 1)]
2013 {exp coef:0} = {
2014 0.32000000000 1.0000000000
2015 })
2016 ]
2017%
2018% BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
2019% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
2020 arsenic: "aug-cc-pV5Z": [
2021 (type: [am = s am = s am = s am = s]
2022 {exp coef:0 coef:1 coef:2 coef:3} = {
2023 137507530.00 0.21000000000E-06 -0.70000000000E-07 0.30000000000E-07 -0.70000000000E-08
2024 20515052.000 0.16300000000E-05 -0.51000000000E-06 0.20000000000E-06 -0.55000000000E-07
2025 4648716.4000 0.86500000000E-05 -0.27000000000E-05 0.10500000000E-05 -0.28900000000E-06
2026 1311264.6000 0.36760000000E-04 -0.11470000000E-04 0.44700000000E-05 -0.12300000000E-05
2027 426185.86000 0.13488000000E-03 -0.42100000000E-04 0.16400000000E-04 -0.45170000000E-05
2028 153237.06000 0.44460000000E-03 -0.13880000000E-03 0.54040000000E-04 -0.14884000000E-04
2029 59459.404000 0.13488000000E-02 -0.42180000000E-03 0.16430000000E-03 -0.45265000000E-04
2030 24492.812000 0.38231000000E-02 -0.11984000000E-02 0.46690000000E-03 -0.12858200000E-03
2031 10590.253000 0.10190800000E-01 -0.32174000000E-02 0.12552000000E-02 -0.34580100000E-03
2032 4769.7841000 0.25502700000E-01 -0.81598000000E-02 0.31869000000E-02 -0.87803100000E-03
2033 2226.3698000 0.59110400000E-01 -0.19483400000E-01 0.76432000000E-02 -0.21073000000E-02
2034 1073.0862000 0.12328880000 -0.42978700000E-01 0.16966900000E-01 -0.46817000000E-02
2035 532.50059000 0.21917430000 -0.85298700000E-01 0.34190900000E-01 -0.94558000000E-02
2036 271.29755000 0.30136120000 -0.14284020000 0.58728700000E-01 -0.16299000000E-01
2037 141.31195000 0.26948920000 -0.17572820000 0.75885600000E-01 -0.21213800000E-01
2038 74.584433000 0.11912700000 -0.76412700000E-01 0.35061400000E-01 -0.98944000000E-02
2039 38.298338000 0.15698000000E-01 0.24665750000 -0.13386230000 0.38637900000E-01
2040 20.469130000 0.20470000000E-03 0.52538240000 -0.39136340000 0.11888930000
2041 10.939578000 0.22360000000E-03 0.34597240000 -0.34628200000 0.10889900000
2042 5.5903670000 -0.11680000000E-03 0.63953300000E-01 0.19413270000 -0.72207900000E-01
2043 2.8828590000 0.41900000000E-05 0.18299000000E-02 0.64519860000 -0.27180000000
2044 1.4660860000 -0.21670000000E-04 0.15645000000E-02 0.42348130000 -0.33716620000
2045 })
2046 (type: [am = s]
2047 {exp coef:0} = {
2048 0.67483900000 1.0000000000
2049 })
2050 (type: [am = s]
2051 {exp coef:0} = {
2052 0.34639900000 1.0000000000
2053 })
2054 (type: [am = s]
2055 {exp coef:0} = {
2056 0.15928900000 1.0000000000
2057 })
2058 (type: [am = s]
2059 {exp coef:0} = {
2060 0.72109000000E-01 1.0000000000
2061 })
2062 (type: [am = s]
2063 {exp coef:0} = {
2064 0.29418000000E-01 1.0000000000
2065 })
2066 (type: [am = p am = p am = p]
2067 {exp coef:0 coef:1 coef:2} = {
2068 34166.161000 0.32200000000E-04 -0.12600000000E-04 0.28000000000E-05
2069 8086.5608000 0.28680000000E-03 -0.11190000000E-03 0.24900000000E-04
2070 2626.5114000 0.16633000000E-02 -0.65160000000E-03 0.14510000000E-03
2071 1005.3950000 0.74125000000E-02 -0.29173000000E-02 0.65040000000E-03
2072 427.12735000 0.26751200000E-01 -0.10673800000E-01 0.23818000000E-02
2073 195.15113000 0.78894400000E-01 -0.32245500000E-01 0.72207000000E-02
2074 94.054308000 0.18299160000 -0.77973100000E-01 0.17531800000E-01
2075 46.999880000 0.31249410000 -0.14010380000 0.31741400000E-01
2076 24.117457000 0.34453220000 -0.16071320000 0.36544900000E-01
2077 12.519982000 0.19164360000 -0.76703000000E-02 -0.16024000000E-02
2078 6.3573250000 0.38713600000E-01 0.30079830000 -0.82464400000E-01
2079 3.1680520000 0.22418000000E-02 0.47158780000 -0.13443720000
2080 1.5534810000 0.72090000000E-03 0.30320640000 -0.10516860000
2081 })
2082 (type: [am = p]
2083 {exp coef:0} = {
2084 0.71032500000 1.0000000000
2085 })
2086 (type: [am = p]
2087 {exp coef:0} = {
2088 0.32095500000 1.0000000000
2089 })
2090 (type: [am = p]
2091 {exp coef:0} = {
2092 0.13935700000 1.0000000000
2093 })
2094 (type: [am = p]
2095 {exp coef:0} = {
2096 0.58410000000E-01 1.0000000000
2097 })
2098 (type: [am = p]
2099 {exp coef:0} = {
2100 0.22043000000E-01 1.0000000000
2101 })
2102 (type: [(am = d puream = 1)]
2103 {exp coef:0} = {
2104 1424.4506000 0.66600000000E-04
2105 431.06676000 0.65370000000E-03
2106 168.12864000 0.39041000000E-02
2107 74.866724000 0.16391900000E-01
2108 35.945855000 0.50623200000E-01
2109 18.098474000 0.12110210000
2110 9.4057800000 0.21681690000
2111 4.9239040000 0.28874520000
2112 2.5564930000 0.29477690000
2113 })
2114 (type: [(am = d puream = 1)]
2115 {exp coef:0} = {
2116 1.3042330000 1.0000000000
2117 })
2118 (type: [(am = d puream = 1)]
2119 {exp coef:0} = {
2120 0.63711800000 1.0000000000
2121 })
2122 (type: [(am = d puream = 1)]
2123 {exp coef:0} = {
2124 0.27579500000 1.0000000000
2125 })
2126 (type: [(am = d puream = 1)]
2127 {exp coef:0} = {
2128 0.11530000000 1.0000000000
2129 })
2130 (type: [(am = d puream = 1)]
2131 {exp coef:0} = {
2132 0.48800000000E-01 1.0000000000
2133 })
2134 (type: [(am = f puream = 1)]
2135 {exp coef:0} = {
2136 0.19600000000 1.0000000000
2137 })
2138 (type: [(am = f puream = 1)]
2139 {exp coef:0} = {
2140 0.38590000000 1.0000000000
2141 })
2142 (type: [(am = f puream = 1)]
2143 {exp coef:0} = {
2144 0.75990000000 1.0000000000
2145 })
2146 (type: [(am = f puream = 1)]
2147 {exp coef:0} = {
2148 0.89900000000E-01 1.0000000000
2149 })
2150 (type: [(am = g puream = 1)]
2151 {exp coef:0} = {
2152 0.37000000000 1.0000000000
2153 })
2154 (type: [(am = g puream = 1)]
2155 {exp coef:0} = {
2156 0.80920000000 1.0000000000
2157 })
2158 (type: [(am = g puream = 1)]
2159 {exp coef:0} = {
2160 0.16550000000 1.0000000000
2161 })
2162 (type: [(am = h puream = 1)]
2163 {exp coef:0} = {
2164 0.67730000000 1.0000000000
2165 })
2166 (type: [(am = h puream = 1)]
2167 {exp coef:0} = {
2168 0.36680000000 1.0000000000
2169 })
2170 ]
2171%
2172% BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
2173% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
2174 selenium: "aug-cc-pV5Z": [
2175 (type: [am = s am = s am = s am = s]
2176 {exp coef:0 coef:1 coef:2 coef:3} = {
2177 154432250.00 0.19000000000E-06 -0.60000000000E-07 0.20000000000E-07 -0.70000000000E-08
2178 23129212.000 0.15100000000E-05 -0.47000000000E-06 0.19000000000E-06 -0.54000000000E-07
2179 5261792.9000 0.79600000000E-05 -0.24900000000E-05 0.98000000000E-06 -0.28700000000E-06
2180 1488816.7000 0.33750000000E-04 -0.10560000000E-04 0.41500000000E-05 -0.12140000000E-05
2181 484656.56000 0.12372000000E-03 -0.38730000000E-04 0.15240000000E-04 -0.44560000000E-05
2182 174270.63000 0.40839000000E-03 -0.12786000000E-03 0.50310000000E-04 -0.14706000000E-04
2183 67529.090000 0.12431000000E-02 -0.38980000000E-03 0.15346000000E-03 -0.44871000000E-04
2184 27750.837000 0.35389000000E-02 -0.11123000000E-02 0.43780000000E-03 -0.12798900000E-03
2185 11964.216000 0.94822000000E-02 -0.30007000000E-02 0.11827000000E-02 -0.34570200000E-03
2186 5370.7148000 0.23890100000E-01 -0.76563000000E-02 0.30208000000E-02 -0.88340000000E-03
2187 2497.3194000 0.55875700000E-01 -0.18422100000E-01 0.72992000000E-02 -0.21363000000E-02
2188 1198.7679000 0.11791040000 -0.41018400000E-01 0.16352800000E-01 -0.47892000000E-02
2189 592.58026000 0.21279620000 -0.82302600000E-01 0.33296200000E-01 -0.97758000000E-02
2190 300.97708000 0.29893040000 -0.13988400000 0.58013900000E-01 -0.17087700000E-01
2191 156.46024000 0.27656510000 -0.17703370000 0.77023300000E-01 -0.22865600000E-01
2192 82.476086000 0.12929410000 -0.88776100000E-01 0.41106500000E-01 -0.12302800000E-01
2193 42.270887000 0.18587500000E-01 0.22515370000 -0.12257820000 0.37525400000E-01
2194 22.630220000 0.77300000000E-04 0.52071710000 -0.38533970000 0.12443420000
2195 12.122374000 0.34270000000E-03 0.36450930000 -0.36750730000 0.12311950000
2196 6.2491700000 -0.17530000000E-03 0.73616900000E-01 0.15743400000 -0.62433000000E-01
2197 3.2426780000 0.35700000000E-04 0.23540000000E-02 0.64408720000 -0.28948340000
2198 1.6663620000 -0.40650000000E-04 0.16947000000E-02 0.44822090000 -0.37443990000
2199 })
2200 (type: [am = s]
2201 {exp coef:0} = {
2202 0.78726400000 1.0000000000
2203 })
2204 (type: [am = s]
2205 {exp coef:0} = {
2206 0.40297200000 1.0000000000
2207 })
2208 (type: [am = s]
2209 {exp coef:0} = {
2210 0.18709600000 1.0000000000
2211 })
2212 (type: [am = s]
2213 {exp coef:0} = {
2214 0.84706000000E-01 1.0000000000
2215 })
2216 (type: [am = s]
2217 {exp coef:0} = {
2218 0.33935000000E-01 1.0000000000
2219 })
2220 (type: [am = p am = p am = p]
2221 {exp coef:0 coef:1 coef:2} = {
2222 36511.337000 0.32000000000E-04 -0.12700000000E-04 0.31000000000E-05
2223 8640.5510000 0.28540000000E-03 -0.11300000000E-03 0.27300000000E-04
2224 2805.6911000 0.16567000000E-02 -0.65820000000E-03 0.15930000000E-03
2225 1073.4961000 0.73955000000E-02 -0.29528000000E-02 0.71360000000E-03
2226 455.77475000 0.26754300000E-01 -0.10828900000E-01 0.26260000000E-02
2227 208.09432000 0.79098900000E-01 -0.32812400000E-01 0.79667000000E-02
2228 100.23111000 0.18379670000 -0.79507000000E-01 0.19444000000E-01
2229 50.073522000 0.31380410000 -0.14302740000 0.35132800000E-01
2230 25.700262000 0.34436500000 -0.16277870000 0.40402800000E-01
2231 13.346792000 0.18985910000 -0.42983000000E-02 -0.33969000000E-02
2232 6.7870510000 0.37919300000E-01 0.30918290000 -0.92099900000E-01
2233 3.3916540000 0.21781000000E-02 0.47760130000 -0.15350900000
2234 1.6703270000 0.65900000000E-03 0.29285260000 -0.10587050000
2235 })
2236 (type: [am = p]
2237 {exp coef:0} = {
2238 0.75259900000 1.0000000000
2239 })
2240 (type: [am = p]
2241 {exp coef:0} = {
2242 0.34681300000 1.0000000000
2243 })
2244 (type: [am = p]
2245 {exp coef:0} = {
2246 0.15185500000 1.0000000000
2247 })
2248 (type: [am = p]
2249 {exp coef:0} = {
2250 0.63856000000E-01 1.0000000000
2251 })
2252 (type: [am = p]
2253 {exp coef:0} = {
2254 0.24975000000E-01 1.0000000000
2255 })
2256 (type: [(am = d puream = 1)]
2257 {exp coef:0} = {
2258 1635.0663000 0.59100000000E-04
2259 494.67266000 0.58400000000E-03
2260 192.84388000 0.35256000000E-02
2261 85.782195000 0.15112700000E-01
2262 41.149966000 0.47844600000E-01
2263 20.678170000 0.11743450000
2264 10.726386000 0.21590740000
2265 5.6124540000 0.29292160000
2266 2.9203760000 0.30008640000
2267 })
2268 (type: [(am = d puream = 1)]
2269 {exp coef:0} = {
2270 1.4981840000 1.0000000000
2271 })
2272 (type: [(am = d puream = 1)]
2273 {exp coef:0} = {
2274 0.73599900000 1.0000000000
2275 })
2276 (type: [(am = d puream = 1)]
2277 {exp coef:0} = {
2278 0.31600400000 1.0000000000
2279 })
2280 (type: [(am = d puream = 1)]
2281 {exp coef:0} = {
2282 0.13310000000 1.0000000000
2283 })
2284 (type: [(am = d puream = 1)]
2285 {exp coef:0} = {
2286 0.54800000000E-01 1.0000000000
2287 })
2288 (type: [(am = f puream = 1)]
2289 {exp coef:0} = {
2290 0.21000000000 1.0000000000
2291 })
2292 (type: [(am = f puream = 1)]
2293 {exp coef:0} = {
2294 0.42110000000 1.0000000000
2295 })
2296 (type: [(am = f puream = 1)]
2297 {exp coef:0} = {
2298 0.84420000000 1.0000000000
2299 })
2300 (type: [(am = f puream = 1)]
2301 {exp coef:0} = {
2302 0.99200000000E-01 1.0000000000
2303 })
2304 (type: [(am = g puream = 1)]
2305 {exp coef:0} = {
2306 0.38500000000 1.0000000000
2307 })
2308 (type: [(am = g puream = 1)]
2309 {exp coef:0} = {
2310 0.86590000000 1.0000000000
2311 })
2312 (type: [(am = g puream = 1)]
2313 {exp coef:0} = {
2314 0.18300000000 1.0000000000
2315 })
2316 (type: [(am = h puream = 1)]
2317 {exp coef:0} = {
2318 0.72350000000 1.0000000000
2319 })
2320 (type: [(am = h puream = 1)]
2321 {exp coef:0} = {
2322 0.40200000000 1.0000000000
2323 })
2324 ]
2325%
2326% BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
2327% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
2328 bromine: "aug-cc-pV5Z": [
2329 (type: [am = s am = s am = s am = s]
2330 {exp coef:0 coef:1 coef:2 coef:3} = {
2331 165735150.00 0.19000000000E-06 -0.60000000000E-07 0.20000000000E-07 -0.70000000000E-08
2332 24774379.000 0.14900000000E-05 -0.47000000000E-06 0.19000000000E-06 -0.57000000000E-07
2333 5628202.0000 0.78800000000E-05 -0.24700000000E-05 0.98000000000E-06 -0.30100000000E-06
2334 1591899.7000 0.33390000000E-04 -0.10480000000E-04 0.41600000000E-05 -0.12760000000E-05
2335 518263.80000 0.12231000000E-03 -0.38400000000E-04 0.15260000000E-04 -0.46780000000E-05
2336 186490.92000 0.40321000000E-03 -0.12660000000E-03 0.50310000000E-04 -0.15416000000E-04
2337 72332.493000 0.12256400000E-02 -0.38545000000E-03 0.15325000000E-03 -0.46975000000E-04
2338 29761.135000 0.34823500000E-02 -0.10976100000E-02 0.43637000000E-03 -0.13372100000E-03
2339 12851.712000 0.93085600000E-02 -0.29537900000E-02 0.11758000000E-02 -0.36048500000E-03
2340 5780.9430000 0.23388300000E-01 -0.75146000000E-02 0.29946000000E-02 -0.91797600000E-03
2341 2695.0098000 0.54553000000E-01 -0.18023000000E-01 0.72119000000E-02 -0.22129000000E-02
2342 1297.6604000 0.11494790000 -0.40025500000E-01 0.16115100000E-01 -0.49473000000E-02
2343 643.63493000 0.20792250000 -0.80291900000E-01 0.32794300000E-01 -0.10095100000E-01
2344 327.95194000 0.29515960000 -0.13721660000 0.57430900000E-01 -0.17732400000E-01
2345 170.92262000 0.27987660000 -0.17694390000 0.77618700000E-01 -0.24165300000E-01
2346 90.250141000 0.13697520000 -0.97703300000E-01 0.45646400000E-01 -0.14318000000E-01
2347 46.292467000 0.21215400000E-01 0.20676330000 -0.11311710000 0.36281200000E-01
2348 24.848661000 -0.25400000000E-04 0.51484190000 -0.37955960000 0.12865520000
2349 13.347137000 0.45700000000E-03 0.37992060000 -0.38514940000 0.13568880000
2350 6.9482580000 -0.23480000000E-03 0.83012800000E-01 0.12368510000 -0.51676400000E-01
2351 3.6250750000 0.68580000000E-04 0.32157000000E-02 0.64061380000 -0.30307240000
2352 1.8821530000 -0.61160000000E-04 0.17129000000E-02 0.47074360000 -0.40738380000
2353 })
2354 (type: [am = s]
2355 {exp coef:0} = {
2356 0.91082200000 1.0000000000
2357 })
2358 (type: [am = s]
2359 {exp coef:0} = {
2360 0.46395700000 1.0000000000
2361 })
2362 (type: [am = s]
2363 {exp coef:0} = {
2364 0.21693300000 1.0000000000
2365 })
2366 (type: [am = s]
2367 {exp coef:0} = {
2368 0.98406000000E-01 1.0000000000
2369 })
2370 (type: [am = s]
2371 {exp coef:0} = {
2372 0.39106000000E-01 1.0000000000
2373 })
2374 (type: [am = p am = p am = p]
2375 {exp coef:0 coef:1 coef:2} = {
2376 39391.530000 0.31200000000E-04 -0.12500000000E-04 0.32000000000E-05
2377 9325.2225000 0.27800000000E-03 -0.11160000000E-03 0.28800000000E-04
2378 3028.9943000 0.16138000000E-02 -0.64990000000E-03 0.16840000000E-03
2379 1159.5145000 0.72049000000E-02 -0.29159000000E-02 0.75430000000E-03
2380 492.68131000 0.26087300000E-01 -0.10700900000E-01 0.27801000000E-02
2381 225.17451000 0.77297100000E-01 -0.32495100000E-01 0.84462000000E-02
2382 108.59326000 0.18047750000 -0.79112300000E-01 0.20737600000E-01
2383 54.336079000 0.31061260000 -0.14352520000 0.37754200000E-01
2384 27.936650000 0.34542970000 -0.16582480000 0.44206200000E-01
2385 14.539626000 0.19485150000 -0.10659100000E-01 -0.21775000000E-02
2386 7.4213070000 0.40386000000E-01 0.30506620000 -0.97953000000E-01
2387 3.7303890000 0.23091000000E-02 0.48135630000 -0.16926560000
2388 1.8541270000 0.67150000000E-03 0.29427690000 -0.11174900000
2389 })
2390 (type: [am = p]
2391 {exp coef:0} = {
2392 0.84533700000 1.0000000000
2393 })
2394 (type: [am = p]
2395 {exp coef:0} = {
2396 0.39215200000 1.0000000000
2397 })
2398 (type: [am = p]
2399 {exp coef:0} = {
2400 0.17276700000 1.0000000000
2401 })
2402 (type: [am = p]
2403 {exp coef:0} = {
2404 0.72908000000E-01 1.0000000000
2405 })
2406 (type: [am = p]
2407 {exp coef:0} = {
2408 0.29052000000E-01 1.0000000000
2409 })
2410 (type: [(am = d puream = 1)]
2411 {exp coef:0} = {
2412 1850.6354000 0.53800000000E-04
2413 557.07125000 0.54020000000E-03
2414 216.48687000 0.33012000000E-02
2415 96.138850000 0.14355100000E-01
2416 46.126380000 0.46116800000E-01
2417 23.201164000 0.11478730000
2418 12.055926000 0.21453690000
2419 6.3255450000 0.29531310000
2420 3.3049220000 0.30409380000
2421 })
2422 (type: [(am = d puream = 1)]
2423 {exp coef:0} = {
2424 1.7042530000 1.0000000000
2425 })
2426 (type: [(am = d puream = 1)]
2427 {exp coef:0} = {
2428 0.83994000000 1.0000000000
2429 })
2430 (type: [(am = d puream = 1)]
2431 {exp coef:0} = {
2432 0.35695300000 1.0000000000
2433 })
2434 (type: [(am = d puream = 1)]
2435 {exp coef:0} = {
2436 0.15200000000 1.0000000000
2437 })
2438 (type: [(am = d puream = 1)]
2439 {exp coef:0} = {
2440 0.78100000000E-01 1.0000000000
2441 })
2442 (type: [(am = f puream = 1)]
2443 {exp coef:0} = {
2444 0.25500000000 1.0000000000
2445 })
2446 (type: [(am = f puream = 1)]
2447 {exp coef:0} = {
2448 0.49550000000 1.0000000000
2449 })
2450 (type: [(am = f puream = 1)]
2451 {exp coef:0} = {
2452 0.96270000000 1.0000000000
2453 })
2454 (type: [(am = f puream = 1)]
2455 {exp coef:0} = {
2456 0.13880000000 1.0000000000
2457 })
2458 (type: [(am = g puream = 1)]
2459 {exp coef:0} = {
2460 0.43900000000 1.0000000000
2461 })
2462 (type: [(am = g puream = 1)]
2463 {exp coef:0} = {
2464 0.97680000000 1.0000000000
2465 })
2466 (type: [(am = g puream = 1)]
2467 {exp coef:0} = {
2468 0.21900000000 1.0000000000
2469 })
2470 (type: [(am = h puream = 1)]
2471 {exp coef:0} = {
2472 0.81930000000 1.0000000000
2473 })
2474 (type: [(am = h puream = 1)]
2475 {exp coef:0} = {
2476 0.49100000000 1.0000000000
2477 })
2478 ]
2479%
2480% BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
2481% AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
2482 krypton: "aug-cc-pV5Z": [
2483 (type: [am = s am = s am = s am = s]
2484 {exp coef:0 coef:1 coef:2 coef:3} = {
2485 182822090.00 0.18000000000E-06 -0.57000000000E-06 0.20000000000E-07 -0.60000000000E-08
2486 27356156.000 0.14200000000E-05 -0.45000000000E-06 0.18000000000E-06 -0.57000000000E-07
2487 6221170.4000 0.74600000000E-05 -0.23500000000E-05 0.94000000000E-06 -0.30000000000E-06
2488 1760277.9000 0.31590000000E-04 -0.99400000000E-05 0.39900000000E-05 -0.12700000000E-05
2489 573193.82000 0.11575000000E-03 -0.36400000000E-04 0.14620000000E-04 -0.46580000000E-05
2490 206258.45000 0.38150000000E-03 -0.12010000000E-03 0.48190000000E-04 -0.15347000000E-04
2491 80026.669000 0.11590000000E-02 -0.36540000000E-03 0.14670000000E-03 -0.46736000000E-04
2492 32939.084000 0.32934000000E-02 -0.10407000000E-02 0.41770000000E-03 -0.13302200000E-03
2493 14222.633000 0.88161000000E-02 -0.28038000000E-02 0.11267000000E-02 -0.35906200000E-03
2494 6393.0707000 0.22218000000E-01 -0.71509000000E-02 0.28769000000E-02 -0.91650000000E-03
2495 2976.4538000 0.52088100000E-01 -0.17220400000E-01 0.69549000000E-02 -0.22184000000E-02
2496 1430.5254000 0.11063560000 -0.38480000000E-01 0.15636500000E-01 -0.49883000000E-02
2497 707.92621000 0.20253260000 -0.77862800000E-01 0.32080100000E-01 -0.10266100000E-01
2498 359.84847000 0.29263500000 -0.13474230000 0.56868900000E-01 -0.18244500000E-01
2499 187.14965000 0.28512240000 -0.17761480000 0.78484500000E-01 -0.25411000000E-01
2500 98.634523000 0.14550640000 -0.10684130000 0.50339800000E-01 -0.16393100000E-01
2501 50.547869000 0.23993900000E-01 0.18961320000 -0.10427420000 0.34697700000E-01
2502 27.167004000 -0.94900000000E-04 0.50918710000 -0.37437610000 0.13212830000
2503 14.615098000 0.55780000000E-03 0.39398590000 -0.40111310000 0.14709250000
2504 7.6513520000 -0.28700000000E-03 0.91903200000E-01 0.96838800000E-01 -0.41821600000E-01
2505 3.9972630000 0.96600000000E-04 0.39195000000E-02 0.64287760000 -0.31952400000
2506 2.0858530000 -0.78400000000E-04 0.17496000000E-02 0.48606000000 -0.43632860000
2507 })
2508 (type: [am = s]
2509 {exp coef:0} = {
2510 1.0147970000 1.0000000000
2511 })
2512 (type: [am = s]
2513 {exp coef:0} = {
2514 0.51978800000 1.0000000000
2515 })
2516 (type: [am = s]
2517 {exp coef:0} = {
2518 0.24510300000 1.0000000000
2519 })
2520 (type: [am = s]
2521 {exp coef:0} = {
2522 0.11189600000 1.0000000000
2523 })
2524 (type: [am = s]
2525 {exp coef:0} = {
2526 0.44277000000E-01 1.0000000000
2527 })
2528 (type: [am = p am = p am = p]
2529 {exp coef:0 coef:1 coef:2} = {
2530 42993.056000 0.29700000000E-04 -0.12100000000E-04 0.33000000000E-05
2531 10173.723000 0.26510000000E-03 -0.10780000000E-03 0.29300000000E-04
2532 3303.1057000 0.15416000000E-02 -0.62900000000E-03 0.17130000000E-03
2533 1263.5400000 0.69065000000E-02 -0.28323000000E-02 0.76950000000E-03
2534 536.36546000 0.25139700000E-01 -0.10446200000E-01 0.28514000000E-02
2535 244.87617000 0.75012400000E-01 -0.31940000000E-01 0.87204000000E-02
2536 117.99117000 0.17674330000 -0.78459900000E-01 0.21618100000E-01
2537 59.021248000 0.30751350000 -0.14397190000 0.39802400000E-01
2538 30.356067000 0.34706440000 -0.16917030000 0.47477500000E-01
2539 15.819977000 0.20028020000 -0.17596600000E-01 -0.47730000000E-03
2540 8.1045800000 0.43050800000E-01 0.30026490000 -0.10218910000
2541 4.0979640000 0.24772000000E-02 0.48476610000 -0.18236110000
2542 2.0560610000 0.67890000000E-03 0.29672480000 -0.11733630000
2543 })
2544 (type: [am = p]
2545 {exp coef:0} = {
2546 0.95214500000 1.0000000000
2547 })
2548 (type: [am = p]
2549 {exp coef:0} = {
2550 0.44477400000 1.0000000000
2551 })
2552 (type: [am = p]
2553 {exp coef:0} = {
2554 0.19749600000 1.0000000000
2555 })
2556 (type: [am = p]
2557 {exp coef:0} = {
2558 0.83823000000E-01 1.0000000000
2559 })
2560 (type: [am = p]
2561 {exp coef:0} = {
2562 0.33129000000E-01 1.0000000000
2563 })
2564 (type: [(am = d puream = 1)]
2565 {exp coef:0} = {
2566 2067.4360000 0.49600000000E-04
2567 625.69371000 0.49440000000E-03
2568 243.94679000 0.30265000000E-02
2569 108.42373000 0.13346100000E-01
2570 52.005216000 0.43786900000E-01
2571 26.115405000 0.11143880000
2572 13.546748000 0.21303410000
2573 7.1058100000 0.29792410000
2574 3.7215540000 0.30796600000
2575 })
2576 (type: [(am = d puream = 1)]
2577 {exp coef:0} = {
2578 1.9291200000 1.0000000000
2579 })
2580 (type: [(am = d puream = 1)]
2581 {exp coef:0} = {
2582 0.95582600000 1.0000000000
2583 })
2584 (type: [(am = d puream = 1)]
2585 {exp coef:0} = {
2586 0.40519700000 1.0000000000
2587 })
2588 (type: [(am = d puream = 1)]
2589 {exp coef:0} = {
2590 0.17410000000 1.0000000000
2591 })
2592 (type: [(am = d puream = 1)]
2593 {exp coef:0} = {
2594 0.10140000000 1.0000000000
2595 })
2596 (type: [(am = f puream = 1)]
2597 {exp coef:0} = {
2598 0.31500000000 1.0000000000
2599 })
2600 (type: [(am = f puream = 1)]
2601 {exp coef:0} = {
2602 0.58700000000 1.0000000000
2603 })
2604 (type: [(am = f puream = 1)]
2605 {exp coef:0} = {
2606 1.0940000000 1.0000000000
2607 })
2608 (type: [(am = f puream = 1)]
2609 {exp coef:0} = {
2610 0.17840000000 1.0000000000
2611 })
2612 (type: [(am = g puream = 1)]
2613 {exp coef:0} = {
2614 0.50100000000 1.0000000000
2615 })
2616 (type: [(am = g puream = 1)]
2617 {exp coef:0} = {
2618 1.1040000000 1.0000000000
2619 })
2620 (type: [(am = g puream = 1)]
2621 {exp coef:0} = {
2622 0.25500000000 1.0000000000
2623 })
2624 (type: [(am = h puream = 1)]
2625 {exp coef:0} = {
2626 0.93030000000 1.0000000000
2627 })
2628 (type: [(am = h puream = 1)]
2629 {exp coef:0} = {
2630 0.58000000000 1.0000000000
2631 })
2632 ]
2633)
Note: See TracBrowser for help on using the repository browser.