[0b990d] | 1 | %BASIS "aug-cc-pV5Z" CARTESIAN
|
---|
| 2 | basis:(
|
---|
| 3 | %Elements References
|
---|
| 4 | %-------- ----------
|
---|
| 5 | %H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 6 | %He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
|
---|
| 7 | %Li : Unofficial set from D. Feller.
|
---|
| 8 | %B - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 9 | %Na - Mg: Unofficial set from D. Feller.
|
---|
| 10 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
| 11 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
| 12 | %Elements References
|
---|
| 13 | %-------- ---------
|
---|
| 14 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 15 | % Diffuse s exponent - S. Mielke
|
---|
| 16 | % He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
|
---|
| 17 | % B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
|
---|
| 18 | % 6769 (1992).
|
---|
| 19 | %Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
| 20 | %
|
---|
| 21 | %
|
---|
| 22 | % BASIS SET: (8s,4p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 23 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g)
|
---|
| 24 | hydrogen: "aug-cc-pV5Z": [
|
---|
| 25 | (type: [am = s]
|
---|
| 26 | {exp coef:0} = {
|
---|
| 27 | 402.00000000 0.27900000000E-03
|
---|
| 28 | 60.240000000 0.21650000000E-02
|
---|
| 29 | 13.730000000 0.11201000000E-01
|
---|
| 30 | 3.9050000000 0.44878000000E-01
|
---|
| 31 | })
|
---|
| 32 | (type: [am = s]
|
---|
| 33 | {exp coef:0} = {
|
---|
| 34 | 1.2830000000 1.0000000000
|
---|
| 35 | })
|
---|
| 36 | (type: [am = s]
|
---|
| 37 | {exp coef:0} = {
|
---|
| 38 | 0.46550000000 1.0000000000
|
---|
| 39 | })
|
---|
| 40 | (type: [am = s]
|
---|
| 41 | {exp coef:0} = {
|
---|
| 42 | 0.18110000000 1.0000000000
|
---|
| 43 | })
|
---|
| 44 | (type: [am = s]
|
---|
| 45 | {exp coef:0} = {
|
---|
| 46 | 0.72790000000E-01 1.0000000000
|
---|
| 47 | })
|
---|
| 48 | (type: [am = s]
|
---|
| 49 | {exp coef:0} = {
|
---|
| 50 | 0.20700000000E-01 1.0000000000
|
---|
| 51 | })
|
---|
| 52 | (type: [am = p]
|
---|
| 53 | {exp coef:0} = {
|
---|
| 54 | 4.5160000000 1.0000000000
|
---|
| 55 | })
|
---|
| 56 | (type: [am = p]
|
---|
| 57 | {exp coef:0} = {
|
---|
| 58 | 1.7120000000 1.0000000000
|
---|
| 59 | })
|
---|
| 60 | (type: [am = p]
|
---|
| 61 | {exp coef:0} = {
|
---|
| 62 | 0.64900000000 1.0000000000
|
---|
| 63 | })
|
---|
| 64 | (type: [am = p]
|
---|
| 65 | {exp coef:0} = {
|
---|
| 66 | 0.24600000000 1.0000000000
|
---|
| 67 | })
|
---|
| 68 | (type: [am = p]
|
---|
| 69 | {exp coef:0} = {
|
---|
| 70 | 0.74400000000E-01 1.0000000000
|
---|
| 71 | })
|
---|
| 72 | (type: [(am = d puream = 1)]
|
---|
| 73 | {exp coef:0} = {
|
---|
| 74 | 2.9500000000 1.0000000000
|
---|
| 75 | })
|
---|
| 76 | (type: [(am = d puream = 1)]
|
---|
| 77 | {exp coef:0} = {
|
---|
| 78 | 1.2060000000 1.0000000000
|
---|
| 79 | })
|
---|
| 80 | (type: [(am = d puream = 1)]
|
---|
| 81 | {exp coef:0} = {
|
---|
| 82 | 0.49300000000 1.0000000000
|
---|
| 83 | })
|
---|
| 84 | (type: [(am = d puream = 1)]
|
---|
| 85 | {exp coef:0} = {
|
---|
| 86 | 0.15600000000 1.0000000000
|
---|
| 87 | })
|
---|
| 88 | (type: [(am = f puream = 1)]
|
---|
| 89 | {exp coef:0} = {
|
---|
| 90 | 2.5060000000 1.0000000000
|
---|
| 91 | })
|
---|
| 92 | (type: [(am = f puream = 1)]
|
---|
| 93 | {exp coef:0} = {
|
---|
| 94 | 0.87500000000 1.0000000000
|
---|
| 95 | })
|
---|
| 96 | (type: [(am = f puream = 1)]
|
---|
| 97 | {exp coef:0} = {
|
---|
| 98 | 0.27400000000 1.0000000000
|
---|
| 99 | })
|
---|
| 100 | (type: [(am = g puream = 1)]
|
---|
| 101 | {exp coef:0} = {
|
---|
| 102 | 2.3580000000 1.0000000000
|
---|
| 103 | })
|
---|
| 104 | (type: [(am = g puream = 1)]
|
---|
| 105 | {exp coef:0} = {
|
---|
| 106 | 0.54300000000 1.0000000000
|
---|
| 107 | })
|
---|
| 108 | ]
|
---|
| 109 | %
|
---|
| 110 | % BASIS SET: (8s,4p,3d,2f,1g) -> [5s,4p,3d,2f,1g]
|
---|
| 111 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g)
|
---|
| 112 | helium: "aug-cc-pV5Z": [
|
---|
| 113 | (type: [am = s]
|
---|
| 114 | {exp coef:0} = {
|
---|
| 115 | 1145.0000000 0.35900000000E-03
|
---|
| 116 | 171.70000000 0.27710000000E-02
|
---|
| 117 | 39.070000000 0.14251000000E-01
|
---|
| 118 | 11.040000000 0.55566000000E-01
|
---|
| 119 | })
|
---|
| 120 | (type: [am = s]
|
---|
| 121 | {exp coef:0} = {
|
---|
| 122 | 3.5660000000 1.0000000000
|
---|
| 123 | })
|
---|
| 124 | (type: [am = s]
|
---|
| 125 | {exp coef:0} = {
|
---|
| 126 | 1.2400000000 1.0000000000
|
---|
| 127 | })
|
---|
| 128 | (type: [am = s]
|
---|
| 129 | {exp coef:0} = {
|
---|
| 130 | 0.44730000000 1.0000000000
|
---|
| 131 | })
|
---|
| 132 | (type: [am = s]
|
---|
| 133 | {exp coef:0} = {
|
---|
| 134 | 0.16400000000 1.0000000000
|
---|
| 135 | })
|
---|
| 136 | (type: [am = s]
|
---|
| 137 | {exp coef:0} = {
|
---|
| 138 | 0.46640000000E-01 1.0000000000
|
---|
| 139 | })
|
---|
| 140 | (type: [am = p]
|
---|
| 141 | {exp coef:0} = {
|
---|
| 142 | 10.153000000 1.0000000000
|
---|
| 143 | })
|
---|
| 144 | (type: [am = p]
|
---|
| 145 | {exp coef:0} = {
|
---|
| 146 | 3.6270000000 1.0000000000
|
---|
| 147 | })
|
---|
| 148 | (type: [am = p]
|
---|
| 149 | {exp coef:0} = {
|
---|
| 150 | 1.2960000000 1.0000000000
|
---|
| 151 | })
|
---|
| 152 | (type: [am = p]
|
---|
| 153 | {exp coef:0} = {
|
---|
| 154 | 0.46300000000 1.0000000000
|
---|
| 155 | })
|
---|
| 156 | (type: [am = p]
|
---|
| 157 | {exp coef:0} = {
|
---|
| 158 | 0.14000000000 1.0000000000
|
---|
| 159 | })
|
---|
| 160 | (type: [(am = d puream = 1)]
|
---|
| 161 | {exp coef:0} = {
|
---|
| 162 | 7.6660000000 1.0000000000
|
---|
| 163 | })
|
---|
| 164 | (type: [(am = d puream = 1)]
|
---|
| 165 | {exp coef:0} = {
|
---|
| 166 | 2.6470000000 1.0000000000
|
---|
| 167 | })
|
---|
| 168 | (type: [(am = d puream = 1)]
|
---|
| 169 | {exp coef:0} = {
|
---|
| 170 | 0.91400000000 1.0000000000
|
---|
| 171 | })
|
---|
| 172 | (type: [(am = d puream = 1)]
|
---|
| 173 | {exp coef:0} = {
|
---|
| 174 | 0.28920000000 1.0000000000
|
---|
| 175 | })
|
---|
| 176 | (type: [(am = f puream = 1)]
|
---|
| 177 | {exp coef:0} = {
|
---|
| 178 | 5.4110000000 1.0000000000
|
---|
| 179 | })
|
---|
| 180 | (type: [(am = f puream = 1)]
|
---|
| 181 | {exp coef:0} = {
|
---|
| 182 | 1.7070000000 1.0000000000
|
---|
| 183 | })
|
---|
| 184 | (type: [(am = f puream = 1)]
|
---|
| 185 | {exp coef:0} = {
|
---|
| 186 | 0.53450000000 1.0000000000
|
---|
| 187 | })
|
---|
| 188 | (type: [(am = g puream = 1)]
|
---|
| 189 | {exp coef:0} = {
|
---|
| 190 | 3.4300000000 1.0000000000
|
---|
| 191 | })
|
---|
| 192 | (type: [(am = g puream = 1)]
|
---|
| 193 | {exp coef:0} = {
|
---|
| 194 | 0.78990000000 1.0000000000
|
---|
| 195 | })
|
---|
| 196 | ]
|
---|
| 197 | %
|
---|
| 198 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 199 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 200 | boron: "aug-cc-pV5Z": [
|
---|
| 201 | (type: [am = s am = s]
|
---|
| 202 | {exp coef:0 coef:1} = {
|
---|
| 203 | 68260.000000 0.24000000000E-04 -0.50000000000E-05
|
---|
| 204 | 10230.000000 0.18500000000E-03 -0.37000000000E-04
|
---|
| 205 | 2328.0000000 0.97000000000E-03 -0.19600000000E-03
|
---|
| 206 | 660.40000000 0.40560000000E-02 -0.82400000000E-03
|
---|
| 207 | 216.20000000 0.14399000000E-01 -0.29230000000E-02
|
---|
| 208 | 78.600000000 0.43901000000E-01 -0.91380000000E-02
|
---|
| 209 | 30.980000000 0.11305700000 -0.24105000000E-01
|
---|
| 210 | 12.960000000 0.23382500000 -0.54755000000E-01
|
---|
| 211 | 5.6590000000 0.35396000000 -0.96943000000E-01
|
---|
| 212 | 2.5560000000 0.30154700000 -0.13748500000
|
---|
| 213 | })
|
---|
| 214 | (type: [am = s]
|
---|
| 215 | {exp coef:0} = {
|
---|
| 216 | 1.1750000000 1.0000000000
|
---|
| 217 | })
|
---|
| 218 | (type: [am = s]
|
---|
| 219 | {exp coef:0} = {
|
---|
| 220 | 0.42490000000 1.0000000000
|
---|
| 221 | })
|
---|
| 222 | (type: [am = s]
|
---|
| 223 | {exp coef:0} = {
|
---|
| 224 | 0.17120000000 1.0000000000
|
---|
| 225 | })
|
---|
| 226 | (type: [am = s]
|
---|
| 227 | {exp coef:0} = {
|
---|
| 228 | 0.69130000000E-01 1.0000000000
|
---|
| 229 | })
|
---|
| 230 | (type: [am = s]
|
---|
| 231 | {exp coef:0} = {
|
---|
| 232 | 0.26100000000E-01 1.0000000000
|
---|
| 233 | })
|
---|
| 234 | (type: [am = p]
|
---|
| 235 | {exp coef:0} = {
|
---|
| 236 | 66.440000000 0.83800000000E-03
|
---|
| 237 | 15.710000000 0.64090000000E-02
|
---|
| 238 | 4.9360000000 0.28081000000E-01
|
---|
| 239 | 1.7700000000 0.92152000000E-01
|
---|
| 240 | })
|
---|
| 241 | (type: [am = p]
|
---|
| 242 | {exp coef:0} = {
|
---|
| 243 | 0.70080000000 1.0000000000
|
---|
| 244 | })
|
---|
| 245 | (type: [am = p]
|
---|
| 246 | {exp coef:0} = {
|
---|
| 247 | 0.29010000000 1.0000000000
|
---|
| 248 | })
|
---|
| 249 | (type: [am = p]
|
---|
| 250 | {exp coef:0} = {
|
---|
| 251 | 0.12110000000 1.0000000000
|
---|
| 252 | })
|
---|
| 253 | (type: [am = p]
|
---|
| 254 | {exp coef:0} = {
|
---|
| 255 | 0.49730000000E-01 1.0000000000
|
---|
| 256 | })
|
---|
| 257 | (type: [am = p]
|
---|
| 258 | {exp coef:0} = {
|
---|
| 259 | 0.15700000000E-01 1.0000000000
|
---|
| 260 | })
|
---|
| 261 | (type: [(am = d puream = 1)]
|
---|
| 262 | {exp coef:0} = {
|
---|
| 263 | 2.0100000000 1.0000000000
|
---|
| 264 | })
|
---|
| 265 | (type: [(am = d puream = 1)]
|
---|
| 266 | {exp coef:0} = {
|
---|
| 267 | 0.79600000000 1.0000000000
|
---|
| 268 | })
|
---|
| 269 | (type: [(am = d puream = 1)]
|
---|
| 270 | {exp coef:0} = {
|
---|
| 271 | 0.31600000000 1.0000000000
|
---|
| 272 | })
|
---|
| 273 | (type: [(am = d puream = 1)]
|
---|
| 274 | {exp coef:0} = {
|
---|
| 275 | 0.12500000000 1.0000000000
|
---|
| 276 | })
|
---|
| 277 | (type: [(am = d puream = 1)]
|
---|
| 278 | {exp coef:0} = {
|
---|
| 279 | 0.43100000000E-01 1.0000000000
|
---|
| 280 | })
|
---|
| 281 | (type: [(am = f puream = 1)]
|
---|
| 282 | {exp coef:0} = {
|
---|
| 283 | 1.2150000000 1.0000000000
|
---|
| 284 | })
|
---|
| 285 | (type: [(am = f puream = 1)]
|
---|
| 286 | {exp coef:0} = {
|
---|
| 287 | 0.52500000000 1.0000000000
|
---|
| 288 | })
|
---|
| 289 | (type: [(am = f puream = 1)]
|
---|
| 290 | {exp coef:0} = {
|
---|
| 291 | 0.22700000000 1.0000000000
|
---|
| 292 | })
|
---|
| 293 | (type: [(am = f puream = 1)]
|
---|
| 294 | {exp coef:0} = {
|
---|
| 295 | 0.84300000000E-01 1.0000000000
|
---|
| 296 | })
|
---|
| 297 | (type: [(am = g puream = 1)]
|
---|
| 298 | {exp coef:0} = {
|
---|
| 299 | 1.1240000000 1.0000000000
|
---|
| 300 | })
|
---|
| 301 | (type: [(am = g puream = 1)]
|
---|
| 302 | {exp coef:0} = {
|
---|
| 303 | 0.46100000000 1.0000000000
|
---|
| 304 | })
|
---|
| 305 | (type: [(am = g puream = 1)]
|
---|
| 306 | {exp coef:0} = {
|
---|
| 307 | 0.20200000000 1.0000000000
|
---|
| 308 | })
|
---|
| 309 | (type: [(am = h puream = 1)]
|
---|
| 310 | {exp coef:0} = {
|
---|
| 311 | 0.83400000000 1.0000000000
|
---|
| 312 | })
|
---|
| 313 | (type: [(am = h puream = 1)]
|
---|
| 314 | {exp coef:0} = {
|
---|
| 315 | 0.38400000000 1.0000000000
|
---|
| 316 | })
|
---|
| 317 | ]
|
---|
| 318 | %
|
---|
| 319 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 320 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 321 | carbon: "aug-cc-pV5Z": [
|
---|
| 322 | (type: [am = s am = s]
|
---|
| 323 | {exp coef:0 coef:1} = {
|
---|
| 324 | 96770.000000 0.25000000000E-04 -0.50000000000E-05
|
---|
| 325 | 14500.000000 0.19000000000E-03 -0.41000000000E-04
|
---|
| 326 | 3300.0000000 0.10000000000E-02 -0.21300000000E-03
|
---|
| 327 | 935.80000000 0.41830000000E-02 -0.89700000000E-03
|
---|
| 328 | 306.20000000 0.14859000000E-01 -0.31870000000E-02
|
---|
| 329 | 111.30000000 0.45301000000E-01 -0.99610000000E-02
|
---|
| 330 | 43.900000000 0.11650400000 -0.26375000000E-01
|
---|
| 331 | 18.400000000 0.24024900000 -0.60001000000E-01
|
---|
| 332 | 8.0540000000 0.35879900000 -0.10682500000
|
---|
| 333 | 3.6370000000 0.29394100000 -0.14416600000
|
---|
| 334 | })
|
---|
| 335 | (type: [am = s]
|
---|
| 336 | {exp coef:0} = {
|
---|
| 337 | 1.6560000000 1.0000000000
|
---|
| 338 | })
|
---|
| 339 | (type: [am = s]
|
---|
| 340 | {exp coef:0} = {
|
---|
| 341 | 0.63330000000 1.0000000000
|
---|
| 342 | })
|
---|
| 343 | (type: [am = s]
|
---|
| 344 | {exp coef:0} = {
|
---|
| 345 | 0.25450000000 1.0000000000
|
---|
| 346 | })
|
---|
| 347 | (type: [am = s]
|
---|
| 348 | {exp coef:0} = {
|
---|
| 349 | 0.10190000000 1.0000000000
|
---|
| 350 | })
|
---|
| 351 | (type: [am = s]
|
---|
| 352 | {exp coef:0} = {
|
---|
| 353 | 0.39400000000E-01 1.0000000000
|
---|
| 354 | })
|
---|
| 355 | (type: [am = p]
|
---|
| 356 | {exp coef:0} = {
|
---|
| 357 | 101.80000000 0.89100000000E-03
|
---|
| 358 | 24.040000000 0.69760000000E-02
|
---|
| 359 | 7.5710000000 0.31669000000E-01
|
---|
| 360 | 2.7320000000 0.10400600000
|
---|
| 361 | })
|
---|
| 362 | (type: [am = p]
|
---|
| 363 | {exp coef:0} = {
|
---|
| 364 | 1.0850000000 1.0000000000
|
---|
| 365 | })
|
---|
| 366 | (type: [am = p]
|
---|
| 367 | {exp coef:0} = {
|
---|
| 368 | 0.44960000000 1.0000000000
|
---|
| 369 | })
|
---|
| 370 | (type: [am = p]
|
---|
| 371 | {exp coef:0} = {
|
---|
| 372 | 0.18760000000 1.0000000000
|
---|
| 373 | })
|
---|
| 374 | (type: [am = p]
|
---|
| 375 | {exp coef:0} = {
|
---|
| 376 | 0.76060000000E-01 1.0000000000
|
---|
| 377 | })
|
---|
| 378 | (type: [am = p]
|
---|
| 379 | {exp coef:0} = {
|
---|
| 380 | 0.27200000000E-01 1.0000000000
|
---|
| 381 | })
|
---|
| 382 | (type: [(am = d puream = 1)]
|
---|
| 383 | {exp coef:0} = {
|
---|
| 384 | 3.1340000000 1.0000000000
|
---|
| 385 | })
|
---|
| 386 | (type: [(am = d puream = 1)]
|
---|
| 387 | {exp coef:0} = {
|
---|
| 388 | 1.2330000000 1.0000000000
|
---|
| 389 | })
|
---|
| 390 | (type: [(am = d puream = 1)]
|
---|
| 391 | {exp coef:0} = {
|
---|
| 392 | 0.48500000000 1.0000000000
|
---|
| 393 | })
|
---|
| 394 | (type: [(am = d puream = 1)]
|
---|
| 395 | {exp coef:0} = {
|
---|
| 396 | 0.19100000000 1.0000000000
|
---|
| 397 | })
|
---|
| 398 | (type: [(am = d puream = 1)]
|
---|
| 399 | {exp coef:0} = {
|
---|
| 400 | 0.70100000000E-01 1.0000000000
|
---|
| 401 | })
|
---|
| 402 | (type: [(am = f puream = 1)]
|
---|
| 403 | {exp coef:0} = {
|
---|
| 404 | 2.0060000000 1.0000000000
|
---|
| 405 | })
|
---|
| 406 | (type: [(am = f puream = 1)]
|
---|
| 407 | {exp coef:0} = {
|
---|
| 408 | 0.83800000000 1.0000000000
|
---|
| 409 | })
|
---|
| 410 | (type: [(am = f puream = 1)]
|
---|
| 411 | {exp coef:0} = {
|
---|
| 412 | 0.35000000000 1.0000000000
|
---|
| 413 | })
|
---|
| 414 | (type: [(am = f puream = 1)]
|
---|
| 415 | {exp coef:0} = {
|
---|
| 416 | 0.13800000000 1.0000000000
|
---|
| 417 | })
|
---|
| 418 | (type: [(am = g puream = 1)]
|
---|
| 419 | {exp coef:0} = {
|
---|
| 420 | 1.7530000000 1.0000000000
|
---|
| 421 | })
|
---|
| 422 | (type: [(am = g puream = 1)]
|
---|
| 423 | {exp coef:0} = {
|
---|
| 424 | 0.67800000000 1.0000000000
|
---|
| 425 | })
|
---|
| 426 | (type: [(am = g puream = 1)]
|
---|
| 427 | {exp coef:0} = {
|
---|
| 428 | 0.31900000000 1.0000000000
|
---|
| 429 | })
|
---|
| 430 | (type: [(am = h puream = 1)]
|
---|
| 431 | {exp coef:0} = {
|
---|
| 432 | 1.2590000000 1.0000000000
|
---|
| 433 | })
|
---|
| 434 | (type: [(am = h puream = 1)]
|
---|
| 435 | {exp coef:0} = {
|
---|
| 436 | 0.58600000000 1.0000000000
|
---|
| 437 | })
|
---|
| 438 | ]
|
---|
| 439 | %
|
---|
| 440 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 441 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 442 | nitrogen: "aug-cc-pV5Z": [
|
---|
| 443 | (type: [am = s am = s]
|
---|
| 444 | {exp coef:0 coef:1} = {
|
---|
| 445 | 129200.00000 0.25000000000E-04 -0.60000000000E-05
|
---|
| 446 | 19350.000000 0.19700000000E-03 -0.43000000000E-04
|
---|
| 447 | 4404.0000000 0.10320000000E-02 -0.22700000000E-03
|
---|
| 448 | 1248.0000000 0.43250000000E-02 -0.95800000000E-03
|
---|
| 449 | 408.00000000 0.15380000000E-01 -0.34160000000E-02
|
---|
| 450 | 148.20000000 0.46867000000E-01 -0.10667000000E-01
|
---|
| 451 | 58.500000000 0.12011600000 -0.28279000000E-01
|
---|
| 452 | 24.590000000 0.24569500000 -0.64020000000E-01
|
---|
| 453 | 10.810000000 0.36137900000 -0.11393200000
|
---|
| 454 | 4.8820000000 0.28728300000 -0.14699500000
|
---|
| 455 | })
|
---|
| 456 | (type: [am = s]
|
---|
| 457 | {exp coef:0} = {
|
---|
| 458 | 2.1950000000 1.0000000000
|
---|
| 459 | })
|
---|
| 460 | (type: [am = s]
|
---|
| 461 | {exp coef:0} = {
|
---|
| 462 | 0.87150000000 1.0000000000
|
---|
| 463 | })
|
---|
| 464 | (type: [am = s]
|
---|
| 465 | {exp coef:0} = {
|
---|
| 466 | 0.35040000000 1.0000000000
|
---|
| 467 | })
|
---|
| 468 | (type: [am = s]
|
---|
| 469 | {exp coef:0} = {
|
---|
| 470 | 0.13970000000 1.0000000000
|
---|
| 471 | })
|
---|
| 472 | (type: [am = s]
|
---|
| 473 | {exp coef:0} = {
|
---|
| 474 | 0.51800000000E-01 1.0000000000
|
---|
| 475 | })
|
---|
| 476 | (type: [am = p]
|
---|
| 477 | {exp coef:0} = {
|
---|
| 478 | 147.00000000 0.89200000000E-03
|
---|
| 479 | 34.760000000 0.70820000000E-02
|
---|
| 480 | 11.000000000 0.32816000000E-01
|
---|
| 481 | 3.9950000000 0.10820900000
|
---|
| 482 | })
|
---|
| 483 | (type: [am = p]
|
---|
| 484 | {exp coef:0} = {
|
---|
| 485 | 1.5870000000 1.0000000000
|
---|
| 486 | })
|
---|
| 487 | (type: [am = p]
|
---|
| 488 | {exp coef:0} = {
|
---|
| 489 | 0.65330000000 1.0000000000
|
---|
| 490 | })
|
---|
| 491 | (type: [am = p]
|
---|
| 492 | {exp coef:0} = {
|
---|
| 493 | 0.26860000000 1.0000000000
|
---|
| 494 | })
|
---|
| 495 | (type: [am = p]
|
---|
| 496 | {exp coef:0} = {
|
---|
| 497 | 0.10670000000 1.0000000000
|
---|
| 498 | })
|
---|
| 499 | (type: [am = p]
|
---|
| 500 | {exp coef:0} = {
|
---|
| 501 | 0.36900000000E-01 1.0000000000
|
---|
| 502 | })
|
---|
| 503 | (type: [(am = d puream = 1)]
|
---|
| 504 | {exp coef:0} = {
|
---|
| 505 | 4.6470000000 1.0000000000
|
---|
| 506 | })
|
---|
| 507 | (type: [(am = d puream = 1)]
|
---|
| 508 | {exp coef:0} = {
|
---|
| 509 | 1.8130000000 1.0000000000
|
---|
| 510 | })
|
---|
| 511 | (type: [(am = d puream = 1)]
|
---|
| 512 | {exp coef:0} = {
|
---|
| 513 | 0.70700000000 1.0000000000
|
---|
| 514 | })
|
---|
| 515 | (type: [(am = d puream = 1)]
|
---|
| 516 | {exp coef:0} = {
|
---|
| 517 | 0.27600000000 1.0000000000
|
---|
| 518 | })
|
---|
| 519 | (type: [(am = d puream = 1)]
|
---|
| 520 | {exp coef:0} = {
|
---|
| 521 | 0.97100000000E-01 1.0000000000
|
---|
| 522 | })
|
---|
| 523 | (type: [(am = f puream = 1)]
|
---|
| 524 | {exp coef:0} = {
|
---|
| 525 | 2.9420000000 1.0000000000
|
---|
| 526 | })
|
---|
| 527 | (type: [(am = f puream = 1)]
|
---|
| 528 | {exp coef:0} = {
|
---|
| 529 | 1.2040000000 1.0000000000
|
---|
| 530 | })
|
---|
| 531 | (type: [(am = f puream = 1)]
|
---|
| 532 | {exp coef:0} = {
|
---|
| 533 | 0.49300000000 1.0000000000
|
---|
| 534 | })
|
---|
| 535 | (type: [(am = f puream = 1)]
|
---|
| 536 | {exp coef:0} = {
|
---|
| 537 | 0.19200000000 1.0000000000
|
---|
| 538 | })
|
---|
| 539 | (type: [(am = g puream = 1)]
|
---|
| 540 | {exp coef:0} = {
|
---|
| 541 | 2.5110000000 1.0000000000
|
---|
| 542 | })
|
---|
| 543 | (type: [(am = g puream = 1)]
|
---|
| 544 | {exp coef:0} = {
|
---|
| 545 | 0.94200000000 1.0000000000
|
---|
| 546 | })
|
---|
| 547 | (type: [(am = g puream = 1)]
|
---|
| 548 | {exp coef:0} = {
|
---|
| 549 | 0.43600000000 1.0000000000
|
---|
| 550 | })
|
---|
| 551 | (type: [(am = h puream = 1)]
|
---|
| 552 | {exp coef:0} = {
|
---|
| 553 | 1.7680000000 1.0000000000
|
---|
| 554 | })
|
---|
| 555 | (type: [(am = h puream = 1)]
|
---|
| 556 | {exp coef:0} = {
|
---|
| 557 | 0.78800000000 1.0000000000
|
---|
| 558 | })
|
---|
| 559 | ]
|
---|
| 560 | %
|
---|
| 561 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 562 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 563 | oxygen: "aug-cc-pV5Z": [
|
---|
| 564 | (type: [am = s am = s]
|
---|
| 565 | {exp coef:0 coef:1} = {
|
---|
| 566 | 164200.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
| 567 | 24590.000000 0.20500000000E-03 -0.46000000000E-04
|
---|
| 568 | 5592.0000000 0.10760000000E-02 -0.24400000000E-03
|
---|
| 569 | 1582.0000000 0.45220000000E-02 -0.10310000000E-02
|
---|
| 570 | 516.10000000 0.16108000000E-01 -0.36880000000E-02
|
---|
| 571 | 187.20000000 0.49085000000E-01 -0.11514000000E-01
|
---|
| 572 | 73.930000000 0.12485700000 -0.30435000000E-01
|
---|
| 573 | 31.220000000 0.25168600000 -0.68147000000E-01
|
---|
| 574 | 13.810000000 0.36242000000 -0.12036800000
|
---|
| 575 | 6.2560000000 0.27905100000 -0.14826000000
|
---|
| 576 | })
|
---|
| 577 | (type: [am = s]
|
---|
| 578 | {exp coef:0} = {
|
---|
| 579 | 2.7760000000 1.0000000000
|
---|
| 580 | })
|
---|
| 581 | (type: [am = s]
|
---|
| 582 | {exp coef:0} = {
|
---|
| 583 | 1.1380000000 1.0000000000
|
---|
| 584 | })
|
---|
| 585 | (type: [am = s]
|
---|
| 586 | {exp coef:0} = {
|
---|
| 587 | 0.46000000000 1.0000000000
|
---|
| 588 | })
|
---|
| 589 | (type: [am = s]
|
---|
| 590 | {exp coef:0} = {
|
---|
| 591 | 0.18290000000 1.0000000000
|
---|
| 592 | })
|
---|
| 593 | (type: [am = s]
|
---|
| 594 | {exp coef:0} = {
|
---|
| 595 | 0.65500000000E-01 1.0000000000
|
---|
| 596 | })
|
---|
| 597 | (type: [am = p]
|
---|
| 598 | {exp coef:0} = {
|
---|
| 599 | 195.50000000 0.91800000000E-03
|
---|
| 600 | 46.160000000 0.73880000000E-02
|
---|
| 601 | 14.580000000 0.34958000000E-01
|
---|
| 602 | 5.2960000000 0.11543100000
|
---|
| 603 | })
|
---|
| 604 | (type: [am = p]
|
---|
| 605 | {exp coef:0} = {
|
---|
| 606 | 2.0940000000 1.0000000000
|
---|
| 607 | })
|
---|
| 608 | (type: [am = p]
|
---|
| 609 | {exp coef:0} = {
|
---|
| 610 | 0.84710000000 1.0000000000
|
---|
| 611 | })
|
---|
| 612 | (type: [am = p]
|
---|
| 613 | {exp coef:0} = {
|
---|
| 614 | 0.33680000000 1.0000000000
|
---|
| 615 | })
|
---|
| 616 | (type: [am = p]
|
---|
| 617 | {exp coef:0} = {
|
---|
| 618 | 0.12850000000 1.0000000000
|
---|
| 619 | })
|
---|
| 620 | (type: [am = p]
|
---|
| 621 | {exp coef:0} = {
|
---|
| 622 | 0.44600000000E-01 1.0000000000
|
---|
| 623 | })
|
---|
| 624 | (type: [(am = d puream = 1)]
|
---|
| 625 | {exp coef:0} = {
|
---|
| 626 | 5.8790000000 1.0000000000
|
---|
| 627 | })
|
---|
| 628 | (type: [(am = d puream = 1)]
|
---|
| 629 | {exp coef:0} = {
|
---|
| 630 | 2.3070000000 1.0000000000
|
---|
| 631 | })
|
---|
| 632 | (type: [(am = d puream = 1)]
|
---|
| 633 | {exp coef:0} = {
|
---|
| 634 | 0.90500000000 1.0000000000
|
---|
| 635 | })
|
---|
| 636 | (type: [(am = d puream = 1)]
|
---|
| 637 | {exp coef:0} = {
|
---|
| 638 | 0.35500000000 1.0000000000
|
---|
| 639 | })
|
---|
| 640 | (type: [(am = d puream = 1)]
|
---|
| 641 | {exp coef:0} = {
|
---|
| 642 | 0.13100000000 1.0000000000
|
---|
| 643 | })
|
---|
| 644 | (type: [(am = f puream = 1)]
|
---|
| 645 | {exp coef:0} = {
|
---|
| 646 | 4.0160000000 1.0000000000
|
---|
| 647 | })
|
---|
| 648 | (type: [(am = f puream = 1)]
|
---|
| 649 | {exp coef:0} = {
|
---|
| 650 | 1.5540000000 1.0000000000
|
---|
| 651 | })
|
---|
| 652 | (type: [(am = f puream = 1)]
|
---|
| 653 | {exp coef:0} = {
|
---|
| 654 | 0.60100000000 1.0000000000
|
---|
| 655 | })
|
---|
| 656 | (type: [(am = f puream = 1)]
|
---|
| 657 | {exp coef:0} = {
|
---|
| 658 | 0.23700000000 1.0000000000
|
---|
| 659 | })
|
---|
| 660 | (type: [(am = g puream = 1)]
|
---|
| 661 | {exp coef:0} = {
|
---|
| 662 | 3.3500000000 1.0000000000
|
---|
| 663 | })
|
---|
| 664 | (type: [(am = g puream = 1)]
|
---|
| 665 | {exp coef:0} = {
|
---|
| 666 | 1.1890000000 1.0000000000
|
---|
| 667 | })
|
---|
| 668 | (type: [(am = g puream = 1)]
|
---|
| 669 | {exp coef:0} = {
|
---|
| 670 | 0.51700000000 1.0000000000
|
---|
| 671 | })
|
---|
| 672 | (type: [(am = h puream = 1)]
|
---|
| 673 | {exp coef:0} = {
|
---|
| 674 | 2.3190000000 1.0000000000
|
---|
| 675 | })
|
---|
| 676 | (type: [(am = h puream = 1)]
|
---|
| 677 | {exp coef:0} = {
|
---|
| 678 | 1.0240000000 1.0000000000
|
---|
| 679 | })
|
---|
| 680 | ]
|
---|
| 681 | %
|
---|
| 682 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 683 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 684 | fluorine: "aug-cc-pV5Z": [
|
---|
| 685 | (type: [am = s am = s]
|
---|
| 686 | {exp coef:0 coef:1} = {
|
---|
| 687 | 211400.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
| 688 | 31660.000000 0.20100000000E-03 -0.47000000000E-04
|
---|
| 689 | 7202.0000000 0.10560000000E-02 -0.24400000000E-03
|
---|
| 690 | 2040.0000000 0.44320000000E-02 -0.10310000000E-02
|
---|
| 691 | 666.40000000 0.15766000000E-01 -0.36830000000E-02
|
---|
| 692 | 242.00000000 0.48112000000E-01 -0.11513000000E-01
|
---|
| 693 | 95.530000000 0.12323200000 -0.30663000000E-01
|
---|
| 694 | 40.230000000 0.25151900000 -0.69572000000E-01
|
---|
| 695 | 17.720000000 0.36452500000 -0.12399200000
|
---|
| 696 | 8.0050000000 0.27976600000 -0.15021400000
|
---|
| 697 | })
|
---|
| 698 | (type: [am = s]
|
---|
| 699 | {exp coef:0} = {
|
---|
| 700 | 3.5380000000 1.0000000000
|
---|
| 701 | })
|
---|
| 702 | (type: [am = s]
|
---|
| 703 | {exp coef:0} = {
|
---|
| 704 | 1.4580000000 1.0000000000
|
---|
| 705 | })
|
---|
| 706 | (type: [am = s]
|
---|
| 707 | {exp coef:0} = {
|
---|
| 708 | 0.58870000000 1.0000000000
|
---|
| 709 | })
|
---|
| 710 | (type: [am = s]
|
---|
| 711 | {exp coef:0} = {
|
---|
| 712 | 0.23240000000 1.0000000000
|
---|
| 713 | })
|
---|
| 714 | (type: [am = s]
|
---|
| 715 | {exp coef:0} = {
|
---|
| 716 | 0.80600000000E-01 1.0000000000
|
---|
| 717 | })
|
---|
| 718 | (type: [am = p]
|
---|
| 719 | {exp coef:0} = {
|
---|
| 720 | 241.90000000 0.10020000000E-02
|
---|
| 721 | 57.170000000 0.80540000000E-02
|
---|
| 722 | 18.130000000 0.38048000000E-01
|
---|
| 723 | 6.6240000000 0.12377900000
|
---|
| 724 | })
|
---|
| 725 | (type: [am = p]
|
---|
| 726 | {exp coef:0} = {
|
---|
| 727 | 2.6220000000 1.0000000000
|
---|
| 728 | })
|
---|
| 729 | (type: [am = p]
|
---|
| 730 | {exp coef:0} = {
|
---|
| 731 | 1.0570000000 1.0000000000
|
---|
| 732 | })
|
---|
| 733 | (type: [am = p]
|
---|
| 734 | {exp coef:0} = {
|
---|
| 735 | 0.41760000000 1.0000000000
|
---|
| 736 | })
|
---|
| 737 | (type: [am = p]
|
---|
| 738 | {exp coef:0} = {
|
---|
| 739 | 0.15740000000 1.0000000000
|
---|
| 740 | })
|
---|
| 741 | (type: [am = p]
|
---|
| 742 | {exp coef:0} = {
|
---|
| 743 | 0.55000000000E-01 1.0000000000
|
---|
| 744 | })
|
---|
| 745 | (type: [(am = d puream = 1)]
|
---|
| 746 | {exp coef:0} = {
|
---|
| 747 | 7.7600000000 1.0000000000
|
---|
| 748 | })
|
---|
| 749 | (type: [(am = d puream = 1)]
|
---|
| 750 | {exp coef:0} = {
|
---|
| 751 | 3.0320000000 1.0000000000
|
---|
| 752 | })
|
---|
| 753 | (type: [(am = d puream = 1)]
|
---|
| 754 | {exp coef:0} = {
|
---|
| 755 | 1.1850000000 1.0000000000
|
---|
| 756 | })
|
---|
| 757 | (type: [(am = d puream = 1)]
|
---|
| 758 | {exp coef:0} = {
|
---|
| 759 | 0.46300000000 1.0000000000
|
---|
| 760 | })
|
---|
| 761 | (type: [(am = d puream = 1)]
|
---|
| 762 | {exp coef:0} = {
|
---|
| 763 | 0.17200000000 1.0000000000
|
---|
| 764 | })
|
---|
| 765 | (type: [(am = f puream = 1)]
|
---|
| 766 | {exp coef:0} = {
|
---|
| 767 | 5.3980000000 1.0000000000
|
---|
| 768 | })
|
---|
| 769 | (type: [(am = f puream = 1)]
|
---|
| 770 | {exp coef:0} = {
|
---|
| 771 | 2.0780000000 1.0000000000
|
---|
| 772 | })
|
---|
| 773 | (type: [(am = f puream = 1)]
|
---|
| 774 | {exp coef:0} = {
|
---|
| 775 | 0.80000000000 1.0000000000
|
---|
| 776 | })
|
---|
| 777 | (type: [(am = f puream = 1)]
|
---|
| 778 | {exp coef:0} = {
|
---|
| 779 | 0.33100000000 1.0000000000
|
---|
| 780 | })
|
---|
| 781 | (type: [(am = g puream = 1)]
|
---|
| 782 | {exp coef:0} = {
|
---|
| 783 | 4.3380000000 1.0000000000
|
---|
| 784 | })
|
---|
| 785 | (type: [(am = g puream = 1)]
|
---|
| 786 | {exp coef:0} = {
|
---|
| 787 | 1.5130000000 1.0000000000
|
---|
| 788 | })
|
---|
| 789 | (type: [(am = g puream = 1)]
|
---|
| 790 | {exp coef:0} = {
|
---|
| 791 | 0.66300000000 1.0000000000
|
---|
| 792 | })
|
---|
| 793 | (type: [(am = h puream = 1)]
|
---|
| 794 | {exp coef:0} = {
|
---|
| 795 | 2.9950000000 1.0000000000
|
---|
| 796 | })
|
---|
| 797 | (type: [(am = h puream = 1)]
|
---|
| 798 | {exp coef:0} = {
|
---|
| 799 | 1.3260000000 1.0000000000
|
---|
| 800 | })
|
---|
| 801 | ]
|
---|
| 802 | %
|
---|
| 803 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 804 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 805 | neon: "aug-cc-pV5Z": [
|
---|
| 806 | (type: [am = s am = s]
|
---|
| 807 | {exp coef:0 coef:1} = {
|
---|
| 808 | 262700.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
| 809 | 39350.000000 0.20000000000E-03 -0.47000000000E-04
|
---|
| 810 | 8955.0000000 0.10500000000E-02 -0.24700000000E-03
|
---|
| 811 | 2538.0000000 0.44000000000E-02 -0.10380000000E-02
|
---|
| 812 | 829.90000000 0.15649000000E-01 -0.37110000000E-02
|
---|
| 813 | 301.50000000 0.47758000000E-01 -0.11593000000E-01
|
---|
| 814 | 119.00000000 0.12294300000 -0.31086000000E-01
|
---|
| 815 | 50.000000000 0.25248300000 -0.70972000000E-01
|
---|
| 816 | 21.980000000 0.36631400000 -0.12726600000
|
---|
| 817 | 9.8910000000 0.27961700000 -0.15123100000
|
---|
| 818 | })
|
---|
| 819 | (type: [am = s]
|
---|
| 820 | {exp coef:0} = {
|
---|
| 821 | 4.3270000000 1.0000000000
|
---|
| 822 | })
|
---|
| 823 | (type: [am = s]
|
---|
| 824 | {exp coef:0} = {
|
---|
| 825 | 1.8040000000 1.0000000000
|
---|
| 826 | })
|
---|
| 827 | (type: [am = s]
|
---|
| 828 | {exp coef:0} = {
|
---|
| 829 | 0.72880000000 1.0000000000
|
---|
| 830 | })
|
---|
| 831 | (type: [am = s]
|
---|
| 832 | {exp coef:0} = {
|
---|
| 833 | 0.28670000000 1.0000000000
|
---|
| 834 | })
|
---|
| 835 | (type: [am = s]
|
---|
| 836 | {exp coef:0} = {
|
---|
| 837 | 0.95700000000E-01 1.0000000000
|
---|
| 838 | })
|
---|
| 839 | (type: [am = p]
|
---|
| 840 | {exp coef:0} = {
|
---|
| 841 | 299.10000000 0.10380000000E-02
|
---|
| 842 | 70.730000000 0.83750000000E-02
|
---|
| 843 | 22.480000000 0.39693000000E-01
|
---|
| 844 | 8.2460000000 0.12805600000
|
---|
| 845 | })
|
---|
| 846 | (type: [am = p]
|
---|
| 847 | {exp coef:0} = {
|
---|
| 848 | 3.2690000000 1.0000000000
|
---|
| 849 | })
|
---|
| 850 | (type: [am = p]
|
---|
| 851 | {exp coef:0} = {
|
---|
| 852 | 1.3150000000 1.0000000000
|
---|
| 853 | })
|
---|
| 854 | (type: [am = p]
|
---|
| 855 | {exp coef:0} = {
|
---|
| 856 | 0.51580000000 1.0000000000
|
---|
| 857 | })
|
---|
| 858 | (type: [am = p]
|
---|
| 859 | {exp coef:0} = {
|
---|
| 860 | 0.19180000000 1.0000000000
|
---|
| 861 | })
|
---|
| 862 | (type: [am = p]
|
---|
| 863 | {exp coef:0} = {
|
---|
| 864 | 0.65400000000E-01 1.0000000000
|
---|
| 865 | })
|
---|
| 866 | (type: [(am = d puream = 1)]
|
---|
| 867 | {exp coef:0} = {
|
---|
| 868 | 9.8370000000 1.0000000000
|
---|
| 869 | })
|
---|
| 870 | (type: [(am = d puream = 1)]
|
---|
| 871 | {exp coef:0} = {
|
---|
| 872 | 3.8440000000 1.0000000000
|
---|
| 873 | })
|
---|
| 874 | (type: [(am = d puream = 1)]
|
---|
| 875 | {exp coef:0} = {
|
---|
| 876 | 1.5020000000 1.0000000000
|
---|
| 877 | })
|
---|
| 878 | (type: [(am = d puream = 1)]
|
---|
| 879 | {exp coef:0} = {
|
---|
| 880 | 0.58700000000 1.0000000000
|
---|
| 881 | })
|
---|
| 882 | (type: [(am = d puream = 1)]
|
---|
| 883 | {exp coef:0} = {
|
---|
| 884 | 0.21300000000 1.0000000000
|
---|
| 885 | })
|
---|
| 886 | (type: [(am = f puream = 1)]
|
---|
| 887 | {exp coef:0} = {
|
---|
| 888 | 7.0900000000 1.0000000000
|
---|
| 889 | })
|
---|
| 890 | (type: [(am = f puream = 1)]
|
---|
| 891 | {exp coef:0} = {
|
---|
| 892 | 2.7380000000 1.0000000000
|
---|
| 893 | })
|
---|
| 894 | (type: [(am = f puream = 1)]
|
---|
| 895 | {exp coef:0} = {
|
---|
| 896 | 1.0570000000 1.0000000000
|
---|
| 897 | })
|
---|
| 898 | (type: [(am = f puream = 1)]
|
---|
| 899 | {exp coef:0} = {
|
---|
| 900 | 0.42500000000 1.0000000000
|
---|
| 901 | })
|
---|
| 902 | (type: [(am = g puream = 1)]
|
---|
| 903 | {exp coef:0} = {
|
---|
| 904 | 5.4600000000 1.0000000000
|
---|
| 905 | })
|
---|
| 906 | (type: [(am = g puream = 1)]
|
---|
| 907 | {exp coef:0} = {
|
---|
| 908 | 1.8800000000 1.0000000000
|
---|
| 909 | })
|
---|
| 910 | (type: [(am = g puream = 1)]
|
---|
| 911 | {exp coef:0} = {
|
---|
| 912 | 0.80900000000 1.0000000000
|
---|
| 913 | })
|
---|
| 914 | (type: [(am = h puream = 1)]
|
---|
| 915 | {exp coef:0} = {
|
---|
| 916 | 3.7760000000 1.0000000000
|
---|
| 917 | })
|
---|
| 918 | (type: [(am = h puream = 1)]
|
---|
| 919 | {exp coef:0} = {
|
---|
| 920 | 1.6280000000 1.0000000000
|
---|
| 921 | })
|
---|
| 922 | ]
|
---|
| 923 | %
|
---|
| 924 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
| 925 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 926 | aluminum: "aug-cc-pV5Z": [
|
---|
| 927 | (type: [am = s am = s am = s]
|
---|
| 928 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 929 | 3269000.0000 0.21396200000E-05 -0.55602600000E-06 0.12842300000E-06
|
---|
| 930 | 489400.00000 0.16626400000E-04 -0.43230300000E-05 0.99751400000E-06
|
---|
| 931 | 111400.00000 0.87516800000E-04 -0.22741300000E-04 0.52548000000E-05
|
---|
| 932 | 31560.000000 0.36899000000E-03 -0.96011600000E-04 0.22145000000E-04
|
---|
| 933 | 10320.000000 0.13390300000E-02 -0.34837600000E-03 0.80546400000E-04
|
---|
| 934 | 3731.0000000 0.43563600000E-02 -0.11383600000E-02 0.26250600000E-03
|
---|
| 935 | 1456.0000000 0.12895500000E-01 -0.33874400000E-02 0.78422000000E-03
|
---|
| 936 | 604.10000000 0.34820100000E-01 -0.93150500000E-02 0.21503900000E-02
|
---|
| 937 | 263.50000000 0.84353000000E-01 -0.23302300000E-01 0.54197400000E-02
|
---|
| 938 | 119.80000000 0.17590700000 -0.52348600000E-01 0.12168600000E-01
|
---|
| 939 | 56.320000000 0.29209100000 -0.99949900000E-01 0.23682300000E-01
|
---|
| 940 | 27.190000000 0.32822000000 -0.15056000000 0.36093700000E-01
|
---|
| 941 | 13.260000000 0.18692700000 -0.11912100000 0.30328400000E-01
|
---|
| 942 | 6.0520000000 0.31043000000E-01 0.10809100000 -0.30903400000E-01
|
---|
| 943 | 2.9810000000 -0.50892200000E-03 0.41112900000 -0.11912600000
|
---|
| 944 | 1.4760000000 0.14883600000E-02 0.45721400000 -0.21114500000
|
---|
| 945 | })
|
---|
| 946 | (type: [am = s]
|
---|
| 947 | {exp coef:0} = {
|
---|
| 948 | 0.73340000000 1.0000000000
|
---|
| 949 | })
|
---|
| 950 | (type: [am = s]
|
---|
| 951 | {exp coef:0} = {
|
---|
| 952 | 0.24470000000 1.0000000000
|
---|
| 953 | })
|
---|
| 954 | (type: [am = s]
|
---|
| 955 | {exp coef:0} = {
|
---|
| 956 | 0.10880000000 1.0000000000
|
---|
| 957 | })
|
---|
| 958 | (type: [am = s]
|
---|
| 959 | {exp coef:0} = {
|
---|
| 960 | 0.46720000000E-01 1.0000000000
|
---|
| 961 | })
|
---|
| 962 | (type: [am = s]
|
---|
| 963 | {exp coef:0} = {
|
---|
| 964 | 0.17700000000E-01 1.0000000000
|
---|
| 965 | })
|
---|
| 966 | (type: [am = p am = p]
|
---|
| 967 | {exp coef:0 coef:1} = {
|
---|
| 968 | 1461.0000000 0.20861300000E-03 -0.37194700000E-04
|
---|
| 969 | 346.20000000 0.18100500000E-02 -0.32856300000E-03
|
---|
| 970 | 112.20000000 0.97343300000E-02 -0.17426400000E-02
|
---|
| 971 | 42.510000000 0.37826600000E-01 -0.69482800000E-02
|
---|
| 972 | 17.720000000 0.11089800000 -0.20280700000E-01
|
---|
| 973 | 7.8520000000 0.23429500000 -0.44865700000E-01
|
---|
| 974 | 3.5710000000 0.34524500000 -0.64327800000E-01
|
---|
| 975 | 1.6370000000 0.33143000000 -0.75266600000E-01
|
---|
| 976 | })
|
---|
| 977 | (type: [am = p]
|
---|
| 978 | {exp coef:0} = {
|
---|
| 979 | 0.73820000000 1.0000000000
|
---|
| 980 | })
|
---|
| 981 | (type: [am = p]
|
---|
| 982 | {exp coef:0} = {
|
---|
| 983 | 0.25770000000 1.0000000000
|
---|
| 984 | })
|
---|
| 985 | (type: [am = p]
|
---|
| 986 | {exp coef:0} = {
|
---|
| 987 | 0.97730000000E-01 1.0000000000
|
---|
| 988 | })
|
---|
| 989 | (type: [am = p]
|
---|
| 990 | {exp coef:0} = {
|
---|
| 991 | 0.36900000000E-01 1.0000000000
|
---|
| 992 | })
|
---|
| 993 | (type: [am = p]
|
---|
| 994 | {exp coef:0} = {
|
---|
| 995 | 0.11500000000E-01 1.0000000000
|
---|
| 996 | })
|
---|
| 997 | (type: [(am = d puream = 1)]
|
---|
| 998 | {exp coef:0} = {
|
---|
| 999 | 1.3170000000 1.0000000000
|
---|
| 1000 | })
|
---|
| 1001 | (type: [(am = d puream = 1)]
|
---|
| 1002 | {exp coef:0} = {
|
---|
| 1003 | 0.52600000000 1.0000000000
|
---|
| 1004 | })
|
---|
| 1005 | (type: [(am = d puream = 1)]
|
---|
| 1006 | {exp coef:0} = {
|
---|
| 1007 | 0.21000000000 1.0000000000
|
---|
| 1008 | })
|
---|
| 1009 | (type: [(am = d puream = 1)]
|
---|
| 1010 | {exp coef:0} = {
|
---|
| 1011 | 0.84000000000E-01 1.0000000000
|
---|
| 1012 | })
|
---|
| 1013 | (type: [(am = d puream = 1)]
|
---|
| 1014 | {exp coef:0} = {
|
---|
| 1015 | 0.29400000000E-01 1.0000000000
|
---|
| 1016 | })
|
---|
| 1017 | (type: [(am = f puream = 1)]
|
---|
| 1018 | {exp coef:0} = {
|
---|
| 1019 | 0.13000000000 1.0000000000
|
---|
| 1020 | })
|
---|
| 1021 | (type: [(am = f puream = 1)]
|
---|
| 1022 | {exp coef:0} = {
|
---|
| 1023 | 0.25800000000 1.0000000000
|
---|
| 1024 | })
|
---|
| 1025 | (type: [(am = f puream = 1)]
|
---|
| 1026 | {exp coef:0} = {
|
---|
| 1027 | 0.51300000000 1.0000000000
|
---|
| 1028 | })
|
---|
| 1029 | (type: [(am = f puream = 1)]
|
---|
| 1030 | {exp coef:0} = {
|
---|
| 1031 | 0.50900000000E-01 1.0000000000
|
---|
| 1032 | })
|
---|
| 1033 | (type: [(am = g puream = 1)]
|
---|
| 1034 | {exp coef:0} = {
|
---|
| 1035 | 0.25200000000 1.0000000000
|
---|
| 1036 | })
|
---|
| 1037 | (type: [(am = g puream = 1)]
|
---|
| 1038 | {exp coef:0} = {
|
---|
| 1039 | 0.54300000000 1.0000000000
|
---|
| 1040 | })
|
---|
| 1041 | (type: [(am = g puream = 1)]
|
---|
| 1042 | {exp coef:0} = {
|
---|
| 1043 | 0.10690000000 1.0000000000
|
---|
| 1044 | })
|
---|
| 1045 | (type: [(am = h puream = 1)]
|
---|
| 1046 | {exp coef:0} = {
|
---|
| 1047 | 0.44600000000 1.0000000000
|
---|
| 1048 | })
|
---|
| 1049 | (type: [(am = h puream = 1)]
|
---|
| 1050 | {exp coef:0} = {
|
---|
| 1051 | 0.22700000000 1.0000000000
|
---|
| 1052 | })
|
---|
| 1053 | ]
|
---|
| 1054 | %
|
---|
| 1055 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
| 1056 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 1057 | silicon: "aug-cc-pV5Z": [
|
---|
| 1058 | (type: [am = s am = s am = s]
|
---|
| 1059 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1060 | 3948000.0000 0.20371200000E-05 -0.54208500000E-06 0.13890700000E-06
|
---|
| 1061 | 591100.00000 0.15839400000E-04 -0.42167700000E-05 0.10795300000E-05
|
---|
| 1062 | 134500.00000 0.83359000000E-04 -0.22181300000E-04 0.56862800000E-05
|
---|
| 1063 | 38120.000000 0.35136100000E-03 -0.93602800000E-04 0.23953700000E-04
|
---|
| 1064 | 12460.000000 0.12766000000E-02 -0.34011600000E-03 0.87240900000E-04
|
---|
| 1065 | 4504.0000000 0.41519100000E-02 -0.11106100000E-02 0.28416300000E-03
|
---|
| 1066 | 1758.0000000 0.12303000000E-01 -0.33087800000E-02 0.84984000000E-03
|
---|
| 1067 | 729.10000000 0.33310200000E-01 -0.91160200000E-02 0.23352700000E-02
|
---|
| 1068 | 318.00000000 0.80984500000E-01 -0.22879000000E-01 0.59046600000E-02
|
---|
| 1069 | 144.60000000 0.17029000000 -0.51711900000E-01 0.13346100000E-01
|
---|
| 1070 | 67.970000000 0.28687900000 -0.99909100000E-01 0.26288900000E-01
|
---|
| 1071 | 32.820000000 0.33034000000 -0.15274700000 0.40742600000E-01
|
---|
| 1072 | 16.030000000 0.19660200000 -0.12750800000 0.36147600000E-01
|
---|
| 1073 | 7.3960000000 0.35453500000E-01 0.94696300000E-01 -0.30392300000E-01
|
---|
| 1074 | 3.6610000000 -0.53520400000E-03 0.41403600000 -0.13596100000
|
---|
| 1075 | 1.8230000000 0.16146500000E-02 0.46793400000 -0.25014400000
|
---|
| 1076 | })
|
---|
| 1077 | (type: [am = s]
|
---|
| 1078 | {exp coef:0} = {
|
---|
| 1079 | 0.91470000000 1.0000000000
|
---|
| 1080 | })
|
---|
| 1081 | (type: [am = s]
|
---|
| 1082 | {exp coef:0} = {
|
---|
| 1083 | 0.33930000000 1.0000000000
|
---|
| 1084 | })
|
---|
| 1085 | (type: [am = s]
|
---|
| 1086 | {exp coef:0} = {
|
---|
| 1087 | 0.15000000000 1.0000000000
|
---|
| 1088 | })
|
---|
| 1089 | (type: [am = s]
|
---|
| 1090 | {exp coef:0} = {
|
---|
| 1091 | 0.64380000000E-01 1.0000000000
|
---|
| 1092 | })
|
---|
| 1093 | (type: [am = s]
|
---|
| 1094 | {exp coef:0} = {
|
---|
| 1095 | 0.26000000000E-01 1.0000000000
|
---|
| 1096 | })
|
---|
| 1097 | (type: [am = p am = p]
|
---|
| 1098 | {exp coef:0 coef:1} = {
|
---|
| 1099 | 1780.0000000 0.20120600000E-03 -0.42715200000E-04
|
---|
| 1100 | 421.80000000 0.17493700000E-02 -0.37703900000E-03
|
---|
| 1101 | 136.70000000 0.94814100000E-02 -0.20224000000E-02
|
---|
| 1102 | 51.810000000 0.37231300000E-01 -0.81283300000E-02
|
---|
| 1103 | 21.600000000 0.11076300000 -0.24227200000E-01
|
---|
| 1104 | 9.5630000000 0.23793300000 -0.54382500000E-01
|
---|
| 1105 | 4.3500000000 0.35369100000 -0.79905100000E-01
|
---|
| 1106 | 2.0060000000 0.32883900000 -0.88895800000E-01
|
---|
| 1107 | })
|
---|
| 1108 | (type: [am = p]
|
---|
| 1109 | {exp coef:0} = {
|
---|
| 1110 | 0.92050000000 1.0000000000
|
---|
| 1111 | })
|
---|
| 1112 | (type: [am = p]
|
---|
| 1113 | {exp coef:0} = {
|
---|
| 1114 | 0.35000000000 1.0000000000
|
---|
| 1115 | })
|
---|
| 1116 | (type: [am = p]
|
---|
| 1117 | {exp coef:0} = {
|
---|
| 1118 | 0.13810000000 1.0000000000
|
---|
| 1119 | })
|
---|
| 1120 | (type: [am = p]
|
---|
| 1121 | {exp coef:0} = {
|
---|
| 1122 | 0.53380000000E-01 1.0000000000
|
---|
| 1123 | })
|
---|
| 1124 | (type: [am = p]
|
---|
| 1125 | {exp coef:0} = {
|
---|
| 1126 | 0.19200000000E-01 1.0000000000
|
---|
| 1127 | })
|
---|
| 1128 | (type: [(am = d puream = 1)]
|
---|
| 1129 | {exp coef:0} = {
|
---|
| 1130 | 0.12600000000 1.0000000000
|
---|
| 1131 | })
|
---|
| 1132 | (type: [(am = d puream = 1)]
|
---|
| 1133 | {exp coef:0} = {
|
---|
| 1134 | 0.32100000000 1.0000000000
|
---|
| 1135 | })
|
---|
| 1136 | (type: [(am = d puream = 1)]
|
---|
| 1137 | {exp coef:0} = {
|
---|
| 1138 | 0.81700000000 1.0000000000
|
---|
| 1139 | })
|
---|
| 1140 | (type: [(am = d puream = 1)]
|
---|
| 1141 | {exp coef:0} = {
|
---|
| 1142 | 2.0820000000 1.0000000000
|
---|
| 1143 | })
|
---|
| 1144 | (type: [(am = d puream = 1)]
|
---|
| 1145 | {exp coef:0} = {
|
---|
| 1146 | 0.46800000000E-01 1.0000000000
|
---|
| 1147 | })
|
---|
| 1148 | (type: [(am = f puream = 1)]
|
---|
| 1149 | {exp coef:0} = {
|
---|
| 1150 | 0.16900000000 1.0000000000
|
---|
| 1151 | })
|
---|
| 1152 | (type: [(am = f puream = 1)]
|
---|
| 1153 | {exp coef:0} = {
|
---|
| 1154 | 0.34100000000 1.0000000000
|
---|
| 1155 | })
|
---|
| 1156 | (type: [(am = f puream = 1)]
|
---|
| 1157 | {exp coef:0} = {
|
---|
| 1158 | 0.68800000000 1.0000000000
|
---|
| 1159 | })
|
---|
| 1160 | (type: [(am = f puream = 1)]
|
---|
| 1161 | {exp coef:0} = {
|
---|
| 1162 | 0.73500000000E-01 1.0000000000
|
---|
| 1163 | })
|
---|
| 1164 | (type: [(am = g puream = 1)]
|
---|
| 1165 | {exp coef:0} = {
|
---|
| 1166 | 0.32000000000 1.0000000000
|
---|
| 1167 | })
|
---|
| 1168 | (type: [(am = g puream = 1)]
|
---|
| 1169 | {exp coef:0} = {
|
---|
| 1170 | 0.70500000000 1.0000000000
|
---|
| 1171 | })
|
---|
| 1172 | (type: [(am = g puream = 1)]
|
---|
| 1173 | {exp coef:0} = {
|
---|
| 1174 | 0.15100000000 1.0000000000
|
---|
| 1175 | })
|
---|
| 1176 | (type: [(am = h puream = 1)]
|
---|
| 1177 | {exp coef:0} = {
|
---|
| 1178 | 0.58300000000 1.0000000000
|
---|
| 1179 | })
|
---|
| 1180 | (type: [(am = h puream = 1)]
|
---|
| 1181 | {exp coef:0} = {
|
---|
| 1182 | 0.32300000000 1.0000000000
|
---|
| 1183 | })
|
---|
| 1184 | ]
|
---|
| 1185 | %
|
---|
| 1186 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
| 1187 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 1188 | phosphorus: "aug-cc-pV5Z": [
|
---|
| 1189 | (type: [am = s am = s am = s]
|
---|
| 1190 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1191 | 4666000.0000 0.19675900000E-05 -0.53415300000E-06 0.14677600000E-06
|
---|
| 1192 | 698600.00000 0.15296300000E-04 -0.41542200000E-05 0.11406400000E-05
|
---|
| 1193 | 159000.00000 0.80482600000E-04 -0.21848400000E-04 0.60056800000E-05
|
---|
| 1194 | 45040.000000 0.33973700000E-03 -0.92327200000E-04 0.25342700000E-04
|
---|
| 1195 | 14720.000000 0.12329100000E-02 -0.33510900000E-03 0.92160600000E-04
|
---|
| 1196 | 5323.0000000 0.40134500000E-02 -0.10950800000E-02 0.30056300000E-03
|
---|
| 1197 | 2076.0000000 0.11912400000E-01 -0.32679800000E-02 0.89988400000E-03
|
---|
| 1198 | 861.10000000 0.32251100000E-01 -0.89995100000E-02 0.24735400000E-02
|
---|
| 1199 | 375.70000000 0.78664300000E-01 -0.22652800000E-01 0.62681200000E-02
|
---|
| 1200 | 170.80000000 0.16645800000 -0.51465000000E-01 0.14259800000E-01
|
---|
| 1201 | 80.290000000 0.28303900000 -0.10018600000 0.28276900000E-01
|
---|
| 1202 | 38.770000000 0.33194200000 -0.15507500000 0.44512400000E-01
|
---|
| 1203 | 18.930000000 0.20335200000 -0.13381800000 0.40721700000E-01
|
---|
| 1204 | 8.7960000000 0.38318300000E-01 0.87836100000E-01 -0.30190800000E-01
|
---|
| 1205 | 4.3580000000 -0.38472000000E-03 0.42258100000 -0.15289400000
|
---|
| 1206 | 2.1740000000 0.15874400000E-02 0.47489900000 -0.28241100000
|
---|
| 1207 | })
|
---|
| 1208 | (type: [am = s]
|
---|
| 1209 | {exp coef:0} = {
|
---|
| 1210 | 1.0950000000 1.0000000000
|
---|
| 1211 | })
|
---|
| 1212 | (type: [am = s]
|
---|
| 1213 | {exp coef:0} = {
|
---|
| 1214 | 0.44000000000 1.0000000000
|
---|
| 1215 | })
|
---|
| 1216 | (type: [am = s]
|
---|
| 1217 | {exp coef:0} = {
|
---|
| 1218 | 0.19450000000 1.0000000000
|
---|
| 1219 | })
|
---|
| 1220 | (type: [am = s]
|
---|
| 1221 | {exp coef:0} = {
|
---|
| 1222 | 0.83760000000E-01 1.0000000000
|
---|
| 1223 | })
|
---|
| 1224 | (type: [am = s]
|
---|
| 1225 | {exp coef:0} = {
|
---|
| 1226 | 0.33500000000E-01 1.0000000000
|
---|
| 1227 | })
|
---|
| 1228 | (type: [am = p am = p]
|
---|
| 1229 | {exp coef:0 coef:1} = {
|
---|
| 1230 | 2010.0000000 0.21591500000E-03 -0.51144400000E-04
|
---|
| 1231 | 476.30000000 0.18753600000E-02 -0.44835600000E-03
|
---|
| 1232 | 154.40000000 0.10174200000E-01 -0.24234000000E-02
|
---|
| 1233 | 58.510000000 0.39985600000E-01 -0.96982600000E-02
|
---|
| 1234 | 24.400000000 0.11856300000 -0.29096500000E-01
|
---|
| 1235 | 10.800000000 0.25181600000 -0.64172600000E-01
|
---|
| 1236 | 4.9130000000 0.36656500000 -0.94507100000E-01
|
---|
| 1237 | 2.2690000000 0.31617700000 -0.93470000000E-01
|
---|
| 1238 | })
|
---|
| 1239 | (type: [am = p]
|
---|
| 1240 | {exp coef:0} = {
|
---|
| 1241 | 1.0430000000 1.0000000000
|
---|
| 1242 | })
|
---|
| 1243 | (type: [am = p]
|
---|
| 1244 | {exp coef:0} = {
|
---|
| 1245 | 0.43130000000 1.0000000000
|
---|
| 1246 | })
|
---|
| 1247 | (type: [am = p]
|
---|
| 1248 | {exp coef:0} = {
|
---|
| 1249 | 0.17670000000 1.0000000000
|
---|
| 1250 | })
|
---|
| 1251 | (type: [am = p]
|
---|
| 1252 | {exp coef:0} = {
|
---|
| 1253 | 0.70090000000E-01 1.0000000000
|
---|
| 1254 | })
|
---|
| 1255 | (type: [am = p]
|
---|
| 1256 | {exp coef:0} = {
|
---|
| 1257 | 0.25300000000E-01 1.0000000000
|
---|
| 1258 | })
|
---|
| 1259 | (type: [(am = d puream = 1)]
|
---|
| 1260 | {exp coef:0} = {
|
---|
| 1261 | 0.16600000000 1.0000000000
|
---|
| 1262 | })
|
---|
| 1263 | (type: [(am = d puream = 1)]
|
---|
| 1264 | {exp coef:0} = {
|
---|
| 1265 | 0.41800000000 1.0000000000
|
---|
| 1266 | })
|
---|
| 1267 | (type: [(am = d puream = 1)]
|
---|
| 1268 | {exp coef:0} = {
|
---|
| 1269 | 1.0540000000 1.0000000000
|
---|
| 1270 | })
|
---|
| 1271 | (type: [(am = d puream = 1)]
|
---|
| 1272 | {exp coef:0} = {
|
---|
| 1273 | 2.6560000000 1.0000000000
|
---|
| 1274 | })
|
---|
| 1275 | (type: [(am = d puream = 1)]
|
---|
| 1276 | {exp coef:0} = {
|
---|
| 1277 | 0.62400000000E-01 1.0000000000
|
---|
| 1278 | })
|
---|
| 1279 | (type: [(am = f puream = 1)]
|
---|
| 1280 | {exp coef:0} = {
|
---|
| 1281 | 0.21900000000 1.0000000000
|
---|
| 1282 | })
|
---|
| 1283 | (type: [(am = f puream = 1)]
|
---|
| 1284 | {exp coef:0} = {
|
---|
| 1285 | 0.45000000000 1.0000000000
|
---|
| 1286 | })
|
---|
| 1287 | (type: [(am = f puream = 1)]
|
---|
| 1288 | {exp coef:0} = {
|
---|
| 1289 | 0.92300000000 1.0000000000
|
---|
| 1290 | })
|
---|
| 1291 | (type: [(am = f puream = 1)]
|
---|
| 1292 | {exp coef:0} = {
|
---|
| 1293 | 0.95000000000E-01 1.0000000000
|
---|
| 1294 | })
|
---|
| 1295 | (type: [(am = g puream = 1)]
|
---|
| 1296 | {exp coef:0} = {
|
---|
| 1297 | 0.41200000000 1.0000000000
|
---|
| 1298 | })
|
---|
| 1299 | (type: [(am = g puream = 1)]
|
---|
| 1300 | {exp coef:0} = {
|
---|
| 1301 | 0.90300000000 1.0000000000
|
---|
| 1302 | })
|
---|
| 1303 | (type: [(am = g puream = 1)]
|
---|
| 1304 | {exp coef:0} = {
|
---|
| 1305 | 0.18400000000 1.0000000000
|
---|
| 1306 | })
|
---|
| 1307 | (type: [(am = h puream = 1)]
|
---|
| 1308 | {exp coef:0} = {
|
---|
| 1309 | 0.74500000000 1.0000000000
|
---|
| 1310 | })
|
---|
| 1311 | (type: [(am = h puream = 1)]
|
---|
| 1312 | {exp coef:0} = {
|
---|
| 1313 | 0.37200000000 1.0000000000
|
---|
| 1314 | })
|
---|
| 1315 | ]
|
---|
| 1316 | %
|
---|
| 1317 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
| 1318 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 1319 | sulfur: "aug-cc-pV5Z": [
|
---|
| 1320 | (type: [am = s am = s am = s]
|
---|
| 1321 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1322 | 5481000.0000 0.18933800000E-05 -0.52291200000E-06 0.15182300000E-06
|
---|
| 1323 | 820600.00000 0.14721100000E-04 -0.40669000000E-05 0.11800800000E-05
|
---|
| 1324 | 186700.00000 0.77508400000E-04 -0.21406500000E-04 0.62169900000E-05
|
---|
| 1325 | 52880.000000 0.32722400000E-03 -0.90454000000E-04 0.26240500000E-04
|
---|
| 1326 | 17250.000000 0.11936500000E-02 -0.33008000000E-03 0.95904000000E-04
|
---|
| 1327 | 6226.0000000 0.38839300000E-02 -0.10778200000E-02 0.31267800000E-03
|
---|
| 1328 | 2429.0000000 0.11533600000E-01 -0.32187400000E-02 0.93632200000E-03
|
---|
| 1329 | 1007.0000000 0.31274800000E-01 -0.88721700000E-02 0.25779000000E-02
|
---|
| 1330 | 439.50000000 0.76438700000E-01 -0.22377100000E-01 0.65412100000E-02
|
---|
| 1331 | 199.80000000 0.16270000000 -0.51057700000E-01 0.14963000000E-01
|
---|
| 1332 | 93.920000000 0.27932800000 -0.10022500000 0.29894000000E-01
|
---|
| 1333 | 45.340000000 0.33314500000 -0.15679500000 0.47694600000E-01
|
---|
| 1334 | 22.150000000 0.20983600000 -0.13974800000 0.44955600000E-01
|
---|
| 1335 | 10.340000000 0.41597400000E-01 0.81005900000E-01 -0.29300900000E-01
|
---|
| 1336 | 5.1190000000 -0.45055200000E-03 0.43088300000 -0.16891600000
|
---|
| 1337 | 2.5530000000 0.16885500000E-02 0.48168800000 -0.31101400000
|
---|
| 1338 | })
|
---|
| 1339 | (type: [am = s]
|
---|
| 1340 | {exp coef:0} = {
|
---|
| 1341 | 1.2820000000 1.0000000000
|
---|
| 1342 | })
|
---|
| 1343 | (type: [am = s]
|
---|
| 1344 | {exp coef:0} = {
|
---|
| 1345 | 0.54500000000 1.0000000000
|
---|
| 1346 | })
|
---|
| 1347 | (type: [am = s]
|
---|
| 1348 | {exp coef:0} = {
|
---|
| 1349 | 0.24110000000 1.0000000000
|
---|
| 1350 | })
|
---|
| 1351 | (type: [am = s]
|
---|
| 1352 | {exp coef:0} = {
|
---|
| 1353 | 0.10350000000 1.0000000000
|
---|
| 1354 | })
|
---|
| 1355 | (type: [am = s]
|
---|
| 1356 | {exp coef:0} = {
|
---|
| 1357 | 0.42000000000E-01 1.0000000000
|
---|
| 1358 | })
|
---|
| 1359 | (type: [am = p am = p]
|
---|
| 1360 | {exp coef:0 coef:1} = {
|
---|
| 1361 | 2200.0000000 0.23904900000E-03 -0.60856200000E-04
|
---|
| 1362 | 521.40000000 0.20768600000E-02 -0.53041900000E-03
|
---|
| 1363 | 169.00000000 0.11236300000E-01 -0.28791500000E-02
|
---|
| 1364 | 64.050000000 0.44069000000E-01 -0.11439700000E-01
|
---|
| 1365 | 26.720000000 0.12916800000 -0.34276400000E-01
|
---|
| 1366 | 11.830000000 0.26908300000 -0.73581100000E-01
|
---|
| 1367 | 5.3780000000 0.37861100000 -0.10778200000
|
---|
| 1368 | 2.4820000000 0.29677900000 -0.87976900000E-01
|
---|
| 1369 | })
|
---|
| 1370 | (type: [am = p]
|
---|
| 1371 | {exp coef:0} = {
|
---|
| 1372 | 1.1160000000 1.0000000000
|
---|
| 1373 | })
|
---|
| 1374 | (type: [am = p]
|
---|
| 1375 | {exp coef:0} = {
|
---|
| 1376 | 0.48480000000 1.0000000000
|
---|
| 1377 | })
|
---|
| 1378 | (type: [am = p]
|
---|
| 1379 | {exp coef:0} = {
|
---|
| 1380 | 0.20060000000 1.0000000000
|
---|
| 1381 | })
|
---|
| 1382 | (type: [am = p]
|
---|
| 1383 | {exp coef:0} = {
|
---|
| 1384 | 0.79510000000E-01 1.0000000000
|
---|
| 1385 | })
|
---|
| 1386 | (type: [am = p]
|
---|
| 1387 | {exp coef:0} = {
|
---|
| 1388 | 0.29400000000E-01 1.0000000000
|
---|
| 1389 | })
|
---|
| 1390 | (type: [(am = d puream = 1)]
|
---|
| 1391 | {exp coef:0} = {
|
---|
| 1392 | 0.20500000000 1.0000000000
|
---|
| 1393 | })
|
---|
| 1394 | (type: [(am = d puream = 1)]
|
---|
| 1395 | {exp coef:0} = {
|
---|
| 1396 | 0.51200000000 1.0000000000
|
---|
| 1397 | })
|
---|
| 1398 | (type: [(am = d puream = 1)]
|
---|
| 1399 | {exp coef:0} = {
|
---|
| 1400 | 1.2810000000 1.0000000000
|
---|
| 1401 | })
|
---|
| 1402 | (type: [(am = d puream = 1)]
|
---|
| 1403 | {exp coef:0} = {
|
---|
| 1404 | 3.2030000000 1.0000000000
|
---|
| 1405 | })
|
---|
| 1406 | (type: [(am = d puream = 1)]
|
---|
| 1407 | {exp coef:0} = {
|
---|
| 1408 | 0.79400000000E-01 1.0000000000
|
---|
| 1409 | })
|
---|
| 1410 | (type: [(am = f puream = 1)]
|
---|
| 1411 | {exp coef:0} = {
|
---|
| 1412 | 0.25500000000 1.0000000000
|
---|
| 1413 | })
|
---|
| 1414 | (type: [(am = f puream = 1)]
|
---|
| 1415 | {exp coef:0} = {
|
---|
| 1416 | 0.52900000000 1.0000000000
|
---|
| 1417 | })
|
---|
| 1418 | (type: [(am = f puream = 1)]
|
---|
| 1419 | {exp coef:0} = {
|
---|
| 1420 | 1.0960000000 1.0000000000
|
---|
| 1421 | })
|
---|
| 1422 | (type: [(am = f puream = 1)]
|
---|
| 1423 | {exp coef:0} = {
|
---|
| 1424 | 0.11880000000 1.0000000000
|
---|
| 1425 | })
|
---|
| 1426 | (type: [(am = g puream = 1)]
|
---|
| 1427 | {exp coef:0} = {
|
---|
| 1428 | 0.46300000000 1.0000000000
|
---|
| 1429 | })
|
---|
| 1430 | (type: [(am = g puream = 1)]
|
---|
| 1431 | {exp coef:0} = {
|
---|
| 1432 | 1.0710000000 1.0000000000
|
---|
| 1433 | })
|
---|
| 1434 | (type: [(am = g puream = 1)]
|
---|
| 1435 | {exp coef:0} = {
|
---|
| 1436 | 0.22000000000 1.0000000000
|
---|
| 1437 | })
|
---|
| 1438 | (type: [(am = h puream = 1)]
|
---|
| 1439 | {exp coef:0} = {
|
---|
| 1440 | 0.87200000000 1.0000000000
|
---|
| 1441 | })
|
---|
| 1442 | (type: [(am = h puream = 1)]
|
---|
| 1443 | {exp coef:0} = {
|
---|
| 1444 | 0.47200000000 1.0000000000
|
---|
| 1445 | })
|
---|
| 1446 | ]
|
---|
| 1447 | %
|
---|
| 1448 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
| 1449 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 1450 | chlorine: "aug-cc-pV5Z": [
|
---|
| 1451 | (type: [am = s am = s am = s]
|
---|
| 1452 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1453 | 6410000.0000 0.18135000000E-05 -0.50830300000E-06 0.15380800000E-06
|
---|
| 1454 | 959600.00000 0.14111800000E-04 -0.39563300000E-05 0.11965400000E-05
|
---|
| 1455 | 218300.00000 0.74240600000E-04 -0.20809500000E-04 0.62982800000E-05
|
---|
| 1456 | 61810.000000 0.31413100000E-03 -0.88117500000E-04 0.26645000000E-04
|
---|
| 1457 | 20140.000000 0.11464200000E-02 -0.32174200000E-03 0.97416200000E-04
|
---|
| 1458 | 7264.0000000 0.37388800000E-02 -0.10527700000E-02 0.31836000000E-03
|
---|
| 1459 | 2832.0000000 0.11094600000E-01 -0.31418300000E-02 0.95237700000E-03
|
---|
| 1460 | 1175.0000000 0.30115200000E-01 -0.86636300000E-02 0.26243000000E-02
|
---|
| 1461 | 512.60000000 0.73914500000E-01 -0.21935300000E-01 0.66816000000E-02
|
---|
| 1462 | 233.00000000 0.15825800000 -0.50258400000E-01 0.15359500000E-01
|
---|
| 1463 | 109.50000000 0.27475300000 -0.99541400000E-01 0.30943200000E-01
|
---|
| 1464 | 52.860000000 0.33406600000 -0.15764700000 0.50063800000E-01
|
---|
| 1465 | 25.840000000 0.21758900000 -0.14602400000 0.48978200000E-01
|
---|
| 1466 | 12.170000000 0.45727800000E-01 0.69223000000E-01 -0.26080700000E-01
|
---|
| 1467 | 6.0300000000 -0.13473900000E-03 0.43041200000 -0.17842600000
|
---|
| 1468 | 3.0120000000 0.16393300000E-02 0.49080200000 -0.33232400000
|
---|
| 1469 | })
|
---|
| 1470 | (type: [am = s]
|
---|
| 1471 | {exp coef:0} = {
|
---|
| 1472 | 1.5110000000 1.0000000000
|
---|
| 1473 | })
|
---|
| 1474 | (type: [am = s]
|
---|
| 1475 | {exp coef:0} = {
|
---|
| 1476 | 0.66040000000 1.0000000000
|
---|
| 1477 | })
|
---|
| 1478 | (type: [am = s]
|
---|
| 1479 | {exp coef:0} = {
|
---|
| 1480 | 0.29260000000 1.0000000000
|
---|
| 1481 | })
|
---|
| 1482 | (type: [am = s]
|
---|
| 1483 | {exp coef:0} = {
|
---|
| 1484 | 0.12540000000 1.0000000000
|
---|
| 1485 | })
|
---|
| 1486 | (type: [am = s]
|
---|
| 1487 | {exp coef:0} = {
|
---|
| 1488 | 0.47900000000E-01 1.0000000000
|
---|
| 1489 | })
|
---|
| 1490 | (type: [am = p am = p]
|
---|
| 1491 | {exp coef:0 coef:1} = {
|
---|
| 1492 | 2548.0000000 0.23570200000E-03 -0.63541000000E-04
|
---|
| 1493 | 603.70000000 0.20515800000E-02 -0.55325900000E-03
|
---|
| 1494 | 195.60000000 0.11154300000E-01 -0.30279500000E-02
|
---|
| 1495 | 74.150000000 0.43981600000E-01 -0.12065000000E-01
|
---|
| 1496 | 30.940000000 0.12999400000 -0.36634800000E-01
|
---|
| 1497 | 13.690000000 0.27295900000 -0.79076400000E-01
|
---|
| 1498 | 6.2290000000 0.38369000000 -0.11742200000
|
---|
| 1499 | 2.8780000000 0.29187000000 -0.86094300000E-01
|
---|
| 1500 | })
|
---|
| 1501 | (type: [am = p]
|
---|
| 1502 | {exp coef:0} = {
|
---|
| 1503 | 1.2820000000 1.0000000000
|
---|
| 1504 | })
|
---|
| 1505 | (type: [am = p]
|
---|
| 1506 | {exp coef:0} = {
|
---|
| 1507 | 0.56410000000 1.0000000000
|
---|
| 1508 | })
|
---|
| 1509 | (type: [am = p]
|
---|
| 1510 | {exp coef:0} = {
|
---|
| 1511 | 0.23480000000 1.0000000000
|
---|
| 1512 | })
|
---|
| 1513 | (type: [am = p]
|
---|
| 1514 | {exp coef:0} = {
|
---|
| 1515 | 0.93120000000E-01 1.0000000000
|
---|
| 1516 | })
|
---|
| 1517 | (type: [am = p]
|
---|
| 1518 | {exp coef:0} = {
|
---|
| 1519 | 0.34800000000E-01 1.0000000000
|
---|
| 1520 | })
|
---|
| 1521 | (type: [(am = d puream = 1)]
|
---|
| 1522 | {exp coef:0} = {
|
---|
| 1523 | 0.25000000000 1.0000000000
|
---|
| 1524 | })
|
---|
| 1525 | (type: [(am = d puream = 1)]
|
---|
| 1526 | {exp coef:0} = {
|
---|
| 1527 | 0.61800000000 1.0000000000
|
---|
| 1528 | })
|
---|
| 1529 | (type: [(am = d puream = 1)]
|
---|
| 1530 | {exp coef:0} = {
|
---|
| 1531 | 1.5290000000 1.0000000000
|
---|
| 1532 | })
|
---|
| 1533 | (type: [(am = d puream = 1)]
|
---|
| 1534 | {exp coef:0} = {
|
---|
| 1535 | 3.7810000000 1.0000000000
|
---|
| 1536 | })
|
---|
| 1537 | (type: [(am = d puream = 1)]
|
---|
| 1538 | {exp coef:0} = {
|
---|
| 1539 | 0.10030000000 1.0000000000
|
---|
| 1540 | })
|
---|
| 1541 | (type: [(am = f puream = 1)]
|
---|
| 1542 | {exp coef:0} = {
|
---|
| 1543 | 0.32000000000 1.0000000000
|
---|
| 1544 | })
|
---|
| 1545 | (type: [(am = f puream = 1)]
|
---|
| 1546 | {exp coef:0} = {
|
---|
| 1547 | 0.65600000000 1.0000000000
|
---|
| 1548 | })
|
---|
| 1549 | (type: [(am = f puream = 1)]
|
---|
| 1550 | {exp coef:0} = {
|
---|
| 1551 | 1.3450000000 1.0000000000
|
---|
| 1552 | })
|
---|
| 1553 | (type: [(am = f puream = 1)]
|
---|
| 1554 | {exp coef:0} = {
|
---|
| 1555 | 0.16400000000 1.0000000000
|
---|
| 1556 | })
|
---|
| 1557 | (type: [(am = g puream = 1)]
|
---|
| 1558 | {exp coef:0} = {
|
---|
| 1559 | 0.55600000000 1.0000000000
|
---|
| 1560 | })
|
---|
| 1561 | (type: [(am = g puream = 1)]
|
---|
| 1562 | {exp coef:0} = {
|
---|
| 1563 | 1.3020000000 1.0000000000
|
---|
| 1564 | })
|
---|
| 1565 | (type: [(am = g puream = 1)]
|
---|
| 1566 | {exp coef:0} = {
|
---|
| 1567 | 0.27700000000 1.0000000000
|
---|
| 1568 | })
|
---|
| 1569 | (type: [(am = h puream = 1)]
|
---|
| 1570 | {exp coef:0} = {
|
---|
| 1571 | 1.0530000000 1.0000000000
|
---|
| 1572 | })
|
---|
| 1573 | (type: [(am = h puream = 1)]
|
---|
| 1574 | {exp coef:0} = {
|
---|
| 1575 | 0.60700000000 1.0000000000
|
---|
| 1576 | })
|
---|
| 1577 | ]
|
---|
| 1578 | %
|
---|
| 1579 | % BASIS SET: (20s,12p,4d,3f,2g,1h) -> [7s,6p,4d,3f,2g,1h]
|
---|
| 1580 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 1581 | argon: "aug-cc-pV5Z": [
|
---|
| 1582 | (type: [am = s am = s am = s]
|
---|
| 1583 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1584 | 7401000.0000 0.17500000000E-05 -0.50000000000E-06 0.16000000000E-06
|
---|
| 1585 | 1108000.0000 0.13610000000E-04 -0.38700000000E-05 0.12100000000E-05
|
---|
| 1586 | 252100.00000 0.71630000000E-04 -0.20340000000E-04 0.63600000000E-05
|
---|
| 1587 | 71380.000000 0.30303000000E-03 -0.86090000000E-04 0.26890000000E-04
|
---|
| 1588 | 23260.000000 0.11060800000E-02 -0.31444000000E-03 0.98340000000E-04
|
---|
| 1589 | 8390.0000000 0.36067100000E-02 -0.10284100000E-02 0.32129000000E-03
|
---|
| 1590 | 3271.0000000 0.10713210000E-01 -0.30726700000E-02 0.96200000000E-03
|
---|
| 1591 | 1357.0000000 0.29106770000E-01 -0.84753200000E-02 0.26524500000E-02
|
---|
| 1592 | 592.00000000 0.71660110000E-01 -0.21520080000E-01 0.67703500000E-02
|
---|
| 1593 | 269.10000000 0.15414053000 -0.49449320000E-01 0.15617270000E-01
|
---|
| 1594 | 126.50000000 0.27041707000 -0.98775920000E-01 0.31716660000E-01
|
---|
| 1595 | 61.030000000 0.33485470000 -0.15830822000 0.51997420000E-01
|
---|
| 1596 | 29.860000000 0.22434631000 -0.15140298000 0.52475140000E-01
|
---|
| 1597 | 14.170000000 0.50002840000E-01 0.58242640000E-01 -0.22641470000E-01
|
---|
| 1598 | 7.0220000000 0.64590000000E-04 0.42938305000 -0.18606229000
|
---|
| 1599 | 3.5110000000 0.16864100000E-02 0.49908884000 -0.35014547000
|
---|
| 1600 | })
|
---|
| 1601 | (type: [am = s]
|
---|
| 1602 | {exp coef:0} = {
|
---|
| 1603 | 1.7580000000 1.0000000000
|
---|
| 1604 | })
|
---|
| 1605 | (type: [am = s]
|
---|
| 1606 | {exp coef:0} = {
|
---|
| 1607 | 0.78410000000 1.0000000000
|
---|
| 1608 | })
|
---|
| 1609 | (type: [am = s]
|
---|
| 1610 | {exp coef:0} = {
|
---|
| 1611 | 0.34800000000 1.0000000000
|
---|
| 1612 | })
|
---|
| 1613 | (type: [am = s]
|
---|
| 1614 | {exp coef:0} = {
|
---|
| 1615 | 0.14910000000 1.0000000000
|
---|
| 1616 | })
|
---|
| 1617 | (type: [am = s]
|
---|
| 1618 | {exp coef:0} = {
|
---|
| 1619 | 0.53800000000E-01 1.0000000000
|
---|
| 1620 | })
|
---|
| 1621 | (type: [am = p am = p]
|
---|
| 1622 | {exp coef:0 coef:1} = {
|
---|
| 1623 | 2927.0000000 0.23199000000E-03 -0.64910000000E-04
|
---|
| 1624 | 693.50000000 0.20232900000E-02 -0.56531000000E-03
|
---|
| 1625 | 224.70000000 0.11034010000E-01 -0.31098800000E-02
|
---|
| 1626 | 85.170000000 0.43839700000E-01 -0.12469640000E-01
|
---|
| 1627 | 35.530000000 0.13035904000 -0.38224650000E-01
|
---|
| 1628 | 15.730000000 0.27574991000 -0.83079180000E-01
|
---|
| 1629 | 7.1650000000 0.38764330000 -0.12459409000
|
---|
| 1630 | 3.3220000000 0.28740741000 -0.83297130000E-01
|
---|
| 1631 | })
|
---|
| 1632 | (type: [am = p]
|
---|
| 1633 | {exp coef:0} = {
|
---|
| 1634 | 1.4780000000 1.0000000000
|
---|
| 1635 | })
|
---|
| 1636 | (type: [am = p]
|
---|
| 1637 | {exp coef:0} = {
|
---|
| 1638 | 0.65520000000 1.0000000000
|
---|
| 1639 | })
|
---|
| 1640 | (type: [am = p]
|
---|
| 1641 | {exp coef:0} = {
|
---|
| 1642 | 0.27510000000 1.0000000000
|
---|
| 1643 | })
|
---|
| 1644 | (type: [am = p]
|
---|
| 1645 | {exp coef:0} = {
|
---|
| 1646 | 0.10970000000 1.0000000000
|
---|
| 1647 | })
|
---|
| 1648 | (type: [am = p]
|
---|
| 1649 | {exp coef:0} = {
|
---|
| 1650 | 0.40200000000E-01 1.0000000000
|
---|
| 1651 | })
|
---|
| 1652 | (type: [(am = d puream = 1)]
|
---|
| 1653 | {exp coef:0} = {
|
---|
| 1654 | 0.30900000000 1.0000000000
|
---|
| 1655 | })
|
---|
| 1656 | (type: [(am = d puream = 1)]
|
---|
| 1657 | {exp coef:0} = {
|
---|
| 1658 | 0.77000000000 1.0000000000
|
---|
| 1659 | })
|
---|
| 1660 | (type: [(am = d puream = 1)]
|
---|
| 1661 | {exp coef:0} = {
|
---|
| 1662 | 1.9170000000 1.0000000000
|
---|
| 1663 | })
|
---|
| 1664 | (type: [(am = d puream = 1)]
|
---|
| 1665 | {exp coef:0} = {
|
---|
| 1666 | 4.7760000000 1.0000000000
|
---|
| 1667 | })
|
---|
| 1668 | (type: [(am = d puream = 1)]
|
---|
| 1669 | {exp coef:0} = {
|
---|
| 1670 | 0.12100000000 1.0000000000
|
---|
| 1671 | })
|
---|
| 1672 | (type: [(am = f puream = 1)]
|
---|
| 1673 | {exp coef:0} = {
|
---|
| 1674 | 0.40800000000 1.0000000000
|
---|
| 1675 | })
|
---|
| 1676 | (type: [(am = f puream = 1)]
|
---|
| 1677 | {exp coef:0} = {
|
---|
| 1678 | 0.82500000000 1.0000000000
|
---|
| 1679 | })
|
---|
| 1680 | (type: [(am = f puream = 1)]
|
---|
| 1681 | {exp coef:0} = {
|
---|
| 1682 | 1.6680000000 1.0000000000
|
---|
| 1683 | })
|
---|
| 1684 | (type: [(am = f puream = 1)]
|
---|
| 1685 | {exp coef:0} = {
|
---|
| 1686 | 0.20900000000 1.0000000000
|
---|
| 1687 | })
|
---|
| 1688 | (type: [(am = g puream = 1)]
|
---|
| 1689 | {exp coef:0} = {
|
---|
| 1690 | 0.66500000000 1.0000000000
|
---|
| 1691 | })
|
---|
| 1692 | (type: [(am = g puream = 1)]
|
---|
| 1693 | {exp coef:0} = {
|
---|
| 1694 | 1.5620000000 1.0000000000
|
---|
| 1695 | })
|
---|
| 1696 | (type: [(am = g puream = 1)]
|
---|
| 1697 | {exp coef:0} = {
|
---|
| 1698 | 0.33400000000 1.0000000000
|
---|
| 1699 | })
|
---|
| 1700 | (type: [(am = h puream = 1)]
|
---|
| 1701 | {exp coef:0} = {
|
---|
| 1702 | 1.2640000000 1.0000000000
|
---|
| 1703 | })
|
---|
| 1704 | (type: [(am = h puream = 1)]
|
---|
| 1705 | {exp coef:0} = {
|
---|
| 1706 | 0.74200000000 1.0000000000
|
---|
| 1707 | })
|
---|
| 1708 | ]
|
---|
| 1709 | %
|
---|
| 1710 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
| 1711 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 1712 | gallium: "aug-cc-pV5Z": [
|
---|
| 1713 | (type: [am = s am = s am = s am = s]
|
---|
| 1714 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 1715 | 108615220.00 0.24000000000E-06 -0.70000000000E-07 0.30000000000E-07 -0.70000000000E-08
|
---|
| 1716 | 16264540.000 0.18600000000E-05 -0.58000000000E-06 0.22000000000E-06 -0.51000000000E-07
|
---|
| 1717 | 3700111.6000 0.98000000000E-05 -0.30300000000E-05 0.11600000000E-05 -0.27000000000E-06
|
---|
| 1718 | 1047169.1000 0.41520000000E-04 -0.12870000000E-04 0.49100000000E-05 -0.11420000000E-05
|
---|
| 1719 | 341067.57000 0.15205000000E-03 -0.47140000000E-04 0.17980000000E-04 -0.41830000000E-05
|
---|
| 1720 | 122771.54000 0.50077000000E-03 -0.15530000000E-03 0.59200000000E-04 -0.13781000000E-04
|
---|
| 1721 | 47659.578000 0.15187000000E-02 -0.47180000000E-03 0.18010000000E-03 -0.41882000000E-04
|
---|
| 1722 | 19633.354000 0.43025000000E-02 -0.13405000000E-02 0.51140000000E-03 -0.11902300000E-03
|
---|
| 1723 | 8488.7347000 0.11452300000E-01 -0.35955000000E-02 0.13740000000E-02 -0.31960000000E-03
|
---|
| 1724 | 3823.1381000 0.28564000000E-01 -0.91016000000E-02 0.34818000000E-02 -0.81070000000E-03
|
---|
| 1725 | 1784.4755000 0.65748500000E-01 -0.21636000000E-01 0.83169000000E-02 -0.19360000000E-02
|
---|
| 1726 | 860.05305000 0.13528950000 -0.47336500000E-01 0.18318000000E-01 -0.42722000000E-02
|
---|
| 1727 | 426.69867000 0.23455140000 -0.92499700000E-01 0.36390300000E-01 -0.84945000000E-02
|
---|
| 1728 | 217.26161000 0.30783510000 -0.15043510000 0.60808300000E-01 -0.14270900000E-01
|
---|
| 1729 | 112.96987000 0.25299470000 -0.17212270000 0.73293900000E-01 -0.17268100000E-01
|
---|
| 1730 | 59.449441000 0.96010400000E-01 -0.44017900000E-01 0.19741600000E-01 -0.47782000000E-02
|
---|
| 1731 | 30.782256000 0.97885000000E-02 0.29738280000 -0.16129700000 0.39492700000E-01
|
---|
| 1732 | 16.423212000 0.59120000000E-03 0.52797480000 -0.40219480000 0.10272000000
|
---|
| 1733 | 8.7578890000 -0.55400000000E-04 0.30089050000 -0.29272480000 0.77352900000E-01
|
---|
| 1734 | 4.4096290000 0.13800000000E-04 0.45881900000E-01 0.27069420000 -0.84956500000E-01
|
---|
| 1735 | 2.2494490000 -0.64200000000E-04 0.12828000000E-02 0.63597590000 -0.22198340000
|
---|
| 1736 | 1.1261150000 0.16900000000E-04 0.12588000000E-02 0.37024890000 -0.25320890000
|
---|
| 1737 | })
|
---|
| 1738 | (type: [am = s]
|
---|
| 1739 | {exp coef:0} = {
|
---|
| 1740 | 0.51548600000 1.0000000000
|
---|
| 1741 | })
|
---|
| 1742 | (type: [am = s]
|
---|
| 1743 | {exp coef:0} = {
|
---|
| 1744 | 0.24257800000 1.0000000000
|
---|
| 1745 | })
|
---|
| 1746 | (type: [am = s]
|
---|
| 1747 | {exp coef:0} = {
|
---|
| 1748 | 0.10708600000 1.0000000000
|
---|
| 1749 | })
|
---|
| 1750 | (type: [am = s]
|
---|
| 1751 | {exp coef:0} = {
|
---|
| 1752 | 0.46988000000E-01 1.0000000000
|
---|
| 1753 | })
|
---|
| 1754 | (type: [am = s]
|
---|
| 1755 | {exp coef:0} = {
|
---|
| 1756 | 0.17301000000E-01 1.0000000000
|
---|
| 1757 | })
|
---|
| 1758 | (type: [am = p am = p am = p]
|
---|
| 1759 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1760 | 32152.190000 0.28300000000E-04 -0.10700000000E-04 0.17000000000E-05
|
---|
| 1761 | 7609.3842000 0.25290000000E-03 -0.95800000000E-04 0.15800000000E-04
|
---|
| 1762 | 2471.4744000 0.14686000000E-02 -0.55820000000E-03 0.90800000000E-04
|
---|
| 1763 | 946.06363000 0.65627000000E-02 -0.25040000000E-02 0.41200000000E-03
|
---|
| 1764 | 401.94711000 0.23802300000E-01 -0.91996000000E-02 0.14984000000E-02
|
---|
| 1765 | 183.64688000 0.70894500000E-01 -0.27997300000E-01 0.46252000000E-02
|
---|
| 1766 | 88.533264000 0.16763840000 -0.68874600000E-01 0.11271300000E-01
|
---|
| 1767 | 44.270355000 0.29597540000 -0.12738430000 0.21321200000E-01
|
---|
| 1768 | 22.723083000 0.34886100000 -0.15858890000 0.25952300000E-01
|
---|
| 1769 | 11.823141000 0.21754960000 -0.42496800000E-01 0.66320000000E-02
|
---|
| 1770 | 6.0421350000 0.52051100000E-01 0.24414400000 -0.50170400000E-01
|
---|
| 1771 | 3.0317540000 0.34378000000E-02 0.44591110000 -0.84297700000E-01
|
---|
| 1772 | 1.4933660000 0.98330000000E-03 0.35295220000 -0.90302300000E-01
|
---|
| 1773 | })
|
---|
| 1774 | (type: [am = p]
|
---|
| 1775 | {exp coef:0} = {
|
---|
| 1776 | 0.70972700000 1.0000000000
|
---|
| 1777 | })
|
---|
| 1778 | (type: [am = p]
|
---|
| 1779 | {exp coef:0} = {
|
---|
| 1780 | 0.24859300000 1.0000000000
|
---|
| 1781 | })
|
---|
| 1782 | (type: [am = p]
|
---|
| 1783 | {exp coef:0} = {
|
---|
| 1784 | 0.94395000000E-01 1.0000000000
|
---|
| 1785 | })
|
---|
| 1786 | (type: [am = p]
|
---|
| 1787 | {exp coef:0} = {
|
---|
| 1788 | 0.35887000000E-01 1.0000000000
|
---|
| 1789 | })
|
---|
| 1790 | (type: [am = p]
|
---|
| 1791 | {exp coef:0} = {
|
---|
| 1792 | 0.11050000000E-01 1.0000000000
|
---|
| 1793 | })
|
---|
| 1794 | (type: [(am = d puream = 1)]
|
---|
| 1795 | {exp coef:0} = {
|
---|
| 1796 | 1040.5046000 0.89200000000E-04
|
---|
| 1797 | 314.59714000 0.86250000000E-03
|
---|
| 1798 | 122.78760000 0.50094000000E-02
|
---|
| 1799 | 54.760369000 0.19964900000E-01
|
---|
| 1800 | 26.298944000 0.58321400000E-01
|
---|
| 1801 | 13.263445000 0.13168680000
|
---|
| 1802 | 6.8850650000 0.22186760000
|
---|
| 1803 | 3.5795250000 0.28250590000
|
---|
| 1804 | 1.8315640000 0.28319890000
|
---|
| 1805 | })
|
---|
| 1806 | (type: [(am = d puream = 1)]
|
---|
| 1807 | {exp coef:0} = {
|
---|
| 1808 | 0.91290900000 1.0000000000
|
---|
| 1809 | })
|
---|
| 1810 | (type: [(am = d puream = 1)]
|
---|
| 1811 | {exp coef:0} = {
|
---|
| 1812 | 0.43534000000 1.0000000000
|
---|
| 1813 | })
|
---|
| 1814 | (type: [(am = d puream = 1)]
|
---|
| 1815 | {exp coef:0} = {
|
---|
| 1816 | 0.18851800000 1.0000000000
|
---|
| 1817 | })
|
---|
| 1818 | (type: [(am = d puream = 1)]
|
---|
| 1819 | {exp coef:0} = {
|
---|
| 1820 | 0.75800000000E-01 1.0000000000
|
---|
| 1821 | })
|
---|
| 1822 | (type: [(am = d puream = 1)]
|
---|
| 1823 | {exp coef:0} = {
|
---|
| 1824 | 0.26000000000E-01 1.0000000000
|
---|
| 1825 | })
|
---|
| 1826 | (type: [(am = f puream = 1)]
|
---|
| 1827 | {exp coef:0} = {
|
---|
| 1828 | 0.13400000000 1.0000000000
|
---|
| 1829 | })
|
---|
| 1830 | (type: [(am = f puream = 1)]
|
---|
| 1831 | {exp coef:0} = {
|
---|
| 1832 | 0.28260000000 1.0000000000
|
---|
| 1833 | })
|
---|
| 1834 | (type: [(am = f puream = 1)]
|
---|
| 1835 | {exp coef:0} = {
|
---|
| 1836 | 0.59600000000 1.0000000000
|
---|
| 1837 | })
|
---|
| 1838 | (type: [(am = f puream = 1)]
|
---|
| 1839 | {exp coef:0} = {
|
---|
| 1840 | 0.51100000000E-01 1.0000000000
|
---|
| 1841 | })
|
---|
| 1842 | (type: [(am = g puream = 1)]
|
---|
| 1843 | {exp coef:0} = {
|
---|
| 1844 | 0.27500000000 1.0000000000
|
---|
| 1845 | })
|
---|
| 1846 | (type: [(am = g puream = 1)]
|
---|
| 1847 | {exp coef:0} = {
|
---|
| 1848 | 0.61460000000 1.0000000000
|
---|
| 1849 | })
|
---|
| 1850 | (type: [(am = g puream = 1)]
|
---|
| 1851 | {exp coef:0} = {
|
---|
| 1852 | 0.11400000000 1.0000000000
|
---|
| 1853 | })
|
---|
| 1854 | (type: [(am = h puream = 1)]
|
---|
| 1855 | {exp coef:0} = {
|
---|
| 1856 | 0.49860000000 1.0000000000
|
---|
| 1857 | })
|
---|
| 1858 | (type: [(am = h puream = 1)]
|
---|
| 1859 | {exp coef:0} = {
|
---|
| 1860 | 0.25400000000 1.0000000000
|
---|
| 1861 | })
|
---|
| 1862 | ]
|
---|
| 1863 | %
|
---|
| 1864 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
| 1865 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 1866 | germanium: "aug-cc-pV5Z": [
|
---|
| 1867 | (type: [am = s am = s am = s am = s]
|
---|
| 1868 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 1869 | 122001190.00 0.22000000000E-06 -0.70000000000E-07 0.30000000000E-07 -0.70000000000E-08
|
---|
| 1870 | 18257470.000 0.17500000000E-05 -0.54000000000E-06 0.21000000000E-06 -0.54000000000E-07
|
---|
| 1871 | 4150821.5000 0.92000000000E-05 -0.28600000000E-05 0.11000000000E-05 -0.28300000000E-06
|
---|
| 1872 | 1174101.8000 0.38990000000E-04 -0.12130000000E-04 0.46700000000E-05 -0.11200000000E-05
|
---|
| 1873 | 382309.15000 0.14280000000E-03 -0.44430000000E-04 0.17130000000E-04 -0.43910000000E-05
|
---|
| 1874 | 137607.96000 0.47030000000E-03 -0.14640000000E-03 0.56400000000E-04 -0.14461000000E-04
|
---|
| 1875 | 53419.242000 0.14267000000E-02 -0.44470000000E-03 0.17150000000E-03 -0.43965000000E-04
|
---|
| 1876 | 22005.756000 0.40434000000E-02 -0.12637000000E-02 0.48720000000E-03 -0.12490000000E-03
|
---|
| 1877 | 9513.8479000 0.10773200000E-01 -0.33920000000E-02 0.13097000000E-02 -0.33580000000E-03
|
---|
| 1878 | 4284.1756000 0.26927300000E-01 -0.85979000000E-02 0.33232000000E-02 -0.85250000000E-03
|
---|
| 1879 | 1999.1664000 0.62237400000E-01 -0.20496400000E-01 0.79591000000E-02 -0.20424000000E-02
|
---|
| 1880 | 963.24716000 0.12903820000 -0.45057100000E-01 0.17609700000E-01 -0.45245000000E-02
|
---|
| 1881 | 477.80500000 0.22673120000 -0.88792200000E-01 0.35257600000E-01 -0.90744000000E-02
|
---|
| 1882 | 243.31589000 0.30489030000 -0.14662990000 0.59768700000E-01 -0.15448300000E-01
|
---|
| 1883 | 126.63999000 0.26176620000 -0.17431400000 0.74740600000E-01 -0.19433800000E-01
|
---|
| 1884 | 66.783579000 0.10763480000 -0.61165600000E-01 0.27786300000E-01 -0.73289000000E-02
|
---|
| 1885 | 34.416084000 0.12623400000E-01 0.27166900000 -0.14728780000 0.39648500000E-01
|
---|
| 1886 | 18.372814000 0.39180000000E-03 0.52802260000 -0.39742020000 0.11217960000
|
---|
| 1887 | 9.8054610000 0.81200000000E-04 0.32401380000 -0.32056660000 0.93568600000E-01
|
---|
| 1888 | 4.9694030000 -0.48900000000E-04 0.54417700000E-01 0.23319680000 -0.80645900000E-01
|
---|
| 1889 | 2.5486230000 -0.31700000000E-04 0.14463000000E-02 0.64248900000 -0.25011090000
|
---|
| 1890 | 1.2845940000 -0.10900000000E-05 0.14248000000E-02 0.39666840000 -0.29780990000
|
---|
| 1891 | })
|
---|
| 1892 | (type: [am = s]
|
---|
| 1893 | {exp coef:0} = {
|
---|
| 1894 | 0.58335300000 1.0000000000
|
---|
| 1895 | })
|
---|
| 1896 | (type: [am = s]
|
---|
| 1897 | {exp coef:0} = {
|
---|
| 1898 | 0.29343900000 1.0000000000
|
---|
| 1899 | })
|
---|
| 1900 | (type: [am = s]
|
---|
| 1901 | {exp coef:0} = {
|
---|
| 1902 | 0.13267200000 1.0000000000
|
---|
| 1903 | })
|
---|
| 1904 | (type: [am = s]
|
---|
| 1905 | {exp coef:0} = {
|
---|
| 1906 | 0.59239000000E-01 1.0000000000
|
---|
| 1907 | })
|
---|
| 1908 | (type: [am = s]
|
---|
| 1909 | {exp coef:0} = {
|
---|
| 1910 | 0.24274000000E-01 1.0000000000
|
---|
| 1911 | })
|
---|
| 1912 | (type: [am = p am = p am = p]
|
---|
| 1913 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 1914 | 32314.970000 0.31600000000E-04 -0.12200000000E-04 0.24000000000E-05
|
---|
| 1915 | 7648.2002000 0.28200000000E-03 -0.10840000000E-03 0.21400000000E-04
|
---|
| 1916 | 2484.2114000 0.16353000000E-02 -0.63110000000E-03 0.12430000000E-03
|
---|
| 1917 | 951.00305000 0.72864000000E-02 -0.28243000000E-02 0.55890000000E-03
|
---|
| 1918 | 404.04833000 0.26293100000E-01 -0.10331700000E-01 0.20383000000E-02
|
---|
| 1919 | 184.60354000 0.77594300000E-01 -0.31210200000E-01 0.62016000000E-02
|
---|
| 1920 | 88.964128000 0.18036530000 -0.75595400000E-01 0.15010600000E-01
|
---|
| 1921 | 44.447742000 0.30953540000 -0.13629440000 0.27412700000E-01
|
---|
| 1922 | 22.799075000 0.34547520000 -0.15901500000 0.31779600000E-01
|
---|
| 1923 | 11.835928000 0.19632900000 -0.14980500000E-01 0.92280000000E-03
|
---|
| 1924 | 6.0112940000 0.40906800000E-01 0.28682250000 -0.69834200000E-01
|
---|
| 1925 | 2.9957840000 0.24197000000E-02 0.46266560000 -0.11196000000
|
---|
| 1926 | 1.4695700000 0.80030000000E-03 0.31685050000 -0.99356500000E-01
|
---|
| 1927 | })
|
---|
| 1928 | (type: [am = p]
|
---|
| 1929 | {exp coef:0} = {
|
---|
| 1930 | 0.69068100000 1.0000000000
|
---|
| 1931 | })
|
---|
| 1932 | (type: [am = p]
|
---|
| 1933 | {exp coef:0} = {
|
---|
| 1934 | 0.28616000000 1.0000000000
|
---|
| 1935 | })
|
---|
| 1936 | (type: [am = p]
|
---|
| 1937 | {exp coef:0} = {
|
---|
| 1938 | 0.11774200000 1.0000000000
|
---|
| 1939 | })
|
---|
| 1940 | (type: [am = p]
|
---|
| 1941 | {exp coef:0} = {
|
---|
| 1942 | 0.47385000000E-01 1.0000000000
|
---|
| 1943 | })
|
---|
| 1944 | (type: [am = p]
|
---|
| 1945 | {exp coef:0} = {
|
---|
| 1946 | 0.17593000000E-01 1.0000000000
|
---|
| 1947 | })
|
---|
| 1948 | (type: [(am = d puream = 1)]
|
---|
| 1949 | {exp coef:0} = {
|
---|
| 1950 | 1226.7982000 0.76300000000E-04
|
---|
| 1951 | 371.23223000 0.74250000000E-03
|
---|
| 1952 | 144.89099000 0.43756000000E-02
|
---|
| 1953 | 64.604130000 0.17925700000E-01
|
---|
| 1954 | 31.039737000 0.53925300000E-01
|
---|
| 1955 | 15.643870000 0.12571910000
|
---|
| 1956 | 8.1258220000 0.21915660000
|
---|
| 1957 | 4.2397620000 0.28606620000
|
---|
| 1958 | 2.1863860000 0.28965040000
|
---|
| 1959 | })
|
---|
| 1960 | (type: [(am = d puream = 1)]
|
---|
| 1961 | {exp coef:0} = {
|
---|
| 1962 | 1.1038710000 1.0000000000
|
---|
| 1963 | })
|
---|
| 1964 | (type: [(am = d puream = 1)]
|
---|
| 1965 | {exp coef:0} = {
|
---|
| 1966 | 0.53381100000 1.0000000000
|
---|
| 1967 | })
|
---|
| 1968 | (type: [(am = d puream = 1)]
|
---|
| 1969 | {exp coef:0} = {
|
---|
| 1970 | 0.23135500000 1.0000000000
|
---|
| 1971 | })
|
---|
| 1972 | (type: [(am = d puream = 1)]
|
---|
| 1973 | {exp coef:0} = {
|
---|
| 1974 | 0.95300000000E-01 1.0000000000
|
---|
| 1975 | })
|
---|
| 1976 | (type: [(am = d puream = 1)]
|
---|
| 1977 | {exp coef:0} = {
|
---|
| 1978 | 0.36400000000E-01 1.0000000000
|
---|
| 1979 | })
|
---|
| 1980 | (type: [(am = f puream = 1)]
|
---|
| 1981 | {exp coef:0} = {
|
---|
| 1982 | 0.16300000000 1.0000000000
|
---|
| 1983 | })
|
---|
| 1984 | (type: [(am = f puream = 1)]
|
---|
| 1985 | {exp coef:0} = {
|
---|
| 1986 | 0.32970000000 1.0000000000
|
---|
| 1987 | })
|
---|
| 1988 | (type: [(am = f puream = 1)]
|
---|
| 1989 | {exp coef:0} = {
|
---|
| 1990 | 0.67090000000 1.0000000000
|
---|
| 1991 | })
|
---|
| 1992 | (type: [(am = f puream = 1)]
|
---|
| 1993 | {exp coef:0} = {
|
---|
| 1994 | 0.70500000000E-01 1.0000000000
|
---|
| 1995 | })
|
---|
| 1996 | (type: [(am = g puream = 1)]
|
---|
| 1997 | {exp coef:0} = {
|
---|
| 1998 | 0.31600000000 1.0000000000
|
---|
| 1999 | })
|
---|
| 2000 | (type: [(am = g puream = 1)]
|
---|
| 2001 | {exp coef:0} = {
|
---|
| 2002 | 0.70340000000 1.0000000000
|
---|
| 2003 | })
|
---|
| 2004 | (type: [(am = g puream = 1)]
|
---|
| 2005 | {exp coef:0} = {
|
---|
| 2006 | 0.14600000000 1.0000000000
|
---|
| 2007 | })
|
---|
| 2008 | (type: [(am = h puream = 1)]
|
---|
| 2009 | {exp coef:0} = {
|
---|
| 2010 | 0.58150000000 1.0000000000
|
---|
| 2011 | })
|
---|
| 2012 | (type: [(am = h puream = 1)]
|
---|
| 2013 | {exp coef:0} = {
|
---|
| 2014 | 0.32000000000 1.0000000000
|
---|
| 2015 | })
|
---|
| 2016 | ]
|
---|
| 2017 | %
|
---|
| 2018 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
| 2019 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 2020 | arsenic: "aug-cc-pV5Z": [
|
---|
| 2021 | (type: [am = s am = s am = s am = s]
|
---|
| 2022 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 2023 | 137507530.00 0.21000000000E-06 -0.70000000000E-07 0.30000000000E-07 -0.70000000000E-08
|
---|
| 2024 | 20515052.000 0.16300000000E-05 -0.51000000000E-06 0.20000000000E-06 -0.55000000000E-07
|
---|
| 2025 | 4648716.4000 0.86500000000E-05 -0.27000000000E-05 0.10500000000E-05 -0.28900000000E-06
|
---|
| 2026 | 1311264.6000 0.36760000000E-04 -0.11470000000E-04 0.44700000000E-05 -0.12300000000E-05
|
---|
| 2027 | 426185.86000 0.13488000000E-03 -0.42100000000E-04 0.16400000000E-04 -0.45170000000E-05
|
---|
| 2028 | 153237.06000 0.44460000000E-03 -0.13880000000E-03 0.54040000000E-04 -0.14884000000E-04
|
---|
| 2029 | 59459.404000 0.13488000000E-02 -0.42180000000E-03 0.16430000000E-03 -0.45265000000E-04
|
---|
| 2030 | 24492.812000 0.38231000000E-02 -0.11984000000E-02 0.46690000000E-03 -0.12858200000E-03
|
---|
| 2031 | 10590.253000 0.10190800000E-01 -0.32174000000E-02 0.12552000000E-02 -0.34580100000E-03
|
---|
| 2032 | 4769.7841000 0.25502700000E-01 -0.81598000000E-02 0.31869000000E-02 -0.87803100000E-03
|
---|
| 2033 | 2226.3698000 0.59110400000E-01 -0.19483400000E-01 0.76432000000E-02 -0.21073000000E-02
|
---|
| 2034 | 1073.0862000 0.12328880000 -0.42978700000E-01 0.16966900000E-01 -0.46817000000E-02
|
---|
| 2035 | 532.50059000 0.21917430000 -0.85298700000E-01 0.34190900000E-01 -0.94558000000E-02
|
---|
| 2036 | 271.29755000 0.30136120000 -0.14284020000 0.58728700000E-01 -0.16299000000E-01
|
---|
| 2037 | 141.31195000 0.26948920000 -0.17572820000 0.75885600000E-01 -0.21213800000E-01
|
---|
| 2038 | 74.584433000 0.11912700000 -0.76412700000E-01 0.35061400000E-01 -0.98944000000E-02
|
---|
| 2039 | 38.298338000 0.15698000000E-01 0.24665750000 -0.13386230000 0.38637900000E-01
|
---|
| 2040 | 20.469130000 0.20470000000E-03 0.52538240000 -0.39136340000 0.11888930000
|
---|
| 2041 | 10.939578000 0.22360000000E-03 0.34597240000 -0.34628200000 0.10889900000
|
---|
| 2042 | 5.5903670000 -0.11680000000E-03 0.63953300000E-01 0.19413270000 -0.72207900000E-01
|
---|
| 2043 | 2.8828590000 0.41900000000E-05 0.18299000000E-02 0.64519860000 -0.27180000000
|
---|
| 2044 | 1.4660860000 -0.21670000000E-04 0.15645000000E-02 0.42348130000 -0.33716620000
|
---|
| 2045 | })
|
---|
| 2046 | (type: [am = s]
|
---|
| 2047 | {exp coef:0} = {
|
---|
| 2048 | 0.67483900000 1.0000000000
|
---|
| 2049 | })
|
---|
| 2050 | (type: [am = s]
|
---|
| 2051 | {exp coef:0} = {
|
---|
| 2052 | 0.34639900000 1.0000000000
|
---|
| 2053 | })
|
---|
| 2054 | (type: [am = s]
|
---|
| 2055 | {exp coef:0} = {
|
---|
| 2056 | 0.15928900000 1.0000000000
|
---|
| 2057 | })
|
---|
| 2058 | (type: [am = s]
|
---|
| 2059 | {exp coef:0} = {
|
---|
| 2060 | 0.72109000000E-01 1.0000000000
|
---|
| 2061 | })
|
---|
| 2062 | (type: [am = s]
|
---|
| 2063 | {exp coef:0} = {
|
---|
| 2064 | 0.29418000000E-01 1.0000000000
|
---|
| 2065 | })
|
---|
| 2066 | (type: [am = p am = p am = p]
|
---|
| 2067 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 2068 | 34166.161000 0.32200000000E-04 -0.12600000000E-04 0.28000000000E-05
|
---|
| 2069 | 8086.5608000 0.28680000000E-03 -0.11190000000E-03 0.24900000000E-04
|
---|
| 2070 | 2626.5114000 0.16633000000E-02 -0.65160000000E-03 0.14510000000E-03
|
---|
| 2071 | 1005.3950000 0.74125000000E-02 -0.29173000000E-02 0.65040000000E-03
|
---|
| 2072 | 427.12735000 0.26751200000E-01 -0.10673800000E-01 0.23818000000E-02
|
---|
| 2073 | 195.15113000 0.78894400000E-01 -0.32245500000E-01 0.72207000000E-02
|
---|
| 2074 | 94.054308000 0.18299160000 -0.77973100000E-01 0.17531800000E-01
|
---|
| 2075 | 46.999880000 0.31249410000 -0.14010380000 0.31741400000E-01
|
---|
| 2076 | 24.117457000 0.34453220000 -0.16071320000 0.36544900000E-01
|
---|
| 2077 | 12.519982000 0.19164360000 -0.76703000000E-02 -0.16024000000E-02
|
---|
| 2078 | 6.3573250000 0.38713600000E-01 0.30079830000 -0.82464400000E-01
|
---|
| 2079 | 3.1680520000 0.22418000000E-02 0.47158780000 -0.13443720000
|
---|
| 2080 | 1.5534810000 0.72090000000E-03 0.30320640000 -0.10516860000
|
---|
| 2081 | })
|
---|
| 2082 | (type: [am = p]
|
---|
| 2083 | {exp coef:0} = {
|
---|
| 2084 | 0.71032500000 1.0000000000
|
---|
| 2085 | })
|
---|
| 2086 | (type: [am = p]
|
---|
| 2087 | {exp coef:0} = {
|
---|
| 2088 | 0.32095500000 1.0000000000
|
---|
| 2089 | })
|
---|
| 2090 | (type: [am = p]
|
---|
| 2091 | {exp coef:0} = {
|
---|
| 2092 | 0.13935700000 1.0000000000
|
---|
| 2093 | })
|
---|
| 2094 | (type: [am = p]
|
---|
| 2095 | {exp coef:0} = {
|
---|
| 2096 | 0.58410000000E-01 1.0000000000
|
---|
| 2097 | })
|
---|
| 2098 | (type: [am = p]
|
---|
| 2099 | {exp coef:0} = {
|
---|
| 2100 | 0.22043000000E-01 1.0000000000
|
---|
| 2101 | })
|
---|
| 2102 | (type: [(am = d puream = 1)]
|
---|
| 2103 | {exp coef:0} = {
|
---|
| 2104 | 1424.4506000 0.66600000000E-04
|
---|
| 2105 | 431.06676000 0.65370000000E-03
|
---|
| 2106 | 168.12864000 0.39041000000E-02
|
---|
| 2107 | 74.866724000 0.16391900000E-01
|
---|
| 2108 | 35.945855000 0.50623200000E-01
|
---|
| 2109 | 18.098474000 0.12110210000
|
---|
| 2110 | 9.4057800000 0.21681690000
|
---|
| 2111 | 4.9239040000 0.28874520000
|
---|
| 2112 | 2.5564930000 0.29477690000
|
---|
| 2113 | })
|
---|
| 2114 | (type: [(am = d puream = 1)]
|
---|
| 2115 | {exp coef:0} = {
|
---|
| 2116 | 1.3042330000 1.0000000000
|
---|
| 2117 | })
|
---|
| 2118 | (type: [(am = d puream = 1)]
|
---|
| 2119 | {exp coef:0} = {
|
---|
| 2120 | 0.63711800000 1.0000000000
|
---|
| 2121 | })
|
---|
| 2122 | (type: [(am = d puream = 1)]
|
---|
| 2123 | {exp coef:0} = {
|
---|
| 2124 | 0.27579500000 1.0000000000
|
---|
| 2125 | })
|
---|
| 2126 | (type: [(am = d puream = 1)]
|
---|
| 2127 | {exp coef:0} = {
|
---|
| 2128 | 0.11530000000 1.0000000000
|
---|
| 2129 | })
|
---|
| 2130 | (type: [(am = d puream = 1)]
|
---|
| 2131 | {exp coef:0} = {
|
---|
| 2132 | 0.48800000000E-01 1.0000000000
|
---|
| 2133 | })
|
---|
| 2134 | (type: [(am = f puream = 1)]
|
---|
| 2135 | {exp coef:0} = {
|
---|
| 2136 | 0.19600000000 1.0000000000
|
---|
| 2137 | })
|
---|
| 2138 | (type: [(am = f puream = 1)]
|
---|
| 2139 | {exp coef:0} = {
|
---|
| 2140 | 0.38590000000 1.0000000000
|
---|
| 2141 | })
|
---|
| 2142 | (type: [(am = f puream = 1)]
|
---|
| 2143 | {exp coef:0} = {
|
---|
| 2144 | 0.75990000000 1.0000000000
|
---|
| 2145 | })
|
---|
| 2146 | (type: [(am = f puream = 1)]
|
---|
| 2147 | {exp coef:0} = {
|
---|
| 2148 | 0.89900000000E-01 1.0000000000
|
---|
| 2149 | })
|
---|
| 2150 | (type: [(am = g puream = 1)]
|
---|
| 2151 | {exp coef:0} = {
|
---|
| 2152 | 0.37000000000 1.0000000000
|
---|
| 2153 | })
|
---|
| 2154 | (type: [(am = g puream = 1)]
|
---|
| 2155 | {exp coef:0} = {
|
---|
| 2156 | 0.80920000000 1.0000000000
|
---|
| 2157 | })
|
---|
| 2158 | (type: [(am = g puream = 1)]
|
---|
| 2159 | {exp coef:0} = {
|
---|
| 2160 | 0.16550000000 1.0000000000
|
---|
| 2161 | })
|
---|
| 2162 | (type: [(am = h puream = 1)]
|
---|
| 2163 | {exp coef:0} = {
|
---|
| 2164 | 0.67730000000 1.0000000000
|
---|
| 2165 | })
|
---|
| 2166 | (type: [(am = h puream = 1)]
|
---|
| 2167 | {exp coef:0} = {
|
---|
| 2168 | 0.36680000000 1.0000000000
|
---|
| 2169 | })
|
---|
| 2170 | ]
|
---|
| 2171 | %
|
---|
| 2172 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
| 2173 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 2174 | selenium: "aug-cc-pV5Z": [
|
---|
| 2175 | (type: [am = s am = s am = s am = s]
|
---|
| 2176 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 2177 | 154432250.00 0.19000000000E-06 -0.60000000000E-07 0.20000000000E-07 -0.70000000000E-08
|
---|
| 2178 | 23129212.000 0.15100000000E-05 -0.47000000000E-06 0.19000000000E-06 -0.54000000000E-07
|
---|
| 2179 | 5261792.9000 0.79600000000E-05 -0.24900000000E-05 0.98000000000E-06 -0.28700000000E-06
|
---|
| 2180 | 1488816.7000 0.33750000000E-04 -0.10560000000E-04 0.41500000000E-05 -0.12140000000E-05
|
---|
| 2181 | 484656.56000 0.12372000000E-03 -0.38730000000E-04 0.15240000000E-04 -0.44560000000E-05
|
---|
| 2182 | 174270.63000 0.40839000000E-03 -0.12786000000E-03 0.50310000000E-04 -0.14706000000E-04
|
---|
| 2183 | 67529.090000 0.12431000000E-02 -0.38980000000E-03 0.15346000000E-03 -0.44871000000E-04
|
---|
| 2184 | 27750.837000 0.35389000000E-02 -0.11123000000E-02 0.43780000000E-03 -0.12798900000E-03
|
---|
| 2185 | 11964.216000 0.94822000000E-02 -0.30007000000E-02 0.11827000000E-02 -0.34570200000E-03
|
---|
| 2186 | 5370.7148000 0.23890100000E-01 -0.76563000000E-02 0.30208000000E-02 -0.88340000000E-03
|
---|
| 2187 | 2497.3194000 0.55875700000E-01 -0.18422100000E-01 0.72992000000E-02 -0.21363000000E-02
|
---|
| 2188 | 1198.7679000 0.11791040000 -0.41018400000E-01 0.16352800000E-01 -0.47892000000E-02
|
---|
| 2189 | 592.58026000 0.21279620000 -0.82302600000E-01 0.33296200000E-01 -0.97758000000E-02
|
---|
| 2190 | 300.97708000 0.29893040000 -0.13988400000 0.58013900000E-01 -0.17087700000E-01
|
---|
| 2191 | 156.46024000 0.27656510000 -0.17703370000 0.77023300000E-01 -0.22865600000E-01
|
---|
| 2192 | 82.476086000 0.12929410000 -0.88776100000E-01 0.41106500000E-01 -0.12302800000E-01
|
---|
| 2193 | 42.270887000 0.18587500000E-01 0.22515370000 -0.12257820000 0.37525400000E-01
|
---|
| 2194 | 22.630220000 0.77300000000E-04 0.52071710000 -0.38533970000 0.12443420000
|
---|
| 2195 | 12.122374000 0.34270000000E-03 0.36450930000 -0.36750730000 0.12311950000
|
---|
| 2196 | 6.2491700000 -0.17530000000E-03 0.73616900000E-01 0.15743400000 -0.62433000000E-01
|
---|
| 2197 | 3.2426780000 0.35700000000E-04 0.23540000000E-02 0.64408720000 -0.28948340000
|
---|
| 2198 | 1.6663620000 -0.40650000000E-04 0.16947000000E-02 0.44822090000 -0.37443990000
|
---|
| 2199 | })
|
---|
| 2200 | (type: [am = s]
|
---|
| 2201 | {exp coef:0} = {
|
---|
| 2202 | 0.78726400000 1.0000000000
|
---|
| 2203 | })
|
---|
| 2204 | (type: [am = s]
|
---|
| 2205 | {exp coef:0} = {
|
---|
| 2206 | 0.40297200000 1.0000000000
|
---|
| 2207 | })
|
---|
| 2208 | (type: [am = s]
|
---|
| 2209 | {exp coef:0} = {
|
---|
| 2210 | 0.18709600000 1.0000000000
|
---|
| 2211 | })
|
---|
| 2212 | (type: [am = s]
|
---|
| 2213 | {exp coef:0} = {
|
---|
| 2214 | 0.84706000000E-01 1.0000000000
|
---|
| 2215 | })
|
---|
| 2216 | (type: [am = s]
|
---|
| 2217 | {exp coef:0} = {
|
---|
| 2218 | 0.33935000000E-01 1.0000000000
|
---|
| 2219 | })
|
---|
| 2220 | (type: [am = p am = p am = p]
|
---|
| 2221 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 2222 | 36511.337000 0.32000000000E-04 -0.12700000000E-04 0.31000000000E-05
|
---|
| 2223 | 8640.5510000 0.28540000000E-03 -0.11300000000E-03 0.27300000000E-04
|
---|
| 2224 | 2805.6911000 0.16567000000E-02 -0.65820000000E-03 0.15930000000E-03
|
---|
| 2225 | 1073.4961000 0.73955000000E-02 -0.29528000000E-02 0.71360000000E-03
|
---|
| 2226 | 455.77475000 0.26754300000E-01 -0.10828900000E-01 0.26260000000E-02
|
---|
| 2227 | 208.09432000 0.79098900000E-01 -0.32812400000E-01 0.79667000000E-02
|
---|
| 2228 | 100.23111000 0.18379670000 -0.79507000000E-01 0.19444000000E-01
|
---|
| 2229 | 50.073522000 0.31380410000 -0.14302740000 0.35132800000E-01
|
---|
| 2230 | 25.700262000 0.34436500000 -0.16277870000 0.40402800000E-01
|
---|
| 2231 | 13.346792000 0.18985910000 -0.42983000000E-02 -0.33969000000E-02
|
---|
| 2232 | 6.7870510000 0.37919300000E-01 0.30918290000 -0.92099900000E-01
|
---|
| 2233 | 3.3916540000 0.21781000000E-02 0.47760130000 -0.15350900000
|
---|
| 2234 | 1.6703270000 0.65900000000E-03 0.29285260000 -0.10587050000
|
---|
| 2235 | })
|
---|
| 2236 | (type: [am = p]
|
---|
| 2237 | {exp coef:0} = {
|
---|
| 2238 | 0.75259900000 1.0000000000
|
---|
| 2239 | })
|
---|
| 2240 | (type: [am = p]
|
---|
| 2241 | {exp coef:0} = {
|
---|
| 2242 | 0.34681300000 1.0000000000
|
---|
| 2243 | })
|
---|
| 2244 | (type: [am = p]
|
---|
| 2245 | {exp coef:0} = {
|
---|
| 2246 | 0.15185500000 1.0000000000
|
---|
| 2247 | })
|
---|
| 2248 | (type: [am = p]
|
---|
| 2249 | {exp coef:0} = {
|
---|
| 2250 | 0.63856000000E-01 1.0000000000
|
---|
| 2251 | })
|
---|
| 2252 | (type: [am = p]
|
---|
| 2253 | {exp coef:0} = {
|
---|
| 2254 | 0.24975000000E-01 1.0000000000
|
---|
| 2255 | })
|
---|
| 2256 | (type: [(am = d puream = 1)]
|
---|
| 2257 | {exp coef:0} = {
|
---|
| 2258 | 1635.0663000 0.59100000000E-04
|
---|
| 2259 | 494.67266000 0.58400000000E-03
|
---|
| 2260 | 192.84388000 0.35256000000E-02
|
---|
| 2261 | 85.782195000 0.15112700000E-01
|
---|
| 2262 | 41.149966000 0.47844600000E-01
|
---|
| 2263 | 20.678170000 0.11743450000
|
---|
| 2264 | 10.726386000 0.21590740000
|
---|
| 2265 | 5.6124540000 0.29292160000
|
---|
| 2266 | 2.9203760000 0.30008640000
|
---|
| 2267 | })
|
---|
| 2268 | (type: [(am = d puream = 1)]
|
---|
| 2269 | {exp coef:0} = {
|
---|
| 2270 | 1.4981840000 1.0000000000
|
---|
| 2271 | })
|
---|
| 2272 | (type: [(am = d puream = 1)]
|
---|
| 2273 | {exp coef:0} = {
|
---|
| 2274 | 0.73599900000 1.0000000000
|
---|
| 2275 | })
|
---|
| 2276 | (type: [(am = d puream = 1)]
|
---|
| 2277 | {exp coef:0} = {
|
---|
| 2278 | 0.31600400000 1.0000000000
|
---|
| 2279 | })
|
---|
| 2280 | (type: [(am = d puream = 1)]
|
---|
| 2281 | {exp coef:0} = {
|
---|
| 2282 | 0.13310000000 1.0000000000
|
---|
| 2283 | })
|
---|
| 2284 | (type: [(am = d puream = 1)]
|
---|
| 2285 | {exp coef:0} = {
|
---|
| 2286 | 0.54800000000E-01 1.0000000000
|
---|
| 2287 | })
|
---|
| 2288 | (type: [(am = f puream = 1)]
|
---|
| 2289 | {exp coef:0} = {
|
---|
| 2290 | 0.21000000000 1.0000000000
|
---|
| 2291 | })
|
---|
| 2292 | (type: [(am = f puream = 1)]
|
---|
| 2293 | {exp coef:0} = {
|
---|
| 2294 | 0.42110000000 1.0000000000
|
---|
| 2295 | })
|
---|
| 2296 | (type: [(am = f puream = 1)]
|
---|
| 2297 | {exp coef:0} = {
|
---|
| 2298 | 0.84420000000 1.0000000000
|
---|
| 2299 | })
|
---|
| 2300 | (type: [(am = f puream = 1)]
|
---|
| 2301 | {exp coef:0} = {
|
---|
| 2302 | 0.99200000000E-01 1.0000000000
|
---|
| 2303 | })
|
---|
| 2304 | (type: [(am = g puream = 1)]
|
---|
| 2305 | {exp coef:0} = {
|
---|
| 2306 | 0.38500000000 1.0000000000
|
---|
| 2307 | })
|
---|
| 2308 | (type: [(am = g puream = 1)]
|
---|
| 2309 | {exp coef:0} = {
|
---|
| 2310 | 0.86590000000 1.0000000000
|
---|
| 2311 | })
|
---|
| 2312 | (type: [(am = g puream = 1)]
|
---|
| 2313 | {exp coef:0} = {
|
---|
| 2314 | 0.18300000000 1.0000000000
|
---|
| 2315 | })
|
---|
| 2316 | (type: [(am = h puream = 1)]
|
---|
| 2317 | {exp coef:0} = {
|
---|
| 2318 | 0.72350000000 1.0000000000
|
---|
| 2319 | })
|
---|
| 2320 | (type: [(am = h puream = 1)]
|
---|
| 2321 | {exp coef:0} = {
|
---|
| 2322 | 0.40200000000 1.0000000000
|
---|
| 2323 | })
|
---|
| 2324 | ]
|
---|
| 2325 | %
|
---|
| 2326 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
| 2327 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 2328 | bromine: "aug-cc-pV5Z": [
|
---|
| 2329 | (type: [am = s am = s am = s am = s]
|
---|
| 2330 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 2331 | 165735150.00 0.19000000000E-06 -0.60000000000E-07 0.20000000000E-07 -0.70000000000E-08
|
---|
| 2332 | 24774379.000 0.14900000000E-05 -0.47000000000E-06 0.19000000000E-06 -0.57000000000E-07
|
---|
| 2333 | 5628202.0000 0.78800000000E-05 -0.24700000000E-05 0.98000000000E-06 -0.30100000000E-06
|
---|
| 2334 | 1591899.7000 0.33390000000E-04 -0.10480000000E-04 0.41600000000E-05 -0.12760000000E-05
|
---|
| 2335 | 518263.80000 0.12231000000E-03 -0.38400000000E-04 0.15260000000E-04 -0.46780000000E-05
|
---|
| 2336 | 186490.92000 0.40321000000E-03 -0.12660000000E-03 0.50310000000E-04 -0.15416000000E-04
|
---|
| 2337 | 72332.493000 0.12256400000E-02 -0.38545000000E-03 0.15325000000E-03 -0.46975000000E-04
|
---|
| 2338 | 29761.135000 0.34823500000E-02 -0.10976100000E-02 0.43637000000E-03 -0.13372100000E-03
|
---|
| 2339 | 12851.712000 0.93085600000E-02 -0.29537900000E-02 0.11758000000E-02 -0.36048500000E-03
|
---|
| 2340 | 5780.9430000 0.23388300000E-01 -0.75146000000E-02 0.29946000000E-02 -0.91797600000E-03
|
---|
| 2341 | 2695.0098000 0.54553000000E-01 -0.18023000000E-01 0.72119000000E-02 -0.22129000000E-02
|
---|
| 2342 | 1297.6604000 0.11494790000 -0.40025500000E-01 0.16115100000E-01 -0.49473000000E-02
|
---|
| 2343 | 643.63493000 0.20792250000 -0.80291900000E-01 0.32794300000E-01 -0.10095100000E-01
|
---|
| 2344 | 327.95194000 0.29515960000 -0.13721660000 0.57430900000E-01 -0.17732400000E-01
|
---|
| 2345 | 170.92262000 0.27987660000 -0.17694390000 0.77618700000E-01 -0.24165300000E-01
|
---|
| 2346 | 90.250141000 0.13697520000 -0.97703300000E-01 0.45646400000E-01 -0.14318000000E-01
|
---|
| 2347 | 46.292467000 0.21215400000E-01 0.20676330000 -0.11311710000 0.36281200000E-01
|
---|
| 2348 | 24.848661000 -0.25400000000E-04 0.51484190000 -0.37955960000 0.12865520000
|
---|
| 2349 | 13.347137000 0.45700000000E-03 0.37992060000 -0.38514940000 0.13568880000
|
---|
| 2350 | 6.9482580000 -0.23480000000E-03 0.83012800000E-01 0.12368510000 -0.51676400000E-01
|
---|
| 2351 | 3.6250750000 0.68580000000E-04 0.32157000000E-02 0.64061380000 -0.30307240000
|
---|
| 2352 | 1.8821530000 -0.61160000000E-04 0.17129000000E-02 0.47074360000 -0.40738380000
|
---|
| 2353 | })
|
---|
| 2354 | (type: [am = s]
|
---|
| 2355 | {exp coef:0} = {
|
---|
| 2356 | 0.91082200000 1.0000000000
|
---|
| 2357 | })
|
---|
| 2358 | (type: [am = s]
|
---|
| 2359 | {exp coef:0} = {
|
---|
| 2360 | 0.46395700000 1.0000000000
|
---|
| 2361 | })
|
---|
| 2362 | (type: [am = s]
|
---|
| 2363 | {exp coef:0} = {
|
---|
| 2364 | 0.21693300000 1.0000000000
|
---|
| 2365 | })
|
---|
| 2366 | (type: [am = s]
|
---|
| 2367 | {exp coef:0} = {
|
---|
| 2368 | 0.98406000000E-01 1.0000000000
|
---|
| 2369 | })
|
---|
| 2370 | (type: [am = s]
|
---|
| 2371 | {exp coef:0} = {
|
---|
| 2372 | 0.39106000000E-01 1.0000000000
|
---|
| 2373 | })
|
---|
| 2374 | (type: [am = p am = p am = p]
|
---|
| 2375 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 2376 | 39391.530000 0.31200000000E-04 -0.12500000000E-04 0.32000000000E-05
|
---|
| 2377 | 9325.2225000 0.27800000000E-03 -0.11160000000E-03 0.28800000000E-04
|
---|
| 2378 | 3028.9943000 0.16138000000E-02 -0.64990000000E-03 0.16840000000E-03
|
---|
| 2379 | 1159.5145000 0.72049000000E-02 -0.29159000000E-02 0.75430000000E-03
|
---|
| 2380 | 492.68131000 0.26087300000E-01 -0.10700900000E-01 0.27801000000E-02
|
---|
| 2381 | 225.17451000 0.77297100000E-01 -0.32495100000E-01 0.84462000000E-02
|
---|
| 2382 | 108.59326000 0.18047750000 -0.79112300000E-01 0.20737600000E-01
|
---|
| 2383 | 54.336079000 0.31061260000 -0.14352520000 0.37754200000E-01
|
---|
| 2384 | 27.936650000 0.34542970000 -0.16582480000 0.44206200000E-01
|
---|
| 2385 | 14.539626000 0.19485150000 -0.10659100000E-01 -0.21775000000E-02
|
---|
| 2386 | 7.4213070000 0.40386000000E-01 0.30506620000 -0.97953000000E-01
|
---|
| 2387 | 3.7303890000 0.23091000000E-02 0.48135630000 -0.16926560000
|
---|
| 2388 | 1.8541270000 0.67150000000E-03 0.29427690000 -0.11174900000
|
---|
| 2389 | })
|
---|
| 2390 | (type: [am = p]
|
---|
| 2391 | {exp coef:0} = {
|
---|
| 2392 | 0.84533700000 1.0000000000
|
---|
| 2393 | })
|
---|
| 2394 | (type: [am = p]
|
---|
| 2395 | {exp coef:0} = {
|
---|
| 2396 | 0.39215200000 1.0000000000
|
---|
| 2397 | })
|
---|
| 2398 | (type: [am = p]
|
---|
| 2399 | {exp coef:0} = {
|
---|
| 2400 | 0.17276700000 1.0000000000
|
---|
| 2401 | })
|
---|
| 2402 | (type: [am = p]
|
---|
| 2403 | {exp coef:0} = {
|
---|
| 2404 | 0.72908000000E-01 1.0000000000
|
---|
| 2405 | })
|
---|
| 2406 | (type: [am = p]
|
---|
| 2407 | {exp coef:0} = {
|
---|
| 2408 | 0.29052000000E-01 1.0000000000
|
---|
| 2409 | })
|
---|
| 2410 | (type: [(am = d puream = 1)]
|
---|
| 2411 | {exp coef:0} = {
|
---|
| 2412 | 1850.6354000 0.53800000000E-04
|
---|
| 2413 | 557.07125000 0.54020000000E-03
|
---|
| 2414 | 216.48687000 0.33012000000E-02
|
---|
| 2415 | 96.138850000 0.14355100000E-01
|
---|
| 2416 | 46.126380000 0.46116800000E-01
|
---|
| 2417 | 23.201164000 0.11478730000
|
---|
| 2418 | 12.055926000 0.21453690000
|
---|
| 2419 | 6.3255450000 0.29531310000
|
---|
| 2420 | 3.3049220000 0.30409380000
|
---|
| 2421 | })
|
---|
| 2422 | (type: [(am = d puream = 1)]
|
---|
| 2423 | {exp coef:0} = {
|
---|
| 2424 | 1.7042530000 1.0000000000
|
---|
| 2425 | })
|
---|
| 2426 | (type: [(am = d puream = 1)]
|
---|
| 2427 | {exp coef:0} = {
|
---|
| 2428 | 0.83994000000 1.0000000000
|
---|
| 2429 | })
|
---|
| 2430 | (type: [(am = d puream = 1)]
|
---|
| 2431 | {exp coef:0} = {
|
---|
| 2432 | 0.35695300000 1.0000000000
|
---|
| 2433 | })
|
---|
| 2434 | (type: [(am = d puream = 1)]
|
---|
| 2435 | {exp coef:0} = {
|
---|
| 2436 | 0.15200000000 1.0000000000
|
---|
| 2437 | })
|
---|
| 2438 | (type: [(am = d puream = 1)]
|
---|
| 2439 | {exp coef:0} = {
|
---|
| 2440 | 0.78100000000E-01 1.0000000000
|
---|
| 2441 | })
|
---|
| 2442 | (type: [(am = f puream = 1)]
|
---|
| 2443 | {exp coef:0} = {
|
---|
| 2444 | 0.25500000000 1.0000000000
|
---|
| 2445 | })
|
---|
| 2446 | (type: [(am = f puream = 1)]
|
---|
| 2447 | {exp coef:0} = {
|
---|
| 2448 | 0.49550000000 1.0000000000
|
---|
| 2449 | })
|
---|
| 2450 | (type: [(am = f puream = 1)]
|
---|
| 2451 | {exp coef:0} = {
|
---|
| 2452 | 0.96270000000 1.0000000000
|
---|
| 2453 | })
|
---|
| 2454 | (type: [(am = f puream = 1)]
|
---|
| 2455 | {exp coef:0} = {
|
---|
| 2456 | 0.13880000000 1.0000000000
|
---|
| 2457 | })
|
---|
| 2458 | (type: [(am = g puream = 1)]
|
---|
| 2459 | {exp coef:0} = {
|
---|
| 2460 | 0.43900000000 1.0000000000
|
---|
| 2461 | })
|
---|
| 2462 | (type: [(am = g puream = 1)]
|
---|
| 2463 | {exp coef:0} = {
|
---|
| 2464 | 0.97680000000 1.0000000000
|
---|
| 2465 | })
|
---|
| 2466 | (type: [(am = g puream = 1)]
|
---|
| 2467 | {exp coef:0} = {
|
---|
| 2468 | 0.21900000000 1.0000000000
|
---|
| 2469 | })
|
---|
| 2470 | (type: [(am = h puream = 1)]
|
---|
| 2471 | {exp coef:0} = {
|
---|
| 2472 | 0.81930000000 1.0000000000
|
---|
| 2473 | })
|
---|
| 2474 | (type: [(am = h puream = 1)]
|
---|
| 2475 | {exp coef:0} = {
|
---|
| 2476 | 0.49100000000 1.0000000000
|
---|
| 2477 | })
|
---|
| 2478 | ]
|
---|
| 2479 | %
|
---|
| 2480 | % BASIS SET: (26s,17p,13d,3f,2g,1h) -> [8s,7p,5d,3f,2g,1h]
|
---|
| 2481 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 2482 | krypton: "aug-cc-pV5Z": [
|
---|
| 2483 | (type: [am = s am = s am = s am = s]
|
---|
| 2484 | {exp coef:0 coef:1 coef:2 coef:3} = {
|
---|
| 2485 | 182822090.00 0.18000000000E-06 -0.57000000000E-06 0.20000000000E-07 -0.60000000000E-08
|
---|
| 2486 | 27356156.000 0.14200000000E-05 -0.45000000000E-06 0.18000000000E-06 -0.57000000000E-07
|
---|
| 2487 | 6221170.4000 0.74600000000E-05 -0.23500000000E-05 0.94000000000E-06 -0.30000000000E-06
|
---|
| 2488 | 1760277.9000 0.31590000000E-04 -0.99400000000E-05 0.39900000000E-05 -0.12700000000E-05
|
---|
| 2489 | 573193.82000 0.11575000000E-03 -0.36400000000E-04 0.14620000000E-04 -0.46580000000E-05
|
---|
| 2490 | 206258.45000 0.38150000000E-03 -0.12010000000E-03 0.48190000000E-04 -0.15347000000E-04
|
---|
| 2491 | 80026.669000 0.11590000000E-02 -0.36540000000E-03 0.14670000000E-03 -0.46736000000E-04
|
---|
| 2492 | 32939.084000 0.32934000000E-02 -0.10407000000E-02 0.41770000000E-03 -0.13302200000E-03
|
---|
| 2493 | 14222.633000 0.88161000000E-02 -0.28038000000E-02 0.11267000000E-02 -0.35906200000E-03
|
---|
| 2494 | 6393.0707000 0.22218000000E-01 -0.71509000000E-02 0.28769000000E-02 -0.91650000000E-03
|
---|
| 2495 | 2976.4538000 0.52088100000E-01 -0.17220400000E-01 0.69549000000E-02 -0.22184000000E-02
|
---|
| 2496 | 1430.5254000 0.11063560000 -0.38480000000E-01 0.15636500000E-01 -0.49883000000E-02
|
---|
| 2497 | 707.92621000 0.20253260000 -0.77862800000E-01 0.32080100000E-01 -0.10266100000E-01
|
---|
| 2498 | 359.84847000 0.29263500000 -0.13474230000 0.56868900000E-01 -0.18244500000E-01
|
---|
| 2499 | 187.14965000 0.28512240000 -0.17761480000 0.78484500000E-01 -0.25411000000E-01
|
---|
| 2500 | 98.634523000 0.14550640000 -0.10684130000 0.50339800000E-01 -0.16393100000E-01
|
---|
| 2501 | 50.547869000 0.23993900000E-01 0.18961320000 -0.10427420000 0.34697700000E-01
|
---|
| 2502 | 27.167004000 -0.94900000000E-04 0.50918710000 -0.37437610000 0.13212830000
|
---|
| 2503 | 14.615098000 0.55780000000E-03 0.39398590000 -0.40111310000 0.14709250000
|
---|
| 2504 | 7.6513520000 -0.28700000000E-03 0.91903200000E-01 0.96838800000E-01 -0.41821600000E-01
|
---|
| 2505 | 3.9972630000 0.96600000000E-04 0.39195000000E-02 0.64287760000 -0.31952400000
|
---|
| 2506 | 2.0858530000 -0.78400000000E-04 0.17496000000E-02 0.48606000000 -0.43632860000
|
---|
| 2507 | })
|
---|
| 2508 | (type: [am = s]
|
---|
| 2509 | {exp coef:0} = {
|
---|
| 2510 | 1.0147970000 1.0000000000
|
---|
| 2511 | })
|
---|
| 2512 | (type: [am = s]
|
---|
| 2513 | {exp coef:0} = {
|
---|
| 2514 | 0.51978800000 1.0000000000
|
---|
| 2515 | })
|
---|
| 2516 | (type: [am = s]
|
---|
| 2517 | {exp coef:0} = {
|
---|
| 2518 | 0.24510300000 1.0000000000
|
---|
| 2519 | })
|
---|
| 2520 | (type: [am = s]
|
---|
| 2521 | {exp coef:0} = {
|
---|
| 2522 | 0.11189600000 1.0000000000
|
---|
| 2523 | })
|
---|
| 2524 | (type: [am = s]
|
---|
| 2525 | {exp coef:0} = {
|
---|
| 2526 | 0.44277000000E-01 1.0000000000
|
---|
| 2527 | })
|
---|
| 2528 | (type: [am = p am = p am = p]
|
---|
| 2529 | {exp coef:0 coef:1 coef:2} = {
|
---|
| 2530 | 42993.056000 0.29700000000E-04 -0.12100000000E-04 0.33000000000E-05
|
---|
| 2531 | 10173.723000 0.26510000000E-03 -0.10780000000E-03 0.29300000000E-04
|
---|
| 2532 | 3303.1057000 0.15416000000E-02 -0.62900000000E-03 0.17130000000E-03
|
---|
| 2533 | 1263.5400000 0.69065000000E-02 -0.28323000000E-02 0.76950000000E-03
|
---|
| 2534 | 536.36546000 0.25139700000E-01 -0.10446200000E-01 0.28514000000E-02
|
---|
| 2535 | 244.87617000 0.75012400000E-01 -0.31940000000E-01 0.87204000000E-02
|
---|
| 2536 | 117.99117000 0.17674330000 -0.78459900000E-01 0.21618100000E-01
|
---|
| 2537 | 59.021248000 0.30751350000 -0.14397190000 0.39802400000E-01
|
---|
| 2538 | 30.356067000 0.34706440000 -0.16917030000 0.47477500000E-01
|
---|
| 2539 | 15.819977000 0.20028020000 -0.17596600000E-01 -0.47730000000E-03
|
---|
| 2540 | 8.1045800000 0.43050800000E-01 0.30026490000 -0.10218910000
|
---|
| 2541 | 4.0979640000 0.24772000000E-02 0.48476610000 -0.18236110000
|
---|
| 2542 | 2.0560610000 0.67890000000E-03 0.29672480000 -0.11733630000
|
---|
| 2543 | })
|
---|
| 2544 | (type: [am = p]
|
---|
| 2545 | {exp coef:0} = {
|
---|
| 2546 | 0.95214500000 1.0000000000
|
---|
| 2547 | })
|
---|
| 2548 | (type: [am = p]
|
---|
| 2549 | {exp coef:0} = {
|
---|
| 2550 | 0.44477400000 1.0000000000
|
---|
| 2551 | })
|
---|
| 2552 | (type: [am = p]
|
---|
| 2553 | {exp coef:0} = {
|
---|
| 2554 | 0.19749600000 1.0000000000
|
---|
| 2555 | })
|
---|
| 2556 | (type: [am = p]
|
---|
| 2557 | {exp coef:0} = {
|
---|
| 2558 | 0.83823000000E-01 1.0000000000
|
---|
| 2559 | })
|
---|
| 2560 | (type: [am = p]
|
---|
| 2561 | {exp coef:0} = {
|
---|
| 2562 | 0.33129000000E-01 1.0000000000
|
---|
| 2563 | })
|
---|
| 2564 | (type: [(am = d puream = 1)]
|
---|
| 2565 | {exp coef:0} = {
|
---|
| 2566 | 2067.4360000 0.49600000000E-04
|
---|
| 2567 | 625.69371000 0.49440000000E-03
|
---|
| 2568 | 243.94679000 0.30265000000E-02
|
---|
| 2569 | 108.42373000 0.13346100000E-01
|
---|
| 2570 | 52.005216000 0.43786900000E-01
|
---|
| 2571 | 26.115405000 0.11143880000
|
---|
| 2572 | 13.546748000 0.21303410000
|
---|
| 2573 | 7.1058100000 0.29792410000
|
---|
| 2574 | 3.7215540000 0.30796600000
|
---|
| 2575 | })
|
---|
| 2576 | (type: [(am = d puream = 1)]
|
---|
| 2577 | {exp coef:0} = {
|
---|
| 2578 | 1.9291200000 1.0000000000
|
---|
| 2579 | })
|
---|
| 2580 | (type: [(am = d puream = 1)]
|
---|
| 2581 | {exp coef:0} = {
|
---|
| 2582 | 0.95582600000 1.0000000000
|
---|
| 2583 | })
|
---|
| 2584 | (type: [(am = d puream = 1)]
|
---|
| 2585 | {exp coef:0} = {
|
---|
| 2586 | 0.40519700000 1.0000000000
|
---|
| 2587 | })
|
---|
| 2588 | (type: [(am = d puream = 1)]
|
---|
| 2589 | {exp coef:0} = {
|
---|
| 2590 | 0.17410000000 1.0000000000
|
---|
| 2591 | })
|
---|
| 2592 | (type: [(am = d puream = 1)]
|
---|
| 2593 | {exp coef:0} = {
|
---|
| 2594 | 0.10140000000 1.0000000000
|
---|
| 2595 | })
|
---|
| 2596 | (type: [(am = f puream = 1)]
|
---|
| 2597 | {exp coef:0} = {
|
---|
| 2598 | 0.31500000000 1.0000000000
|
---|
| 2599 | })
|
---|
| 2600 | (type: [(am = f puream = 1)]
|
---|
| 2601 | {exp coef:0} = {
|
---|
| 2602 | 0.58700000000 1.0000000000
|
---|
| 2603 | })
|
---|
| 2604 | (type: [(am = f puream = 1)]
|
---|
| 2605 | {exp coef:0} = {
|
---|
| 2606 | 1.0940000000 1.0000000000
|
---|
| 2607 | })
|
---|
| 2608 | (type: [(am = f puream = 1)]
|
---|
| 2609 | {exp coef:0} = {
|
---|
| 2610 | 0.17840000000 1.0000000000
|
---|
| 2611 | })
|
---|
| 2612 | (type: [(am = g puream = 1)]
|
---|
| 2613 | {exp coef:0} = {
|
---|
| 2614 | 0.50100000000 1.0000000000
|
---|
| 2615 | })
|
---|
| 2616 | (type: [(am = g puream = 1)]
|
---|
| 2617 | {exp coef:0} = {
|
---|
| 2618 | 1.1040000000 1.0000000000
|
---|
| 2619 | })
|
---|
| 2620 | (type: [(am = g puream = 1)]
|
---|
| 2621 | {exp coef:0} = {
|
---|
| 2622 | 0.25500000000 1.0000000000
|
---|
| 2623 | })
|
---|
| 2624 | (type: [(am = h puream = 1)]
|
---|
| 2625 | {exp coef:0} = {
|
---|
| 2626 | 0.93030000000 1.0000000000
|
---|
| 2627 | })
|
---|
| 2628 | (type: [(am = h puream = 1)]
|
---|
| 2629 | {exp coef:0} = {
|
---|
| 2630 | 0.58000000000 1.0000000000
|
---|
| 2631 | })
|
---|
| 2632 | ]
|
---|
| 2633 | )
|
---|