1 | %BASIS "aug-cc-pCVTZ" CARTESIAN
|
---|
2 | basis:(
|
---|
3 | %Elements References
|
---|
4 | %-------- ----------
|
---|
5 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
6 | % He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
|
---|
7 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
8 | %Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published)
|
---|
9 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
10 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
11 | %Elements References
|
---|
12 | %-------- ----------
|
---|
13 | %Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and
|
---|
14 | % T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995).
|
---|
15 | %Al - Ar: K.A. Peterson and T.H. Dunning, Jr. J. Chem. Phys. 117, 10548 (2002)
|
---|
16 | %Ca : K.A. Peterson (to be published)
|
---|
17 | %Elements References
|
---|
18 | %-------- ---------
|
---|
19 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
20 | % He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
|
---|
21 | % B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
|
---|
22 | % 6769 (1992).
|
---|
23 | %Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
24 | %
|
---|
25 | %
|
---|
26 | % BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
|
---|
27 | % AUGMENTING FUNCTIONS: Tight (s,p,d)
|
---|
28 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
29 | boron: "aug-cc-pCVTZ": [
|
---|
30 | (type: [am = s am = s]
|
---|
31 | {exp coef:0 coef:1} = {
|
---|
32 | 5473.0000000 0.55500000000E-03 -0.11200000000E-03
|
---|
33 | 820.90000000 0.42910000000E-02 -0.86800000000E-03
|
---|
34 | 186.80000000 0.21949000000E-01 -0.44840000000E-02
|
---|
35 | 52.830000000 0.84441000000E-01 -0.17683000000E-01
|
---|
36 | 17.080000000 0.23855700000 -0.53639000000E-01
|
---|
37 | 5.9990000000 0.43507200000 -0.11900500000
|
---|
38 | 2.2080000000 0.34195500000 -0.16582400000
|
---|
39 | 0.24150000000 -0.95450000000E-02 0.59598100000
|
---|
40 | })
|
---|
41 | (type: [am = s]
|
---|
42 | {exp coef:0} = {
|
---|
43 | 0.58790000000 1.0000000000
|
---|
44 | })
|
---|
45 | (type: [am = s]
|
---|
46 | {exp coef:0} = {
|
---|
47 | 0.86100000000E-01 1.0000000000
|
---|
48 | })
|
---|
49 | (type: [am = s]
|
---|
50 | {exp coef:0} = {
|
---|
51 | 2.9400000000 1.0000000000
|
---|
52 | })
|
---|
53 | (type: [am = s]
|
---|
54 | {exp coef:0} = {
|
---|
55 | 8.3110000000 1.0000000000
|
---|
56 | })
|
---|
57 | (type: [am = s]
|
---|
58 | {exp coef:0} = {
|
---|
59 | 0.29140000000E-01 1.0000000000
|
---|
60 | })
|
---|
61 | (type: [am = p]
|
---|
62 | {exp coef:0} = {
|
---|
63 | 12.050000000 0.13118000000E-01
|
---|
64 | 2.6130000000 0.79896000000E-01
|
---|
65 | 0.74750000000 0.27727500000
|
---|
66 | })
|
---|
67 | (type: [am = p]
|
---|
68 | {exp coef:0} = {
|
---|
69 | 0.23850000000 1.0000000000
|
---|
70 | })
|
---|
71 | (type: [am = p]
|
---|
72 | {exp coef:0} = {
|
---|
73 | 0.76980000000E-01 1.0000000000
|
---|
74 | })
|
---|
75 | (type: [am = p]
|
---|
76 | {exp coef:0} = {
|
---|
77 | 6.0160000000 1.0000000000
|
---|
78 | })
|
---|
79 | (type: [am = p]
|
---|
80 | {exp coef:0} = {
|
---|
81 | 22.891000000 1.0000000000
|
---|
82 | })
|
---|
83 | (type: [am = p]
|
---|
84 | {exp coef:0} = {
|
---|
85 | 0.20960000000E-01 1.0000000000
|
---|
86 | })
|
---|
87 | (type: [(am = d puream = 1)]
|
---|
88 | {exp coef:0} = {
|
---|
89 | 0.66100000000 1.0000000000
|
---|
90 | })
|
---|
91 | (type: [(am = d puream = 1)]
|
---|
92 | {exp coef:0} = {
|
---|
93 | 0.19900000000 1.0000000000
|
---|
94 | })
|
---|
95 | (type: [(am = d puream = 1)]
|
---|
96 | {exp coef:0} = {
|
---|
97 | 13.015000000 1.0000000000
|
---|
98 | })
|
---|
99 | (type: [(am = d puream = 1)]
|
---|
100 | {exp coef:0} = {
|
---|
101 | 0.60400000000E-01 1.0000000000
|
---|
102 | })
|
---|
103 | (type: [(am = f puream = 1)]
|
---|
104 | {exp coef:0} = {
|
---|
105 | 0.49000000000 1.0000000000
|
---|
106 | })
|
---|
107 | (type: [(am = f puream = 1)]
|
---|
108 | {exp coef:0} = {
|
---|
109 | 0.16300000000 1.0000000000
|
---|
110 | })
|
---|
111 | ]
|
---|
112 | %
|
---|
113 | % BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
|
---|
114 | % AUGMENTING FUNCTIONS: Tight (s,p,d)
|
---|
115 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
116 | carbon: "aug-cc-pCVTZ": [
|
---|
117 | (type: [am = s am = s]
|
---|
118 | {exp coef:0 coef:1} = {
|
---|
119 | 8236.0000000 0.53100000000E-03 -0.11300000000E-03
|
---|
120 | 1235.0000000 0.41080000000E-02 -0.87800000000E-03
|
---|
121 | 280.80000000 0.21087000000E-01 -0.45400000000E-02
|
---|
122 | 79.270000000 0.81853000000E-01 -0.18133000000E-01
|
---|
123 | 25.590000000 0.23481700000 -0.55760000000E-01
|
---|
124 | 8.9970000000 0.43440100000 -0.12689500000
|
---|
125 | 3.3190000000 0.34612900000 -0.17035200000
|
---|
126 | 0.36430000000 -0.89830000000E-02 0.59868400000
|
---|
127 | })
|
---|
128 | (type: [am = s]
|
---|
129 | {exp coef:0} = {
|
---|
130 | 0.90590000000 1.0000000000
|
---|
131 | })
|
---|
132 | (type: [am = s]
|
---|
133 | {exp coef:0} = {
|
---|
134 | 0.12850000000 1.0000000000
|
---|
135 | })
|
---|
136 | (type: [am = s]
|
---|
137 | {exp coef:0} = {
|
---|
138 | 4.2920000000 1.0000000000
|
---|
139 | })
|
---|
140 | (type: [am = s]
|
---|
141 | {exp coef:0} = {
|
---|
142 | 11.876000000 1.0000000000
|
---|
143 | })
|
---|
144 | (type: [am = s]
|
---|
145 | {exp coef:0} = {
|
---|
146 | 0.44020000000E-01 1.0000000000
|
---|
147 | })
|
---|
148 | (type: [am = p]
|
---|
149 | {exp coef:0} = {
|
---|
150 | 18.710000000 0.14031000000E-01
|
---|
151 | 4.1330000000 0.86866000000E-01
|
---|
152 | 1.2000000000 0.29021600000
|
---|
153 | })
|
---|
154 | (type: [am = p]
|
---|
155 | {exp coef:0} = {
|
---|
156 | 0.38270000000 1.0000000000
|
---|
157 | })
|
---|
158 | (type: [am = p]
|
---|
159 | {exp coef:0} = {
|
---|
160 | 0.12090000000 1.0000000000
|
---|
161 | })
|
---|
162 | (type: [am = p]
|
---|
163 | {exp coef:0} = {
|
---|
164 | 8.7780000000 1.0000000000
|
---|
165 | })
|
---|
166 | (type: [am = p]
|
---|
167 | {exp coef:0} = {
|
---|
168 | 33.190000000 1.0000000000
|
---|
169 | })
|
---|
170 | (type: [am = p]
|
---|
171 | {exp coef:0} = {
|
---|
172 | 0.35690000000E-01 1.0000000000
|
---|
173 | })
|
---|
174 | (type: [(am = d puream = 1)]
|
---|
175 | {exp coef:0} = {
|
---|
176 | 1.0970000000 1.0000000000
|
---|
177 | })
|
---|
178 | (type: [(am = d puream = 1)]
|
---|
179 | {exp coef:0} = {
|
---|
180 | 0.31800000000 1.0000000000
|
---|
181 | })
|
---|
182 | (type: [(am = d puream = 1)]
|
---|
183 | {exp coef:0} = {
|
---|
184 | 14.839000000 1.0000000000
|
---|
185 | })
|
---|
186 | (type: [(am = d puream = 1)]
|
---|
187 | {exp coef:0} = {
|
---|
188 | 0.10000000000 1.0000000000
|
---|
189 | })
|
---|
190 | (type: [(am = f puream = 1)]
|
---|
191 | {exp coef:0} = {
|
---|
192 | 0.76100000000 1.0000000000
|
---|
193 | })
|
---|
194 | (type: [(am = f puream = 1)]
|
---|
195 | {exp coef:0} = {
|
---|
196 | 0.26800000000 1.0000000000
|
---|
197 | })
|
---|
198 | ]
|
---|
199 | %
|
---|
200 | % BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
|
---|
201 | % AUGMENTING FUNCTIONS: Tight (s,p,d)
|
---|
202 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
203 | nitrogen: "aug-cc-pCVTZ": [
|
---|
204 | (type: [am = s am = s]
|
---|
205 | {exp coef:0 coef:1} = {
|
---|
206 | 11420.000000 0.52300000000E-03 -0.11500000000E-03
|
---|
207 | 1712.0000000 0.40450000000E-02 -0.89500000000E-03
|
---|
208 | 389.30000000 0.20775000000E-01 -0.46240000000E-02
|
---|
209 | 110.00000000 0.80727000000E-01 -0.18528000000E-01
|
---|
210 | 35.570000000 0.23307400000 -0.57339000000E-01
|
---|
211 | 12.540000000 0.43350100000 -0.13207600000
|
---|
212 | 4.6440000000 0.34747200000 -0.17251000000
|
---|
213 | 0.51180000000 -0.85080000000E-02 0.59994400000
|
---|
214 | })
|
---|
215 | (type: [am = s]
|
---|
216 | {exp coef:0} = {
|
---|
217 | 1.2930000000 1.0000000000
|
---|
218 | })
|
---|
219 | (type: [am = s]
|
---|
220 | {exp coef:0} = {
|
---|
221 | 0.17870000000 1.0000000000
|
---|
222 | })
|
---|
223 | (type: [am = s]
|
---|
224 | {exp coef:0} = {
|
---|
225 | 5.9520000000 1.0000000000
|
---|
226 | })
|
---|
227 | (type: [am = s]
|
---|
228 | {exp coef:0} = {
|
---|
229 | 16.201000000 1.0000000000
|
---|
230 | })
|
---|
231 | (type: [am = s]
|
---|
232 | {exp coef:0} = {
|
---|
233 | 0.57600000000E-01 1.0000000000
|
---|
234 | })
|
---|
235 | (type: [am = p]
|
---|
236 | {exp coef:0} = {
|
---|
237 | 26.630000000 0.14670000000E-01
|
---|
238 | 5.9480000000 0.91764000000E-01
|
---|
239 | 1.7420000000 0.29868300000
|
---|
240 | })
|
---|
241 | (type: [am = p]
|
---|
242 | {exp coef:0} = {
|
---|
243 | 0.55500000000 1.0000000000
|
---|
244 | })
|
---|
245 | (type: [am = p]
|
---|
246 | {exp coef:0} = {
|
---|
247 | 0.17250000000 1.0000000000
|
---|
248 | })
|
---|
249 | (type: [am = p]
|
---|
250 | {exp coef:0} = {
|
---|
251 | 11.871000000 1.0000000000
|
---|
252 | })
|
---|
253 | (type: [am = p]
|
---|
254 | {exp coef:0} = {
|
---|
255 | 44.849000000 1.0000000000
|
---|
256 | })
|
---|
257 | (type: [am = p]
|
---|
258 | {exp coef:0} = {
|
---|
259 | 0.49100000000E-01 1.0000000000
|
---|
260 | })
|
---|
261 | (type: [(am = d puream = 1)]
|
---|
262 | {exp coef:0} = {
|
---|
263 | 1.6540000000 1.0000000000
|
---|
264 | })
|
---|
265 | (type: [(am = d puream = 1)]
|
---|
266 | {exp coef:0} = {
|
---|
267 | 0.46900000000 1.0000000000
|
---|
268 | })
|
---|
269 | (type: [(am = d puream = 1)]
|
---|
270 | {exp coef:0} = {
|
---|
271 | 14.200000000 1.0000000000
|
---|
272 | })
|
---|
273 | (type: [(am = d puream = 1)]
|
---|
274 | {exp coef:0} = {
|
---|
275 | 0.15100000000 1.0000000000
|
---|
276 | })
|
---|
277 | (type: [(am = f puream = 1)]
|
---|
278 | {exp coef:0} = {
|
---|
279 | 1.0930000000 1.0000000000
|
---|
280 | })
|
---|
281 | (type: [(am = f puream = 1)]
|
---|
282 | {exp coef:0} = {
|
---|
283 | 0.36400000000 1.0000000000
|
---|
284 | })
|
---|
285 | ]
|
---|
286 | %
|
---|
287 | % BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
|
---|
288 | % AUGMENTING FUNCTIONS: Tight (s,p,d)
|
---|
289 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
290 | oxygen: "aug-cc-pCVTZ": [
|
---|
291 | (type: [am = s am = s]
|
---|
292 | {exp coef:0 coef:1} = {
|
---|
293 | 15330.000000 0.50800000000E-03 -0.11500000000E-03
|
---|
294 | 2299.0000000 0.39290000000E-02 -0.89500000000E-03
|
---|
295 | 522.40000000 0.20243000000E-01 -0.46360000000E-02
|
---|
296 | 147.30000000 0.79181000000E-01 -0.18724000000E-01
|
---|
297 | 47.550000000 0.23068700000 -0.58463000000E-01
|
---|
298 | 16.760000000 0.43311800000 -0.13646300000
|
---|
299 | 6.2070000000 0.35026000000 -0.17574000000
|
---|
300 | 0.68820000000 -0.81540000000E-02 0.60341800000
|
---|
301 | })
|
---|
302 | (type: [am = s]
|
---|
303 | {exp coef:0} = {
|
---|
304 | 1.7520000000 1.0000000000
|
---|
305 | })
|
---|
306 | (type: [am = s]
|
---|
307 | {exp coef:0} = {
|
---|
308 | 0.23840000000 1.0000000000
|
---|
309 | })
|
---|
310 | (type: [am = s]
|
---|
311 | {exp coef:0} = {
|
---|
312 | 7.8450000000 1.0000000000
|
---|
313 | })
|
---|
314 | (type: [am = s]
|
---|
315 | {exp coef:0} = {
|
---|
316 | 21.032000000 1.0000000000
|
---|
317 | })
|
---|
318 | (type: [am = s]
|
---|
319 | {exp coef:0} = {
|
---|
320 | 0.73760000000E-01 1.0000000000
|
---|
321 | })
|
---|
322 | (type: [am = p]
|
---|
323 | {exp coef:0} = {
|
---|
324 | 34.460000000 0.15928000000E-01
|
---|
325 | 7.7490000000 0.99740000000E-01
|
---|
326 | 2.2800000000 0.31049200000
|
---|
327 | })
|
---|
328 | (type: [am = p]
|
---|
329 | {exp coef:0} = {
|
---|
330 | 0.71560000000 1.0000000000
|
---|
331 | })
|
---|
332 | (type: [am = p]
|
---|
333 | {exp coef:0} = {
|
---|
334 | 0.21400000000 1.0000000000
|
---|
335 | })
|
---|
336 | (type: [am = p]
|
---|
337 | {exp coef:0} = {
|
---|
338 | 15.159000000 1.0000000000
|
---|
339 | })
|
---|
340 | (type: [am = p]
|
---|
341 | {exp coef:0} = {
|
---|
342 | 57.437000000 1.0000000000
|
---|
343 | })
|
---|
344 | (type: [am = p]
|
---|
345 | {exp coef:0} = {
|
---|
346 | 0.59740000000E-01 1.0000000000
|
---|
347 | })
|
---|
348 | (type: [(am = d puream = 1)]
|
---|
349 | {exp coef:0} = {
|
---|
350 | 2.3140000000 1.0000000000
|
---|
351 | })
|
---|
352 | (type: [(am = d puream = 1)]
|
---|
353 | {exp coef:0} = {
|
---|
354 | 0.64500000000 1.0000000000
|
---|
355 | })
|
---|
356 | (type: [(am = d puream = 1)]
|
---|
357 | {exp coef:0} = {
|
---|
358 | 15.858000000 1.0000000000
|
---|
359 | })
|
---|
360 | (type: [(am = d puream = 1)]
|
---|
361 | {exp coef:0} = {
|
---|
362 | 0.21400000000 1.0000000000
|
---|
363 | })
|
---|
364 | (type: [(am = f puream = 1)]
|
---|
365 | {exp coef:0} = {
|
---|
366 | 1.4280000000 1.0000000000
|
---|
367 | })
|
---|
368 | (type: [(am = f puream = 1)]
|
---|
369 | {exp coef:0} = {
|
---|
370 | 0.50000000000 1.0000000000
|
---|
371 | })
|
---|
372 | ]
|
---|
373 | %
|
---|
374 | % BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
|
---|
375 | % AUGMENTING FUNCTIONS: Tight (s,p,d)
|
---|
376 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
377 | fluorine: "aug-cc-pCVTZ": [
|
---|
378 | (type: [am = s am = s]
|
---|
379 | {exp coef:0 coef:1} = {
|
---|
380 | 19500.000000 0.50700000000E-03 -0.11700000000E-03
|
---|
381 | 2923.0000000 0.39230000000E-02 -0.91200000000E-03
|
---|
382 | 664.50000000 0.20200000000E-01 -0.47170000000E-02
|
---|
383 | 187.50000000 0.79010000000E-01 -0.19086000000E-01
|
---|
384 | 60.620000000 0.23043900000 -0.59655000000E-01
|
---|
385 | 21.420000000 0.43287200000 -0.14001000000
|
---|
386 | 7.9500000000 0.34996400000 -0.17678200000
|
---|
387 | 0.88150000000 -0.78920000000E-02 0.60504300000
|
---|
388 | })
|
---|
389 | (type: [am = s]
|
---|
390 | {exp coef:0} = {
|
---|
391 | 2.2570000000 1.0000000000
|
---|
392 | })
|
---|
393 | (type: [am = s]
|
---|
394 | {exp coef:0} = {
|
---|
395 | 0.30410000000 1.0000000000
|
---|
396 | })
|
---|
397 | (type: [am = s]
|
---|
398 | {exp coef:0} = {
|
---|
399 | 9.8120000000 1.0000000000
|
---|
400 | })
|
---|
401 | (type: [am = s]
|
---|
402 | {exp coef:0} = {
|
---|
403 | 25.943000000 1.0000000000
|
---|
404 | })
|
---|
405 | (type: [am = s]
|
---|
406 | {exp coef:0} = {
|
---|
407 | 0.91580000000E-01 1.0000000000
|
---|
408 | })
|
---|
409 | (type: [am = p]
|
---|
410 | {exp coef:0} = {
|
---|
411 | 43.880000000 0.16665000000E-01
|
---|
412 | 9.9260000000 0.10447200000
|
---|
413 | 2.9300000000 0.31726000000
|
---|
414 | })
|
---|
415 | (type: [am = p]
|
---|
416 | {exp coef:0} = {
|
---|
417 | 0.91320000000 1.0000000000
|
---|
418 | })
|
---|
419 | (type: [am = p]
|
---|
420 | {exp coef:0} = {
|
---|
421 | 0.26720000000 1.0000000000
|
---|
422 | })
|
---|
423 | (type: [am = p]
|
---|
424 | {exp coef:0} = {
|
---|
425 | 18.756000000 1.0000000000
|
---|
426 | })
|
---|
427 | (type: [am = p]
|
---|
428 | {exp coef:0} = {
|
---|
429 | 71.348000000 1.0000000000
|
---|
430 | })
|
---|
431 | (type: [am = p]
|
---|
432 | {exp coef:0} = {
|
---|
433 | 0.73610000000E-01 1.0000000000
|
---|
434 | })
|
---|
435 | (type: [(am = d puream = 1)]
|
---|
436 | {exp coef:0} = {
|
---|
437 | 3.1070000000 1.0000000000
|
---|
438 | })
|
---|
439 | (type: [(am = d puream = 1)]
|
---|
440 | {exp coef:0} = {
|
---|
441 | 0.85500000000 1.0000000000
|
---|
442 | })
|
---|
443 | (type: [(am = d puream = 1)]
|
---|
444 | {exp coef:0} = {
|
---|
445 | 19.108000000 1.0000000000
|
---|
446 | })
|
---|
447 | (type: [(am = d puream = 1)]
|
---|
448 | {exp coef:0} = {
|
---|
449 | 0.29200000000 1.0000000000
|
---|
450 | })
|
---|
451 | (type: [(am = f puream = 1)]
|
---|
452 | {exp coef:0} = {
|
---|
453 | 1.9170000000 1.0000000000
|
---|
454 | })
|
---|
455 | (type: [(am = f puream = 1)]
|
---|
456 | {exp coef:0} = {
|
---|
457 | 0.72400000000 1.0000000000
|
---|
458 | })
|
---|
459 | ]
|
---|
460 | %
|
---|
461 | % BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
|
---|
462 | % AUGMENTING FUNCTIONS: Tight (s,p,d)
|
---|
463 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
464 | neon: "aug-cc-pCVTZ": [
|
---|
465 | (type: [am = s am = s]
|
---|
466 | {exp coef:0 coef:1} = {
|
---|
467 | 24350.000000 0.50200000000E-03 -0.11800000000E-03
|
---|
468 | 3650.0000000 0.38810000000E-02 -0.91500000000E-03
|
---|
469 | 829.60000000 0.19997000000E-01 -0.47370000000E-02
|
---|
470 | 234.00000000 0.78418000000E-01 -0.19233000000E-01
|
---|
471 | 75.610000000 0.22967600000 -0.60369000000E-01
|
---|
472 | 26.730000000 0.43272200000 -0.14250800000
|
---|
473 | 9.9270000000 0.35064200000 -0.17771000000
|
---|
474 | 1.1020000000 -0.76450000000E-02 0.60583600000
|
---|
475 | })
|
---|
476 | (type: [am = s]
|
---|
477 | {exp coef:0} = {
|
---|
478 | 2.8360000000 1.0000000000
|
---|
479 | })
|
---|
480 | (type: [am = s]
|
---|
481 | {exp coef:0} = {
|
---|
482 | 0.37820000000 1.0000000000
|
---|
483 | })
|
---|
484 | (type: [am = s]
|
---|
485 | {exp coef:0} = {
|
---|
486 | 12.083000000 1.0000000000
|
---|
487 | })
|
---|
488 | (type: [am = s]
|
---|
489 | {exp coef:0} = {
|
---|
490 | 31.947000000 1.0000000000
|
---|
491 | })
|
---|
492 | (type: [am = s]
|
---|
493 | {exp coef:0} = {
|
---|
494 | 0.11330000000 1.0000000000
|
---|
495 | })
|
---|
496 | (type: [am = p]
|
---|
497 | {exp coef:0} = {
|
---|
498 | 54.700000000 0.17151000000E-01
|
---|
499 | 12.430000000 0.10765600000
|
---|
500 | 3.6790000000 0.32168100000
|
---|
501 | })
|
---|
502 | (type: [am = p]
|
---|
503 | {exp coef:0} = {
|
---|
504 | 1.1430000000 1.0000000000
|
---|
505 | })
|
---|
506 | (type: [am = p]
|
---|
507 | {exp coef:0} = {
|
---|
508 | 0.33000000000 1.0000000000
|
---|
509 | })
|
---|
510 | (type: [am = p]
|
---|
511 | {exp coef:0} = {
|
---|
512 | 22.827000000 1.0000000000
|
---|
513 | })
|
---|
514 | (type: [am = p]
|
---|
515 | {exp coef:0} = {
|
---|
516 | 87.017000000 1.0000000000
|
---|
517 | })
|
---|
518 | (type: [am = p]
|
---|
519 | {exp coef:0} = {
|
---|
520 | 0.91750000000E-01 1.0000000000
|
---|
521 | })
|
---|
522 | (type: [(am = d puream = 1)]
|
---|
523 | {exp coef:0} = {
|
---|
524 | 4.0140000000 1.0000000000
|
---|
525 | })
|
---|
526 | (type: [(am = d puream = 1)]
|
---|
527 | {exp coef:0} = {
|
---|
528 | 1.0960000000 1.0000000000
|
---|
529 | })
|
---|
530 | (type: [(am = d puream = 1)]
|
---|
531 | {exp coef:0} = {
|
---|
532 | 23.168000000 1.0000000000
|
---|
533 | })
|
---|
534 | (type: [(am = d puream = 1)]
|
---|
535 | {exp coef:0} = {
|
---|
536 | 0.38600000000 1.0000000000
|
---|
537 | })
|
---|
538 | (type: [(am = f puream = 1)]
|
---|
539 | {exp coef:0} = {
|
---|
540 | 2.5440000000 1.0000000000
|
---|
541 | })
|
---|
542 | (type: [(am = f puream = 1)]
|
---|
543 | {exp coef:0} = {
|
---|
544 | 1.0840000000 1.0000000000
|
---|
545 | })
|
---|
546 | ]
|
---|
547 | %
|
---|
548 | % BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
|
---|
549 | % AUGMENTING FUNCTIONS: Tight (2s,2p,2d,1f)
|
---|
550 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
551 | aluminum: "aug-cc-pCVTZ": [
|
---|
552 | (type: [am = s am = s am = s]
|
---|
553 | {exp coef:0 coef:1 coef:2} = {
|
---|
554 | 205500.00000 0.67883600000E-04 -0.17637700000E-04 0.40731500000E-05
|
---|
555 | 30780.000000 0.52714900000E-03 -0.13719500000E-03 0.31656600000E-04
|
---|
556 | 7006.0000000 0.27620300000E-02 -0.71891000000E-03 0.16611600000E-03
|
---|
557 | 1985.0000000 0.11472800000E-01 -0.30114600000E-02 0.69499200000E-03
|
---|
558 | 649.10000000 0.39818800000E-01 -0.10601400000E-01 0.24551100000E-02
|
---|
559 | 235.00000000 0.11504000000 -0.32134500000E-01 0.74459800000E-02
|
---|
560 | 91.620000000 0.26088700000 -0.80315600000E-01 0.18825300000E-01
|
---|
561 | 37.670000000 0.39638600000 -0.15679400000 0.37277200000E-01
|
---|
562 | 15.910000000 0.28459700000 -0.16837600000 0.41949600000E-01
|
---|
563 | 5.8500000000 0.44458300000E-01 0.12687900000 -0.35437500000E-01
|
---|
564 | 2.5420000000 -0.48983800000E-02 0.56149400000 -0.17513200000
|
---|
565 | 1.0570000000 0.26125300000E-02 0.43661300000 -0.27620300000
|
---|
566 | 0.14550000000 0.72206800000E-03 -0.11456300000E-01 0.65280900000
|
---|
567 | })
|
---|
568 | (type: [am = s]
|
---|
569 | {exp coef:0} = {
|
---|
570 | 0.29310000000 1.0000000000
|
---|
571 | })
|
---|
572 | (type: [am = s]
|
---|
573 | {exp coef:0} = {
|
---|
574 | 0.56500000000E-01 1.0000000000
|
---|
575 | })
|
---|
576 | (type: [am = s]
|
---|
577 | {exp coef:0} = {
|
---|
578 | 7.4880000000 1.0000000000
|
---|
579 | })
|
---|
580 | (type: [am = s]
|
---|
581 | {exp coef:0} = {
|
---|
582 | 1.2720000000 1.0000000000
|
---|
583 | })
|
---|
584 | (type: [am = s]
|
---|
585 | {exp coef:0} = {
|
---|
586 | 0.22100000000E-01 1.0000000000
|
---|
587 | })
|
---|
588 | (type: [am = p am = p]
|
---|
589 | {exp coef:0 coef:1} = {
|
---|
590 | 444.40000000 0.16278600000E-02 -0.28634100000E-03
|
---|
591 | 105.10000000 0.13068700000E-01 -0.24230800000E-02
|
---|
592 | 33.470000000 0.61234100000E-01 -0.10865800000E-01
|
---|
593 | 12.330000000 0.18787000000 -0.36430700000E-01
|
---|
594 | 4.8690000000 0.36045200000 -0.64107400000E-01
|
---|
595 | 1.9610000000 0.40845400000 -0.97223900000E-01
|
---|
596 | 0.18880000000 0.97651400000E-02 0.50344800000
|
---|
597 | })
|
---|
598 | (type: [am = p]
|
---|
599 | {exp coef:0} = {
|
---|
600 | 0.78340000000 1.0000000000
|
---|
601 | })
|
---|
602 | (type: [am = p]
|
---|
603 | {exp coef:0} = {
|
---|
604 | 0.55570000000E-01 1.0000000000
|
---|
605 | })
|
---|
606 | (type: [am = p]
|
---|
607 | {exp coef:0} = {
|
---|
608 | 2.2020000000 1.0000000000
|
---|
609 | })
|
---|
610 | (type: [am = p]
|
---|
611 | {exp coef:0} = {
|
---|
612 | 5.5480000000 1.0000000000
|
---|
613 | })
|
---|
614 | (type: [am = p]
|
---|
615 | {exp coef:0} = {
|
---|
616 | 0.14600000000E-01 1.0000000000
|
---|
617 | })
|
---|
618 | (type: [(am = d puream = 1)]
|
---|
619 | {exp coef:0} = {
|
---|
620 | 0.10900000000 1.0000000000
|
---|
621 | })
|
---|
622 | (type: [(am = d puream = 1)]
|
---|
623 | {exp coef:0} = {
|
---|
624 | 0.33300000000 1.0000000000
|
---|
625 | })
|
---|
626 | (type: [(am = d puream = 1)]
|
---|
627 | {exp coef:0} = {
|
---|
628 | 2.6340000000 1.0000000000
|
---|
629 | })
|
---|
630 | (type: [(am = d puream = 1)]
|
---|
631 | {exp coef:0} = {
|
---|
632 | 8.6460000000 1.0000000000
|
---|
633 | })
|
---|
634 | (type: [(am = d puream = 1)]
|
---|
635 | {exp coef:0} = {
|
---|
636 | 0.35600000000E-01 1.0000000000
|
---|
637 | })
|
---|
638 | (type: [(am = f puream = 1)]
|
---|
639 | {exp coef:0} = {
|
---|
640 | 0.24400000000 1.0000000000
|
---|
641 | })
|
---|
642 | (type: [(am = f puream = 1)]
|
---|
643 | {exp coef:0} = {
|
---|
644 | 5.6860000000 1.0000000000
|
---|
645 | })
|
---|
646 | (type: [(am = f puream = 1)]
|
---|
647 | {exp coef:0} = {
|
---|
648 | 0.85800000000E-01 1.0000000000
|
---|
649 | })
|
---|
650 | ]
|
---|
651 | %
|
---|
652 | % BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
|
---|
653 | % AUGMENTING FUNCTIONS: Tight (2s,2p,2d,1f)
|
---|
654 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
655 | silicon: "aug-cc-pCVTZ": [
|
---|
656 | (type: [am = s am = s am = s]
|
---|
657 | {exp coef:0 coef:1 coef:2} = {
|
---|
658 | 254900.00000 0.62510100000E-04 -0.16637000000E-04 0.42625700000E-05
|
---|
659 | 38190.000000 0.48555300000E-03 -0.12931000000E-03 0.33106200000E-04
|
---|
660 | 8690.0000000 0.25451600000E-02 -0.67882800000E-03 0.17401500000E-03
|
---|
661 | 2462.0000000 0.10586600000E-01 -0.28411700000E-02 0.72757400000E-03
|
---|
662 | 804.80000000 0.36878700000E-01 -0.10055100000E-01 0.25833300000E-02
|
---|
663 | 291.30000000 0.10747900000 -0.30577400000E-01 0.78635400000E-02
|
---|
664 | 113.60000000 0.24793600000 -0.77725600000E-01 0.20215500000E-01
|
---|
665 | 46.750000000 0.39092700000 -0.15423600000 0.40732000000E-01
|
---|
666 | 19.820000000 0.30202600000 -0.18036800000 0.49935800000E-01
|
---|
667 | 7.7080000000 0.55923600000E-01 0.79821800000E-01 -0.24939600000E-01
|
---|
668 | 3.3400000000 -0.40240600000E-02 0.54744100000 -0.19035000000
|
---|
669 | 1.4020000000 0.25803000000E-02 0.48011900000 -0.31835000000
|
---|
670 | 0.20700000000 0.60793000000E-03 -0.10699600000E-01 0.68118000000
|
---|
671 | })
|
---|
672 | (type: [am = s]
|
---|
673 | {exp coef:0} = {
|
---|
674 | 0.43870000000 1.0000000000
|
---|
675 | })
|
---|
676 | (type: [am = s]
|
---|
677 | {exp coef:0} = {
|
---|
678 | 0.79440000000E-01 1.0000000000
|
---|
679 | })
|
---|
680 | (type: [am = s]
|
---|
681 | {exp coef:0} = {
|
---|
682 | 9.1640000000 1.0000000000
|
---|
683 | })
|
---|
684 | (type: [am = s]
|
---|
685 | {exp coef:0} = {
|
---|
686 | 1.6210000000 1.0000000000
|
---|
687 | })
|
---|
688 | (type: [am = s]
|
---|
689 | {exp coef:0} = {
|
---|
690 | 0.33000000000E-01 1.0000000000
|
---|
691 | })
|
---|
692 | (type: [am = p am = p]
|
---|
693 | {exp coef:0 coef:1} = {
|
---|
694 | 481.50000000 0.19204500000E-02 -0.40522000000E-03
|
---|
695 | 113.90000000 0.15355200000E-01 -0.33589600000E-02
|
---|
696 | 36.230000000 0.71399100000E-01 -0.15286000000E-01
|
---|
697 | 13.340000000 0.21305200000 -0.48921800000E-01
|
---|
698 | 5.2520000000 0.39035400000 -0.85500800000E-01
|
---|
699 | 2.1200000000 0.39372100000 -0.11213700000
|
---|
700 | 0.25280000000 0.39563000000E-02 0.55191900000
|
---|
701 | })
|
---|
702 | (type: [am = p]
|
---|
703 | {exp coef:0} = {
|
---|
704 | 0.85610000000 1.0000000000
|
---|
705 | })
|
---|
706 | (type: [am = p]
|
---|
707 | {exp coef:0} = {
|
---|
708 | 0.78890000000E-01 1.0000000000
|
---|
709 | })
|
---|
710 | (type: [am = p]
|
---|
711 | {exp coef:0} = {
|
---|
712 | 6.4580000000 1.0000000000
|
---|
713 | })
|
---|
714 | (type: [am = p]
|
---|
715 | {exp coef:0} = {
|
---|
716 | 2.5170000000 1.0000000000
|
---|
717 | })
|
---|
718 | (type: [am = p]
|
---|
719 | {exp coef:0} = {
|
---|
720 | 0.23700000000E-01 1.0000000000
|
---|
721 | })
|
---|
722 | (type: [(am = d puream = 1)]
|
---|
723 | {exp coef:0} = {
|
---|
724 | 0.15900000000 1.0000000000
|
---|
725 | })
|
---|
726 | (type: [(am = d puream = 1)]
|
---|
727 | {exp coef:0} = {
|
---|
728 | 0.48100000000 1.0000000000
|
---|
729 | })
|
---|
730 | (type: [(am = d puream = 1)]
|
---|
731 | {exp coef:0} = {
|
---|
732 | 10.671000000 1.0000000000
|
---|
733 | })
|
---|
734 | (type: [(am = d puream = 1)]
|
---|
735 | {exp coef:0} = {
|
---|
736 | 3.3080000000 1.0000000000
|
---|
737 | })
|
---|
738 | (type: [(am = d puream = 1)]
|
---|
739 | {exp coef:0} = {
|
---|
740 | 0.55600000000E-01 1.0000000000
|
---|
741 | })
|
---|
742 | (type: [(am = f puream = 1)]
|
---|
743 | {exp coef:0} = {
|
---|
744 | 0.33600000000 1.0000000000
|
---|
745 | })
|
---|
746 | (type: [(am = f puream = 1)]
|
---|
747 | {exp coef:0} = {
|
---|
748 | 7.0010000000 1.0000000000
|
---|
749 | })
|
---|
750 | (type: [(am = f puream = 1)]
|
---|
751 | {exp coef:0} = {
|
---|
752 | 0.12500000000 1.0000000000
|
---|
753 | })
|
---|
754 | ]
|
---|
755 | %
|
---|
756 | % BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
|
---|
757 | % AUGMENTING FUNCTIONS: Tight (2s,2p,2d,1f)
|
---|
758 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
759 | phosphorus: "aug-cc-pCVTZ": [
|
---|
760 | (type: [am = s am = s am = s]
|
---|
761 | {exp coef:0 coef:1 coef:2} = {
|
---|
762 | 312400.00000 0.57696000000E-04 -0.15670900000E-04 0.43063100000E-05
|
---|
763 | 46800.000000 0.44829600000E-03 -0.12172400000E-03 0.33419400000E-04
|
---|
764 | 10650.000000 0.23493900000E-02 -0.63967200000E-03 0.17588500000E-03
|
---|
765 | 3018.0000000 0.97826500000E-02 -0.26742600000E-02 0.73434000000E-03
|
---|
766 | 986.80000000 0.34146700000E-01 -0.94983100000E-02 0.26177500000E-02
|
---|
767 | 357.40000000 0.10020400000 -0.28934900000E-01 0.79785200000E-02
|
---|
768 | 139.60000000 0.23437200000 -0.74512100000E-01 0.20794000000E-01
|
---|
769 | 57.630000000 0.38243400000 -0.14993800000 0.42444600000E-01
|
---|
770 | 24.600000000 0.31808800000 -0.18946700000 0.56343600000E-01
|
---|
771 | 10.120000000 0.70778800000E-01 0.36327000000E-01 -0.12735800000E-01
|
---|
772 | 4.2830000000 -0.18179900000E-02 0.52881600000 -0.19649500000
|
---|
773 | 1.8050000000 0.21618000000E-02 0.51911500000 -0.35355500000
|
---|
774 | 0.27820000000 0.43229700000E-03 -0.92569500000E-02 0.70091200000
|
---|
775 | })
|
---|
776 | (type: [am = s]
|
---|
777 | {exp coef:0} = {
|
---|
778 | 0.61580000000 1.0000000000
|
---|
779 | })
|
---|
780 | (type: [am = s]
|
---|
781 | {exp coef:0} = {
|
---|
782 | 0.10550000000 1.0000000000
|
---|
783 | })
|
---|
784 | (type: [am = s]
|
---|
785 | {exp coef:0} = {
|
---|
786 | 10.978000000 1.0000000000
|
---|
787 | })
|
---|
788 | (type: [am = s]
|
---|
789 | {exp coef:0} = {
|
---|
790 | 2.0060000000 1.0000000000
|
---|
791 | })
|
---|
792 | (type: [am = s]
|
---|
793 | {exp coef:0} = {
|
---|
794 | 0.40900000000E-01 1.0000000000
|
---|
795 | })
|
---|
796 | (type: [am = p am = p]
|
---|
797 | {exp coef:0 coef:1} = {
|
---|
798 | 504.90000000 0.23372800000E-02 -0.55523600000E-03
|
---|
799 | 119.40000000 0.18541000000E-01 -0.44591300000E-02
|
---|
800 | 37.960000000 0.84969300000E-01 -0.20635000000E-01
|
---|
801 | 13.950000000 0.24461500000 -0.61769400000E-01
|
---|
802 | 5.4570000000 0.42276600000 -0.10892400000
|
---|
803 | 2.1770000000 0.36843900000 -0.10559900000
|
---|
804 | 0.28770000000 -0.37900500000E-02 0.57698100000
|
---|
805 | })
|
---|
806 | (type: [am = p]
|
---|
807 | {exp coef:0} = {
|
---|
808 | 0.80100000000 1.0000000000
|
---|
809 | })
|
---|
810 | (type: [am = p]
|
---|
811 | {exp coef:0} = {
|
---|
812 | 0.97140000000E-01 1.0000000000
|
---|
813 | })
|
---|
814 | (type: [am = p]
|
---|
815 | {exp coef:0} = {
|
---|
816 | 7.0840000000 1.0000000000
|
---|
817 | })
|
---|
818 | (type: [am = p]
|
---|
819 | {exp coef:0} = {
|
---|
820 | 2.7010000000 1.0000000000
|
---|
821 | })
|
---|
822 | (type: [am = p]
|
---|
823 | {exp coef:0} = {
|
---|
824 | 0.30700000000E-01 1.0000000000
|
---|
825 | })
|
---|
826 | (type: [(am = d puream = 1)]
|
---|
827 | {exp coef:0} = {
|
---|
828 | 0.21600000000 1.0000000000
|
---|
829 | })
|
---|
830 | (type: [(am = d puream = 1)]
|
---|
831 | {exp coef:0} = {
|
---|
832 | 0.65200000000 1.0000000000
|
---|
833 | })
|
---|
834 | (type: [(am = d puream = 1)]
|
---|
835 | {exp coef:0} = {
|
---|
836 | 12.891000000 1.0000000000
|
---|
837 | })
|
---|
838 | (type: [(am = d puream = 1)]
|
---|
839 | {exp coef:0} = {
|
---|
840 | 4.0560000000 1.0000000000
|
---|
841 | })
|
---|
842 | (type: [(am = d puream = 1)]
|
---|
843 | {exp coef:0} = {
|
---|
844 | 0.77500000000E-01 1.0000000000
|
---|
845 | })
|
---|
846 | (type: [(am = f puream = 1)]
|
---|
847 | {exp coef:0} = {
|
---|
848 | 0.45200000000 1.0000000000
|
---|
849 | })
|
---|
850 | (type: [(am = f puream = 1)]
|
---|
851 | {exp coef:0} = {
|
---|
852 | 8.4620000000 1.0000000000
|
---|
853 | })
|
---|
854 | (type: [(am = f puream = 1)]
|
---|
855 | {exp coef:0} = {
|
---|
856 | 0.16500000000 1.0000000000
|
---|
857 | })
|
---|
858 | ]
|
---|
859 | %
|
---|
860 | % BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
|
---|
861 | % AUGMENTING FUNCTIONS: Tight (2s,2p,2d,1f)
|
---|
862 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
863 | sulfur: "aug-cc-pCVTZ": [
|
---|
864 | (type: [am = s am = s am = s]
|
---|
865 | {exp coef:0 coef:1 coef:2} = {
|
---|
866 | 374100.00000 0.54214000000E-04 -0.14983700000E-04 0.43506600000E-05
|
---|
867 | 56050.000000 0.42085500000E-03 -0.11619800000E-03 0.33714000000E-04
|
---|
868 | 12760.000000 0.22069800000E-02 -0.61158300000E-03 0.17767400000E-03
|
---|
869 | 3615.0000000 0.91925800000E-02 -0.25537000000E-02 0.74111600000E-03
|
---|
870 | 1183.0000000 0.32112300000E-01 -0.90870800000E-02 0.26459100000E-02
|
---|
871 | 428.80000000 0.94668300000E-01 -0.27704500000E-01 0.80748700000E-02
|
---|
872 | 167.80000000 0.22363000000 -0.72002000000E-01 0.21227600000E-01
|
---|
873 | 69.470000000 0.37439300000 -0.14643900000 0.43832300000E-01
|
---|
874 | 29.840000000 0.32910800000 -0.19515000000 0.61271600000E-01
|
---|
875 | 12.720000000 0.84703800000E-01 0.81919300000E-02 -0.36151000000E-02
|
---|
876 | 5.2440000000 0.44085100000E-03 0.51660100000 -0.20451000000
|
---|
877 | 2.2190000000 0.16482700000E-02 0.54217800000 -0.38187100000
|
---|
878 | 0.34900000000 0.30130600000E-03 -0.91807200000E-02 0.71414700000
|
---|
879 | })
|
---|
880 | (type: [am = s]
|
---|
881 | {exp coef:0} = {
|
---|
882 | 0.77670000000 1.0000000000
|
---|
883 | })
|
---|
884 | (type: [am = s]
|
---|
885 | {exp coef:0} = {
|
---|
886 | 0.13220000000 1.0000000000
|
---|
887 | })
|
---|
888 | (type: [am = s]
|
---|
889 | {exp coef:0} = {
|
---|
890 | 12.928000000 1.0000000000
|
---|
891 | })
|
---|
892 | (type: [am = s]
|
---|
893 | {exp coef:0} = {
|
---|
894 | 2.4130000000 1.0000000000
|
---|
895 | })
|
---|
896 | (type: [am = s]
|
---|
897 | {exp coef:0} = {
|
---|
898 | 0.49700000000E-01 1.0000000000
|
---|
899 | })
|
---|
900 | (type: [am = p am = p]
|
---|
901 | {exp coef:0 coef:1} = {
|
---|
902 | 574.40000000 0.24226400000E-02 -0.62010200000E-03
|
---|
903 | 135.80000000 0.19279600000E-01 -0.49388200000E-02
|
---|
904 | 43.190000000 0.88540100000E-01 -0.23264700000E-01
|
---|
905 | 15.870000000 0.25465400000 -0.68519500000E-01
|
---|
906 | 6.2080000000 0.43398400000 -0.12389600000
|
---|
907 | 2.4830000000 0.35495300000 -0.96949900000E-01
|
---|
908 | 0.32290000000 -0.50297700000E-02 0.56939400000
|
---|
909 | })
|
---|
910 | (type: [am = p]
|
---|
911 | {exp coef:0} = {
|
---|
912 | 0.86880000000 1.0000000000
|
---|
913 | })
|
---|
914 | (type: [am = p]
|
---|
915 | {exp coef:0} = {
|
---|
916 | 0.10980000000 1.0000000000
|
---|
917 | })
|
---|
918 | (type: [am = p]
|
---|
919 | {exp coef:0} = {
|
---|
920 | 8.1140000000 1.0000000000
|
---|
921 | })
|
---|
922 | (type: [am = p]
|
---|
923 | {exp coef:0} = {
|
---|
924 | 3.1060000000 1.0000000000
|
---|
925 | })
|
---|
926 | (type: [am = p]
|
---|
927 | {exp coef:0} = {
|
---|
928 | 0.35100000000E-01 1.0000000000
|
---|
929 | })
|
---|
930 | (type: [(am = d puream = 1)]
|
---|
931 | {exp coef:0} = {
|
---|
932 | 0.26900000000 1.0000000000
|
---|
933 | })
|
---|
934 | (type: [(am = d puream = 1)]
|
---|
935 | {exp coef:0} = {
|
---|
936 | 0.81900000000 1.0000000000
|
---|
937 | })
|
---|
938 | (type: [(am = d puream = 1)]
|
---|
939 | {exp coef:0} = {
|
---|
940 | 15.254000000 1.0000000000
|
---|
941 | })
|
---|
942 | (type: [(am = d puream = 1)]
|
---|
943 | {exp coef:0} = {
|
---|
944 | 4.8450000000 1.0000000000
|
---|
945 | })
|
---|
946 | (type: [(am = d puream = 1)]
|
---|
947 | {exp coef:0} = {
|
---|
948 | 0.10100000000 1.0000000000
|
---|
949 | })
|
---|
950 | (type: [(am = f puream = 1)]
|
---|
951 | {exp coef:0} = {
|
---|
952 | 0.55700000000 1.0000000000
|
---|
953 | })
|
---|
954 | (type: [(am = f puream = 1)]
|
---|
955 | {exp coef:0} = {
|
---|
956 | 10.052000000 1.0000000000
|
---|
957 | })
|
---|
958 | (type: [(am = f puream = 1)]
|
---|
959 | {exp coef:0} = {
|
---|
960 | 0.21800000000 1.0000000000
|
---|
961 | })
|
---|
962 | ]
|
---|
963 | %
|
---|
964 | % BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
|
---|
965 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f)
|
---|
966 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
967 | chlorine: "aug-cc-pCVTZ": [
|
---|
968 | (type: [am = s am = s am = s]
|
---|
969 | {exp coef:0 coef:1 coef:2} = {
|
---|
970 | 456100.00000 0.49297000000E-04 -0.13830400000E-04 0.41854600000E-05
|
---|
971 | 68330.000000 0.38302900000E-03 -0.10727900000E-03 0.32439500000E-04
|
---|
972 | 15550.000000 0.20085400000E-02 -0.56508300000E-03 0.17110500000E-03
|
---|
973 | 4405.0000000 0.83855800000E-02 -0.23613500000E-02 0.71417600000E-03
|
---|
974 | 1439.0000000 0.29470300000E-01 -0.84588600000E-02 0.25670500000E-02
|
---|
975 | 520.40000000 0.87832500000E-01 -0.25963800000E-01 0.78855200000E-02
|
---|
976 | 203.10000000 0.21147300000 -0.68636200000E-01 0.21086700000E-01
|
---|
977 | 83.960000000 0.36536400000 -0.14187400000 0.44226400000E-01
|
---|
978 | 36.200000000 0.34088400000 -0.19931900000 0.65167000000E-01
|
---|
979 | 15.830000000 0.10213300000 -0.19566200000E-01 0.60301200000E-02
|
---|
980 | 6.3340000000 0.31167500000E-02 0.49974100000 -0.20649500000
|
---|
981 | 2.6940000000 0.10575100000E-02 0.56373600000 -0.40587100000
|
---|
982 | 0.43130000000 0.15613600000E-03 -0.83509100000E-02 0.72566100000
|
---|
983 | })
|
---|
984 | (type: [am = s]
|
---|
985 | {exp coef:0} = {
|
---|
986 | 0.97680000000 1.0000000000
|
---|
987 | })
|
---|
988 | (type: [am = s]
|
---|
989 | {exp coef:0} = {
|
---|
990 | 0.16250000000 1.0000000000
|
---|
991 | })
|
---|
992 | (type: [am = s]
|
---|
993 | {exp coef:0} = {
|
---|
994 | 15.064000000 1.0000000000
|
---|
995 | })
|
---|
996 | (type: [am = s]
|
---|
997 | {exp coef:0} = {
|
---|
998 | 2.8740000000 1.0000000000
|
---|
999 | })
|
---|
1000 | (type: [am = s]
|
---|
1001 | {exp coef:0} = {
|
---|
1002 | 0.59100000000E-01 1.0000000000
|
---|
1003 | })
|
---|
1004 | (type: [am = p am = p]
|
---|
1005 | {exp coef:0 coef:1} = {
|
---|
1006 | 663.30000000 0.24044800000E-02 -0.65214500000E-03
|
---|
1007 | 156.80000000 0.19214800000E-01 -0.51944500000E-02
|
---|
1008 | 49.980000000 0.88509700000E-01 -0.24693800000E-01
|
---|
1009 | 18.420000000 0.25602000000 -0.72816700000E-01
|
---|
1010 | 7.2400000000 0.43692700000 -0.13403000000
|
---|
1011 | 2.9220000000 0.35033400000 -0.94774200000E-01
|
---|
1012 | 0.38180000000 -0.45842300000E-02 0.56466700000
|
---|
1013 | })
|
---|
1014 | (type: [am = p]
|
---|
1015 | {exp coef:0} = {
|
---|
1016 | 1.0220000000 1.0000000000
|
---|
1017 | })
|
---|
1018 | (type: [am = p]
|
---|
1019 | {exp coef:0} = {
|
---|
1020 | 0.13010000000 1.0000000000
|
---|
1021 | })
|
---|
1022 | (type: [am = p]
|
---|
1023 | {exp coef:0} = {
|
---|
1024 | 9.4800000000 1.0000000000
|
---|
1025 | })
|
---|
1026 | (type: [am = p]
|
---|
1027 | {exp coef:0} = {
|
---|
1028 | 3.6680000000 1.0000000000
|
---|
1029 | })
|
---|
1030 | (type: [am = p]
|
---|
1031 | {exp coef:0} = {
|
---|
1032 | 0.41900000000E-01 1.0000000000
|
---|
1033 | })
|
---|
1034 | (type: [(am = d puream = 1)]
|
---|
1035 | {exp coef:0} = {
|
---|
1036 | 1.0460000000 1.0000000000
|
---|
1037 | })
|
---|
1038 | (type: [(am = d puream = 1)]
|
---|
1039 | {exp coef:0} = {
|
---|
1040 | 0.34400000000 1.0000000000
|
---|
1041 | })
|
---|
1042 | (type: [(am = d puream = 1)]
|
---|
1043 | {exp coef:0} = {
|
---|
1044 | 17.957000000 1.0000000000
|
---|
1045 | })
|
---|
1046 | (type: [(am = d puream = 1)]
|
---|
1047 | {exp coef:0} = {
|
---|
1048 | 5.7600000000 1.0000000000
|
---|
1049 | })
|
---|
1050 | (type: [(am = d puream = 1)]
|
---|
1051 | {exp coef:0} = {
|
---|
1052 | 0.13500000000 1.0000000000
|
---|
1053 | })
|
---|
1054 | (type: [(am = f puream = 1)]
|
---|
1055 | {exp coef:0} = {
|
---|
1056 | 0.70600000000 1.0000000000
|
---|
1057 | })
|
---|
1058 | (type: [(am = f puream = 1)]
|
---|
1059 | {exp coef:0} = {
|
---|
1060 | 11.779000000 1.0000000000
|
---|
1061 | })
|
---|
1062 | (type: [(am = f puream = 1)]
|
---|
1063 | {exp coef:0} = {
|
---|
1064 | 0.31200000000 1.0000000000
|
---|
1065 | })
|
---|
1066 | ]
|
---|
1067 | %
|
---|
1068 | % BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
|
---|
1069 | % AUGMENTING FUNCTIONS: Tight (2s,2p,2d,1f)
|
---|
1070 | % AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
|
---|
1071 | argon: "aug-cc-pCVTZ": [
|
---|
1072 | (type: [am = s am = s am = s]
|
---|
1073 | {exp coef:0 coef:1 coef:2} = {
|
---|
1074 | 545000.00000 0.45582800000E-04 -0.12955100000E-04 0.40499000000E-05
|
---|
1075 | 81640.000000 0.35410800000E-03 -0.10042800000E-03 0.31369100000E-04
|
---|
1076 | 18580.000000 0.18579700000E-02 -0.52958300000E-03 0.16564600000E-03
|
---|
1077 | 5261.0000000 0.77685100000E-02 -0.22139600000E-02 0.69166200000E-03
|
---|
1078 | 1717.0000000 0.27423200000E-01 -0.79684500000E-02 0.24979000000E-02
|
---|
1079 | 619.90000000 0.82383600000E-01 -0.24580300000E-01 0.77107400000E-02
|
---|
1080 | 241.60000000 0.20123000000 -0.65779800000E-01 0.20871400000E-01
|
---|
1081 | 99.790000000 0.35678100000 -0.13794200000 0.44396500000E-01
|
---|
1082 | 43.150000000 0.34956300000 -0.20163000000 0.68022400000E-01
|
---|
1083 | 19.140000000 0.11826600000 -0.41283400000E-01 0.14135000000E-01
|
---|
1084 | 7.4880000000 0.56019000000E-02 0.48468000000 -0.20748900000
|
---|
1085 | 3.2050000000 0.48347300000E-03 0.57922400000 -0.42504500000
|
---|
1086 | 0.52040000000 0.29202500000E-04 -0.72755300000E-02 0.73362700000
|
---|
1087 | })
|
---|
1088 | (type: [am = s]
|
---|
1089 | {exp coef:0} = {
|
---|
1090 | 1.1960000000 1.0000000000
|
---|
1091 | })
|
---|
1092 | (type: [am = s]
|
---|
1093 | {exp coef:0} = {
|
---|
1094 | 0.19540000000 1.0000000000
|
---|
1095 | })
|
---|
1096 | (type: [am = s]
|
---|
1097 | {exp coef:0} = {
|
---|
1098 | 17.362000000 1.0000000000
|
---|
1099 | })
|
---|
1100 | (type: [am = s]
|
---|
1101 | {exp coef:0} = {
|
---|
1102 | 3.3780000000 1.0000000000
|
---|
1103 | })
|
---|
1104 | (type: [am = s]
|
---|
1105 | {exp coef:0} = {
|
---|
1106 | 0.68500000000E-01 1.0000000000
|
---|
1107 | })
|
---|
1108 | (type: [am = p am = p]
|
---|
1109 | {exp coef:0 coef:1} = {
|
---|
1110 | 761.80000000 0.23697600000E-02 -0.66721100000E-03
|
---|
1111 | 180.20000000 0.19019900000E-01 -0.53271700000E-02
|
---|
1112 | 57.500000000 0.88080700000E-01 -0.25549400000E-01
|
---|
1113 | 21.240000000 0.25637700000 -0.75719700000E-01
|
---|
1114 | 8.3880000000 0.43871100000 -0.14113300000
|
---|
1115 | 3.4160000000 0.34756900000 -0.93276800000E-01
|
---|
1116 | 0.45230000000 -0.52388200000E-02 0.56245000000
|
---|
1117 | })
|
---|
1118 | (type: [am = p]
|
---|
1119 | {exp coef:0} = {
|
---|
1120 | 1.2060000000 1.0000000000
|
---|
1121 | })
|
---|
1122 | (type: [am = p]
|
---|
1123 | {exp coef:0} = {
|
---|
1124 | 0.15450000000 1.0000000000
|
---|
1125 | })
|
---|
1126 | (type: [am = p]
|
---|
1127 | {exp coef:0} = {
|
---|
1128 | 11.019000000 1.0000000000
|
---|
1129 | })
|
---|
1130 | (type: [am = p]
|
---|
1131 | {exp coef:0} = {
|
---|
1132 | 4.3070000000 1.0000000000
|
---|
1133 | })
|
---|
1134 | (type: [am = p]
|
---|
1135 | {exp coef:0} = {
|
---|
1136 | 0.48700000000E-01 1.0000000000
|
---|
1137 | })
|
---|
1138 | (type: [(am = d puream = 1)]
|
---|
1139 | {exp coef:0} = {
|
---|
1140 | 0.41000000000 1.0000000000
|
---|
1141 | })
|
---|
1142 | (type: [(am = d puream = 1)]
|
---|
1143 | {exp coef:0} = {
|
---|
1144 | 1.2540000000 1.0000000000
|
---|
1145 | })
|
---|
1146 | (type: [(am = d puream = 1)]
|
---|
1147 | {exp coef:0} = {
|
---|
1148 | 20.706000000 1.0000000000
|
---|
1149 | })
|
---|
1150 | (type: [(am = d puream = 1)]
|
---|
1151 | {exp coef:0} = {
|
---|
1152 | 6.6810000000 1.0000000000
|
---|
1153 | })
|
---|
1154 | (type: [(am = d puream = 1)]
|
---|
1155 | {exp coef:0} = {
|
---|
1156 | 0.16900000000 1.0000000000
|
---|
1157 | })
|
---|
1158 | (type: [(am = f puream = 1)]
|
---|
1159 | {exp coef:0} = {
|
---|
1160 | 0.89000000000 1.0000000000
|
---|
1161 | })
|
---|
1162 | (type: [(am = f puream = 1)]
|
---|
1163 | {exp coef:0} = {
|
---|
1164 | 13.674000000 1.0000000000
|
---|
1165 | })
|
---|
1166 | (type: [(am = f puream = 1)]
|
---|
1167 | {exp coef:0} = {
|
---|
1168 | 0.40600000000 1.0000000000
|
---|
1169 | })
|
---|
1170 | ]
|
---|
1171 | )
|
---|