source: ThirdParty/mpqc_open/lib/basis/aug-cc-pcvtz.kv

Candidate_v1.6.1
Last change on this file was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 35.0 KB
Line 
1%BASIS "aug-cc-pCVTZ" CARTESIAN
2basis:(
3%Elements References
4%-------- ----------
5% H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
6% He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
7%Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
8%Na - Mg: D.E. Woon and T.H. Dunning, Jr. (to be published)
9%Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
10%Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
11%Elements References
12%-------- ----------
13%Li - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and
14% T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995).
15%Al - Ar: K.A. Peterson and T.H. Dunning, Jr. J. Chem. Phys. 117, 10548 (2002)
16%Ca : K.A. Peterson (to be published)
17%Elements References
18%-------- ---------
19% H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
20% He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
21% B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
22% 6769 (1992).
23%Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
24%
25%
26% BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
27% AUGMENTING FUNCTIONS: Tight (s,p,d)
28% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
29 boron: "aug-cc-pCVTZ": [
30 (type: [am = s am = s]
31 {exp coef:0 coef:1} = {
32 5473.0000000 0.55500000000E-03 -0.11200000000E-03
33 820.90000000 0.42910000000E-02 -0.86800000000E-03
34 186.80000000 0.21949000000E-01 -0.44840000000E-02
35 52.830000000 0.84441000000E-01 -0.17683000000E-01
36 17.080000000 0.23855700000 -0.53639000000E-01
37 5.9990000000 0.43507200000 -0.11900500000
38 2.2080000000 0.34195500000 -0.16582400000
39 0.24150000000 -0.95450000000E-02 0.59598100000
40 })
41 (type: [am = s]
42 {exp coef:0} = {
43 0.58790000000 1.0000000000
44 })
45 (type: [am = s]
46 {exp coef:0} = {
47 0.86100000000E-01 1.0000000000
48 })
49 (type: [am = s]
50 {exp coef:0} = {
51 2.9400000000 1.0000000000
52 })
53 (type: [am = s]
54 {exp coef:0} = {
55 8.3110000000 1.0000000000
56 })
57 (type: [am = s]
58 {exp coef:0} = {
59 0.29140000000E-01 1.0000000000
60 })
61 (type: [am = p]
62 {exp coef:0} = {
63 12.050000000 0.13118000000E-01
64 2.6130000000 0.79896000000E-01
65 0.74750000000 0.27727500000
66 })
67 (type: [am = p]
68 {exp coef:0} = {
69 0.23850000000 1.0000000000
70 })
71 (type: [am = p]
72 {exp coef:0} = {
73 0.76980000000E-01 1.0000000000
74 })
75 (type: [am = p]
76 {exp coef:0} = {
77 6.0160000000 1.0000000000
78 })
79 (type: [am = p]
80 {exp coef:0} = {
81 22.891000000 1.0000000000
82 })
83 (type: [am = p]
84 {exp coef:0} = {
85 0.20960000000E-01 1.0000000000
86 })
87 (type: [(am = d puream = 1)]
88 {exp coef:0} = {
89 0.66100000000 1.0000000000
90 })
91 (type: [(am = d puream = 1)]
92 {exp coef:0} = {
93 0.19900000000 1.0000000000
94 })
95 (type: [(am = d puream = 1)]
96 {exp coef:0} = {
97 13.015000000 1.0000000000
98 })
99 (type: [(am = d puream = 1)]
100 {exp coef:0} = {
101 0.60400000000E-01 1.0000000000
102 })
103 (type: [(am = f puream = 1)]
104 {exp coef:0} = {
105 0.49000000000 1.0000000000
106 })
107 (type: [(am = f puream = 1)]
108 {exp coef:0} = {
109 0.16300000000 1.0000000000
110 })
111 ]
112%
113% BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
114% AUGMENTING FUNCTIONS: Tight (s,p,d)
115% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
116 carbon: "aug-cc-pCVTZ": [
117 (type: [am = s am = s]
118 {exp coef:0 coef:1} = {
119 8236.0000000 0.53100000000E-03 -0.11300000000E-03
120 1235.0000000 0.41080000000E-02 -0.87800000000E-03
121 280.80000000 0.21087000000E-01 -0.45400000000E-02
122 79.270000000 0.81853000000E-01 -0.18133000000E-01
123 25.590000000 0.23481700000 -0.55760000000E-01
124 8.9970000000 0.43440100000 -0.12689500000
125 3.3190000000 0.34612900000 -0.17035200000
126 0.36430000000 -0.89830000000E-02 0.59868400000
127 })
128 (type: [am = s]
129 {exp coef:0} = {
130 0.90590000000 1.0000000000
131 })
132 (type: [am = s]
133 {exp coef:0} = {
134 0.12850000000 1.0000000000
135 })
136 (type: [am = s]
137 {exp coef:0} = {
138 4.2920000000 1.0000000000
139 })
140 (type: [am = s]
141 {exp coef:0} = {
142 11.876000000 1.0000000000
143 })
144 (type: [am = s]
145 {exp coef:0} = {
146 0.44020000000E-01 1.0000000000
147 })
148 (type: [am = p]
149 {exp coef:0} = {
150 18.710000000 0.14031000000E-01
151 4.1330000000 0.86866000000E-01
152 1.2000000000 0.29021600000
153 })
154 (type: [am = p]
155 {exp coef:0} = {
156 0.38270000000 1.0000000000
157 })
158 (type: [am = p]
159 {exp coef:0} = {
160 0.12090000000 1.0000000000
161 })
162 (type: [am = p]
163 {exp coef:0} = {
164 8.7780000000 1.0000000000
165 })
166 (type: [am = p]
167 {exp coef:0} = {
168 33.190000000 1.0000000000
169 })
170 (type: [am = p]
171 {exp coef:0} = {
172 0.35690000000E-01 1.0000000000
173 })
174 (type: [(am = d puream = 1)]
175 {exp coef:0} = {
176 1.0970000000 1.0000000000
177 })
178 (type: [(am = d puream = 1)]
179 {exp coef:0} = {
180 0.31800000000 1.0000000000
181 })
182 (type: [(am = d puream = 1)]
183 {exp coef:0} = {
184 14.839000000 1.0000000000
185 })
186 (type: [(am = d puream = 1)]
187 {exp coef:0} = {
188 0.10000000000 1.0000000000
189 })
190 (type: [(am = f puream = 1)]
191 {exp coef:0} = {
192 0.76100000000 1.0000000000
193 })
194 (type: [(am = f puream = 1)]
195 {exp coef:0} = {
196 0.26800000000 1.0000000000
197 })
198 ]
199%
200% BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
201% AUGMENTING FUNCTIONS: Tight (s,p,d)
202% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
203 nitrogen: "aug-cc-pCVTZ": [
204 (type: [am = s am = s]
205 {exp coef:0 coef:1} = {
206 11420.000000 0.52300000000E-03 -0.11500000000E-03
207 1712.0000000 0.40450000000E-02 -0.89500000000E-03
208 389.30000000 0.20775000000E-01 -0.46240000000E-02
209 110.00000000 0.80727000000E-01 -0.18528000000E-01
210 35.570000000 0.23307400000 -0.57339000000E-01
211 12.540000000 0.43350100000 -0.13207600000
212 4.6440000000 0.34747200000 -0.17251000000
213 0.51180000000 -0.85080000000E-02 0.59994400000
214 })
215 (type: [am = s]
216 {exp coef:0} = {
217 1.2930000000 1.0000000000
218 })
219 (type: [am = s]
220 {exp coef:0} = {
221 0.17870000000 1.0000000000
222 })
223 (type: [am = s]
224 {exp coef:0} = {
225 5.9520000000 1.0000000000
226 })
227 (type: [am = s]
228 {exp coef:0} = {
229 16.201000000 1.0000000000
230 })
231 (type: [am = s]
232 {exp coef:0} = {
233 0.57600000000E-01 1.0000000000
234 })
235 (type: [am = p]
236 {exp coef:0} = {
237 26.630000000 0.14670000000E-01
238 5.9480000000 0.91764000000E-01
239 1.7420000000 0.29868300000
240 })
241 (type: [am = p]
242 {exp coef:0} = {
243 0.55500000000 1.0000000000
244 })
245 (type: [am = p]
246 {exp coef:0} = {
247 0.17250000000 1.0000000000
248 })
249 (type: [am = p]
250 {exp coef:0} = {
251 11.871000000 1.0000000000
252 })
253 (type: [am = p]
254 {exp coef:0} = {
255 44.849000000 1.0000000000
256 })
257 (type: [am = p]
258 {exp coef:0} = {
259 0.49100000000E-01 1.0000000000
260 })
261 (type: [(am = d puream = 1)]
262 {exp coef:0} = {
263 1.6540000000 1.0000000000
264 })
265 (type: [(am = d puream = 1)]
266 {exp coef:0} = {
267 0.46900000000 1.0000000000
268 })
269 (type: [(am = d puream = 1)]
270 {exp coef:0} = {
271 14.200000000 1.0000000000
272 })
273 (type: [(am = d puream = 1)]
274 {exp coef:0} = {
275 0.15100000000 1.0000000000
276 })
277 (type: [(am = f puream = 1)]
278 {exp coef:0} = {
279 1.0930000000 1.0000000000
280 })
281 (type: [(am = f puream = 1)]
282 {exp coef:0} = {
283 0.36400000000 1.0000000000
284 })
285 ]
286%
287% BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
288% AUGMENTING FUNCTIONS: Tight (s,p,d)
289% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
290 oxygen: "aug-cc-pCVTZ": [
291 (type: [am = s am = s]
292 {exp coef:0 coef:1} = {
293 15330.000000 0.50800000000E-03 -0.11500000000E-03
294 2299.0000000 0.39290000000E-02 -0.89500000000E-03
295 522.40000000 0.20243000000E-01 -0.46360000000E-02
296 147.30000000 0.79181000000E-01 -0.18724000000E-01
297 47.550000000 0.23068700000 -0.58463000000E-01
298 16.760000000 0.43311800000 -0.13646300000
299 6.2070000000 0.35026000000 -0.17574000000
300 0.68820000000 -0.81540000000E-02 0.60341800000
301 })
302 (type: [am = s]
303 {exp coef:0} = {
304 1.7520000000 1.0000000000
305 })
306 (type: [am = s]
307 {exp coef:0} = {
308 0.23840000000 1.0000000000
309 })
310 (type: [am = s]
311 {exp coef:0} = {
312 7.8450000000 1.0000000000
313 })
314 (type: [am = s]
315 {exp coef:0} = {
316 21.032000000 1.0000000000
317 })
318 (type: [am = s]
319 {exp coef:0} = {
320 0.73760000000E-01 1.0000000000
321 })
322 (type: [am = p]
323 {exp coef:0} = {
324 34.460000000 0.15928000000E-01
325 7.7490000000 0.99740000000E-01
326 2.2800000000 0.31049200000
327 })
328 (type: [am = p]
329 {exp coef:0} = {
330 0.71560000000 1.0000000000
331 })
332 (type: [am = p]
333 {exp coef:0} = {
334 0.21400000000 1.0000000000
335 })
336 (type: [am = p]
337 {exp coef:0} = {
338 15.159000000 1.0000000000
339 })
340 (type: [am = p]
341 {exp coef:0} = {
342 57.437000000 1.0000000000
343 })
344 (type: [am = p]
345 {exp coef:0} = {
346 0.59740000000E-01 1.0000000000
347 })
348 (type: [(am = d puream = 1)]
349 {exp coef:0} = {
350 2.3140000000 1.0000000000
351 })
352 (type: [(am = d puream = 1)]
353 {exp coef:0} = {
354 0.64500000000 1.0000000000
355 })
356 (type: [(am = d puream = 1)]
357 {exp coef:0} = {
358 15.858000000 1.0000000000
359 })
360 (type: [(am = d puream = 1)]
361 {exp coef:0} = {
362 0.21400000000 1.0000000000
363 })
364 (type: [(am = f puream = 1)]
365 {exp coef:0} = {
366 1.4280000000 1.0000000000
367 })
368 (type: [(am = f puream = 1)]
369 {exp coef:0} = {
370 0.50000000000 1.0000000000
371 })
372 ]
373%
374% BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
375% AUGMENTING FUNCTIONS: Tight (s,p,d)
376% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
377 fluorine: "aug-cc-pCVTZ": [
378 (type: [am = s am = s]
379 {exp coef:0 coef:1} = {
380 19500.000000 0.50700000000E-03 -0.11700000000E-03
381 2923.0000000 0.39230000000E-02 -0.91200000000E-03
382 664.50000000 0.20200000000E-01 -0.47170000000E-02
383 187.50000000 0.79010000000E-01 -0.19086000000E-01
384 60.620000000 0.23043900000 -0.59655000000E-01
385 21.420000000 0.43287200000 -0.14001000000
386 7.9500000000 0.34996400000 -0.17678200000
387 0.88150000000 -0.78920000000E-02 0.60504300000
388 })
389 (type: [am = s]
390 {exp coef:0} = {
391 2.2570000000 1.0000000000
392 })
393 (type: [am = s]
394 {exp coef:0} = {
395 0.30410000000 1.0000000000
396 })
397 (type: [am = s]
398 {exp coef:0} = {
399 9.8120000000 1.0000000000
400 })
401 (type: [am = s]
402 {exp coef:0} = {
403 25.943000000 1.0000000000
404 })
405 (type: [am = s]
406 {exp coef:0} = {
407 0.91580000000E-01 1.0000000000
408 })
409 (type: [am = p]
410 {exp coef:0} = {
411 43.880000000 0.16665000000E-01
412 9.9260000000 0.10447200000
413 2.9300000000 0.31726000000
414 })
415 (type: [am = p]
416 {exp coef:0} = {
417 0.91320000000 1.0000000000
418 })
419 (type: [am = p]
420 {exp coef:0} = {
421 0.26720000000 1.0000000000
422 })
423 (type: [am = p]
424 {exp coef:0} = {
425 18.756000000 1.0000000000
426 })
427 (type: [am = p]
428 {exp coef:0} = {
429 71.348000000 1.0000000000
430 })
431 (type: [am = p]
432 {exp coef:0} = {
433 0.73610000000E-01 1.0000000000
434 })
435 (type: [(am = d puream = 1)]
436 {exp coef:0} = {
437 3.1070000000 1.0000000000
438 })
439 (type: [(am = d puream = 1)]
440 {exp coef:0} = {
441 0.85500000000 1.0000000000
442 })
443 (type: [(am = d puream = 1)]
444 {exp coef:0} = {
445 19.108000000 1.0000000000
446 })
447 (type: [(am = d puream = 1)]
448 {exp coef:0} = {
449 0.29200000000 1.0000000000
450 })
451 (type: [(am = f puream = 1)]
452 {exp coef:0} = {
453 1.9170000000 1.0000000000
454 })
455 (type: [(am = f puream = 1)]
456 {exp coef:0} = {
457 0.72400000000 1.0000000000
458 })
459 ]
460%
461% BASIS SET: (10s,5p,2d,1f) -> [4s,3p,2d,1f]
462% AUGMENTING FUNCTIONS: Tight (s,p,d)
463% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
464 neon: "aug-cc-pCVTZ": [
465 (type: [am = s am = s]
466 {exp coef:0 coef:1} = {
467 24350.000000 0.50200000000E-03 -0.11800000000E-03
468 3650.0000000 0.38810000000E-02 -0.91500000000E-03
469 829.60000000 0.19997000000E-01 -0.47370000000E-02
470 234.00000000 0.78418000000E-01 -0.19233000000E-01
471 75.610000000 0.22967600000 -0.60369000000E-01
472 26.730000000 0.43272200000 -0.14250800000
473 9.9270000000 0.35064200000 -0.17771000000
474 1.1020000000 -0.76450000000E-02 0.60583600000
475 })
476 (type: [am = s]
477 {exp coef:0} = {
478 2.8360000000 1.0000000000
479 })
480 (type: [am = s]
481 {exp coef:0} = {
482 0.37820000000 1.0000000000
483 })
484 (type: [am = s]
485 {exp coef:0} = {
486 12.083000000 1.0000000000
487 })
488 (type: [am = s]
489 {exp coef:0} = {
490 31.947000000 1.0000000000
491 })
492 (type: [am = s]
493 {exp coef:0} = {
494 0.11330000000 1.0000000000
495 })
496 (type: [am = p]
497 {exp coef:0} = {
498 54.700000000 0.17151000000E-01
499 12.430000000 0.10765600000
500 3.6790000000 0.32168100000
501 })
502 (type: [am = p]
503 {exp coef:0} = {
504 1.1430000000 1.0000000000
505 })
506 (type: [am = p]
507 {exp coef:0} = {
508 0.33000000000 1.0000000000
509 })
510 (type: [am = p]
511 {exp coef:0} = {
512 22.827000000 1.0000000000
513 })
514 (type: [am = p]
515 {exp coef:0} = {
516 87.017000000 1.0000000000
517 })
518 (type: [am = p]
519 {exp coef:0} = {
520 0.91750000000E-01 1.0000000000
521 })
522 (type: [(am = d puream = 1)]
523 {exp coef:0} = {
524 4.0140000000 1.0000000000
525 })
526 (type: [(am = d puream = 1)]
527 {exp coef:0} = {
528 1.0960000000 1.0000000000
529 })
530 (type: [(am = d puream = 1)]
531 {exp coef:0} = {
532 23.168000000 1.0000000000
533 })
534 (type: [(am = d puream = 1)]
535 {exp coef:0} = {
536 0.38600000000 1.0000000000
537 })
538 (type: [(am = f puream = 1)]
539 {exp coef:0} = {
540 2.5440000000 1.0000000000
541 })
542 (type: [(am = f puream = 1)]
543 {exp coef:0} = {
544 1.0840000000 1.0000000000
545 })
546 ]
547%
548% BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
549% AUGMENTING FUNCTIONS: Tight (2s,2p,2d,1f)
550% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
551 aluminum: "aug-cc-pCVTZ": [
552 (type: [am = s am = s am = s]
553 {exp coef:0 coef:1 coef:2} = {
554 205500.00000 0.67883600000E-04 -0.17637700000E-04 0.40731500000E-05
555 30780.000000 0.52714900000E-03 -0.13719500000E-03 0.31656600000E-04
556 7006.0000000 0.27620300000E-02 -0.71891000000E-03 0.16611600000E-03
557 1985.0000000 0.11472800000E-01 -0.30114600000E-02 0.69499200000E-03
558 649.10000000 0.39818800000E-01 -0.10601400000E-01 0.24551100000E-02
559 235.00000000 0.11504000000 -0.32134500000E-01 0.74459800000E-02
560 91.620000000 0.26088700000 -0.80315600000E-01 0.18825300000E-01
561 37.670000000 0.39638600000 -0.15679400000 0.37277200000E-01
562 15.910000000 0.28459700000 -0.16837600000 0.41949600000E-01
563 5.8500000000 0.44458300000E-01 0.12687900000 -0.35437500000E-01
564 2.5420000000 -0.48983800000E-02 0.56149400000 -0.17513200000
565 1.0570000000 0.26125300000E-02 0.43661300000 -0.27620300000
566 0.14550000000 0.72206800000E-03 -0.11456300000E-01 0.65280900000
567 })
568 (type: [am = s]
569 {exp coef:0} = {
570 0.29310000000 1.0000000000
571 })
572 (type: [am = s]
573 {exp coef:0} = {
574 0.56500000000E-01 1.0000000000
575 })
576 (type: [am = s]
577 {exp coef:0} = {
578 7.4880000000 1.0000000000
579 })
580 (type: [am = s]
581 {exp coef:0} = {
582 1.2720000000 1.0000000000
583 })
584 (type: [am = s]
585 {exp coef:0} = {
586 0.22100000000E-01 1.0000000000
587 })
588 (type: [am = p am = p]
589 {exp coef:0 coef:1} = {
590 444.40000000 0.16278600000E-02 -0.28634100000E-03
591 105.10000000 0.13068700000E-01 -0.24230800000E-02
592 33.470000000 0.61234100000E-01 -0.10865800000E-01
593 12.330000000 0.18787000000 -0.36430700000E-01
594 4.8690000000 0.36045200000 -0.64107400000E-01
595 1.9610000000 0.40845400000 -0.97223900000E-01
596 0.18880000000 0.97651400000E-02 0.50344800000
597 })
598 (type: [am = p]
599 {exp coef:0} = {
600 0.78340000000 1.0000000000
601 })
602 (type: [am = p]
603 {exp coef:0} = {
604 0.55570000000E-01 1.0000000000
605 })
606 (type: [am = p]
607 {exp coef:0} = {
608 2.2020000000 1.0000000000
609 })
610 (type: [am = p]
611 {exp coef:0} = {
612 5.5480000000 1.0000000000
613 })
614 (type: [am = p]
615 {exp coef:0} = {
616 0.14600000000E-01 1.0000000000
617 })
618 (type: [(am = d puream = 1)]
619 {exp coef:0} = {
620 0.10900000000 1.0000000000
621 })
622 (type: [(am = d puream = 1)]
623 {exp coef:0} = {
624 0.33300000000 1.0000000000
625 })
626 (type: [(am = d puream = 1)]
627 {exp coef:0} = {
628 2.6340000000 1.0000000000
629 })
630 (type: [(am = d puream = 1)]
631 {exp coef:0} = {
632 8.6460000000 1.0000000000
633 })
634 (type: [(am = d puream = 1)]
635 {exp coef:0} = {
636 0.35600000000E-01 1.0000000000
637 })
638 (type: [(am = f puream = 1)]
639 {exp coef:0} = {
640 0.24400000000 1.0000000000
641 })
642 (type: [(am = f puream = 1)]
643 {exp coef:0} = {
644 5.6860000000 1.0000000000
645 })
646 (type: [(am = f puream = 1)]
647 {exp coef:0} = {
648 0.85800000000E-01 1.0000000000
649 })
650 ]
651%
652% BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
653% AUGMENTING FUNCTIONS: Tight (2s,2p,2d,1f)
654% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
655 silicon: "aug-cc-pCVTZ": [
656 (type: [am = s am = s am = s]
657 {exp coef:0 coef:1 coef:2} = {
658 254900.00000 0.62510100000E-04 -0.16637000000E-04 0.42625700000E-05
659 38190.000000 0.48555300000E-03 -0.12931000000E-03 0.33106200000E-04
660 8690.0000000 0.25451600000E-02 -0.67882800000E-03 0.17401500000E-03
661 2462.0000000 0.10586600000E-01 -0.28411700000E-02 0.72757400000E-03
662 804.80000000 0.36878700000E-01 -0.10055100000E-01 0.25833300000E-02
663 291.30000000 0.10747900000 -0.30577400000E-01 0.78635400000E-02
664 113.60000000 0.24793600000 -0.77725600000E-01 0.20215500000E-01
665 46.750000000 0.39092700000 -0.15423600000 0.40732000000E-01
666 19.820000000 0.30202600000 -0.18036800000 0.49935800000E-01
667 7.7080000000 0.55923600000E-01 0.79821800000E-01 -0.24939600000E-01
668 3.3400000000 -0.40240600000E-02 0.54744100000 -0.19035000000
669 1.4020000000 0.25803000000E-02 0.48011900000 -0.31835000000
670 0.20700000000 0.60793000000E-03 -0.10699600000E-01 0.68118000000
671 })
672 (type: [am = s]
673 {exp coef:0} = {
674 0.43870000000 1.0000000000
675 })
676 (type: [am = s]
677 {exp coef:0} = {
678 0.79440000000E-01 1.0000000000
679 })
680 (type: [am = s]
681 {exp coef:0} = {
682 9.1640000000 1.0000000000
683 })
684 (type: [am = s]
685 {exp coef:0} = {
686 1.6210000000 1.0000000000
687 })
688 (type: [am = s]
689 {exp coef:0} = {
690 0.33000000000E-01 1.0000000000
691 })
692 (type: [am = p am = p]
693 {exp coef:0 coef:1} = {
694 481.50000000 0.19204500000E-02 -0.40522000000E-03
695 113.90000000 0.15355200000E-01 -0.33589600000E-02
696 36.230000000 0.71399100000E-01 -0.15286000000E-01
697 13.340000000 0.21305200000 -0.48921800000E-01
698 5.2520000000 0.39035400000 -0.85500800000E-01
699 2.1200000000 0.39372100000 -0.11213700000
700 0.25280000000 0.39563000000E-02 0.55191900000
701 })
702 (type: [am = p]
703 {exp coef:0} = {
704 0.85610000000 1.0000000000
705 })
706 (type: [am = p]
707 {exp coef:0} = {
708 0.78890000000E-01 1.0000000000
709 })
710 (type: [am = p]
711 {exp coef:0} = {
712 6.4580000000 1.0000000000
713 })
714 (type: [am = p]
715 {exp coef:0} = {
716 2.5170000000 1.0000000000
717 })
718 (type: [am = p]
719 {exp coef:0} = {
720 0.23700000000E-01 1.0000000000
721 })
722 (type: [(am = d puream = 1)]
723 {exp coef:0} = {
724 0.15900000000 1.0000000000
725 })
726 (type: [(am = d puream = 1)]
727 {exp coef:0} = {
728 0.48100000000 1.0000000000
729 })
730 (type: [(am = d puream = 1)]
731 {exp coef:0} = {
732 10.671000000 1.0000000000
733 })
734 (type: [(am = d puream = 1)]
735 {exp coef:0} = {
736 3.3080000000 1.0000000000
737 })
738 (type: [(am = d puream = 1)]
739 {exp coef:0} = {
740 0.55600000000E-01 1.0000000000
741 })
742 (type: [(am = f puream = 1)]
743 {exp coef:0} = {
744 0.33600000000 1.0000000000
745 })
746 (type: [(am = f puream = 1)]
747 {exp coef:0} = {
748 7.0010000000 1.0000000000
749 })
750 (type: [(am = f puream = 1)]
751 {exp coef:0} = {
752 0.12500000000 1.0000000000
753 })
754 ]
755%
756% BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
757% AUGMENTING FUNCTIONS: Tight (2s,2p,2d,1f)
758% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
759 phosphorus: "aug-cc-pCVTZ": [
760 (type: [am = s am = s am = s]
761 {exp coef:0 coef:1 coef:2} = {
762 312400.00000 0.57696000000E-04 -0.15670900000E-04 0.43063100000E-05
763 46800.000000 0.44829600000E-03 -0.12172400000E-03 0.33419400000E-04
764 10650.000000 0.23493900000E-02 -0.63967200000E-03 0.17588500000E-03
765 3018.0000000 0.97826500000E-02 -0.26742600000E-02 0.73434000000E-03
766 986.80000000 0.34146700000E-01 -0.94983100000E-02 0.26177500000E-02
767 357.40000000 0.10020400000 -0.28934900000E-01 0.79785200000E-02
768 139.60000000 0.23437200000 -0.74512100000E-01 0.20794000000E-01
769 57.630000000 0.38243400000 -0.14993800000 0.42444600000E-01
770 24.600000000 0.31808800000 -0.18946700000 0.56343600000E-01
771 10.120000000 0.70778800000E-01 0.36327000000E-01 -0.12735800000E-01
772 4.2830000000 -0.18179900000E-02 0.52881600000 -0.19649500000
773 1.8050000000 0.21618000000E-02 0.51911500000 -0.35355500000
774 0.27820000000 0.43229700000E-03 -0.92569500000E-02 0.70091200000
775 })
776 (type: [am = s]
777 {exp coef:0} = {
778 0.61580000000 1.0000000000
779 })
780 (type: [am = s]
781 {exp coef:0} = {
782 0.10550000000 1.0000000000
783 })
784 (type: [am = s]
785 {exp coef:0} = {
786 10.978000000 1.0000000000
787 })
788 (type: [am = s]
789 {exp coef:0} = {
790 2.0060000000 1.0000000000
791 })
792 (type: [am = s]
793 {exp coef:0} = {
794 0.40900000000E-01 1.0000000000
795 })
796 (type: [am = p am = p]
797 {exp coef:0 coef:1} = {
798 504.90000000 0.23372800000E-02 -0.55523600000E-03
799 119.40000000 0.18541000000E-01 -0.44591300000E-02
800 37.960000000 0.84969300000E-01 -0.20635000000E-01
801 13.950000000 0.24461500000 -0.61769400000E-01
802 5.4570000000 0.42276600000 -0.10892400000
803 2.1770000000 0.36843900000 -0.10559900000
804 0.28770000000 -0.37900500000E-02 0.57698100000
805 })
806 (type: [am = p]
807 {exp coef:0} = {
808 0.80100000000 1.0000000000
809 })
810 (type: [am = p]
811 {exp coef:0} = {
812 0.97140000000E-01 1.0000000000
813 })
814 (type: [am = p]
815 {exp coef:0} = {
816 7.0840000000 1.0000000000
817 })
818 (type: [am = p]
819 {exp coef:0} = {
820 2.7010000000 1.0000000000
821 })
822 (type: [am = p]
823 {exp coef:0} = {
824 0.30700000000E-01 1.0000000000
825 })
826 (type: [(am = d puream = 1)]
827 {exp coef:0} = {
828 0.21600000000 1.0000000000
829 })
830 (type: [(am = d puream = 1)]
831 {exp coef:0} = {
832 0.65200000000 1.0000000000
833 })
834 (type: [(am = d puream = 1)]
835 {exp coef:0} = {
836 12.891000000 1.0000000000
837 })
838 (type: [(am = d puream = 1)]
839 {exp coef:0} = {
840 4.0560000000 1.0000000000
841 })
842 (type: [(am = d puream = 1)]
843 {exp coef:0} = {
844 0.77500000000E-01 1.0000000000
845 })
846 (type: [(am = f puream = 1)]
847 {exp coef:0} = {
848 0.45200000000 1.0000000000
849 })
850 (type: [(am = f puream = 1)]
851 {exp coef:0} = {
852 8.4620000000 1.0000000000
853 })
854 (type: [(am = f puream = 1)]
855 {exp coef:0} = {
856 0.16500000000 1.0000000000
857 })
858 ]
859%
860% BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
861% AUGMENTING FUNCTIONS: Tight (2s,2p,2d,1f)
862% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
863 sulfur: "aug-cc-pCVTZ": [
864 (type: [am = s am = s am = s]
865 {exp coef:0 coef:1 coef:2} = {
866 374100.00000 0.54214000000E-04 -0.14983700000E-04 0.43506600000E-05
867 56050.000000 0.42085500000E-03 -0.11619800000E-03 0.33714000000E-04
868 12760.000000 0.22069800000E-02 -0.61158300000E-03 0.17767400000E-03
869 3615.0000000 0.91925800000E-02 -0.25537000000E-02 0.74111600000E-03
870 1183.0000000 0.32112300000E-01 -0.90870800000E-02 0.26459100000E-02
871 428.80000000 0.94668300000E-01 -0.27704500000E-01 0.80748700000E-02
872 167.80000000 0.22363000000 -0.72002000000E-01 0.21227600000E-01
873 69.470000000 0.37439300000 -0.14643900000 0.43832300000E-01
874 29.840000000 0.32910800000 -0.19515000000 0.61271600000E-01
875 12.720000000 0.84703800000E-01 0.81919300000E-02 -0.36151000000E-02
876 5.2440000000 0.44085100000E-03 0.51660100000 -0.20451000000
877 2.2190000000 0.16482700000E-02 0.54217800000 -0.38187100000
878 0.34900000000 0.30130600000E-03 -0.91807200000E-02 0.71414700000
879 })
880 (type: [am = s]
881 {exp coef:0} = {
882 0.77670000000 1.0000000000
883 })
884 (type: [am = s]
885 {exp coef:0} = {
886 0.13220000000 1.0000000000
887 })
888 (type: [am = s]
889 {exp coef:0} = {
890 12.928000000 1.0000000000
891 })
892 (type: [am = s]
893 {exp coef:0} = {
894 2.4130000000 1.0000000000
895 })
896 (type: [am = s]
897 {exp coef:0} = {
898 0.49700000000E-01 1.0000000000
899 })
900 (type: [am = p am = p]
901 {exp coef:0 coef:1} = {
902 574.40000000 0.24226400000E-02 -0.62010200000E-03
903 135.80000000 0.19279600000E-01 -0.49388200000E-02
904 43.190000000 0.88540100000E-01 -0.23264700000E-01
905 15.870000000 0.25465400000 -0.68519500000E-01
906 6.2080000000 0.43398400000 -0.12389600000
907 2.4830000000 0.35495300000 -0.96949900000E-01
908 0.32290000000 -0.50297700000E-02 0.56939400000
909 })
910 (type: [am = p]
911 {exp coef:0} = {
912 0.86880000000 1.0000000000
913 })
914 (type: [am = p]
915 {exp coef:0} = {
916 0.10980000000 1.0000000000
917 })
918 (type: [am = p]
919 {exp coef:0} = {
920 8.1140000000 1.0000000000
921 })
922 (type: [am = p]
923 {exp coef:0} = {
924 3.1060000000 1.0000000000
925 })
926 (type: [am = p]
927 {exp coef:0} = {
928 0.35100000000E-01 1.0000000000
929 })
930 (type: [(am = d puream = 1)]
931 {exp coef:0} = {
932 0.26900000000 1.0000000000
933 })
934 (type: [(am = d puream = 1)]
935 {exp coef:0} = {
936 0.81900000000 1.0000000000
937 })
938 (type: [(am = d puream = 1)]
939 {exp coef:0} = {
940 15.254000000 1.0000000000
941 })
942 (type: [(am = d puream = 1)]
943 {exp coef:0} = {
944 4.8450000000 1.0000000000
945 })
946 (type: [(am = d puream = 1)]
947 {exp coef:0} = {
948 0.10100000000 1.0000000000
949 })
950 (type: [(am = f puream = 1)]
951 {exp coef:0} = {
952 0.55700000000 1.0000000000
953 })
954 (type: [(am = f puream = 1)]
955 {exp coef:0} = {
956 10.052000000 1.0000000000
957 })
958 (type: [(am = f puream = 1)]
959 {exp coef:0} = {
960 0.21800000000 1.0000000000
961 })
962 ]
963%
964% BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
965% AUGMENTING FUNCTIONS: Tight (s,p,d,f)
966% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
967 chlorine: "aug-cc-pCVTZ": [
968 (type: [am = s am = s am = s]
969 {exp coef:0 coef:1 coef:2} = {
970 456100.00000 0.49297000000E-04 -0.13830400000E-04 0.41854600000E-05
971 68330.000000 0.38302900000E-03 -0.10727900000E-03 0.32439500000E-04
972 15550.000000 0.20085400000E-02 -0.56508300000E-03 0.17110500000E-03
973 4405.0000000 0.83855800000E-02 -0.23613500000E-02 0.71417600000E-03
974 1439.0000000 0.29470300000E-01 -0.84588600000E-02 0.25670500000E-02
975 520.40000000 0.87832500000E-01 -0.25963800000E-01 0.78855200000E-02
976 203.10000000 0.21147300000 -0.68636200000E-01 0.21086700000E-01
977 83.960000000 0.36536400000 -0.14187400000 0.44226400000E-01
978 36.200000000 0.34088400000 -0.19931900000 0.65167000000E-01
979 15.830000000 0.10213300000 -0.19566200000E-01 0.60301200000E-02
980 6.3340000000 0.31167500000E-02 0.49974100000 -0.20649500000
981 2.6940000000 0.10575100000E-02 0.56373600000 -0.40587100000
982 0.43130000000 0.15613600000E-03 -0.83509100000E-02 0.72566100000
983 })
984 (type: [am = s]
985 {exp coef:0} = {
986 0.97680000000 1.0000000000
987 })
988 (type: [am = s]
989 {exp coef:0} = {
990 0.16250000000 1.0000000000
991 })
992 (type: [am = s]
993 {exp coef:0} = {
994 15.064000000 1.0000000000
995 })
996 (type: [am = s]
997 {exp coef:0} = {
998 2.8740000000 1.0000000000
999 })
1000 (type: [am = s]
1001 {exp coef:0} = {
1002 0.59100000000E-01 1.0000000000
1003 })
1004 (type: [am = p am = p]
1005 {exp coef:0 coef:1} = {
1006 663.30000000 0.24044800000E-02 -0.65214500000E-03
1007 156.80000000 0.19214800000E-01 -0.51944500000E-02
1008 49.980000000 0.88509700000E-01 -0.24693800000E-01
1009 18.420000000 0.25602000000 -0.72816700000E-01
1010 7.2400000000 0.43692700000 -0.13403000000
1011 2.9220000000 0.35033400000 -0.94774200000E-01
1012 0.38180000000 -0.45842300000E-02 0.56466700000
1013 })
1014 (type: [am = p]
1015 {exp coef:0} = {
1016 1.0220000000 1.0000000000
1017 })
1018 (type: [am = p]
1019 {exp coef:0} = {
1020 0.13010000000 1.0000000000
1021 })
1022 (type: [am = p]
1023 {exp coef:0} = {
1024 9.4800000000 1.0000000000
1025 })
1026 (type: [am = p]
1027 {exp coef:0} = {
1028 3.6680000000 1.0000000000
1029 })
1030 (type: [am = p]
1031 {exp coef:0} = {
1032 0.41900000000E-01 1.0000000000
1033 })
1034 (type: [(am = d puream = 1)]
1035 {exp coef:0} = {
1036 1.0460000000 1.0000000000
1037 })
1038 (type: [(am = d puream = 1)]
1039 {exp coef:0} = {
1040 0.34400000000 1.0000000000
1041 })
1042 (type: [(am = d puream = 1)]
1043 {exp coef:0} = {
1044 17.957000000 1.0000000000
1045 })
1046 (type: [(am = d puream = 1)]
1047 {exp coef:0} = {
1048 5.7600000000 1.0000000000
1049 })
1050 (type: [(am = d puream = 1)]
1051 {exp coef:0} = {
1052 0.13500000000 1.0000000000
1053 })
1054 (type: [(am = f puream = 1)]
1055 {exp coef:0} = {
1056 0.70600000000 1.0000000000
1057 })
1058 (type: [(am = f puream = 1)]
1059 {exp coef:0} = {
1060 11.779000000 1.0000000000
1061 })
1062 (type: [(am = f puream = 1)]
1063 {exp coef:0} = {
1064 0.31200000000 1.0000000000
1065 })
1066 ]
1067%
1068% BASIS SET: (15s,9p,2d,1f) -> [5s,4p,2d,1f]
1069% AUGMENTING FUNCTIONS: Tight (2s,2p,2d,1f)
1070% AUGMENTING FUNCTIONS: Diffuse (1s,1p,1d,1f)
1071 argon: "aug-cc-pCVTZ": [
1072 (type: [am = s am = s am = s]
1073 {exp coef:0 coef:1 coef:2} = {
1074 545000.00000 0.45582800000E-04 -0.12955100000E-04 0.40499000000E-05
1075 81640.000000 0.35410800000E-03 -0.10042800000E-03 0.31369100000E-04
1076 18580.000000 0.18579700000E-02 -0.52958300000E-03 0.16564600000E-03
1077 5261.0000000 0.77685100000E-02 -0.22139600000E-02 0.69166200000E-03
1078 1717.0000000 0.27423200000E-01 -0.79684500000E-02 0.24979000000E-02
1079 619.90000000 0.82383600000E-01 -0.24580300000E-01 0.77107400000E-02
1080 241.60000000 0.20123000000 -0.65779800000E-01 0.20871400000E-01
1081 99.790000000 0.35678100000 -0.13794200000 0.44396500000E-01
1082 43.150000000 0.34956300000 -0.20163000000 0.68022400000E-01
1083 19.140000000 0.11826600000 -0.41283400000E-01 0.14135000000E-01
1084 7.4880000000 0.56019000000E-02 0.48468000000 -0.20748900000
1085 3.2050000000 0.48347300000E-03 0.57922400000 -0.42504500000
1086 0.52040000000 0.29202500000E-04 -0.72755300000E-02 0.73362700000
1087 })
1088 (type: [am = s]
1089 {exp coef:0} = {
1090 1.1960000000 1.0000000000
1091 })
1092 (type: [am = s]
1093 {exp coef:0} = {
1094 0.19540000000 1.0000000000
1095 })
1096 (type: [am = s]
1097 {exp coef:0} = {
1098 17.362000000 1.0000000000
1099 })
1100 (type: [am = s]
1101 {exp coef:0} = {
1102 3.3780000000 1.0000000000
1103 })
1104 (type: [am = s]
1105 {exp coef:0} = {
1106 0.68500000000E-01 1.0000000000
1107 })
1108 (type: [am = p am = p]
1109 {exp coef:0 coef:1} = {
1110 761.80000000 0.23697600000E-02 -0.66721100000E-03
1111 180.20000000 0.19019900000E-01 -0.53271700000E-02
1112 57.500000000 0.88080700000E-01 -0.25549400000E-01
1113 21.240000000 0.25637700000 -0.75719700000E-01
1114 8.3880000000 0.43871100000 -0.14113300000
1115 3.4160000000 0.34756900000 -0.93276800000E-01
1116 0.45230000000 -0.52388200000E-02 0.56245000000
1117 })
1118 (type: [am = p]
1119 {exp coef:0} = {
1120 1.2060000000 1.0000000000
1121 })
1122 (type: [am = p]
1123 {exp coef:0} = {
1124 0.15450000000 1.0000000000
1125 })
1126 (type: [am = p]
1127 {exp coef:0} = {
1128 11.019000000 1.0000000000
1129 })
1130 (type: [am = p]
1131 {exp coef:0} = {
1132 4.3070000000 1.0000000000
1133 })
1134 (type: [am = p]
1135 {exp coef:0} = {
1136 0.48700000000E-01 1.0000000000
1137 })
1138 (type: [(am = d puream = 1)]
1139 {exp coef:0} = {
1140 0.41000000000 1.0000000000
1141 })
1142 (type: [(am = d puream = 1)]
1143 {exp coef:0} = {
1144 1.2540000000 1.0000000000
1145 })
1146 (type: [(am = d puream = 1)]
1147 {exp coef:0} = {
1148 20.706000000 1.0000000000
1149 })
1150 (type: [(am = d puream = 1)]
1151 {exp coef:0} = {
1152 6.6810000000 1.0000000000
1153 })
1154 (type: [(am = d puream = 1)]
1155 {exp coef:0} = {
1156 0.16900000000 1.0000000000
1157 })
1158 (type: [(am = f puream = 1)]
1159 {exp coef:0} = {
1160 0.89000000000 1.0000000000
1161 })
1162 (type: [(am = f puream = 1)]
1163 {exp coef:0} = {
1164 13.674000000 1.0000000000
1165 })
1166 (type: [(am = f puream = 1)]
1167 {exp coef:0} = {
1168 0.40600000000 1.0000000000
1169 })
1170 ]
1171)
Note: See TracBrowser for help on using the repository browser.