[0b990d] | 1 | %BASIS "aug-cc-pCV5Z" CARTESIAN
|
---|
| 2 | basis:(
|
---|
| 3 | %Elements References
|
---|
| 4 | %-------- ----------
|
---|
| 5 | %H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 6 | %He : D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 100, 2975 (1994).
|
---|
| 7 | %Li : Unofficial set from D. Feller.
|
---|
| 8 | %B - Ne: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 9 | %Na - Mg: Unofficial set from D. Feller.
|
---|
| 10 | %Al - Ar: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
| 11 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
| 12 | %Elements References
|
---|
| 13 | %-------- ----------
|
---|
| 14 | % B - Na: T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989) and D. E. Woon and
|
---|
| 15 | % T.H. Dunning, Jr. J. Chem. Phys. 103, 4572 (1995).
|
---|
| 16 | %Ca : J. Koput and K.A. Peterson, J. Phys. Chem. A, 106, 9595 (2002).
|
---|
| 17 | %Elements References
|
---|
| 18 | %-------- ---------
|
---|
| 19 | % H : T.H. Dunning, Jr. J. Chem. Phys. 90, 1007 (1989).
|
---|
| 20 | % Diffuse s exponent - S. Mielke
|
---|
| 21 | % He : D.E. Woon and T.H. Dunning, Jr., J. Chem. Phys. 100, 2975 (1994).
|
---|
| 22 | % B - F: R.A. Kendall, T.H. Dunning, Jr. and R.J. Harrison, J. Chem. Phys. 96,
|
---|
| 23 | % 6769 (1992).
|
---|
| 24 | %Al - Cl: D.E. Woon and T.H. Dunning, Jr. J. Chem. Phys. 98, 1358 (1993).
|
---|
| 25 | %
|
---|
| 26 | %
|
---|
| 27 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 28 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
| 29 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 30 | boron: "aug-cc-pCV5Z": [
|
---|
| 31 | (type: [am = s am = s]
|
---|
| 32 | {exp coef:0 coef:1} = {
|
---|
| 33 | 68260.000000 0.24000000000E-04 -0.50000000000E-05
|
---|
| 34 | 10230.000000 0.18500000000E-03 -0.37000000000E-04
|
---|
| 35 | 2328.0000000 0.97000000000E-03 -0.19600000000E-03
|
---|
| 36 | 660.40000000 0.40560000000E-02 -0.82400000000E-03
|
---|
| 37 | 216.20000000 0.14399000000E-01 -0.29230000000E-02
|
---|
| 38 | 78.600000000 0.43901000000E-01 -0.91380000000E-02
|
---|
| 39 | 30.980000000 0.11305700000 -0.24105000000E-01
|
---|
| 40 | 12.960000000 0.23382500000 -0.54755000000E-01
|
---|
| 41 | 5.6590000000 0.35396000000 -0.96943000000E-01
|
---|
| 42 | 2.5560000000 0.30154700000 -0.13748500000
|
---|
| 43 | })
|
---|
| 44 | (type: [am = s]
|
---|
| 45 | {exp coef:0} = {
|
---|
| 46 | 1.1750000000 1.0000000000
|
---|
| 47 | })
|
---|
| 48 | (type: [am = s]
|
---|
| 49 | {exp coef:0} = {
|
---|
| 50 | 0.42490000000 1.0000000000
|
---|
| 51 | })
|
---|
| 52 | (type: [am = s]
|
---|
| 53 | {exp coef:0} = {
|
---|
| 54 | 0.17120000000 1.0000000000
|
---|
| 55 | })
|
---|
| 56 | (type: [am = s]
|
---|
| 57 | {exp coef:0} = {
|
---|
| 58 | 0.69130000000E-01 1.0000000000
|
---|
| 59 | })
|
---|
| 60 | (type: [am = s]
|
---|
| 61 | {exp coef:0} = {
|
---|
| 62 | 6.4110000000 1.0000000000
|
---|
| 63 | })
|
---|
| 64 | (type: [am = s]
|
---|
| 65 | {exp coef:0} = {
|
---|
| 66 | 14.521000000 1.0000000000
|
---|
| 67 | })
|
---|
| 68 | (type: [am = s]
|
---|
| 69 | {exp coef:0} = {
|
---|
| 70 | 32.890000000 1.0000000000
|
---|
| 71 | })
|
---|
| 72 | (type: [am = s]
|
---|
| 73 | {exp coef:0} = {
|
---|
| 74 | 74.496000000 1.0000000000
|
---|
| 75 | })
|
---|
| 76 | (type: [am = s]
|
---|
| 77 | {exp coef:0} = {
|
---|
| 78 | 0.26100000000E-01 1.0000000000
|
---|
| 79 | })
|
---|
| 80 | (type: [am = p]
|
---|
| 81 | {exp coef:0} = {
|
---|
| 82 | 66.440000000 0.83800000000E-03
|
---|
| 83 | 15.710000000 0.64090000000E-02
|
---|
| 84 | 4.9360000000 0.28081000000E-01
|
---|
| 85 | 1.7700000000 0.92152000000E-01
|
---|
| 86 | })
|
---|
| 87 | (type: [am = p]
|
---|
| 88 | {exp coef:0} = {
|
---|
| 89 | 0.70080000000 1.0000000000
|
---|
| 90 | })
|
---|
| 91 | (type: [am = p]
|
---|
| 92 | {exp coef:0} = {
|
---|
| 93 | 0.29010000000 1.0000000000
|
---|
| 94 | })
|
---|
| 95 | (type: [am = p]
|
---|
| 96 | {exp coef:0} = {
|
---|
| 97 | 0.12110000000 1.0000000000
|
---|
| 98 | })
|
---|
| 99 | (type: [am = p]
|
---|
| 100 | {exp coef:0} = {
|
---|
| 101 | 0.49730000000E-01 1.0000000000
|
---|
| 102 | })
|
---|
| 103 | (type: [am = p]
|
---|
| 104 | {exp coef:0} = {
|
---|
| 105 | 5.1720000000 1.0000000000
|
---|
| 106 | })
|
---|
| 107 | (type: [am = p]
|
---|
| 108 | {exp coef:0} = {
|
---|
| 109 | 13.225000000 1.0000000000
|
---|
| 110 | })
|
---|
| 111 | (type: [am = p]
|
---|
| 112 | {exp coef:0} = {
|
---|
| 113 | 33.816000000 1.0000000000
|
---|
| 114 | })
|
---|
| 115 | (type: [am = p]
|
---|
| 116 | {exp coef:0} = {
|
---|
| 117 | 86.467000000 1.0000000000
|
---|
| 118 | })
|
---|
| 119 | (type: [am = p]
|
---|
| 120 | {exp coef:0} = {
|
---|
| 121 | 0.15700000000E-01 1.0000000000
|
---|
| 122 | })
|
---|
| 123 | (type: [(am = d puream = 1)]
|
---|
| 124 | {exp coef:0} = {
|
---|
| 125 | 2.0100000000 1.0000000000
|
---|
| 126 | })
|
---|
| 127 | (type: [(am = d puream = 1)]
|
---|
| 128 | {exp coef:0} = {
|
---|
| 129 | 0.79600000000 1.0000000000
|
---|
| 130 | })
|
---|
| 131 | (type: [(am = d puream = 1)]
|
---|
| 132 | {exp coef:0} = {
|
---|
| 133 | 0.31600000000 1.0000000000
|
---|
| 134 | })
|
---|
| 135 | (type: [(am = d puream = 1)]
|
---|
| 136 | {exp coef:0} = {
|
---|
| 137 | 0.12500000000 1.0000000000
|
---|
| 138 | })
|
---|
| 139 | (type: [(am = d puream = 1)]
|
---|
| 140 | {exp coef:0} = {
|
---|
| 141 | 7.0660000000 1.0000000000
|
---|
| 142 | })
|
---|
| 143 | (type: [(am = d puream = 1)]
|
---|
| 144 | {exp coef:0} = {
|
---|
| 145 | 19.721000000 1.0000000000
|
---|
| 146 | })
|
---|
| 147 | (type: [(am = d puream = 1)]
|
---|
| 148 | {exp coef:0} = {
|
---|
| 149 | 55.042000000 1.0000000000
|
---|
| 150 | })
|
---|
| 151 | (type: [(am = d puream = 1)]
|
---|
| 152 | {exp coef:0} = {
|
---|
| 153 | 0.43100000000E-01 1.0000000000
|
---|
| 154 | })
|
---|
| 155 | (type: [(am = f puream = 1)]
|
---|
| 156 | {exp coef:0} = {
|
---|
| 157 | 1.2150000000 1.0000000000
|
---|
| 158 | })
|
---|
| 159 | (type: [(am = f puream = 1)]
|
---|
| 160 | {exp coef:0} = {
|
---|
| 161 | 0.52500000000 1.0000000000
|
---|
| 162 | })
|
---|
| 163 | (type: [(am = f puream = 1)]
|
---|
| 164 | {exp coef:0} = {
|
---|
| 165 | 0.22700000000 1.0000000000
|
---|
| 166 | })
|
---|
| 167 | (type: [(am = f puream = 1)]
|
---|
| 168 | {exp coef:0} = {
|
---|
| 169 | 9.9940000000 1.0000000000
|
---|
| 170 | })
|
---|
| 171 | (type: [(am = f puream = 1)]
|
---|
| 172 | {exp coef:0} = {
|
---|
| 173 | 33.090000000 1.0000000000
|
---|
| 174 | })
|
---|
| 175 | (type: [(am = f puream = 1)]
|
---|
| 176 | {exp coef:0} = {
|
---|
| 177 | 0.84300000000E-01 1.0000000000
|
---|
| 178 | })
|
---|
| 179 | (type: [(am = g puream = 1)]
|
---|
| 180 | {exp coef:0} = {
|
---|
| 181 | 1.1240000000 1.0000000000
|
---|
| 182 | })
|
---|
| 183 | (type: [(am = g puream = 1)]
|
---|
| 184 | {exp coef:0} = {
|
---|
| 185 | 0.46100000000 1.0000000000
|
---|
| 186 | })
|
---|
| 187 | (type: [(am = g puream = 1)]
|
---|
| 188 | {exp coef:0} = {
|
---|
| 189 | 24.020000000 1.0000000000
|
---|
| 190 | })
|
---|
| 191 | (type: [(am = g puream = 1)]
|
---|
| 192 | {exp coef:0} = {
|
---|
| 193 | 0.20200000000 1.0000000000
|
---|
| 194 | })
|
---|
| 195 | (type: [(am = h puream = 1)]
|
---|
| 196 | {exp coef:0} = {
|
---|
| 197 | 0.83400000000 1.0000000000
|
---|
| 198 | })
|
---|
| 199 | (type: [(am = h puream = 1)]
|
---|
| 200 | {exp coef:0} = {
|
---|
| 201 | 0.38400000000 1.0000000000
|
---|
| 202 | })
|
---|
| 203 | ]
|
---|
| 204 | %
|
---|
| 205 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 206 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
| 207 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 208 | carbon: "aug-cc-pCV5Z": [
|
---|
| 209 | (type: [am = s am = s]
|
---|
| 210 | {exp coef:0 coef:1} = {
|
---|
| 211 | 96770.000000 0.25000000000E-04 -0.50000000000E-05
|
---|
| 212 | 14500.000000 0.19000000000E-03 -0.41000000000E-04
|
---|
| 213 | 3300.0000000 0.10000000000E-02 -0.21300000000E-03
|
---|
| 214 | 935.80000000 0.41830000000E-02 -0.89700000000E-03
|
---|
| 215 | 306.20000000 0.14859000000E-01 -0.31870000000E-02
|
---|
| 216 | 111.30000000 0.45301000000E-01 -0.99610000000E-02
|
---|
| 217 | 43.900000000 0.11650400000 -0.26375000000E-01
|
---|
| 218 | 18.400000000 0.24024900000 -0.60001000000E-01
|
---|
| 219 | 8.0540000000 0.35879900000 -0.10682500000
|
---|
| 220 | 3.6370000000 0.29394100000 -0.14416600000
|
---|
| 221 | })
|
---|
| 222 | (type: [am = s]
|
---|
| 223 | {exp coef:0} = {
|
---|
| 224 | 1.6560000000 1.0000000000
|
---|
| 225 | })
|
---|
| 226 | (type: [am = s]
|
---|
| 227 | {exp coef:0} = {
|
---|
| 228 | 0.63330000000 1.0000000000
|
---|
| 229 | })
|
---|
| 230 | (type: [am = s]
|
---|
| 231 | {exp coef:0} = {
|
---|
| 232 | 0.25450000000 1.0000000000
|
---|
| 233 | })
|
---|
| 234 | (type: [am = s]
|
---|
| 235 | {exp coef:0} = {
|
---|
| 236 | 0.10190000000 1.0000000000
|
---|
| 237 | })
|
---|
| 238 | (type: [am = s]
|
---|
| 239 | {exp coef:0} = {
|
---|
| 240 | 9.1850000000 1.0000000000
|
---|
| 241 | })
|
---|
| 242 | (type: [am = s]
|
---|
| 243 | {exp coef:0} = {
|
---|
| 244 | 20.795000000 1.0000000000
|
---|
| 245 | })
|
---|
| 246 | (type: [am = s]
|
---|
| 247 | {exp coef:0} = {
|
---|
| 248 | 47.080000000 1.0000000000
|
---|
| 249 | })
|
---|
| 250 | (type: [am = s]
|
---|
| 251 | {exp coef:0} = {
|
---|
| 252 | 106.58800000 1.0000000000
|
---|
| 253 | })
|
---|
| 254 | (type: [am = s]
|
---|
| 255 | {exp coef:0} = {
|
---|
| 256 | 0.39400000000E-01 1.0000000000
|
---|
| 257 | })
|
---|
| 258 | (type: [am = p]
|
---|
| 259 | {exp coef:0} = {
|
---|
| 260 | 101.80000000 0.89100000000E-03
|
---|
| 261 | 24.040000000 0.69760000000E-02
|
---|
| 262 | 7.5710000000 0.31669000000E-01
|
---|
| 263 | 2.7320000000 0.10400600000
|
---|
| 264 | })
|
---|
| 265 | (type: [am = p]
|
---|
| 266 | {exp coef:0} = {
|
---|
| 267 | 1.0850000000 1.0000000000
|
---|
| 268 | })
|
---|
| 269 | (type: [am = p]
|
---|
| 270 | {exp coef:0} = {
|
---|
| 271 | 0.44960000000 1.0000000000
|
---|
| 272 | })
|
---|
| 273 | (type: [am = p]
|
---|
| 274 | {exp coef:0} = {
|
---|
| 275 | 0.18760000000 1.0000000000
|
---|
| 276 | })
|
---|
| 277 | (type: [am = p]
|
---|
| 278 | {exp coef:0} = {
|
---|
| 279 | 0.76060000000E-01 1.0000000000
|
---|
| 280 | })
|
---|
| 281 | (type: [am = p]
|
---|
| 282 | {exp coef:0} = {
|
---|
| 283 | 7.6680000000 1.0000000000
|
---|
| 284 | })
|
---|
| 285 | (type: [am = p]
|
---|
| 286 | {exp coef:0} = {
|
---|
| 287 | 19.484000000 1.0000000000
|
---|
| 288 | })
|
---|
| 289 | (type: [am = p]
|
---|
| 290 | {exp coef:0} = {
|
---|
| 291 | 49.510000000 1.0000000000
|
---|
| 292 | })
|
---|
| 293 | (type: [am = p]
|
---|
| 294 | {exp coef:0} = {
|
---|
| 295 | 125.80400000 1.0000000000
|
---|
| 296 | })
|
---|
| 297 | (type: [am = p]
|
---|
| 298 | {exp coef:0} = {
|
---|
| 299 | 0.27200000000E-01 1.0000000000
|
---|
| 300 | })
|
---|
| 301 | (type: [(am = d puream = 1)]
|
---|
| 302 | {exp coef:0} = {
|
---|
| 303 | 3.1340000000 1.0000000000
|
---|
| 304 | })
|
---|
| 305 | (type: [(am = d puream = 1)]
|
---|
| 306 | {exp coef:0} = {
|
---|
| 307 | 1.2330000000 1.0000000000
|
---|
| 308 | })
|
---|
| 309 | (type: [(am = d puream = 1)]
|
---|
| 310 | {exp coef:0} = {
|
---|
| 311 | 0.48500000000 1.0000000000
|
---|
| 312 | })
|
---|
| 313 | (type: [(am = d puream = 1)]
|
---|
| 314 | {exp coef:0} = {
|
---|
| 315 | 0.19100000000 1.0000000000
|
---|
| 316 | })
|
---|
| 317 | (type: [(am = d puream = 1)]
|
---|
| 318 | {exp coef:0} = {
|
---|
| 319 | 10.009000000 1.0000000000
|
---|
| 320 | })
|
---|
| 321 | (type: [(am = d puream = 1)]
|
---|
| 322 | {exp coef:0} = {
|
---|
| 323 | 28.065000000 1.0000000000
|
---|
| 324 | })
|
---|
| 325 | (type: [(am = d puream = 1)]
|
---|
| 326 | {exp coef:0} = {
|
---|
| 327 | 78.695000000 1.0000000000
|
---|
| 328 | })
|
---|
| 329 | (type: [(am = d puream = 1)]
|
---|
| 330 | {exp coef:0} = {
|
---|
| 331 | 0.70100000000E-01 1.0000000000
|
---|
| 332 | })
|
---|
| 333 | (type: [(am = f puream = 1)]
|
---|
| 334 | {exp coef:0} = {
|
---|
| 335 | 2.0060000000 1.0000000000
|
---|
| 336 | })
|
---|
| 337 | (type: [(am = f puream = 1)]
|
---|
| 338 | {exp coef:0} = {
|
---|
| 339 | 0.83800000000 1.0000000000
|
---|
| 340 | })
|
---|
| 341 | (type: [(am = f puream = 1)]
|
---|
| 342 | {exp coef:0} = {
|
---|
| 343 | 0.35000000000 1.0000000000
|
---|
| 344 | })
|
---|
| 345 | (type: [(am = f puream = 1)]
|
---|
| 346 | {exp coef:0} = {
|
---|
| 347 | 11.693000000 1.0000000000
|
---|
| 348 | })
|
---|
| 349 | (type: [(am = f puream = 1)]
|
---|
| 350 | {exp coef:0} = {
|
---|
| 351 | 41.569000000 1.0000000000
|
---|
| 352 | })
|
---|
| 353 | (type: [(am = f puream = 1)]
|
---|
| 354 | {exp coef:0} = {
|
---|
| 355 | 0.13800000000 1.0000000000
|
---|
| 356 | })
|
---|
| 357 | (type: [(am = g puream = 1)]
|
---|
| 358 | {exp coef:0} = {
|
---|
| 359 | 1.7530000000 1.0000000000
|
---|
| 360 | })
|
---|
| 361 | (type: [(am = g puream = 1)]
|
---|
| 362 | {exp coef:0} = {
|
---|
| 363 | 0.67800000000 1.0000000000
|
---|
| 364 | })
|
---|
| 365 | (type: [(am = g puream = 1)]
|
---|
| 366 | {exp coef:0} = {
|
---|
| 367 | 32.780000000 1.0000000000
|
---|
| 368 | })
|
---|
| 369 | (type: [(am = g puream = 1)]
|
---|
| 370 | {exp coef:0} = {
|
---|
| 371 | 0.31900000000 1.0000000000
|
---|
| 372 | })
|
---|
| 373 | (type: [(am = h puream = 1)]
|
---|
| 374 | {exp coef:0} = {
|
---|
| 375 | 1.2590000000 1.0000000000
|
---|
| 376 | })
|
---|
| 377 | (type: [(am = h puream = 1)]
|
---|
| 378 | {exp coef:0} = {
|
---|
| 379 | 0.58600000000 1.0000000000
|
---|
| 380 | })
|
---|
| 381 | ]
|
---|
| 382 | %
|
---|
| 383 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 384 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
| 385 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 386 | nitrogen: "aug-cc-pCV5Z": [
|
---|
| 387 | (type: [am = s am = s]
|
---|
| 388 | {exp coef:0 coef:1} = {
|
---|
| 389 | 129200.00000 0.25000000000E-04 -0.60000000000E-05
|
---|
| 390 | 19350.000000 0.19700000000E-03 -0.43000000000E-04
|
---|
| 391 | 4404.0000000 0.10320000000E-02 -0.22700000000E-03
|
---|
| 392 | 1248.0000000 0.43250000000E-02 -0.95800000000E-03
|
---|
| 393 | 408.00000000 0.15380000000E-01 -0.34160000000E-02
|
---|
| 394 | 148.20000000 0.46867000000E-01 -0.10667000000E-01
|
---|
| 395 | 58.500000000 0.12011600000 -0.28279000000E-01
|
---|
| 396 | 24.590000000 0.24569500000 -0.64020000000E-01
|
---|
| 397 | 10.810000000 0.36137900000 -0.11393200000
|
---|
| 398 | 4.8820000000 0.28728300000 -0.14699500000
|
---|
| 399 | })
|
---|
| 400 | (type: [am = s]
|
---|
| 401 | {exp coef:0} = {
|
---|
| 402 | 2.1950000000 1.0000000000
|
---|
| 403 | })
|
---|
| 404 | (type: [am = s]
|
---|
| 405 | {exp coef:0} = {
|
---|
| 406 | 0.87150000000 1.0000000000
|
---|
| 407 | })
|
---|
| 408 | (type: [am = s]
|
---|
| 409 | {exp coef:0} = {
|
---|
| 410 | 0.35040000000 1.0000000000
|
---|
| 411 | })
|
---|
| 412 | (type: [am = s]
|
---|
| 413 | {exp coef:0} = {
|
---|
| 414 | 0.13970000000 1.0000000000
|
---|
| 415 | })
|
---|
| 416 | (type: [am = s]
|
---|
| 417 | {exp coef:0} = {
|
---|
| 418 | 12.275000000 1.0000000000
|
---|
| 419 | })
|
---|
| 420 | (type: [am = s]
|
---|
| 421 | {exp coef:0} = {
|
---|
| 422 | 27.827000000 1.0000000000
|
---|
| 423 | })
|
---|
| 424 | (type: [am = s]
|
---|
| 425 | {exp coef:0} = {
|
---|
| 426 | 63.085000000 1.0000000000
|
---|
| 427 | })
|
---|
| 428 | (type: [am = s]
|
---|
| 429 | {exp coef:0} = {
|
---|
| 430 | 143.01300000 1.0000000000
|
---|
| 431 | })
|
---|
| 432 | (type: [am = s]
|
---|
| 433 | {exp coef:0} = {
|
---|
| 434 | 0.51800000000E-01 1.0000000000
|
---|
| 435 | })
|
---|
| 436 | (type: [am = p]
|
---|
| 437 | {exp coef:0} = {
|
---|
| 438 | 147.00000000 0.89200000000E-03
|
---|
| 439 | 34.760000000 0.70820000000E-02
|
---|
| 440 | 11.000000000 0.32816000000E-01
|
---|
| 441 | 3.9950000000 0.10820900000
|
---|
| 442 | })
|
---|
| 443 | (type: [am = p]
|
---|
| 444 | {exp coef:0} = {
|
---|
| 445 | 1.5870000000 1.0000000000
|
---|
| 446 | })
|
---|
| 447 | (type: [am = p]
|
---|
| 448 | {exp coef:0} = {
|
---|
| 449 | 0.65330000000 1.0000000000
|
---|
| 450 | })
|
---|
| 451 | (type: [am = p]
|
---|
| 452 | {exp coef:0} = {
|
---|
| 453 | 0.26860000000 1.0000000000
|
---|
| 454 | })
|
---|
| 455 | (type: [am = p]
|
---|
| 456 | {exp coef:0} = {
|
---|
| 457 | 0.10670000000 1.0000000000
|
---|
| 458 | })
|
---|
| 459 | (type: [am = p]
|
---|
| 460 | {exp coef:0} = {
|
---|
| 461 | 10.760000000 1.0000000000
|
---|
| 462 | })
|
---|
| 463 | (type: [am = p]
|
---|
| 464 | {exp coef:0} = {
|
---|
| 465 | 27.180000000 1.0000000000
|
---|
| 466 | })
|
---|
| 467 | (type: [am = p]
|
---|
| 468 | {exp coef:0} = {
|
---|
| 469 | 68.656000000 1.0000000000
|
---|
| 470 | })
|
---|
| 471 | (type: [am = p]
|
---|
| 472 | {exp coef:0} = {
|
---|
| 473 | 173.42500000 1.0000000000
|
---|
| 474 | })
|
---|
| 475 | (type: [am = p]
|
---|
| 476 | {exp coef:0} = {
|
---|
| 477 | 0.36900000000E-01 1.0000000000
|
---|
| 478 | })
|
---|
| 479 | (type: [(am = d puream = 1)]
|
---|
| 480 | {exp coef:0} = {
|
---|
| 481 | 4.6470000000 1.0000000000
|
---|
| 482 | })
|
---|
| 483 | (type: [(am = d puream = 1)]
|
---|
| 484 | {exp coef:0} = {
|
---|
| 485 | 1.8130000000 1.0000000000
|
---|
| 486 | })
|
---|
| 487 | (type: [(am = d puream = 1)]
|
---|
| 488 | {exp coef:0} = {
|
---|
| 489 | 0.70700000000 1.0000000000
|
---|
| 490 | })
|
---|
| 491 | (type: [(am = d puream = 1)]
|
---|
| 492 | {exp coef:0} = {
|
---|
| 493 | 0.27600000000 1.0000000000
|
---|
| 494 | })
|
---|
| 495 | (type: [(am = d puream = 1)]
|
---|
| 496 | {exp coef:0} = {
|
---|
| 497 | 14.053000000 1.0000000000
|
---|
| 498 | })
|
---|
| 499 | (type: [(am = d puream = 1)]
|
---|
| 500 | {exp coef:0} = {
|
---|
| 501 | 39.081000000 1.0000000000
|
---|
| 502 | })
|
---|
| 503 | (type: [(am = d puream = 1)]
|
---|
| 504 | {exp coef:0} = {
|
---|
| 505 | 108.68500000 1.0000000000
|
---|
| 506 | })
|
---|
| 507 | (type: [(am = d puream = 1)]
|
---|
| 508 | {exp coef:0} = {
|
---|
| 509 | 0.97100000000E-01 1.0000000000
|
---|
| 510 | })
|
---|
| 511 | (type: [(am = f puream = 1)]
|
---|
| 512 | {exp coef:0} = {
|
---|
| 513 | 2.9420000000 1.0000000000
|
---|
| 514 | })
|
---|
| 515 | (type: [(am = f puream = 1)]
|
---|
| 516 | {exp coef:0} = {
|
---|
| 517 | 1.2040000000 1.0000000000
|
---|
| 518 | })
|
---|
| 519 | (type: [(am = f puream = 1)]
|
---|
| 520 | {exp coef:0} = {
|
---|
| 521 | 0.49300000000 1.0000000000
|
---|
| 522 | })
|
---|
| 523 | (type: [(am = f puream = 1)]
|
---|
| 524 | {exp coef:0} = {
|
---|
| 525 | 14.357000000 1.0000000000
|
---|
| 526 | })
|
---|
| 527 | (type: [(am = f puream = 1)]
|
---|
| 528 | {exp coef:0} = {
|
---|
| 529 | 52.690000000 1.0000000000
|
---|
| 530 | })
|
---|
| 531 | (type: [(am = f puream = 1)]
|
---|
| 532 | {exp coef:0} = {
|
---|
| 533 | 0.19200000000 1.0000000000
|
---|
| 534 | })
|
---|
| 535 | (type: [(am = g puream = 1)]
|
---|
| 536 | {exp coef:0} = {
|
---|
| 537 | 2.5110000000 1.0000000000
|
---|
| 538 | })
|
---|
| 539 | (type: [(am = g puream = 1)]
|
---|
| 540 | {exp coef:0} = {
|
---|
| 541 | 0.94200000000 1.0000000000
|
---|
| 542 | })
|
---|
| 543 | (type: [(am = g puream = 1)]
|
---|
| 544 | {exp coef:0} = {
|
---|
| 545 | 41.120000000 1.0000000000
|
---|
| 546 | })
|
---|
| 547 | (type: [(am = g puream = 1)]
|
---|
| 548 | {exp coef:0} = {
|
---|
| 549 | 0.43600000000 1.0000000000
|
---|
| 550 | })
|
---|
| 551 | (type: [(am = h puream = 1)]
|
---|
| 552 | {exp coef:0} = {
|
---|
| 553 | 1.7680000000 1.0000000000
|
---|
| 554 | })
|
---|
| 555 | (type: [(am = h puream = 1)]
|
---|
| 556 | {exp coef:0} = {
|
---|
| 557 | 0.78800000000 1.0000000000
|
---|
| 558 | })
|
---|
| 559 | ]
|
---|
| 560 | %
|
---|
| 561 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 562 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
| 563 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 564 | oxygen: "aug-cc-pCV5Z": [
|
---|
| 565 | (type: [am = s am = s]
|
---|
| 566 | {exp coef:0 coef:1} = {
|
---|
| 567 | 164200.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
| 568 | 24590.000000 0.20500000000E-03 -0.46000000000E-04
|
---|
| 569 | 5592.0000000 0.10760000000E-02 -0.24400000000E-03
|
---|
| 570 | 1582.0000000 0.45220000000E-02 -0.10310000000E-02
|
---|
| 571 | 516.10000000 0.16108000000E-01 -0.36880000000E-02
|
---|
| 572 | 187.20000000 0.49085000000E-01 -0.11514000000E-01
|
---|
| 573 | 73.930000000 0.12485700000 -0.30435000000E-01
|
---|
| 574 | 31.220000000 0.25168600000 -0.68147000000E-01
|
---|
| 575 | 13.810000000 0.36242000000 -0.12036800000
|
---|
| 576 | 6.2560000000 0.27905100000 -0.14826000000
|
---|
| 577 | })
|
---|
| 578 | (type: [am = s]
|
---|
| 579 | {exp coef:0} = {
|
---|
| 580 | 2.7760000000 1.0000000000
|
---|
| 581 | })
|
---|
| 582 | (type: [am = s]
|
---|
| 583 | {exp coef:0} = {
|
---|
| 584 | 1.1380000000 1.0000000000
|
---|
| 585 | })
|
---|
| 586 | (type: [am = s]
|
---|
| 587 | {exp coef:0} = {
|
---|
| 588 | 0.46000000000 1.0000000000
|
---|
| 589 | })
|
---|
| 590 | (type: [am = s]
|
---|
| 591 | {exp coef:0} = {
|
---|
| 592 | 0.18290000000 1.0000000000
|
---|
| 593 | })
|
---|
| 594 | (type: [am = s]
|
---|
| 595 | {exp coef:0} = {
|
---|
| 596 | 15.645000000 1.0000000000
|
---|
| 597 | })
|
---|
| 598 | (type: [am = s]
|
---|
| 599 | {exp coef:0} = {
|
---|
| 600 | 35.874000000 1.0000000000
|
---|
| 601 | })
|
---|
| 602 | (type: [am = s]
|
---|
| 603 | {exp coef:0} = {
|
---|
| 604 | 82.259000000 1.0000000000
|
---|
| 605 | })
|
---|
| 606 | (type: [am = s]
|
---|
| 607 | {exp coef:0} = {
|
---|
| 608 | 188.62000000 1.0000000000
|
---|
| 609 | })
|
---|
| 610 | (type: [am = s]
|
---|
| 611 | {exp coef:0} = {
|
---|
| 612 | 0.65500000000E-01 1.0000000000
|
---|
| 613 | })
|
---|
| 614 | (type: [am = p]
|
---|
| 615 | {exp coef:0} = {
|
---|
| 616 | 195.50000000 0.91800000000E-03
|
---|
| 617 | 46.160000000 0.73880000000E-02
|
---|
| 618 | 14.580000000 0.34958000000E-01
|
---|
| 619 | 5.2960000000 0.11543100000
|
---|
| 620 | })
|
---|
| 621 | (type: [am = p]
|
---|
| 622 | {exp coef:0} = {
|
---|
| 623 | 2.0940000000 1.0000000000
|
---|
| 624 | })
|
---|
| 625 | (type: [am = p]
|
---|
| 626 | {exp coef:0} = {
|
---|
| 627 | 0.84710000000 1.0000000000
|
---|
| 628 | })
|
---|
| 629 | (type: [am = p]
|
---|
| 630 | {exp coef:0} = {
|
---|
| 631 | 0.33680000000 1.0000000000
|
---|
| 632 | })
|
---|
| 633 | (type: [am = p]
|
---|
| 634 | {exp coef:0} = {
|
---|
| 635 | 0.12850000000 1.0000000000
|
---|
| 636 | })
|
---|
| 637 | (type: [am = p]
|
---|
| 638 | {exp coef:0} = {
|
---|
| 639 | 14.049000000 1.0000000000
|
---|
| 640 | })
|
---|
| 641 | (type: [am = p]
|
---|
| 642 | {exp coef:0} = {
|
---|
| 643 | 35.446000000 1.0000000000
|
---|
| 644 | })
|
---|
| 645 | (type: [am = p]
|
---|
| 646 | {exp coef:0} = {
|
---|
| 647 | 89.429000000 1.0000000000
|
---|
| 648 | })
|
---|
| 649 | (type: [am = p]
|
---|
| 650 | {exp coef:0} = {
|
---|
| 651 | 225.63000000 1.0000000000
|
---|
| 652 | })
|
---|
| 653 | (type: [am = p]
|
---|
| 654 | {exp coef:0} = {
|
---|
| 655 | 0.44600000000E-01 1.0000000000
|
---|
| 656 | })
|
---|
| 657 | (type: [(am = d puream = 1)]
|
---|
| 658 | {exp coef:0} = {
|
---|
| 659 | 5.8790000000 1.0000000000
|
---|
| 660 | })
|
---|
| 661 | (type: [(am = d puream = 1)]
|
---|
| 662 | {exp coef:0} = {
|
---|
| 663 | 2.3070000000 1.0000000000
|
---|
| 664 | })
|
---|
| 665 | (type: [(am = d puream = 1)]
|
---|
| 666 | {exp coef:0} = {
|
---|
| 667 | 0.90500000000 1.0000000000
|
---|
| 668 | })
|
---|
| 669 | (type: [(am = d puream = 1)]
|
---|
| 670 | {exp coef:0} = {
|
---|
| 671 | 0.35500000000 1.0000000000
|
---|
| 672 | })
|
---|
| 673 | (type: [(am = d puream = 1)]
|
---|
| 674 | {exp coef:0} = {
|
---|
| 675 | 16.703000000 1.0000000000
|
---|
| 676 | })
|
---|
| 677 | (type: [(am = d puream = 1)]
|
---|
| 678 | {exp coef:0} = {
|
---|
| 679 | 47.320000000 1.0000000000
|
---|
| 680 | })
|
---|
| 681 | (type: [(am = d puream = 1)]
|
---|
| 682 | {exp coef:0} = {
|
---|
| 683 | 134.05600000 1.0000000000
|
---|
| 684 | })
|
---|
| 685 | (type: [(am = d puream = 1)]
|
---|
| 686 | {exp coef:0} = {
|
---|
| 687 | 0.13100000000 1.0000000000
|
---|
| 688 | })
|
---|
| 689 | (type: [(am = f puream = 1)]
|
---|
| 690 | {exp coef:0} = {
|
---|
| 691 | 4.0160000000 1.0000000000
|
---|
| 692 | })
|
---|
| 693 | (type: [(am = f puream = 1)]
|
---|
| 694 | {exp coef:0} = {
|
---|
| 695 | 1.5540000000 1.0000000000
|
---|
| 696 | })
|
---|
| 697 | (type: [(am = f puream = 1)]
|
---|
| 698 | {exp coef:0} = {
|
---|
| 699 | 0.60100000000 1.0000000000
|
---|
| 700 | })
|
---|
| 701 | (type: [(am = f puream = 1)]
|
---|
| 702 | {exp coef:0} = {
|
---|
| 703 | 17.354000000 1.0000000000
|
---|
| 704 | })
|
---|
| 705 | (type: [(am = f puream = 1)]
|
---|
| 706 | {exp coef:0} = {
|
---|
| 707 | 65.546000000 1.0000000000
|
---|
| 708 | })
|
---|
| 709 | (type: [(am = f puream = 1)]
|
---|
| 710 | {exp coef:0} = {
|
---|
| 711 | 0.23700000000 1.0000000000
|
---|
| 712 | })
|
---|
| 713 | (type: [(am = g puream = 1)]
|
---|
| 714 | {exp coef:0} = {
|
---|
| 715 | 3.3500000000 1.0000000000
|
---|
| 716 | })
|
---|
| 717 | (type: [(am = g puream = 1)]
|
---|
| 718 | {exp coef:0} = {
|
---|
| 719 | 1.1890000000 1.0000000000
|
---|
| 720 | })
|
---|
| 721 | (type: [(am = g puream = 1)]
|
---|
| 722 | {exp coef:0} = {
|
---|
| 723 | 48.578000000 1.0000000000
|
---|
| 724 | })
|
---|
| 725 | (type: [(am = g puream = 1)]
|
---|
| 726 | {exp coef:0} = {
|
---|
| 727 | 0.51700000000 1.0000000000
|
---|
| 728 | })
|
---|
| 729 | (type: [(am = h puream = 1)]
|
---|
| 730 | {exp coef:0} = {
|
---|
| 731 | 2.3190000000 1.0000000000
|
---|
| 732 | })
|
---|
| 733 | (type: [(am = h puream = 1)]
|
---|
| 734 | {exp coef:0} = {
|
---|
| 735 | 1.0240000000 1.0000000000
|
---|
| 736 | })
|
---|
| 737 | ]
|
---|
| 738 | %
|
---|
| 739 | % BASIS SET: (14s,8p,4d,3f,2g,1h) -> [6s,5p,4d,3f,2g,1h]
|
---|
| 740 | % AUGMENTING FUNCTIONS: Tight (s,p,d,f,g)
|
---|
| 741 | % AUGMENTING FUNCTIONS: (1s,1p,1d,1f,1g,1h)
|
---|
| 742 | fluorine: "aug-cc-pCV5Z": [
|
---|
| 743 | (type: [am = s am = s]
|
---|
| 744 | {exp coef:0 coef:1} = {
|
---|
| 745 | 211400.00000 0.26000000000E-04 -0.60000000000E-05
|
---|
| 746 | 31660.000000 0.20100000000E-03 -0.47000000000E-04
|
---|
| 747 | 7202.0000000 0.10560000000E-02 -0.24400000000E-03
|
---|
| 748 | 2040.0000000 0.44320000000E-02 -0.10310000000E-02
|
---|
| 749 | 666.40000000 0.15766000000E-01 -0.36830000000E-02
|
---|
| 750 | 242.00000000 0.48112000000E-01 -0.11513000000E-01
|
---|
| 751 | 95.530000000 0.12323200000 -0.30663000000E-01
|
---|
| 752 | 40.230000000 0.25151900000 -0.69572000000E-01
|
---|
| 753 | 17.720000000 0.36452500000 -0.12399200000
|
---|
| 754 | 8.0050000000 0.27976600000 -0.15021400000
|
---|
| 755 | })
|
---|
| 756 | (type: [am = s]
|
---|
| 757 | {exp coef:0} = {
|
---|
| 758 | 3.5380000000 1.0000000000
|
---|
| 759 | })
|
---|
| 760 | (type: [am = s]
|
---|
| 761 | {exp coef:0} = {
|
---|
| 762 | 1.4580000000 1.0000000000
|
---|
| 763 | })
|
---|
| 764 | (type: [am = s]
|
---|
| 765 | {exp coef:0} = {
|
---|
| 766 | 0.58870000000 1.0000000000
|
---|
| 767 | })
|
---|
| 768 | (type: [am = s]
|
---|
| 769 | {exp coef:0} = {
|
---|
| 770 | 0.23240000000 1.0000000000
|
---|
| 771 | })
|
---|
| 772 | (type: [am = s]
|
---|
| 773 | {exp coef:0} = {
|
---|
| 774 | 19.876000000 1.0000000000
|
---|
| 775 | })
|
---|
| 776 | (type: [am = s]
|
---|
| 777 | {exp coef:0} = {
|
---|
| 778 | 44.880000000 1.0000000000
|
---|
| 779 | })
|
---|
| 780 | (type: [am = s]
|
---|
| 781 | {exp coef:0} = {
|
---|
| 782 | 101.33900000 1.0000000000
|
---|
| 783 | })
|
---|
| 784 | (type: [am = s]
|
---|
| 785 | {exp coef:0} = {
|
---|
| 786 | 228.82400000 1.0000000000
|
---|
| 787 | })
|
---|
| 788 | (type: [am = s]
|
---|
| 789 | {exp coef:0} = {
|
---|
| 790 | 0.80600000000E-01 1.0000000000
|
---|
| 791 | })
|
---|
| 792 | (type: [am = p]
|
---|
| 793 | {exp coef:0} = {
|
---|
| 794 | 241.90000000 0.10020000000E-02
|
---|
| 795 | 57.170000000 0.80540000000E-02
|
---|
| 796 | 18.130000000 0.38048000000E-01
|
---|
| 797 | 6.6240000000 0.12377900000
|
---|
| 798 | })
|
---|
| 799 | (type: [am = p]
|
---|
| 800 | {exp coef:0} = {
|
---|
| 801 | 2.6220000000 1.0000000000
|
---|
| 802 | })
|
---|
| 803 | (type: [am = p]
|
---|
| 804 | {exp coef:0} = {
|
---|
| 805 | 1.0570000000 1.0000000000
|
---|
| 806 | })
|
---|
| 807 | (type: [am = p]
|
---|
| 808 | {exp coef:0} = {
|
---|
| 809 | 0.41760000000 1.0000000000
|
---|
| 810 | })
|
---|
| 811 | (type: [am = p]
|
---|
| 812 | {exp coef:0} = {
|
---|
| 813 | 0.15740000000 1.0000000000
|
---|
| 814 | })
|
---|
| 815 | (type: [am = p]
|
---|
| 816 | {exp coef:0} = {
|
---|
| 817 | 17.306000000 1.0000000000
|
---|
| 818 | })
|
---|
| 819 | (type: [am = p]
|
---|
| 820 | {exp coef:0} = {
|
---|
| 821 | 43.663000000 1.0000000000
|
---|
| 822 | })
|
---|
| 823 | (type: [am = p]
|
---|
| 824 | {exp coef:0} = {
|
---|
| 825 | 110.16200000 1.0000000000
|
---|
| 826 | })
|
---|
| 827 | (type: [am = p]
|
---|
| 828 | {exp coef:0} = {
|
---|
| 829 | 277.93800000 1.0000000000
|
---|
| 830 | })
|
---|
| 831 | (type: [am = p]
|
---|
| 832 | {exp coef:0} = {
|
---|
| 833 | 0.55000000000E-01 1.0000000000
|
---|
| 834 | })
|
---|
| 835 | (type: [(am = d puream = 1)]
|
---|
| 836 | {exp coef:0} = {
|
---|
| 837 | 7.7600000000 1.0000000000
|
---|
| 838 | })
|
---|
| 839 | (type: [(am = d puream = 1)]
|
---|
| 840 | {exp coef:0} = {
|
---|
| 841 | 3.0320000000 1.0000000000
|
---|
| 842 | })
|
---|
| 843 | (type: [(am = d puream = 1)]
|
---|
| 844 | {exp coef:0} = {
|
---|
| 845 | 1.1850000000 1.0000000000
|
---|
| 846 | })
|
---|
| 847 | (type: [(am = d puream = 1)]
|
---|
| 848 | {exp coef:0} = {
|
---|
| 849 | 0.46300000000 1.0000000000
|
---|
| 850 | })
|
---|
| 851 | (type: [(am = d puream = 1)]
|
---|
| 852 | {exp coef:0} = {
|
---|
| 853 | 21.731000000 1.0000000000
|
---|
| 854 | })
|
---|
| 855 | (type: [(am = d puream = 1)]
|
---|
| 856 | {exp coef:0} = {
|
---|
| 857 | 60.955000000 1.0000000000
|
---|
| 858 | })
|
---|
| 859 | (type: [(am = d puream = 1)]
|
---|
| 860 | {exp coef:0} = {
|
---|
| 861 | 170.89000000 1.0000000000
|
---|
| 862 | })
|
---|
| 863 | (type: [(am = d puream = 1)]
|
---|
| 864 | {exp coef:0} = {
|
---|
| 865 | 0.17200000000 1.0000000000
|
---|
| 866 | })
|
---|
| 867 | (type: [(am = f puream = 1)]
|
---|
| 868 | {exp coef:0} = {
|
---|
| 869 | 5.3980000000 1.0000000000
|
---|
| 870 | })
|
---|
| 871 | (type: [(am = f puream = 1)]
|
---|
| 872 | {exp coef:0} = {
|
---|
| 873 | 2.0780000000 1.0000000000
|
---|
| 874 | })
|
---|
| 875 | (type: [(am = f puream = 1)]
|
---|
| 876 | {exp coef:0} = {
|
---|
| 877 | 0.80000000000 1.0000000000
|
---|
| 878 | })
|
---|
| 879 | (type: [(am = f puream = 1)]
|
---|
| 880 | {exp coef:0} = {
|
---|
| 881 | 22.337000000 1.0000000000
|
---|
| 882 | })
|
---|
| 883 | (type: [(am = f puream = 1)]
|
---|
| 884 | {exp coef:0} = {
|
---|
| 885 | 82.290000000 1.0000000000
|
---|
| 886 | })
|
---|
| 887 | (type: [(am = f puream = 1)]
|
---|
| 888 | {exp coef:0} = {
|
---|
| 889 | 0.33100000000 1.0000000000
|
---|
| 890 | })
|
---|
| 891 | (type: [(am = g puream = 1)]
|
---|
| 892 | {exp coef:0} = {
|
---|
| 893 | 4.3380000000 1.0000000000
|
---|
| 894 | })
|
---|
| 895 | (type: [(am = g puream = 1)]
|
---|
| 896 | {exp coef:0} = {
|
---|
| 897 | 1.5130000000 1.0000000000
|
---|
| 898 | })
|
---|
| 899 | (type: [(am = g puream = 1)]
|
---|
| 900 | {exp coef:0} = {
|
---|
| 901 | 49.727000000 1.0000000000
|
---|
| 902 | })
|
---|
| 903 | (type: [(am = g puream = 1)]
|
---|
| 904 | {exp coef:0} = {
|
---|
| 905 | 0.66300000000 1.0000000000
|
---|
| 906 | })
|
---|
| 907 | (type: [(am = h puream = 1)]
|
---|
| 908 | {exp coef:0} = {
|
---|
| 909 | 2.9950000000 1.0000000000
|
---|
| 910 | })
|
---|
| 911 | (type: [(am = h puream = 1)]
|
---|
| 912 | {exp coef:0} = {
|
---|
| 913 | 1.3260000000 1.0000000000
|
---|
| 914 | })
|
---|
| 915 | ]
|
---|
| 916 | )
|
---|