| 1 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 2 | // 
 | 
|---|
| 3 | //  Levenberg - Marquardt non-linear minimization algorithm
 | 
|---|
| 4 | //  Copyright (C) 2004-05  Manolis Lourakis (lourakis at ics forth gr)
 | 
|---|
| 5 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas
 | 
|---|
| 6 | //  Heraklion, Crete, Greece.
 | 
|---|
| 7 | //
 | 
|---|
| 8 | //  This program is free software; you can redistribute it and/or modify
 | 
|---|
| 9 | //  it under the terms of the GNU General Public License as published by
 | 
|---|
| 10 | //  the Free Software Foundation; either version 2 of the License, or
 | 
|---|
| 11 | //  (at your option) any later version.
 | 
|---|
| 12 | //
 | 
|---|
| 13 | //  This program is distributed in the hope that it will be useful,
 | 
|---|
| 14 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 15 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 16 | //  GNU General Public License for more details.
 | 
|---|
| 17 | //
 | 
|---|
| 18 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 19 | 
 | 
|---|
| 20 | #ifndef LM_REAL // not included by misc.c
 | 
|---|
| 21 | #error This file should not be compiled directly!
 | 
|---|
| 22 | #endif
 | 
|---|
| 23 | 
 | 
|---|
| 24 | 
 | 
|---|
| 25 | /* precision-specific definitions */
 | 
|---|
| 26 | #define LEVMAR_CHKJAC LM_ADD_PREFIX(levmar_chkjac)
 | 
|---|
| 27 | #define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
 | 
|---|
| 28 | #define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx)
 | 
|---|
| 29 | #define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
 | 
|---|
| 30 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
 | 
|---|
| 31 | #define LEVMAR_STDDEV LM_ADD_PREFIX(levmar_stddev)
 | 
|---|
| 32 | #define LEVMAR_CORCOEF LM_ADD_PREFIX(levmar_corcoef)
 | 
|---|
| 33 | #define LEVMAR_R2 LM_ADD_PREFIX(levmar_R2)
 | 
|---|
| 34 | #define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check)
 | 
|---|
| 35 | #define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy)
 | 
|---|
| 36 | 
 | 
|---|
| 37 | #ifdef HAVE_LAPACK
 | 
|---|
| 38 | #define LEVMAR_PSEUDOINVERSE LM_ADD_PREFIX(levmar_pseudoinverse)
 | 
|---|
| 39 | static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m);
 | 
|---|
| 40 | 
 | 
|---|
| 41 | #ifdef __cplusplus
 | 
|---|
| 42 | extern "C" {
 | 
|---|
| 43 | #endif
 | 
|---|
| 44 | /* BLAS matrix multiplication, LAPACK SVD & Cholesky routines */
 | 
|---|
| 45 | #define GEMM LM_MK_BLAS_NAME(gemm)
 | 
|---|
| 46 | /* C := alpha*op( A )*op( B ) + beta*C */
 | 
|---|
| 47 | extern void GEMM(char *transa, char *transb, int *m, int *n, int *k,
 | 
|---|
| 48 |           LM_REAL *alpha, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, LM_REAL *beta, LM_REAL *c, int *ldc);
 | 
|---|
| 49 | 
 | 
|---|
| 50 | #define GESVD LM_MK_LAPACK_NAME(gesvd)
 | 
|---|
| 51 | #define GESDD LM_MK_LAPACK_NAME(gesdd)
 | 
|---|
| 52 | extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu,
 | 
|---|
| 53 |                  LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info);
 | 
|---|
| 54 | 
 | 
|---|
| 55 | /* lapack 3.0 new SVD routine, faster than xgesvd() */
 | 
|---|
| 56 | extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt,
 | 
|---|
| 57 |                  LM_REAL *work, int *lwork, int *iwork, int *info);
 | 
|---|
| 58 | 
 | 
|---|
| 59 | /* Cholesky decomposition */
 | 
|---|
| 60 | #define POTF2 LM_MK_LAPACK_NAME(potf2)
 | 
|---|
| 61 | extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info);
 | 
|---|
| 62 | #ifdef __cplusplus
 | 
|---|
| 63 | }
 | 
|---|
| 64 | #endif
 | 
|---|
| 65 | 
 | 
|---|
| 66 | #define LEVMAR_CHOLESKY LM_ADD_PREFIX(levmar_chol)
 | 
|---|
| 67 | 
 | 
|---|
| 68 | #else /* !HAVE_LAPACK */
 | 
|---|
| 69 | #define LEVMAR_LUINVERSE LM_ADD_PREFIX(levmar_LUinverse_noLapack)
 | 
|---|
| 70 | 
 | 
|---|
| 71 | static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m);
 | 
|---|
| 72 | #endif /* HAVE_LAPACK */
 | 
|---|
| 73 | 
 | 
|---|
| 74 | /* blocked multiplication of the transpose of the nxm matrix a with itself (i.e. a^T a)
 | 
|---|
| 75 |  * using a block size of bsize. The product is returned in b.
 | 
|---|
| 76 |  * Since a^T a is symmetric, its computation can be sped up by computing only its
 | 
|---|
| 77 |  * upper triangular part and copying it to the lower part.
 | 
|---|
| 78 |  *
 | 
|---|
| 79 |  * More details on blocking can be found at 
 | 
|---|
| 80 |  * http://www-2.cs.cmu.edu/afs/cs/academic/class/15213-f02/www/R07/section_a/Recitation07-SectionA.pdf
 | 
|---|
| 81 |  */
 | 
|---|
| 82 | void LEVMAR_TRANS_MAT_MAT_MULT(LM_REAL *a, LM_REAL *b, int n, int m)
 | 
|---|
| 83 | {
 | 
|---|
| 84 | #ifdef HAVE_LAPACK /* use BLAS matrix multiply */
 | 
|---|
| 85 | 
 | 
|---|
| 86 | LM_REAL alpha=LM_CNST(1.0), beta=LM_CNST(0.0);
 | 
|---|
| 87 |   /* Fool BLAS to compute a^T*a avoiding transposing a: a is equivalent to a^T in column major,
 | 
|---|
| 88 |    * therefore BLAS computes a*a^T with a and a*a^T in column major, which is equivalent to
 | 
|---|
| 89 |    * computing a^T*a in row major!
 | 
|---|
| 90 |    */
 | 
|---|
| 91 |   GEMM("N", "T", &m, &m, &n, &alpha, a, &m, a, &m, &beta, b, &m);
 | 
|---|
| 92 | 
 | 
|---|
| 93 | #else /* no LAPACK, use blocking-based multiply */
 | 
|---|
| 94 | 
 | 
|---|
| 95 | register int i, j, k, jj, kk;
 | 
|---|
| 96 | register LM_REAL sum, *bim, *akm;
 | 
|---|
| 97 | const int bsize=__BLOCKSZ__;
 | 
|---|
| 98 | 
 | 
|---|
| 99 | #define __MIN__(x, y) (((x)<=(y))? (x) : (y))
 | 
|---|
| 100 | #define __MAX__(x, y) (((x)>=(y))? (x) : (y))
 | 
|---|
| 101 | 
 | 
|---|
| 102 |   /* compute upper triangular part using blocking */
 | 
|---|
| 103 |   for(jj=0; jj<m; jj+=bsize){
 | 
|---|
| 104 |     for(i=0; i<m; ++i){
 | 
|---|
| 105 |       bim=b+i*m;
 | 
|---|
| 106 |       for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j)
 | 
|---|
| 107 |         bim[j]=0.0; //b[i*m+j]=0.0;
 | 
|---|
| 108 |     }
 | 
|---|
| 109 | 
 | 
|---|
| 110 |     for(kk=0; kk<n; kk+=bsize){
 | 
|---|
| 111 |       for(i=0; i<m; ++i){
 | 
|---|
| 112 |         bim=b+i*m;
 | 
|---|
| 113 |         for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j){
 | 
|---|
| 114 |           sum=0.0;
 | 
|---|
| 115 |           for(k=kk; k<__MIN__(kk+bsize, n); ++k){
 | 
|---|
| 116 |             akm=a+k*m;
 | 
|---|
| 117 |             sum+=akm[i]*akm[j]; //a[k*m+i]*a[k*m+j];
 | 
|---|
| 118 |           }
 | 
|---|
| 119 |           bim[j]+=sum; //b[i*m+j]+=sum;
 | 
|---|
| 120 |         }
 | 
|---|
| 121 |       }
 | 
|---|
| 122 |     }
 | 
|---|
| 123 |   }
 | 
|---|
| 124 | 
 | 
|---|
| 125 |   /* copy upper triangular part to the lower one */
 | 
|---|
| 126 |   for(i=0; i<m; ++i)
 | 
|---|
| 127 |     for(j=0; j<i; ++j)
 | 
|---|
| 128 |       b[i*m+j]=b[j*m+i];
 | 
|---|
| 129 | 
 | 
|---|
| 130 | #undef __MIN__
 | 
|---|
| 131 | #undef __MAX__
 | 
|---|
| 132 | 
 | 
|---|
| 133 | #endif /* HAVE_LAPACK */
 | 
|---|
| 134 | }
 | 
|---|
| 135 | 
 | 
|---|
| 136 | /* forward finite difference approximation to the Jacobian of func */
 | 
|---|
| 137 | void LEVMAR_FDIF_FORW_JAC_APPROX(
 | 
|---|
| 138 |     void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
 | 
|---|
| 139 |                                                                                                            /* function to differentiate */
 | 
|---|
| 140 |     LM_REAL *p,              /* I: current parameter estimate, mx1 */
 | 
|---|
| 141 |     LM_REAL *hx,             /* I: func evaluated at p, i.e. hx=func(p), nx1 */
 | 
|---|
| 142 |     LM_REAL *hxx,            /* W/O: work array for evaluating func(p+delta), nx1 */
 | 
|---|
| 143 |     LM_REAL delta,           /* increment for computing the Jacobian */
 | 
|---|
| 144 |     LM_REAL *jac,            /* O: array for storing approximated Jacobian, nxm */
 | 
|---|
| 145 |     int m,
 | 
|---|
| 146 |     int n,
 | 
|---|
| 147 |     void *adata)
 | 
|---|
| 148 | {
 | 
|---|
| 149 | register int i, j;
 | 
|---|
| 150 | LM_REAL tmp;
 | 
|---|
| 151 | register LM_REAL d;
 | 
|---|
| 152 | 
 | 
|---|
| 153 |   for(j=0; j<m; ++j){
 | 
|---|
| 154 |     /* determine d=max(1E-04*|p[j]|, delta), see HZ */
 | 
|---|
| 155 |     d=LM_CNST(1E-04)*p[j]; // force evaluation
 | 
|---|
| 156 |     d=FABS(d);
 | 
|---|
| 157 |     if(d<delta)
 | 
|---|
| 158 |       d=delta;
 | 
|---|
| 159 | 
 | 
|---|
| 160 |     tmp=p[j];
 | 
|---|
| 161 |     p[j]+=d;
 | 
|---|
| 162 | 
 | 
|---|
| 163 |     (*func)(p, hxx, m, n, adata);
 | 
|---|
| 164 | 
 | 
|---|
| 165 |     p[j]=tmp; /* restore */
 | 
|---|
| 166 | 
 | 
|---|
| 167 |     d=LM_CNST(1.0)/d; /* invert so that divisions can be carried out faster as multiplications */
 | 
|---|
| 168 |     for(i=0; i<n; ++i){
 | 
|---|
| 169 |       jac[i*m+j]=(hxx[i]-hx[i])*d;
 | 
|---|
| 170 |     }
 | 
|---|
| 171 |   }
 | 
|---|
| 172 | }
 | 
|---|
| 173 | 
 | 
|---|
| 174 | /* central finite difference approximation to the Jacobian of func */
 | 
|---|
| 175 | void LEVMAR_FDIF_CENT_JAC_APPROX(
 | 
|---|
| 176 |     void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
 | 
|---|
| 177 |                                                                                                            /* function to differentiate */
 | 
|---|
| 178 |     LM_REAL *p,              /* I: current parameter estimate, mx1 */
 | 
|---|
| 179 |     LM_REAL *hxm,            /* W/O: work array for evaluating func(p-delta), nx1 */
 | 
|---|
| 180 |     LM_REAL *hxp,            /* W/O: work array for evaluating func(p+delta), nx1 */
 | 
|---|
| 181 |     LM_REAL delta,           /* increment for computing the Jacobian */
 | 
|---|
| 182 |     LM_REAL *jac,            /* O: array for storing approximated Jacobian, nxm */
 | 
|---|
| 183 |     int m,
 | 
|---|
| 184 |     int n,
 | 
|---|
| 185 |     void *adata)
 | 
|---|
| 186 | {
 | 
|---|
| 187 | register int i, j;
 | 
|---|
| 188 | LM_REAL tmp;
 | 
|---|
| 189 | register LM_REAL d;
 | 
|---|
| 190 | 
 | 
|---|
| 191 |   for(j=0; j<m; ++j){
 | 
|---|
| 192 |     /* determine d=max(1E-04*|p[j]|, delta), see HZ */
 | 
|---|
| 193 |     d=LM_CNST(1E-04)*p[j]; // force evaluation
 | 
|---|
| 194 |     d=FABS(d);
 | 
|---|
| 195 |     if(d<delta)
 | 
|---|
| 196 |       d=delta;
 | 
|---|
| 197 | 
 | 
|---|
| 198 |     tmp=p[j];
 | 
|---|
| 199 |     p[j]-=d;
 | 
|---|
| 200 |     (*func)(p, hxm, m, n, adata);
 | 
|---|
| 201 | 
 | 
|---|
| 202 |     p[j]=tmp+d;
 | 
|---|
| 203 |     (*func)(p, hxp, m, n, adata);
 | 
|---|
| 204 |     p[j]=tmp; /* restore */
 | 
|---|
| 205 | 
 | 
|---|
| 206 |     d=LM_CNST(0.5)/d; /* invert so that divisions can be carried out faster as multiplications */
 | 
|---|
| 207 |     for(i=0; i<n; ++i){
 | 
|---|
| 208 |       jac[i*m+j]=(hxp[i]-hxm[i])*d;
 | 
|---|
| 209 |     }
 | 
|---|
| 210 |   }
 | 
|---|
| 211 | }
 | 
|---|
| 212 | 
 | 
|---|
| 213 | /* 
 | 
|---|
| 214 |  * Check the Jacobian of a n-valued nonlinear function in m variables
 | 
|---|
| 215 |  * evaluated at a point p, for consistency with the function itself.
 | 
|---|
| 216 |  *
 | 
|---|
| 217 |  * Based on fortran77 subroutine CHKDER by
 | 
|---|
| 218 |  * Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More
 | 
|---|
| 219 |  * Argonne National Laboratory. MINPACK project. March 1980.
 | 
|---|
| 220 |  *
 | 
|---|
| 221 |  *
 | 
|---|
| 222 |  * func points to a function from R^m --> R^n: Given a p in R^m it yields hx in R^n
 | 
|---|
| 223 |  * jacf points to a function implementing the Jacobian of func, whose correctness
 | 
|---|
| 224 |  *     is to be tested. Given a p in R^m, jacf computes into the nxm matrix j the
 | 
|---|
| 225 |  *     Jacobian of func at p. Note that row i of j corresponds to the gradient of
 | 
|---|
| 226 |  *     the i-th component of func, evaluated at p.
 | 
|---|
| 227 |  * p is an input array of length m containing the point of evaluation.
 | 
|---|
| 228 |  * m is the number of variables
 | 
|---|
| 229 |  * n is the number of functions
 | 
|---|
| 230 |  * adata points to possible additional data and is passed uninterpreted
 | 
|---|
| 231 |  *     to func, jacf.
 | 
|---|
| 232 |  * err is an array of length n. On output, err contains measures
 | 
|---|
| 233 |  *     of correctness of the respective gradients. if there is
 | 
|---|
| 234 |  *     no severe loss of significance, then if err[i] is 1.0 the
 | 
|---|
| 235 |  *     i-th gradient is correct, while if err[i] is 0.0 the i-th
 | 
|---|
| 236 |  *     gradient is incorrect. For values of err between 0.0 and 1.0,
 | 
|---|
| 237 |  *     the categorization is less certain. In general, a value of
 | 
|---|
| 238 |  *     err[i] greater than 0.5 indicates that the i-th gradient is
 | 
|---|
| 239 |  *     probably correct, while a value of err[i] less than 0.5
 | 
|---|
| 240 |  *     indicates that the i-th gradient is probably incorrect.
 | 
|---|
| 241 |  *
 | 
|---|
| 242 |  *
 | 
|---|
| 243 |  * The function does not perform reliably if cancellation or
 | 
|---|
| 244 |  * rounding errors cause a severe loss of significance in the
 | 
|---|
| 245 |  * evaluation of a function. therefore, none of the components
 | 
|---|
| 246 |  * of p should be unusually small (in particular, zero) or any
 | 
|---|
| 247 |  * other value which may cause loss of significance.
 | 
|---|
| 248 |  */
 | 
|---|
| 249 | 
 | 
|---|
| 250 | void LEVMAR_CHKJAC(
 | 
|---|
| 251 |     void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
 | 
|---|
| 252 |     void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),
 | 
|---|
| 253 |     LM_REAL *p, int m, int n, void *adata, LM_REAL *err)
 | 
|---|
| 254 | {
 | 
|---|
| 255 | LM_REAL factor=LM_CNST(100.0);
 | 
|---|
| 256 | LM_REAL one=LM_CNST(1.0);
 | 
|---|
| 257 | LM_REAL zero=LM_CNST(0.0);
 | 
|---|
| 258 | LM_REAL *fvec, *fjac, *pp, *fvecp, *buf;
 | 
|---|
| 259 | 
 | 
|---|
| 260 | register int i, j;
 | 
|---|
| 261 | LM_REAL eps, epsf, temp, epsmch;
 | 
|---|
| 262 | LM_REAL epslog;
 | 
|---|
| 263 | int fvec_sz=n, fjac_sz=n*m, pp_sz=m, fvecp_sz=n;
 | 
|---|
| 264 | 
 | 
|---|
| 265 |   epsmch=LM_REAL_EPSILON;
 | 
|---|
| 266 |   eps=(LM_REAL)sqrt(epsmch);
 | 
|---|
| 267 | 
 | 
|---|
| 268 |   buf=(LM_REAL *)malloc((fvec_sz + fjac_sz + pp_sz + fvecp_sz)*sizeof(LM_REAL));
 | 
|---|
| 269 |   if(!buf){
 | 
|---|
| 270 |     fprintf(stderr, LCAT(LEVMAR_CHKJAC, "(): memory allocation request failed\n"));
 | 
|---|
| 271 |     exit(1);
 | 
|---|
| 272 |   }
 | 
|---|
| 273 |   fvec=buf;
 | 
|---|
| 274 |   fjac=fvec+fvec_sz;
 | 
|---|
| 275 |   pp=fjac+fjac_sz;
 | 
|---|
| 276 |   fvecp=pp+pp_sz;
 | 
|---|
| 277 | 
 | 
|---|
| 278 |   /* compute fvec=func(p) */
 | 
|---|
| 279 |   (*func)(p, fvec, m, n, adata);
 | 
|---|
| 280 | 
 | 
|---|
| 281 |   /* compute the Jacobian at p */
 | 
|---|
| 282 |   (*jacf)(p, fjac, m, n, adata);
 | 
|---|
| 283 | 
 | 
|---|
| 284 |   /* compute pp */
 | 
|---|
| 285 |   for(j=0; j<m; ++j){
 | 
|---|
| 286 |     temp=eps*FABS(p[j]);
 | 
|---|
| 287 |     if(temp==zero) temp=eps;
 | 
|---|
| 288 |     pp[j]=p[j]+temp;
 | 
|---|
| 289 |   }
 | 
|---|
| 290 | 
 | 
|---|
| 291 |   /* compute fvecp=func(pp) */
 | 
|---|
| 292 |   (*func)(pp, fvecp, m, n, adata);
 | 
|---|
| 293 | 
 | 
|---|
| 294 |   epsf=factor*epsmch;
 | 
|---|
| 295 |   epslog=(LM_REAL)log10(eps);
 | 
|---|
| 296 | 
 | 
|---|
| 297 |   for(i=0; i<n; ++i)
 | 
|---|
| 298 |     err[i]=zero;
 | 
|---|
| 299 | 
 | 
|---|
| 300 |   for(j=0; j<m; ++j){
 | 
|---|
| 301 |     temp=FABS(p[j]);
 | 
|---|
| 302 |     if(temp==zero) temp=one;
 | 
|---|
| 303 | 
 | 
|---|
| 304 |     for(i=0; i<n; ++i)
 | 
|---|
| 305 |       err[i]+=temp*fjac[i*m+j];
 | 
|---|
| 306 |   }
 | 
|---|
| 307 | 
 | 
|---|
| 308 |   for(i=0; i<n; ++i){
 | 
|---|
| 309 |     temp=one;
 | 
|---|
| 310 |     if(fvec[i]!=zero && fvecp[i]!=zero && FABS(fvecp[i]-fvec[i])>=epsf*FABS(fvec[i]))
 | 
|---|
| 311 |         temp=eps*FABS((fvecp[i]-fvec[i])/eps - err[i])/(FABS(fvec[i])+FABS(fvecp[i]));
 | 
|---|
| 312 |     err[i]=one;
 | 
|---|
| 313 |     if(temp>epsmch && temp<eps)
 | 
|---|
| 314 |         err[i]=((LM_REAL)log10(temp) - epslog)/epslog;
 | 
|---|
| 315 |     if(temp>=eps) err[i]=zero;
 | 
|---|
| 316 |   }
 | 
|---|
| 317 | 
 | 
|---|
| 318 |   free(buf);
 | 
|---|
| 319 | 
 | 
|---|
| 320 |   return;
 | 
|---|
| 321 | }
 | 
|---|
| 322 | 
 | 
|---|
| 323 | #ifdef HAVE_LAPACK
 | 
|---|
| 324 | /*
 | 
|---|
| 325 |  * This function computes the pseudoinverse of a square matrix A
 | 
|---|
| 326 |  * into B using SVD. A and B can coincide
 | 
|---|
| 327 |  * 
 | 
|---|
| 328 |  * The function returns 0 in case of error (e.g. A is singular),
 | 
|---|
| 329 |  * the rank of A if successful
 | 
|---|
| 330 |  *
 | 
|---|
| 331 |  * A, B are mxm
 | 
|---|
| 332 |  *
 | 
|---|
| 333 |  */
 | 
|---|
| 334 | static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m)
 | 
|---|
| 335 | {
 | 
|---|
| 336 | LM_REAL *buf=NULL;
 | 
|---|
| 337 | int buf_sz=0;
 | 
|---|
| 338 | static LM_REAL eps=LM_CNST(-1.0);
 | 
|---|
| 339 | 
 | 
|---|
| 340 | register int i, j;
 | 
|---|
| 341 | LM_REAL *a, *u, *s, *vt, *work;
 | 
|---|
| 342 | int a_sz, u_sz, s_sz, vt_sz, tot_sz;
 | 
|---|
| 343 | LM_REAL thresh, one_over_denom;
 | 
|---|
| 344 | int info, rank, worksz, *iwork, iworksz;
 | 
|---|
| 345 |    
 | 
|---|
| 346 |   /* calculate required memory size */
 | 
|---|
| 347 |   worksz=5*m; // min worksize for GESVD
 | 
|---|
| 348 |   //worksz=m*(7*m+4); // min worksize for GESDD
 | 
|---|
| 349 |   iworksz=8*m;
 | 
|---|
| 350 |   a_sz=m*m;
 | 
|---|
| 351 |   u_sz=m*m; s_sz=m; vt_sz=m*m;
 | 
|---|
| 352 | 
 | 
|---|
| 353 |   tot_sz=(a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL) + iworksz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
| 354 | 
 | 
|---|
| 355 |     buf_sz=tot_sz;
 | 
|---|
| 356 |     buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
| 357 |     if(!buf){
 | 
|---|
| 358 |       fprintf(stderr, RCAT("memory allocation in ", LEVMAR_PSEUDOINVERSE) "() failed!\n");
 | 
|---|
| 359 |       return 0; /* error */
 | 
|---|
| 360 |     }
 | 
|---|
| 361 | 
 | 
|---|
| 362 |   a=buf;
 | 
|---|
| 363 |   u=a+a_sz;
 | 
|---|
| 364 |   s=u+u_sz;
 | 
|---|
| 365 |   vt=s+s_sz;
 | 
|---|
| 366 |   work=vt+vt_sz;
 | 
|---|
| 367 |   iwork=(int *)(work+worksz);
 | 
|---|
| 368 | 
 | 
|---|
| 369 |   /* store A (column major!) into a */
 | 
|---|
| 370 |   for(i=0; i<m; i++)
 | 
|---|
| 371 |     for(j=0; j<m; j++)
 | 
|---|
| 372 |       a[i+j*m]=A[i*m+j];
 | 
|---|
| 373 | 
 | 
|---|
| 374 |   /* SVD decomposition of A */
 | 
|---|
| 375 |   GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info);
 | 
|---|
| 376 |   //GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info);
 | 
|---|
| 377 | 
 | 
|---|
| 378 |   /* error treatment */
 | 
|---|
| 379 |   if(info!=0){
 | 
|---|
| 380 |     if(info<0){
 | 
|---|
| 381 |       fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", LEVMAR_PSEUDOINVERSE) "()\n", -info);
 | 
|---|
| 382 |     }
 | 
|---|
| 383 |     else{
 | 
|---|
| 384 |       fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", LEVMAR_PSEUDOINVERSE) "() [info=%d]\n", info);
 | 
|---|
| 385 |     }
 | 
|---|
| 386 |     free(buf);
 | 
|---|
| 387 |     return 0;
 | 
|---|
| 388 |   }
 | 
|---|
| 389 | 
 | 
|---|
| 390 |   if(eps<0.0){
 | 
|---|
| 391 |     LM_REAL aux;
 | 
|---|
| 392 | 
 | 
|---|
| 393 |     /* compute machine epsilon */
 | 
|---|
| 394 |     for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5))
 | 
|---|
| 395 |                                           ;
 | 
|---|
| 396 |     eps*=LM_CNST(2.0);
 | 
|---|
| 397 |   }
 | 
|---|
| 398 | 
 | 
|---|
| 399 |   /* compute the pseudoinverse in B */
 | 
|---|
| 400 |         for(i=0; i<a_sz; i++) B[i]=0.0; /* initialize to zero */
 | 
|---|
| 401 |   for(rank=0, thresh=eps*s[0]; rank<m && s[rank]>thresh; rank++){
 | 
|---|
| 402 |     one_over_denom=LM_CNST(1.0)/s[rank];
 | 
|---|
| 403 | 
 | 
|---|
| 404 |     for(j=0; j<m; j++)
 | 
|---|
| 405 |       for(i=0; i<m; i++)
 | 
|---|
| 406 |         B[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom;
 | 
|---|
| 407 |   }
 | 
|---|
| 408 | 
 | 
|---|
| 409 |   free(buf);
 | 
|---|
| 410 | 
 | 
|---|
| 411 |         return rank;
 | 
|---|
| 412 | }
 | 
|---|
| 413 | #else // no LAPACK
 | 
|---|
| 414 | 
 | 
|---|
| 415 | /*
 | 
|---|
| 416 |  * This function computes the inverse of A in B. A and B can coincide
 | 
|---|
| 417 |  *
 | 
|---|
| 418 |  * The function employs LAPACK-free LU decomposition of A to solve m linear
 | 
|---|
| 419 |  * systems A*B_i=I_i, where B_i and I_i are the i-th columns of B and I.
 | 
|---|
| 420 |  *
 | 
|---|
| 421 |  * A and B are mxm
 | 
|---|
| 422 |  *
 | 
|---|
| 423 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
| 424 |  *
 | 
|---|
| 425 |  */
 | 
|---|
| 426 | static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m)
 | 
|---|
| 427 | {
 | 
|---|
| 428 | void *buf=NULL;
 | 
|---|
| 429 | int buf_sz=0;
 | 
|---|
| 430 | 
 | 
|---|
| 431 | register int i, j, k, l;
 | 
|---|
| 432 | int *idx, maxi=-1, idx_sz, a_sz, x_sz, work_sz, tot_sz;
 | 
|---|
| 433 | LM_REAL *a, *x, *work, max, sum, tmp;
 | 
|---|
| 434 | 
 | 
|---|
| 435 |   /* calculate required memory size */
 | 
|---|
| 436 |   idx_sz=m;
 | 
|---|
| 437 |   a_sz=m*m;
 | 
|---|
| 438 |   x_sz=m;
 | 
|---|
| 439 |   work_sz=m;
 | 
|---|
| 440 |   tot_sz=(a_sz + x_sz + work_sz)*sizeof(LM_REAL) + idx_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
| 441 | 
 | 
|---|
| 442 |   buf_sz=tot_sz;
 | 
|---|
| 443 |   buf=(void *)malloc(tot_sz);
 | 
|---|
| 444 |   if(!buf){
 | 
|---|
| 445 |     fprintf(stderr, RCAT("memory allocation in ", LEVMAR_LUINVERSE) "() failed!\n");
 | 
|---|
| 446 |     return 0; /* error */
 | 
|---|
| 447 |   }
 | 
|---|
| 448 | 
 | 
|---|
| 449 |   a=buf;
 | 
|---|
| 450 |   x=a+a_sz;
 | 
|---|
| 451 |   work=x+x_sz;
 | 
|---|
| 452 |   idx=(int *)(work+work_sz);
 | 
|---|
| 453 | 
 | 
|---|
| 454 |   /* avoid destroying A by copying it to a */
 | 
|---|
| 455 |   for(i=0; i<a_sz; ++i) a[i]=A[i];
 | 
|---|
| 456 | 
 | 
|---|
| 457 |   /* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */
 | 
|---|
| 458 |         for(i=0; i<m; ++i){
 | 
|---|
| 459 |                 max=0.0;
 | 
|---|
| 460 |                 for(j=0; j<m; ++j)
 | 
|---|
| 461 |                         if((tmp=FABS(a[i*m+j]))>max)
 | 
|---|
| 462 |         max=tmp;
 | 
|---|
| 463 |                   if(max==0.0){
 | 
|---|
| 464 |         fprintf(stderr, RCAT("Singular matrix A in ", LEVMAR_LUINVERSE) "()!\n");
 | 
|---|
| 465 |         free(buf);
 | 
|---|
| 466 | 
 | 
|---|
| 467 |         return 0;
 | 
|---|
| 468 |       }
 | 
|---|
| 469 |                   work[i]=LM_CNST(1.0)/max;
 | 
|---|
| 470 |         }
 | 
|---|
| 471 | 
 | 
|---|
| 472 |         for(j=0; j<m; ++j){
 | 
|---|
| 473 |                 for(i=0; i<j; ++i){
 | 
|---|
| 474 |                         sum=a[i*m+j];
 | 
|---|
| 475 |                         for(k=0; k<i; ++k)
 | 
|---|
| 476 |         sum-=a[i*m+k]*a[k*m+j];
 | 
|---|
| 477 |                         a[i*m+j]=sum;
 | 
|---|
| 478 |                 }
 | 
|---|
| 479 |                 max=0.0;
 | 
|---|
| 480 |                 for(i=j; i<m; ++i){
 | 
|---|
| 481 |                         sum=a[i*m+j];
 | 
|---|
| 482 |                         for(k=0; k<j; ++k)
 | 
|---|
| 483 |         sum-=a[i*m+k]*a[k*m+j];
 | 
|---|
| 484 |                         a[i*m+j]=sum;
 | 
|---|
| 485 |                         if((tmp=work[i]*FABS(sum))>=max){
 | 
|---|
| 486 |                                 max=tmp;
 | 
|---|
| 487 |                                 maxi=i;
 | 
|---|
| 488 |                         }
 | 
|---|
| 489 |                 }
 | 
|---|
| 490 |                 if(j!=maxi){
 | 
|---|
| 491 |                         for(k=0; k<m; ++k){
 | 
|---|
| 492 |                                 tmp=a[maxi*m+k];
 | 
|---|
| 493 |                                 a[maxi*m+k]=a[j*m+k];
 | 
|---|
| 494 |                                 a[j*m+k]=tmp;
 | 
|---|
| 495 |                         }
 | 
|---|
| 496 |                         work[maxi]=work[j];
 | 
|---|
| 497 |                 }
 | 
|---|
| 498 |                 idx[j]=maxi;
 | 
|---|
| 499 |                 if(a[j*m+j]==0.0)
 | 
|---|
| 500 |       a[j*m+j]=LM_REAL_EPSILON;
 | 
|---|
| 501 |                 if(j!=m-1){
 | 
|---|
| 502 |                         tmp=LM_CNST(1.0)/(a[j*m+j]);
 | 
|---|
| 503 |                         for(i=j+1; i<m; ++i)
 | 
|---|
| 504 |         a[i*m+j]*=tmp;
 | 
|---|
| 505 |                 }
 | 
|---|
| 506 |         }
 | 
|---|
| 507 | 
 | 
|---|
| 508 |   /* The decomposition has now replaced a. Solve the m linear systems using
 | 
|---|
| 509 |    * forward and back substitution
 | 
|---|
| 510 |    */
 | 
|---|
| 511 |   for(l=0; l<m; ++l){
 | 
|---|
| 512 |     for(i=0; i<m; ++i) x[i]=0.0;
 | 
|---|
| 513 |     x[l]=LM_CNST(1.0);
 | 
|---|
| 514 | 
 | 
|---|
| 515 |           for(i=k=0; i<m; ++i){
 | 
|---|
| 516 |                   j=idx[i];
 | 
|---|
| 517 |                   sum=x[j];
 | 
|---|
| 518 |                   x[j]=x[i];
 | 
|---|
| 519 |                   if(k!=0)
 | 
|---|
| 520 |                           for(j=k-1; j<i; ++j)
 | 
|---|
| 521 |           sum-=a[i*m+j]*x[j];
 | 
|---|
| 522 |                   else
 | 
|---|
| 523 |         if(sum!=0.0)
 | 
|---|
| 524 |                             k=i+1;
 | 
|---|
| 525 |                   x[i]=sum;
 | 
|---|
| 526 |           }
 | 
|---|
| 527 | 
 | 
|---|
| 528 |           for(i=m-1; i>=0; --i){
 | 
|---|
| 529 |                   sum=x[i];
 | 
|---|
| 530 |                   for(j=i+1; j<m; ++j)
 | 
|---|
| 531 |         sum-=a[i*m+j]*x[j];
 | 
|---|
| 532 |                   x[i]=sum/a[i*m+i];
 | 
|---|
| 533 |           }
 | 
|---|
| 534 | 
 | 
|---|
| 535 |     for(i=0; i<m; ++i)
 | 
|---|
| 536 |       B[i*m+l]=x[i];
 | 
|---|
| 537 |   }
 | 
|---|
| 538 | 
 | 
|---|
| 539 |   free(buf);
 | 
|---|
| 540 | 
 | 
|---|
| 541 |   return 1;
 | 
|---|
| 542 | }
 | 
|---|
| 543 | #endif /* HAVE_LAPACK */
 | 
|---|
| 544 | 
 | 
|---|
| 545 | /*
 | 
|---|
| 546 |  * This function computes in C the covariance matrix corresponding to a least
 | 
|---|
| 547 |  * squares fit. JtJ is the approximate Hessian at the solution (i.e. J^T*J, where
 | 
|---|
| 548 |  * J is the Jacobian at the solution), sumsq is the sum of squared residuals
 | 
|---|
| 549 |  * (i.e. goodnes of fit) at the solution, m is the number of parameters (variables)
 | 
|---|
| 550 |  * and n the number of observations. JtJ can coincide with C.
 | 
|---|
| 551 |  * 
 | 
|---|
| 552 |  * if JtJ is of full rank, C is computed as sumsq/(n-m)*(JtJ)^-1
 | 
|---|
| 553 |  * otherwise and if LAPACK is available, C=sumsq/(n-r)*(JtJ)^+
 | 
|---|
| 554 |  * where r is JtJ's rank and ^+ denotes the pseudoinverse
 | 
|---|
| 555 |  * The diagonal of C is made up from the estimates of the variances
 | 
|---|
| 556 |  * of the estimated regression coefficients.
 | 
|---|
| 557 |  * See the documentation of routine E04YCF from the NAG fortran lib
 | 
|---|
| 558 |  *
 | 
|---|
| 559 |  * The function returns the rank of JtJ if successful, 0 on error
 | 
|---|
| 560 |  *
 | 
|---|
| 561 |  * A and C are mxm
 | 
|---|
| 562 |  *
 | 
|---|
| 563 |  */
 | 
|---|
| 564 | int LEVMAR_COVAR(LM_REAL *JtJ, LM_REAL *C, LM_REAL sumsq, int m, int n)
 | 
|---|
| 565 | {
 | 
|---|
| 566 | register int i;
 | 
|---|
| 567 | int rnk;
 | 
|---|
| 568 | LM_REAL fact;
 | 
|---|
| 569 | 
 | 
|---|
| 570 | #ifdef HAVE_LAPACK
 | 
|---|
| 571 |    rnk=LEVMAR_PSEUDOINVERSE(JtJ, C, m);
 | 
|---|
| 572 |    if(!rnk) return 0;
 | 
|---|
| 573 | #else
 | 
|---|
| 574 | #ifdef _MSC_VER
 | 
|---|
| 575 | #pragma message("LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times")
 | 
|---|
| 576 | #else
 | 
|---|
| 577 | #warning LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times
 | 
|---|
| 578 | #endif // _MSC_VER
 | 
|---|
| 579 | 
 | 
|---|
| 580 |    rnk=LEVMAR_LUINVERSE(JtJ, C, m);
 | 
|---|
| 581 |    if(!rnk) return 0;
 | 
|---|
| 582 | 
 | 
|---|
| 583 |    rnk=m; /* assume full rank */
 | 
|---|
| 584 | #endif /* HAVE_LAPACK */
 | 
|---|
| 585 | 
 | 
|---|
| 586 |    fact=sumsq/(LM_REAL)(n-rnk);
 | 
|---|
| 587 |    for(i=0; i<m*m; ++i)
 | 
|---|
| 588 |      C[i]*=fact;
 | 
|---|
| 589 | 
 | 
|---|
| 590 |    return rnk;
 | 
|---|
| 591 | }
 | 
|---|
| 592 | 
 | 
|---|
| 593 | /*  standard deviation of the best-fit parameter i.
 | 
|---|
| 594 |  *  covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()).
 | 
|---|
| 595 |  *
 | 
|---|
| 596 |  *  The standard deviation is computed as \sigma_{i} = \sqrt{C_{ii}} 
 | 
|---|
| 597 |  */
 | 
|---|
| 598 | LM_REAL LEVMAR_STDDEV(LM_REAL *covar, int m, int i)
 | 
|---|
| 599 | {
 | 
|---|
| 600 |    return (LM_REAL)sqrt(covar[i*m+i]);
 | 
|---|
| 601 | }
 | 
|---|
| 602 | 
 | 
|---|
| 603 | /* Pearson's correlation coefficient of the best-fit parameters i and j.
 | 
|---|
| 604 |  * covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()).
 | 
|---|
| 605 |  *
 | 
|---|
| 606 |  * The coefficient is computed as \rho_{ij} = C_{ij} / sqrt(C_{ii} C_{jj})
 | 
|---|
| 607 |  */
 | 
|---|
| 608 | LM_REAL LEVMAR_CORCOEF(LM_REAL *covar, int m, int i, int j)
 | 
|---|
| 609 | {
 | 
|---|
| 610 |    return (LM_REAL)(covar[i*m+j]/sqrt(covar[i*m+i]*covar[j*m+j]));
 | 
|---|
| 611 | }
 | 
|---|
| 612 | 
 | 
|---|
| 613 | /* coefficient of determination.
 | 
|---|
| 614 |  * see  http://en.wikipedia.org/wiki/Coefficient_of_determination
 | 
|---|
| 615 |  */
 | 
|---|
| 616 | LM_REAL LEVMAR_R2(void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
 | 
|---|
| 617 |                   LM_REAL *p, LM_REAL *x, int m, int n, void *adata)
 | 
|---|
| 618 | {
 | 
|---|
| 619 | register int i;
 | 
|---|
| 620 | register LM_REAL tmp;
 | 
|---|
| 621 | LM_REAL SSerr,  // sum of squared errors, i.e. residual sum of squares \sum_i (x_i-hx_i)^2 
 | 
|---|
| 622 |         SStot, // \sum_i (x_i-xavg)^2
 | 
|---|
| 623 |         *hx, xavg;
 | 
|---|
| 624 | 
 | 
|---|
| 625 | 
 | 
|---|
| 626 |   if((hx=(LM_REAL *)malloc(n*sizeof(LM_REAL)))==NULL){
 | 
|---|
| 627 |     fprintf(stderr, RCAT("memory allocation request failed in ", LEVMAR_R2) "()\n");
 | 
|---|
| 628 |     exit(1);
 | 
|---|
| 629 |   }
 | 
|---|
| 630 | 
 | 
|---|
| 631 |   /* hx=f(p) */
 | 
|---|
| 632 |   (*func)(p, hx, m, n, adata);
 | 
|---|
| 633 | 
 | 
|---|
| 634 |   for(i=n, tmp=0.0; i-->0; )
 | 
|---|
| 635 |     tmp+=x[i];
 | 
|---|
| 636 |   xavg=tmp/(LM_REAL)n;
 | 
|---|
| 637 |   
 | 
|---|
| 638 |   if(x)
 | 
|---|
| 639 |     for(i=n, SSerr=SStot=0.0; i-->0; ){
 | 
|---|
| 640 |       tmp=x[i]-hx[i];
 | 
|---|
| 641 |       SSerr+=tmp*tmp;
 | 
|---|
| 642 | 
 | 
|---|
| 643 |       tmp=x[i]-xavg;
 | 
|---|
| 644 |       SStot+=tmp*tmp;
 | 
|---|
| 645 |     }
 | 
|---|
| 646 |   else /* x==0 */
 | 
|---|
| 647 |     for(i=n, SSerr=SStot=0.0; i-->0; ){
 | 
|---|
| 648 |       tmp=-hx[i];
 | 
|---|
| 649 |       SSerr+=tmp*tmp;
 | 
|---|
| 650 | 
 | 
|---|
| 651 |       tmp=-xavg;
 | 
|---|
| 652 |       SStot+=tmp*tmp;
 | 
|---|
| 653 |     }
 | 
|---|
| 654 | 
 | 
|---|
| 655 |   free(hx);
 | 
|---|
| 656 | 
 | 
|---|
| 657 |   return LM_CNST(1.0) - SSerr/SStot;
 | 
|---|
| 658 | }
 | 
|---|
| 659 | 
 | 
|---|
| 660 | /* check box constraints for consistency */
 | 
|---|
| 661 | int LEVMAR_BOX_CHECK(LM_REAL *lb, LM_REAL *ub, int m)
 | 
|---|
| 662 | {
 | 
|---|
| 663 | register int i;
 | 
|---|
| 664 | 
 | 
|---|
| 665 |   if(!lb || !ub) return 1;
 | 
|---|
| 666 | 
 | 
|---|
| 667 |   for(i=0; i<m; ++i)
 | 
|---|
| 668 |     if(lb[i]>ub[i]) return 0;
 | 
|---|
| 669 | 
 | 
|---|
| 670 |   return 1;
 | 
|---|
| 671 | }
 | 
|---|
| 672 | 
 | 
|---|
| 673 | #ifdef HAVE_LAPACK
 | 
|---|
| 674 | 
 | 
|---|
| 675 | /* compute the Cholesky decomposition of C in W, s.t. C=W^t W and W is upper triangular */
 | 
|---|
| 676 | int LEVMAR_CHOLESKY(LM_REAL *C, LM_REAL *W, int m)
 | 
|---|
| 677 | {
 | 
|---|
| 678 | register int i, j;
 | 
|---|
| 679 | int info;
 | 
|---|
| 680 | 
 | 
|---|
| 681 |   /* copy weights array C to W so that LAPACK won't destroy it;
 | 
|---|
| 682 |    * C is assumed symmetric, hence no transposition is needed
 | 
|---|
| 683 |    */
 | 
|---|
| 684 |   for(i=0, j=m*m; i<j; ++i)
 | 
|---|
| 685 |     W[i]=C[i];
 | 
|---|
| 686 | 
 | 
|---|
| 687 |   /* Cholesky decomposition */
 | 
|---|
| 688 |   POTF2("L", (int *)&m, W, (int *)&m, (int *)&info);
 | 
|---|
| 689 |   /* error treatment */
 | 
|---|
| 690 |   if(info!=0){
 | 
|---|
| 691 |                 if(info<0){
 | 
|---|
| 692 |       fprintf(stderr, "LAPACK error: illegal value for argument %d of dpotf2 in %s\n", -info, LCAT(LEVMAR_CHOLESKY, "()"));
 | 
|---|
| 693 |                 }
 | 
|---|
| 694 |                 else{
 | 
|---|
| 695 |                         fprintf(stderr, "LAPACK error: the leading minor of order %d is not positive definite,\n%s()\n", info,
 | 
|---|
| 696 |                                                 RCAT("and the Cholesky factorization could not be completed in ", LEVMAR_CHOLESKY));
 | 
|---|
| 697 |                 }
 | 
|---|
| 698 |     return LM_ERROR;
 | 
|---|
| 699 |   }
 | 
|---|
| 700 | 
 | 
|---|
| 701 |   /* the decomposition is in the lower part of W (in column-major order!).
 | 
|---|
| 702 |    * zeroing the upper part makes it lower triangular which is equivalent to
 | 
|---|
| 703 |    * upper triangular in row-major order
 | 
|---|
| 704 |    */
 | 
|---|
| 705 |   for(i=0; i<m; i++)
 | 
|---|
| 706 |     for(j=i+1; j<m; j++)
 | 
|---|
| 707 |       W[i+j*m]=0.0;
 | 
|---|
| 708 | 
 | 
|---|
| 709 |   return 0;
 | 
|---|
| 710 | }
 | 
|---|
| 711 | #endif /* HAVE_LAPACK */
 | 
|---|
| 712 | 
 | 
|---|
| 713 | 
 | 
|---|
| 714 | /* Compute e=x-y for two n-vectors x and y and return the squared L2 norm of e.
 | 
|---|
| 715 |  * e can coincide with either x or y; x can be NULL, in which case it is assumed
 | 
|---|
| 716 |  * to be equal to the zero vector.
 | 
|---|
| 717 |  * Uses loop unrolling and blocking to reduce bookkeeping overhead & pipeline
 | 
|---|
| 718 |  * stalls and increase instruction-level parallelism; see http://www.abarnett.demon.co.uk/tutorial.html
 | 
|---|
| 719 |  */
 | 
|---|
| 720 | 
 | 
|---|
| 721 | LM_REAL LEVMAR_L2NRMXMY(LM_REAL *e, LM_REAL *x, LM_REAL *y, int n)
 | 
|---|
| 722 | {
 | 
|---|
| 723 | const int blocksize=8, bpwr=3; /* 8=2^3 */
 | 
|---|
| 724 | register int i;
 | 
|---|
| 725 | int j1, j2, j3, j4, j5, j6, j7;
 | 
|---|
| 726 | int blockn;
 | 
|---|
| 727 | register LM_REAL sum0=0.0, sum1=0.0, sum2=0.0, sum3=0.0;
 | 
|---|
| 728 | 
 | 
|---|
| 729 |   /* n may not be divisible by blocksize, 
 | 
|---|
| 730 |    * go as near as we can first, then tidy up.
 | 
|---|
| 731 |    */ 
 | 
|---|
| 732 |   blockn = (n>>bpwr)<<bpwr; /* (n / blocksize) * blocksize; */
 | 
|---|
| 733 | 
 | 
|---|
| 734 |   /* unroll the loop in blocks of `blocksize'; looping downwards gains some more speed */
 | 
|---|
| 735 |   if(x){
 | 
|---|
| 736 |     for(i=blockn-1; i>0; i-=blocksize){
 | 
|---|
| 737 |               e[i ]=x[i ]-y[i ]; sum0+=e[i ]*e[i ];
 | 
|---|
| 738 |       j1=i-1; e[j1]=x[j1]-y[j1]; sum1+=e[j1]*e[j1];
 | 
|---|
| 739 |       j2=i-2; e[j2]=x[j2]-y[j2]; sum2+=e[j2]*e[j2];
 | 
|---|
| 740 |       j3=i-3; e[j3]=x[j3]-y[j3]; sum3+=e[j3]*e[j3];
 | 
|---|
| 741 |       j4=i-4; e[j4]=x[j4]-y[j4]; sum0+=e[j4]*e[j4];
 | 
|---|
| 742 |       j5=i-5; e[j5]=x[j5]-y[j5]; sum1+=e[j5]*e[j5];
 | 
|---|
| 743 |       j6=i-6; e[j6]=x[j6]-y[j6]; sum2+=e[j6]*e[j6];
 | 
|---|
| 744 |       j7=i-7; e[j7]=x[j7]-y[j7]; sum3+=e[j7]*e[j7];
 | 
|---|
| 745 |     }
 | 
|---|
| 746 | 
 | 
|---|
| 747 |    /*
 | 
|---|
| 748 |     * There may be some left to do.
 | 
|---|
| 749 |     * This could be done as a simple for() loop, 
 | 
|---|
| 750 |     * but a switch is faster (and more interesting) 
 | 
|---|
| 751 |     */ 
 | 
|---|
| 752 | 
 | 
|---|
| 753 |     i=blockn;
 | 
|---|
| 754 |     if(i<n){ 
 | 
|---|
| 755 |       /* Jump into the case at the place that will allow
 | 
|---|
| 756 |        * us to finish off the appropriate number of items. 
 | 
|---|
| 757 |        */ 
 | 
|---|
| 758 | 
 | 
|---|
| 759 |       switch(n - i){ 
 | 
|---|
| 760 |         case 7 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i;
 | 
|---|
| 761 |         case 6 : e[i]=x[i]-y[i]; sum1+=e[i]*e[i]; ++i;
 | 
|---|
| 762 |         case 5 : e[i]=x[i]-y[i]; sum2+=e[i]*e[i]; ++i;
 | 
|---|
| 763 |         case 4 : e[i]=x[i]-y[i]; sum3+=e[i]*e[i]; ++i;
 | 
|---|
| 764 |         case 3 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i;
 | 
|---|
| 765 |         case 2 : e[i]=x[i]-y[i]; sum1+=e[i]*e[i]; ++i;
 | 
|---|
| 766 |         case 1 : e[i]=x[i]-y[i]; sum2+=e[i]*e[i]; //++i;
 | 
|---|
| 767 |       }
 | 
|---|
| 768 |     }
 | 
|---|
| 769 |   }
 | 
|---|
| 770 |   else{ /* x==0 */
 | 
|---|
| 771 |     for(i=blockn-1; i>0; i-=blocksize){
 | 
|---|
| 772 |               e[i ]=-y[i ]; sum0+=e[i ]*e[i ];
 | 
|---|
| 773 |       j1=i-1; e[j1]=-y[j1]; sum1+=e[j1]*e[j1];
 | 
|---|
| 774 |       j2=i-2; e[j2]=-y[j2]; sum2+=e[j2]*e[j2];
 | 
|---|
| 775 |       j3=i-3; e[j3]=-y[j3]; sum3+=e[j3]*e[j3];
 | 
|---|
| 776 |       j4=i-4; e[j4]=-y[j4]; sum0+=e[j4]*e[j4];
 | 
|---|
| 777 |       j5=i-5; e[j5]=-y[j5]; sum1+=e[j5]*e[j5];
 | 
|---|
| 778 |       j6=i-6; e[j6]=-y[j6]; sum2+=e[j6]*e[j6];
 | 
|---|
| 779 |       j7=i-7; e[j7]=-y[j7]; sum3+=e[j7]*e[j7];
 | 
|---|
| 780 |     }
 | 
|---|
| 781 | 
 | 
|---|
| 782 |    /*
 | 
|---|
| 783 |     * There may be some left to do.
 | 
|---|
| 784 |     * This could be done as a simple for() loop, 
 | 
|---|
| 785 |     * but a switch is faster (and more interesting) 
 | 
|---|
| 786 |     */ 
 | 
|---|
| 787 | 
 | 
|---|
| 788 |     i=blockn;
 | 
|---|
| 789 |     if(i<n){ 
 | 
|---|
| 790 |       /* Jump into the case at the place that will allow
 | 
|---|
| 791 |        * us to finish off the appropriate number of items. 
 | 
|---|
| 792 |        */ 
 | 
|---|
| 793 | 
 | 
|---|
| 794 |       switch(n - i){ 
 | 
|---|
| 795 |         case 7 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i;
 | 
|---|
| 796 |         case 6 : e[i]=-y[i]; sum1+=e[i]*e[i]; ++i;
 | 
|---|
| 797 |         case 5 : e[i]=-y[i]; sum2+=e[i]*e[i]; ++i;
 | 
|---|
| 798 |         case 4 : e[i]=-y[i]; sum3+=e[i]*e[i]; ++i;
 | 
|---|
| 799 |         case 3 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i;
 | 
|---|
| 800 |         case 2 : e[i]=-y[i]; sum1+=e[i]*e[i]; ++i;
 | 
|---|
| 801 |         case 1 : e[i]=-y[i]; sum2+=e[i]*e[i]; //++i;
 | 
|---|
| 802 |       }
 | 
|---|
| 803 |     }
 | 
|---|
| 804 |   }
 | 
|---|
| 805 | 
 | 
|---|
| 806 |   return sum0+sum1+sum2+sum3;
 | 
|---|
| 807 | }
 | 
|---|
| 808 | 
 | 
|---|
| 809 | /* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */
 | 
|---|
| 810 | #undef POTF2
 | 
|---|
| 811 | #undef GESVD
 | 
|---|
| 812 | #undef GESDD
 | 
|---|
| 813 | #undef GEMM
 | 
|---|
| 814 | #undef LEVMAR_PSEUDOINVERSE
 | 
|---|
| 815 | #undef LEVMAR_LUINVERSE
 | 
|---|
| 816 | #undef LEVMAR_BOX_CHECK
 | 
|---|
| 817 | #undef LEVMAR_CHOLESKY
 | 
|---|
| 818 | #undef LEVMAR_COVAR
 | 
|---|
| 819 | #undef LEVMAR_STDDEV
 | 
|---|
| 820 | #undef LEVMAR_CORCOEF
 | 
|---|
| 821 | #undef LEVMAR_R2
 | 
|---|
| 822 | #undef LEVMAR_CHKJAC
 | 
|---|
| 823 | #undef LEVMAR_FDIF_FORW_JAC_APPROX
 | 
|---|
| 824 | #undef LEVMAR_FDIF_CENT_JAC_APPROX
 | 
|---|
| 825 | #undef LEVMAR_TRANS_MAT_MAT_MULT
 | 
|---|
| 826 | #undef LEVMAR_L2NRMXMY
 | 
|---|