| 1 | ///////////////////////////////////////////////////////////////////////////////// | 
|---|
| 2 | // | 
|---|
| 3 | //  Levenberg - Marquardt non-linear minimization algorithm | 
|---|
| 4 | //  Copyright (C) 2004-05  Manolis Lourakis (lourakis at ics forth gr) | 
|---|
| 5 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas | 
|---|
| 6 | //  Heraklion, Crete, Greece. | 
|---|
| 7 | // | 
|---|
| 8 | //  This program is free software; you can redistribute it and/or modify | 
|---|
| 9 | //  it under the terms of the GNU General Public License as published by | 
|---|
| 10 | //  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 11 | //  (at your option) any later version. | 
|---|
| 12 | // | 
|---|
| 13 | //  This program is distributed in the hope that it will be useful, | 
|---|
| 14 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 15 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 16 | //  GNU General Public License for more details. | 
|---|
| 17 | // | 
|---|
| 18 | ///////////////////////////////////////////////////////////////////////////////// | 
|---|
| 19 |  | 
|---|
| 20 | #ifndef LM_REAL // not included by misc.c | 
|---|
| 21 | #error This file should not be compiled directly! | 
|---|
| 22 | #endif | 
|---|
| 23 |  | 
|---|
| 24 |  | 
|---|
| 25 | /* precision-specific definitions */ | 
|---|
| 26 | #define LEVMAR_CHKJAC LM_ADD_PREFIX(levmar_chkjac) | 
|---|
| 27 | #define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx) | 
|---|
| 28 | #define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx) | 
|---|
| 29 | #define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult) | 
|---|
| 30 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar) | 
|---|
| 31 | #define LEVMAR_STDDEV LM_ADD_PREFIX(levmar_stddev) | 
|---|
| 32 | #define LEVMAR_CORCOEF LM_ADD_PREFIX(levmar_corcoef) | 
|---|
| 33 | #define LEVMAR_R2 LM_ADD_PREFIX(levmar_R2) | 
|---|
| 34 | #define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check) | 
|---|
| 35 | #define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy) | 
|---|
| 36 |  | 
|---|
| 37 | #ifdef HAVE_LAPACK | 
|---|
| 38 | #define LEVMAR_PSEUDOINVERSE LM_ADD_PREFIX(levmar_pseudoinverse) | 
|---|
| 39 | static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m); | 
|---|
| 40 |  | 
|---|
| 41 | #ifdef __cplusplus | 
|---|
| 42 | extern "C" { | 
|---|
| 43 | #endif | 
|---|
| 44 | /* BLAS matrix multiplication, LAPACK SVD & Cholesky routines */ | 
|---|
| 45 | #define GEMM LM_MK_BLAS_NAME(gemm) | 
|---|
| 46 | /* C := alpha*op( A )*op( B ) + beta*C */ | 
|---|
| 47 | extern void GEMM(char *transa, char *transb, int *m, int *n, int *k, | 
|---|
| 48 | LM_REAL *alpha, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, LM_REAL *beta, LM_REAL *c, int *ldc); | 
|---|
| 49 |  | 
|---|
| 50 | #define GESVD LM_MK_LAPACK_NAME(gesvd) | 
|---|
| 51 | #define GESDD LM_MK_LAPACK_NAME(gesdd) | 
|---|
| 52 | extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, | 
|---|
| 53 | LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info); | 
|---|
| 54 |  | 
|---|
| 55 | /* lapack 3.0 new SVD routine, faster than xgesvd() */ | 
|---|
| 56 | extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt, | 
|---|
| 57 | LM_REAL *work, int *lwork, int *iwork, int *info); | 
|---|
| 58 |  | 
|---|
| 59 | /* Cholesky decomposition */ | 
|---|
| 60 | #define POTF2 LM_MK_LAPACK_NAME(potf2) | 
|---|
| 61 | extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info); | 
|---|
| 62 | #ifdef __cplusplus | 
|---|
| 63 | } | 
|---|
| 64 | #endif | 
|---|
| 65 |  | 
|---|
| 66 | #define LEVMAR_CHOLESKY LM_ADD_PREFIX(levmar_chol) | 
|---|
| 67 |  | 
|---|
| 68 | #else /* !HAVE_LAPACK */ | 
|---|
| 69 | #define LEVMAR_LUINVERSE LM_ADD_PREFIX(levmar_LUinverse_noLapack) | 
|---|
| 70 |  | 
|---|
| 71 | static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m); | 
|---|
| 72 | #endif /* HAVE_LAPACK */ | 
|---|
| 73 |  | 
|---|
| 74 | /* blocked multiplication of the transpose of the nxm matrix a with itself (i.e. a^T a) | 
|---|
| 75 | * using a block size of bsize. The product is returned in b. | 
|---|
| 76 | * Since a^T a is symmetric, its computation can be sped up by computing only its | 
|---|
| 77 | * upper triangular part and copying it to the lower part. | 
|---|
| 78 | * | 
|---|
| 79 | * More details on blocking can be found at | 
|---|
| 80 | * http://www-2.cs.cmu.edu/afs/cs/academic/class/15213-f02/www/R07/section_a/Recitation07-SectionA.pdf | 
|---|
| 81 | */ | 
|---|
| 82 | void LEVMAR_TRANS_MAT_MAT_MULT(LM_REAL *a, LM_REAL *b, int n, int m) | 
|---|
| 83 | { | 
|---|
| 84 | #ifdef HAVE_LAPACK /* use BLAS matrix multiply */ | 
|---|
| 85 |  | 
|---|
| 86 | LM_REAL alpha=LM_CNST(1.0), beta=LM_CNST(0.0); | 
|---|
| 87 | /* Fool BLAS to compute a^T*a avoiding transposing a: a is equivalent to a^T in column major, | 
|---|
| 88 | * therefore BLAS computes a*a^T with a and a*a^T in column major, which is equivalent to | 
|---|
| 89 | * computing a^T*a in row major! | 
|---|
| 90 | */ | 
|---|
| 91 | GEMM("N", "T", &m, &m, &n, &alpha, a, &m, a, &m, &beta, b, &m); | 
|---|
| 92 |  | 
|---|
| 93 | #else /* no LAPACK, use blocking-based multiply */ | 
|---|
| 94 |  | 
|---|
| 95 | register int i, j, k, jj, kk; | 
|---|
| 96 | register LM_REAL sum, *bim, *akm; | 
|---|
| 97 | const int bsize=__BLOCKSZ__; | 
|---|
| 98 |  | 
|---|
| 99 | #define __MIN__(x, y) (((x)<=(y))? (x) : (y)) | 
|---|
| 100 | #define __MAX__(x, y) (((x)>=(y))? (x) : (y)) | 
|---|
| 101 |  | 
|---|
| 102 | /* compute upper triangular part using blocking */ | 
|---|
| 103 | for(jj=0; jj<m; jj+=bsize){ | 
|---|
| 104 | for(i=0; i<m; ++i){ | 
|---|
| 105 | bim=b+i*m; | 
|---|
| 106 | for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j) | 
|---|
| 107 | bim[j]=0.0; //b[i*m+j]=0.0; | 
|---|
| 108 | } | 
|---|
| 109 |  | 
|---|
| 110 | for(kk=0; kk<n; kk+=bsize){ | 
|---|
| 111 | for(i=0; i<m; ++i){ | 
|---|
| 112 | bim=b+i*m; | 
|---|
| 113 | for(j=__MAX__(jj, i); j<__MIN__(jj+bsize, m); ++j){ | 
|---|
| 114 | sum=0.0; | 
|---|
| 115 | for(k=kk; k<__MIN__(kk+bsize, n); ++k){ | 
|---|
| 116 | akm=a+k*m; | 
|---|
| 117 | sum+=akm[i]*akm[j]; //a[k*m+i]*a[k*m+j]; | 
|---|
| 118 | } | 
|---|
| 119 | bim[j]+=sum; //b[i*m+j]+=sum; | 
|---|
| 120 | } | 
|---|
| 121 | } | 
|---|
| 122 | } | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | /* copy upper triangular part to the lower one */ | 
|---|
| 126 | for(i=0; i<m; ++i) | 
|---|
| 127 | for(j=0; j<i; ++j) | 
|---|
| 128 | b[i*m+j]=b[j*m+i]; | 
|---|
| 129 |  | 
|---|
| 130 | #undef __MIN__ | 
|---|
| 131 | #undef __MAX__ | 
|---|
| 132 |  | 
|---|
| 133 | #endif /* HAVE_LAPACK */ | 
|---|
| 134 | } | 
|---|
| 135 |  | 
|---|
| 136 | /* forward finite difference approximation to the Jacobian of func */ | 
|---|
| 137 | void LEVMAR_FDIF_FORW_JAC_APPROX( | 
|---|
| 138 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), | 
|---|
| 139 | /* function to differentiate */ | 
|---|
| 140 | LM_REAL *p,              /* I: current parameter estimate, mx1 */ | 
|---|
| 141 | LM_REAL *hx,             /* I: func evaluated at p, i.e. hx=func(p), nx1 */ | 
|---|
| 142 | LM_REAL *hxx,            /* W/O: work array for evaluating func(p+delta), nx1 */ | 
|---|
| 143 | LM_REAL delta,           /* increment for computing the Jacobian */ | 
|---|
| 144 | LM_REAL *jac,            /* O: array for storing approximated Jacobian, nxm */ | 
|---|
| 145 | int m, | 
|---|
| 146 | int n, | 
|---|
| 147 | void *adata) | 
|---|
| 148 | { | 
|---|
| 149 | register int i, j; | 
|---|
| 150 | LM_REAL tmp; | 
|---|
| 151 | register LM_REAL d; | 
|---|
| 152 |  | 
|---|
| 153 | for(j=0; j<m; ++j){ | 
|---|
| 154 | /* determine d=max(1E-04*|p[j]|, delta), see HZ */ | 
|---|
| 155 | d=LM_CNST(1E-04)*p[j]; // force evaluation | 
|---|
| 156 | d=FABS(d); | 
|---|
| 157 | if(d<delta) | 
|---|
| 158 | d=delta; | 
|---|
| 159 |  | 
|---|
| 160 | tmp=p[j]; | 
|---|
| 161 | p[j]+=d; | 
|---|
| 162 |  | 
|---|
| 163 | (*func)(p, hxx, m, n, adata); | 
|---|
| 164 |  | 
|---|
| 165 | p[j]=tmp; /* restore */ | 
|---|
| 166 |  | 
|---|
| 167 | d=LM_CNST(1.0)/d; /* invert so that divisions can be carried out faster as multiplications */ | 
|---|
| 168 | for(i=0; i<n; ++i){ | 
|---|
| 169 | jac[i*m+j]=(hxx[i]-hx[i])*d; | 
|---|
| 170 | } | 
|---|
| 171 | } | 
|---|
| 172 | } | 
|---|
| 173 |  | 
|---|
| 174 | /* central finite difference approximation to the Jacobian of func */ | 
|---|
| 175 | void LEVMAR_FDIF_CENT_JAC_APPROX( | 
|---|
| 176 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), | 
|---|
| 177 | /* function to differentiate */ | 
|---|
| 178 | LM_REAL *p,              /* I: current parameter estimate, mx1 */ | 
|---|
| 179 | LM_REAL *hxm,            /* W/O: work array for evaluating func(p-delta), nx1 */ | 
|---|
| 180 | LM_REAL *hxp,            /* W/O: work array for evaluating func(p+delta), nx1 */ | 
|---|
| 181 | LM_REAL delta,           /* increment for computing the Jacobian */ | 
|---|
| 182 | LM_REAL *jac,            /* O: array for storing approximated Jacobian, nxm */ | 
|---|
| 183 | int m, | 
|---|
| 184 | int n, | 
|---|
| 185 | void *adata) | 
|---|
| 186 | { | 
|---|
| 187 | register int i, j; | 
|---|
| 188 | LM_REAL tmp; | 
|---|
| 189 | register LM_REAL d; | 
|---|
| 190 |  | 
|---|
| 191 | for(j=0; j<m; ++j){ | 
|---|
| 192 | /* determine d=max(1E-04*|p[j]|, delta), see HZ */ | 
|---|
| 193 | d=LM_CNST(1E-04)*p[j]; // force evaluation | 
|---|
| 194 | d=FABS(d); | 
|---|
| 195 | if(d<delta) | 
|---|
| 196 | d=delta; | 
|---|
| 197 |  | 
|---|
| 198 | tmp=p[j]; | 
|---|
| 199 | p[j]-=d; | 
|---|
| 200 | (*func)(p, hxm, m, n, adata); | 
|---|
| 201 |  | 
|---|
| 202 | p[j]=tmp+d; | 
|---|
| 203 | (*func)(p, hxp, m, n, adata); | 
|---|
| 204 | p[j]=tmp; /* restore */ | 
|---|
| 205 |  | 
|---|
| 206 | d=LM_CNST(0.5)/d; /* invert so that divisions can be carried out faster as multiplications */ | 
|---|
| 207 | for(i=0; i<n; ++i){ | 
|---|
| 208 | jac[i*m+j]=(hxp[i]-hxm[i])*d; | 
|---|
| 209 | } | 
|---|
| 210 | } | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | /* | 
|---|
| 214 | * Check the Jacobian of a n-valued nonlinear function in m variables | 
|---|
| 215 | * evaluated at a point p, for consistency with the function itself. | 
|---|
| 216 | * | 
|---|
| 217 | * Based on fortran77 subroutine CHKDER by | 
|---|
| 218 | * Burton S. Garbow, Kenneth E. Hillstrom, Jorge J. More | 
|---|
| 219 | * Argonne National Laboratory. MINPACK project. March 1980. | 
|---|
| 220 | * | 
|---|
| 221 | * | 
|---|
| 222 | * func points to a function from R^m --> R^n: Given a p in R^m it yields hx in R^n | 
|---|
| 223 | * jacf points to a function implementing the Jacobian of func, whose correctness | 
|---|
| 224 | *     is to be tested. Given a p in R^m, jacf computes into the nxm matrix j the | 
|---|
| 225 | *     Jacobian of func at p. Note that row i of j corresponds to the gradient of | 
|---|
| 226 | *     the i-th component of func, evaluated at p. | 
|---|
| 227 | * p is an input array of length m containing the point of evaluation. | 
|---|
| 228 | * m is the number of variables | 
|---|
| 229 | * n is the number of functions | 
|---|
| 230 | * adata points to possible additional data and is passed uninterpreted | 
|---|
| 231 | *     to func, jacf. | 
|---|
| 232 | * err is an array of length n. On output, err contains measures | 
|---|
| 233 | *     of correctness of the respective gradients. if there is | 
|---|
| 234 | *     no severe loss of significance, then if err[i] is 1.0 the | 
|---|
| 235 | *     i-th gradient is correct, while if err[i] is 0.0 the i-th | 
|---|
| 236 | *     gradient is incorrect. For values of err between 0.0 and 1.0, | 
|---|
| 237 | *     the categorization is less certain. In general, a value of | 
|---|
| 238 | *     err[i] greater than 0.5 indicates that the i-th gradient is | 
|---|
| 239 | *     probably correct, while a value of err[i] less than 0.5 | 
|---|
| 240 | *     indicates that the i-th gradient is probably incorrect. | 
|---|
| 241 | * | 
|---|
| 242 | * | 
|---|
| 243 | * The function does not perform reliably if cancellation or | 
|---|
| 244 | * rounding errors cause a severe loss of significance in the | 
|---|
| 245 | * evaluation of a function. therefore, none of the components | 
|---|
| 246 | * of p should be unusually small (in particular, zero) or any | 
|---|
| 247 | * other value which may cause loss of significance. | 
|---|
| 248 | */ | 
|---|
| 249 |  | 
|---|
| 250 | void LEVMAR_CHKJAC( | 
|---|
| 251 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), | 
|---|
| 252 | void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), | 
|---|
| 253 | LM_REAL *p, int m, int n, void *adata, LM_REAL *err) | 
|---|
| 254 | { | 
|---|
| 255 | LM_REAL factor=LM_CNST(100.0); | 
|---|
| 256 | LM_REAL one=LM_CNST(1.0); | 
|---|
| 257 | LM_REAL zero=LM_CNST(0.0); | 
|---|
| 258 | LM_REAL *fvec, *fjac, *pp, *fvecp, *buf; | 
|---|
| 259 |  | 
|---|
| 260 | register int i, j; | 
|---|
| 261 | LM_REAL eps, epsf, temp, epsmch; | 
|---|
| 262 | LM_REAL epslog; | 
|---|
| 263 | int fvec_sz=n, fjac_sz=n*m, pp_sz=m, fvecp_sz=n; | 
|---|
| 264 |  | 
|---|
| 265 | epsmch=LM_REAL_EPSILON; | 
|---|
| 266 | eps=(LM_REAL)sqrt(epsmch); | 
|---|
| 267 |  | 
|---|
| 268 | buf=(LM_REAL *)malloc((fvec_sz + fjac_sz + pp_sz + fvecp_sz)*sizeof(LM_REAL)); | 
|---|
| 269 | if(!buf){ | 
|---|
| 270 | fprintf(stderr, LCAT(LEVMAR_CHKJAC, "(): memory allocation request failed\n")); | 
|---|
| 271 | exit(1); | 
|---|
| 272 | } | 
|---|
| 273 | fvec=buf; | 
|---|
| 274 | fjac=fvec+fvec_sz; | 
|---|
| 275 | pp=fjac+fjac_sz; | 
|---|
| 276 | fvecp=pp+pp_sz; | 
|---|
| 277 |  | 
|---|
| 278 | /* compute fvec=func(p) */ | 
|---|
| 279 | (*func)(p, fvec, m, n, adata); | 
|---|
| 280 |  | 
|---|
| 281 | /* compute the Jacobian at p */ | 
|---|
| 282 | (*jacf)(p, fjac, m, n, adata); | 
|---|
| 283 |  | 
|---|
| 284 | /* compute pp */ | 
|---|
| 285 | for(j=0; j<m; ++j){ | 
|---|
| 286 | temp=eps*FABS(p[j]); | 
|---|
| 287 | if(temp==zero) temp=eps; | 
|---|
| 288 | pp[j]=p[j]+temp; | 
|---|
| 289 | } | 
|---|
| 290 |  | 
|---|
| 291 | /* compute fvecp=func(pp) */ | 
|---|
| 292 | (*func)(pp, fvecp, m, n, adata); | 
|---|
| 293 |  | 
|---|
| 294 | epsf=factor*epsmch; | 
|---|
| 295 | epslog=(LM_REAL)log10(eps); | 
|---|
| 296 |  | 
|---|
| 297 | for(i=0; i<n; ++i) | 
|---|
| 298 | err[i]=zero; | 
|---|
| 299 |  | 
|---|
| 300 | for(j=0; j<m; ++j){ | 
|---|
| 301 | temp=FABS(p[j]); | 
|---|
| 302 | if(temp==zero) temp=one; | 
|---|
| 303 |  | 
|---|
| 304 | for(i=0; i<n; ++i) | 
|---|
| 305 | err[i]+=temp*fjac[i*m+j]; | 
|---|
| 306 | } | 
|---|
| 307 |  | 
|---|
| 308 | for(i=0; i<n; ++i){ | 
|---|
| 309 | temp=one; | 
|---|
| 310 | if(fvec[i]!=zero && fvecp[i]!=zero && FABS(fvecp[i]-fvec[i])>=epsf*FABS(fvec[i])) | 
|---|
| 311 | temp=eps*FABS((fvecp[i]-fvec[i])/eps - err[i])/(FABS(fvec[i])+FABS(fvecp[i])); | 
|---|
| 312 | err[i]=one; | 
|---|
| 313 | if(temp>epsmch && temp<eps) | 
|---|
| 314 | err[i]=((LM_REAL)log10(temp) - epslog)/epslog; | 
|---|
| 315 | if(temp>=eps) err[i]=zero; | 
|---|
| 316 | } | 
|---|
| 317 |  | 
|---|
| 318 | free(buf); | 
|---|
| 319 |  | 
|---|
| 320 | return; | 
|---|
| 321 | } | 
|---|
| 322 |  | 
|---|
| 323 | #ifdef HAVE_LAPACK | 
|---|
| 324 | /* | 
|---|
| 325 | * This function computes the pseudoinverse of a square matrix A | 
|---|
| 326 | * into B using SVD. A and B can coincide | 
|---|
| 327 | * | 
|---|
| 328 | * The function returns 0 in case of error (e.g. A is singular), | 
|---|
| 329 | * the rank of A if successful | 
|---|
| 330 | * | 
|---|
| 331 | * A, B are mxm | 
|---|
| 332 | * | 
|---|
| 333 | */ | 
|---|
| 334 | static int LEVMAR_PSEUDOINVERSE(LM_REAL *A, LM_REAL *B, int m) | 
|---|
| 335 | { | 
|---|
| 336 | LM_REAL *buf=NULL; | 
|---|
| 337 | int buf_sz=0; | 
|---|
| 338 | static LM_REAL eps=LM_CNST(-1.0); | 
|---|
| 339 |  | 
|---|
| 340 | register int i, j; | 
|---|
| 341 | LM_REAL *a, *u, *s, *vt, *work; | 
|---|
| 342 | int a_sz, u_sz, s_sz, vt_sz, tot_sz; | 
|---|
| 343 | LM_REAL thresh, one_over_denom; | 
|---|
| 344 | int info, rank, worksz, *iwork, iworksz; | 
|---|
| 345 |  | 
|---|
| 346 | /* calculate required memory size */ | 
|---|
| 347 | worksz=5*m; // min worksize for GESVD | 
|---|
| 348 | //worksz=m*(7*m+4); // min worksize for GESDD | 
|---|
| 349 | iworksz=8*m; | 
|---|
| 350 | a_sz=m*m; | 
|---|
| 351 | u_sz=m*m; s_sz=m; vt_sz=m*m; | 
|---|
| 352 |  | 
|---|
| 353 | tot_sz=(a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL) + iworksz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ | 
|---|
| 354 |  | 
|---|
| 355 | buf_sz=tot_sz; | 
|---|
| 356 | buf=(LM_REAL *)malloc(buf_sz); | 
|---|
| 357 | if(!buf){ | 
|---|
| 358 | fprintf(stderr, RCAT("memory allocation in ", LEVMAR_PSEUDOINVERSE) "() failed!\n"); | 
|---|
| 359 | return 0; /* error */ | 
|---|
| 360 | } | 
|---|
| 361 |  | 
|---|
| 362 | a=buf; | 
|---|
| 363 | u=a+a_sz; | 
|---|
| 364 | s=u+u_sz; | 
|---|
| 365 | vt=s+s_sz; | 
|---|
| 366 | work=vt+vt_sz; | 
|---|
| 367 | iwork=(int *)(work+worksz); | 
|---|
| 368 |  | 
|---|
| 369 | /* store A (column major!) into a */ | 
|---|
| 370 | for(i=0; i<m; i++) | 
|---|
| 371 | for(j=0; j<m; j++) | 
|---|
| 372 | a[i+j*m]=A[i*m+j]; | 
|---|
| 373 |  | 
|---|
| 374 | /* SVD decomposition of A */ | 
|---|
| 375 | GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info); | 
|---|
| 376 | //GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info); | 
|---|
| 377 |  | 
|---|
| 378 | /* error treatment */ | 
|---|
| 379 | if(info!=0){ | 
|---|
| 380 | if(info<0){ | 
|---|
| 381 | fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", LEVMAR_PSEUDOINVERSE) "()\n", -info); | 
|---|
| 382 | } | 
|---|
| 383 | else{ | 
|---|
| 384 | fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", LEVMAR_PSEUDOINVERSE) "() [info=%d]\n", info); | 
|---|
| 385 | } | 
|---|
| 386 | free(buf); | 
|---|
| 387 | return 0; | 
|---|
| 388 | } | 
|---|
| 389 |  | 
|---|
| 390 | if(eps<0.0){ | 
|---|
| 391 | LM_REAL aux; | 
|---|
| 392 |  | 
|---|
| 393 | /* compute machine epsilon */ | 
|---|
| 394 | for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5)) | 
|---|
| 395 | ; | 
|---|
| 396 | eps*=LM_CNST(2.0); | 
|---|
| 397 | } | 
|---|
| 398 |  | 
|---|
| 399 | /* compute the pseudoinverse in B */ | 
|---|
| 400 | for(i=0; i<a_sz; i++) B[i]=0.0; /* initialize to zero */ | 
|---|
| 401 | for(rank=0, thresh=eps*s[0]; rank<m && s[rank]>thresh; rank++){ | 
|---|
| 402 | one_over_denom=LM_CNST(1.0)/s[rank]; | 
|---|
| 403 |  | 
|---|
| 404 | for(j=0; j<m; j++) | 
|---|
| 405 | for(i=0; i<m; i++) | 
|---|
| 406 | B[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom; | 
|---|
| 407 | } | 
|---|
| 408 |  | 
|---|
| 409 | free(buf); | 
|---|
| 410 |  | 
|---|
| 411 | return rank; | 
|---|
| 412 | } | 
|---|
| 413 | #else // no LAPACK | 
|---|
| 414 |  | 
|---|
| 415 | /* | 
|---|
| 416 | * This function computes the inverse of A in B. A and B can coincide | 
|---|
| 417 | * | 
|---|
| 418 | * The function employs LAPACK-free LU decomposition of A to solve m linear | 
|---|
| 419 | * systems A*B_i=I_i, where B_i and I_i are the i-th columns of B and I. | 
|---|
| 420 | * | 
|---|
| 421 | * A and B are mxm | 
|---|
| 422 | * | 
|---|
| 423 | * The function returns 0 in case of error, 1 if successful | 
|---|
| 424 | * | 
|---|
| 425 | */ | 
|---|
| 426 | static int LEVMAR_LUINVERSE(LM_REAL *A, LM_REAL *B, int m) | 
|---|
| 427 | { | 
|---|
| 428 | void *buf=NULL; | 
|---|
| 429 | int buf_sz=0; | 
|---|
| 430 |  | 
|---|
| 431 | register int i, j, k, l; | 
|---|
| 432 | int *idx, maxi=-1, idx_sz, a_sz, x_sz, work_sz, tot_sz; | 
|---|
| 433 | LM_REAL *a, *x, *work, max, sum, tmp; | 
|---|
| 434 |  | 
|---|
| 435 | /* calculate required memory size */ | 
|---|
| 436 | idx_sz=m; | 
|---|
| 437 | a_sz=m*m; | 
|---|
| 438 | x_sz=m; | 
|---|
| 439 | work_sz=m; | 
|---|
| 440 | tot_sz=(a_sz + x_sz + work_sz)*sizeof(LM_REAL) + idx_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ | 
|---|
| 441 |  | 
|---|
| 442 | buf_sz=tot_sz; | 
|---|
| 443 | buf=(void *)malloc(tot_sz); | 
|---|
| 444 | if(!buf){ | 
|---|
| 445 | fprintf(stderr, RCAT("memory allocation in ", LEVMAR_LUINVERSE) "() failed!\n"); | 
|---|
| 446 | return 0; /* error */ | 
|---|
| 447 | } | 
|---|
| 448 |  | 
|---|
| 449 | a=buf; | 
|---|
| 450 | x=a+a_sz; | 
|---|
| 451 | work=x+x_sz; | 
|---|
| 452 | idx=(int *)(work+work_sz); | 
|---|
| 453 |  | 
|---|
| 454 | /* avoid destroying A by copying it to a */ | 
|---|
| 455 | for(i=0; i<a_sz; ++i) a[i]=A[i]; | 
|---|
| 456 |  | 
|---|
| 457 | /* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */ | 
|---|
| 458 | for(i=0; i<m; ++i){ | 
|---|
| 459 | max=0.0; | 
|---|
| 460 | for(j=0; j<m; ++j) | 
|---|
| 461 | if((tmp=FABS(a[i*m+j]))>max) | 
|---|
| 462 | max=tmp; | 
|---|
| 463 | if(max==0.0){ | 
|---|
| 464 | fprintf(stderr, RCAT("Singular matrix A in ", LEVMAR_LUINVERSE) "()!\n"); | 
|---|
| 465 | free(buf); | 
|---|
| 466 |  | 
|---|
| 467 | return 0; | 
|---|
| 468 | } | 
|---|
| 469 | work[i]=LM_CNST(1.0)/max; | 
|---|
| 470 | } | 
|---|
| 471 |  | 
|---|
| 472 | for(j=0; j<m; ++j){ | 
|---|
| 473 | for(i=0; i<j; ++i){ | 
|---|
| 474 | sum=a[i*m+j]; | 
|---|
| 475 | for(k=0; k<i; ++k) | 
|---|
| 476 | sum-=a[i*m+k]*a[k*m+j]; | 
|---|
| 477 | a[i*m+j]=sum; | 
|---|
| 478 | } | 
|---|
| 479 | max=0.0; | 
|---|
| 480 | for(i=j; i<m; ++i){ | 
|---|
| 481 | sum=a[i*m+j]; | 
|---|
| 482 | for(k=0; k<j; ++k) | 
|---|
| 483 | sum-=a[i*m+k]*a[k*m+j]; | 
|---|
| 484 | a[i*m+j]=sum; | 
|---|
| 485 | if((tmp=work[i]*FABS(sum))>=max){ | 
|---|
| 486 | max=tmp; | 
|---|
| 487 | maxi=i; | 
|---|
| 488 | } | 
|---|
| 489 | } | 
|---|
| 490 | if(j!=maxi){ | 
|---|
| 491 | for(k=0; k<m; ++k){ | 
|---|
| 492 | tmp=a[maxi*m+k]; | 
|---|
| 493 | a[maxi*m+k]=a[j*m+k]; | 
|---|
| 494 | a[j*m+k]=tmp; | 
|---|
| 495 | } | 
|---|
| 496 | work[maxi]=work[j]; | 
|---|
| 497 | } | 
|---|
| 498 | idx[j]=maxi; | 
|---|
| 499 | if(a[j*m+j]==0.0) | 
|---|
| 500 | a[j*m+j]=LM_REAL_EPSILON; | 
|---|
| 501 | if(j!=m-1){ | 
|---|
| 502 | tmp=LM_CNST(1.0)/(a[j*m+j]); | 
|---|
| 503 | for(i=j+1; i<m; ++i) | 
|---|
| 504 | a[i*m+j]*=tmp; | 
|---|
| 505 | } | 
|---|
| 506 | } | 
|---|
| 507 |  | 
|---|
| 508 | /* The decomposition has now replaced a. Solve the m linear systems using | 
|---|
| 509 | * forward and back substitution | 
|---|
| 510 | */ | 
|---|
| 511 | for(l=0; l<m; ++l){ | 
|---|
| 512 | for(i=0; i<m; ++i) x[i]=0.0; | 
|---|
| 513 | x[l]=LM_CNST(1.0); | 
|---|
| 514 |  | 
|---|
| 515 | for(i=k=0; i<m; ++i){ | 
|---|
| 516 | j=idx[i]; | 
|---|
| 517 | sum=x[j]; | 
|---|
| 518 | x[j]=x[i]; | 
|---|
| 519 | if(k!=0) | 
|---|
| 520 | for(j=k-1; j<i; ++j) | 
|---|
| 521 | sum-=a[i*m+j]*x[j]; | 
|---|
| 522 | else | 
|---|
| 523 | if(sum!=0.0) | 
|---|
| 524 | k=i+1; | 
|---|
| 525 | x[i]=sum; | 
|---|
| 526 | } | 
|---|
| 527 |  | 
|---|
| 528 | for(i=m-1; i>=0; --i){ | 
|---|
| 529 | sum=x[i]; | 
|---|
| 530 | for(j=i+1; j<m; ++j) | 
|---|
| 531 | sum-=a[i*m+j]*x[j]; | 
|---|
| 532 | x[i]=sum/a[i*m+i]; | 
|---|
| 533 | } | 
|---|
| 534 |  | 
|---|
| 535 | for(i=0; i<m; ++i) | 
|---|
| 536 | B[i*m+l]=x[i]; | 
|---|
| 537 | } | 
|---|
| 538 |  | 
|---|
| 539 | free(buf); | 
|---|
| 540 |  | 
|---|
| 541 | return 1; | 
|---|
| 542 | } | 
|---|
| 543 | #endif /* HAVE_LAPACK */ | 
|---|
| 544 |  | 
|---|
| 545 | /* | 
|---|
| 546 | * This function computes in C the covariance matrix corresponding to a least | 
|---|
| 547 | * squares fit. JtJ is the approximate Hessian at the solution (i.e. J^T*J, where | 
|---|
| 548 | * J is the Jacobian at the solution), sumsq is the sum of squared residuals | 
|---|
| 549 | * (i.e. goodnes of fit) at the solution, m is the number of parameters (variables) | 
|---|
| 550 | * and n the number of observations. JtJ can coincide with C. | 
|---|
| 551 | * | 
|---|
| 552 | * if JtJ is of full rank, C is computed as sumsq/(n-m)*(JtJ)^-1 | 
|---|
| 553 | * otherwise and if LAPACK is available, C=sumsq/(n-r)*(JtJ)^+ | 
|---|
| 554 | * where r is JtJ's rank and ^+ denotes the pseudoinverse | 
|---|
| 555 | * The diagonal of C is made up from the estimates of the variances | 
|---|
| 556 | * of the estimated regression coefficients. | 
|---|
| 557 | * See the documentation of routine E04YCF from the NAG fortran lib | 
|---|
| 558 | * | 
|---|
| 559 | * The function returns the rank of JtJ if successful, 0 on error | 
|---|
| 560 | * | 
|---|
| 561 | * A and C are mxm | 
|---|
| 562 | * | 
|---|
| 563 | */ | 
|---|
| 564 | int LEVMAR_COVAR(LM_REAL *JtJ, LM_REAL *C, LM_REAL sumsq, int m, int n) | 
|---|
| 565 | { | 
|---|
| 566 | register int i; | 
|---|
| 567 | int rnk; | 
|---|
| 568 | LM_REAL fact; | 
|---|
| 569 |  | 
|---|
| 570 | #ifdef HAVE_LAPACK | 
|---|
| 571 | rnk=LEVMAR_PSEUDOINVERSE(JtJ, C, m); | 
|---|
| 572 | if(!rnk) return 0; | 
|---|
| 573 | #else | 
|---|
| 574 | #ifdef _MSC_VER | 
|---|
| 575 | #pragma message("LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times") | 
|---|
| 576 | #else | 
|---|
| 577 | #warning LAPACK not available, LU will be used for matrix inversion when computing the covariance; this might be unstable at times | 
|---|
| 578 | #endif // _MSC_VER | 
|---|
| 579 |  | 
|---|
| 580 | rnk=LEVMAR_LUINVERSE(JtJ, C, m); | 
|---|
| 581 | if(!rnk) return 0; | 
|---|
| 582 |  | 
|---|
| 583 | rnk=m; /* assume full rank */ | 
|---|
| 584 | #endif /* HAVE_LAPACK */ | 
|---|
| 585 |  | 
|---|
| 586 | fact=sumsq/(LM_REAL)(n-rnk); | 
|---|
| 587 | for(i=0; i<m*m; ++i) | 
|---|
| 588 | C[i]*=fact; | 
|---|
| 589 |  | 
|---|
| 590 | return rnk; | 
|---|
| 591 | } | 
|---|
| 592 |  | 
|---|
| 593 | /*  standard deviation of the best-fit parameter i. | 
|---|
| 594 | *  covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()). | 
|---|
| 595 | * | 
|---|
| 596 | *  The standard deviation is computed as \sigma_{i} = \sqrt{C_{ii}} | 
|---|
| 597 | */ | 
|---|
| 598 | LM_REAL LEVMAR_STDDEV(LM_REAL *covar, int m, int i) | 
|---|
| 599 | { | 
|---|
| 600 | return (LM_REAL)sqrt(covar[i*m+i]); | 
|---|
| 601 | } | 
|---|
| 602 |  | 
|---|
| 603 | /* Pearson's correlation coefficient of the best-fit parameters i and j. | 
|---|
| 604 | * covar is the mxm covariance matrix of the best-fit parameters (see also LEVMAR_COVAR()). | 
|---|
| 605 | * | 
|---|
| 606 | * The coefficient is computed as \rho_{ij} = C_{ij} / sqrt(C_{ii} C_{jj}) | 
|---|
| 607 | */ | 
|---|
| 608 | LM_REAL LEVMAR_CORCOEF(LM_REAL *covar, int m, int i, int j) | 
|---|
| 609 | { | 
|---|
| 610 | return (LM_REAL)(covar[i*m+j]/sqrt(covar[i*m+i]*covar[j*m+j])); | 
|---|
| 611 | } | 
|---|
| 612 |  | 
|---|
| 613 | /* coefficient of determination. | 
|---|
| 614 | * see  http://en.wikipedia.org/wiki/Coefficient_of_determination | 
|---|
| 615 | */ | 
|---|
| 616 | LM_REAL LEVMAR_R2(void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), | 
|---|
| 617 | LM_REAL *p, LM_REAL *x, int m, int n, void *adata) | 
|---|
| 618 | { | 
|---|
| 619 | register int i; | 
|---|
| 620 | register LM_REAL tmp; | 
|---|
| 621 | LM_REAL SSerr,  // sum of squared errors, i.e. residual sum of squares \sum_i (x_i-hx_i)^2 | 
|---|
| 622 | SStot, // \sum_i (x_i-xavg)^2 | 
|---|
| 623 | *hx, xavg; | 
|---|
| 624 |  | 
|---|
| 625 |  | 
|---|
| 626 | if((hx=(LM_REAL *)malloc(n*sizeof(LM_REAL)))==NULL){ | 
|---|
| 627 | fprintf(stderr, RCAT("memory allocation request failed in ", LEVMAR_R2) "()\n"); | 
|---|
| 628 | exit(1); | 
|---|
| 629 | } | 
|---|
| 630 |  | 
|---|
| 631 | /* hx=f(p) */ | 
|---|
| 632 | (*func)(p, hx, m, n, adata); | 
|---|
| 633 |  | 
|---|
| 634 | for(i=n, tmp=0.0; i-->0; ) | 
|---|
| 635 | tmp+=x[i]; | 
|---|
| 636 | xavg=tmp/(LM_REAL)n; | 
|---|
| 637 |  | 
|---|
| 638 | if(x) | 
|---|
| 639 | for(i=n, SSerr=SStot=0.0; i-->0; ){ | 
|---|
| 640 | tmp=x[i]-hx[i]; | 
|---|
| 641 | SSerr+=tmp*tmp; | 
|---|
| 642 |  | 
|---|
| 643 | tmp=x[i]-xavg; | 
|---|
| 644 | SStot+=tmp*tmp; | 
|---|
| 645 | } | 
|---|
| 646 | else /* x==0 */ | 
|---|
| 647 | for(i=n, SSerr=SStot=0.0; i-->0; ){ | 
|---|
| 648 | tmp=-hx[i]; | 
|---|
| 649 | SSerr+=tmp*tmp; | 
|---|
| 650 |  | 
|---|
| 651 | tmp=-xavg; | 
|---|
| 652 | SStot+=tmp*tmp; | 
|---|
| 653 | } | 
|---|
| 654 |  | 
|---|
| 655 | free(hx); | 
|---|
| 656 |  | 
|---|
| 657 | return LM_CNST(1.0) - SSerr/SStot; | 
|---|
| 658 | } | 
|---|
| 659 |  | 
|---|
| 660 | /* check box constraints for consistency */ | 
|---|
| 661 | int LEVMAR_BOX_CHECK(LM_REAL *lb, LM_REAL *ub, int m) | 
|---|
| 662 | { | 
|---|
| 663 | register int i; | 
|---|
| 664 |  | 
|---|
| 665 | if(!lb || !ub) return 1; | 
|---|
| 666 |  | 
|---|
| 667 | for(i=0; i<m; ++i) | 
|---|
| 668 | if(lb[i]>ub[i]) return 0; | 
|---|
| 669 |  | 
|---|
| 670 | return 1; | 
|---|
| 671 | } | 
|---|
| 672 |  | 
|---|
| 673 | #ifdef HAVE_LAPACK | 
|---|
| 674 |  | 
|---|
| 675 | /* compute the Cholesky decomposition of C in W, s.t. C=W^t W and W is upper triangular */ | 
|---|
| 676 | int LEVMAR_CHOLESKY(LM_REAL *C, LM_REAL *W, int m) | 
|---|
| 677 | { | 
|---|
| 678 | register int i, j; | 
|---|
| 679 | int info; | 
|---|
| 680 |  | 
|---|
| 681 | /* copy weights array C to W so that LAPACK won't destroy it; | 
|---|
| 682 | * C is assumed symmetric, hence no transposition is needed | 
|---|
| 683 | */ | 
|---|
| 684 | for(i=0, j=m*m; i<j; ++i) | 
|---|
| 685 | W[i]=C[i]; | 
|---|
| 686 |  | 
|---|
| 687 | /* Cholesky decomposition */ | 
|---|
| 688 | POTF2("L", (int *)&m, W, (int *)&m, (int *)&info); | 
|---|
| 689 | /* error treatment */ | 
|---|
| 690 | if(info!=0){ | 
|---|
| 691 | if(info<0){ | 
|---|
| 692 | fprintf(stderr, "LAPACK error: illegal value for argument %d of dpotf2 in %s\n", -info, LCAT(LEVMAR_CHOLESKY, "()")); | 
|---|
| 693 | } | 
|---|
| 694 | else{ | 
|---|
| 695 | fprintf(stderr, "LAPACK error: the leading minor of order %d is not positive definite,\n%s()\n", info, | 
|---|
| 696 | RCAT("and the Cholesky factorization could not be completed in ", LEVMAR_CHOLESKY)); | 
|---|
| 697 | } | 
|---|
| 698 | return LM_ERROR; | 
|---|
| 699 | } | 
|---|
| 700 |  | 
|---|
| 701 | /* the decomposition is in the lower part of W (in column-major order!). | 
|---|
| 702 | * zeroing the upper part makes it lower triangular which is equivalent to | 
|---|
| 703 | * upper triangular in row-major order | 
|---|
| 704 | */ | 
|---|
| 705 | for(i=0; i<m; i++) | 
|---|
| 706 | for(j=i+1; j<m; j++) | 
|---|
| 707 | W[i+j*m]=0.0; | 
|---|
| 708 |  | 
|---|
| 709 | return 0; | 
|---|
| 710 | } | 
|---|
| 711 | #endif /* HAVE_LAPACK */ | 
|---|
| 712 |  | 
|---|
| 713 |  | 
|---|
| 714 | /* Compute e=x-y for two n-vectors x and y and return the squared L2 norm of e. | 
|---|
| 715 | * e can coincide with either x or y; x can be NULL, in which case it is assumed | 
|---|
| 716 | * to be equal to the zero vector. | 
|---|
| 717 | * Uses loop unrolling and blocking to reduce bookkeeping overhead & pipeline | 
|---|
| 718 | * stalls and increase instruction-level parallelism; see http://www.abarnett.demon.co.uk/tutorial.html | 
|---|
| 719 | */ | 
|---|
| 720 |  | 
|---|
| 721 | LM_REAL LEVMAR_L2NRMXMY(LM_REAL *e, LM_REAL *x, LM_REAL *y, int n) | 
|---|
| 722 | { | 
|---|
| 723 | const int blocksize=8, bpwr=3; /* 8=2^3 */ | 
|---|
| 724 | register int i; | 
|---|
| 725 | int j1, j2, j3, j4, j5, j6, j7; | 
|---|
| 726 | int blockn; | 
|---|
| 727 | register LM_REAL sum0=0.0, sum1=0.0, sum2=0.0, sum3=0.0; | 
|---|
| 728 |  | 
|---|
| 729 | /* n may not be divisible by blocksize, | 
|---|
| 730 | * go as near as we can first, then tidy up. | 
|---|
| 731 | */ | 
|---|
| 732 | blockn = (n>>bpwr)<<bpwr; /* (n / blocksize) * blocksize; */ | 
|---|
| 733 |  | 
|---|
| 734 | /* unroll the loop in blocks of `blocksize'; looping downwards gains some more speed */ | 
|---|
| 735 | if(x){ | 
|---|
| 736 | for(i=blockn-1; i>0; i-=blocksize){ | 
|---|
| 737 | e[i ]=x[i ]-y[i ]; sum0+=e[i ]*e[i ]; | 
|---|
| 738 | j1=i-1; e[j1]=x[j1]-y[j1]; sum1+=e[j1]*e[j1]; | 
|---|
| 739 | j2=i-2; e[j2]=x[j2]-y[j2]; sum2+=e[j2]*e[j2]; | 
|---|
| 740 | j3=i-3; e[j3]=x[j3]-y[j3]; sum3+=e[j3]*e[j3]; | 
|---|
| 741 | j4=i-4; e[j4]=x[j4]-y[j4]; sum0+=e[j4]*e[j4]; | 
|---|
| 742 | j5=i-5; e[j5]=x[j5]-y[j5]; sum1+=e[j5]*e[j5]; | 
|---|
| 743 | j6=i-6; e[j6]=x[j6]-y[j6]; sum2+=e[j6]*e[j6]; | 
|---|
| 744 | j7=i-7; e[j7]=x[j7]-y[j7]; sum3+=e[j7]*e[j7]; | 
|---|
| 745 | } | 
|---|
| 746 |  | 
|---|
| 747 | /* | 
|---|
| 748 | * There may be some left to do. | 
|---|
| 749 | * This could be done as a simple for() loop, | 
|---|
| 750 | * but a switch is faster (and more interesting) | 
|---|
| 751 | */ | 
|---|
| 752 |  | 
|---|
| 753 | i=blockn; | 
|---|
| 754 | if(i<n){ | 
|---|
| 755 | /* Jump into the case at the place that will allow | 
|---|
| 756 | * us to finish off the appropriate number of items. | 
|---|
| 757 | */ | 
|---|
| 758 |  | 
|---|
| 759 | switch(n - i){ | 
|---|
| 760 | case 7 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i; | 
|---|
| 761 | case 6 : e[i]=x[i]-y[i]; sum1+=e[i]*e[i]; ++i; | 
|---|
| 762 | case 5 : e[i]=x[i]-y[i]; sum2+=e[i]*e[i]; ++i; | 
|---|
| 763 | case 4 : e[i]=x[i]-y[i]; sum3+=e[i]*e[i]; ++i; | 
|---|
| 764 | case 3 : e[i]=x[i]-y[i]; sum0+=e[i]*e[i]; ++i; | 
|---|
| 765 | case 2 : e[i]=x[i]-y[i]; sum1+=e[i]*e[i]; ++i; | 
|---|
| 766 | case 1 : e[i]=x[i]-y[i]; sum2+=e[i]*e[i]; //++i; | 
|---|
| 767 | } | 
|---|
| 768 | } | 
|---|
| 769 | } | 
|---|
| 770 | else{ /* x==0 */ | 
|---|
| 771 | for(i=blockn-1; i>0; i-=blocksize){ | 
|---|
| 772 | e[i ]=-y[i ]; sum0+=e[i ]*e[i ]; | 
|---|
| 773 | j1=i-1; e[j1]=-y[j1]; sum1+=e[j1]*e[j1]; | 
|---|
| 774 | j2=i-2; e[j2]=-y[j2]; sum2+=e[j2]*e[j2]; | 
|---|
| 775 | j3=i-3; e[j3]=-y[j3]; sum3+=e[j3]*e[j3]; | 
|---|
| 776 | j4=i-4; e[j4]=-y[j4]; sum0+=e[j4]*e[j4]; | 
|---|
| 777 | j5=i-5; e[j5]=-y[j5]; sum1+=e[j5]*e[j5]; | 
|---|
| 778 | j6=i-6; e[j6]=-y[j6]; sum2+=e[j6]*e[j6]; | 
|---|
| 779 | j7=i-7; e[j7]=-y[j7]; sum3+=e[j7]*e[j7]; | 
|---|
| 780 | } | 
|---|
| 781 |  | 
|---|
| 782 | /* | 
|---|
| 783 | * There may be some left to do. | 
|---|
| 784 | * This could be done as a simple for() loop, | 
|---|
| 785 | * but a switch is faster (and more interesting) | 
|---|
| 786 | */ | 
|---|
| 787 |  | 
|---|
| 788 | i=blockn; | 
|---|
| 789 | if(i<n){ | 
|---|
| 790 | /* Jump into the case at the place that will allow | 
|---|
| 791 | * us to finish off the appropriate number of items. | 
|---|
| 792 | */ | 
|---|
| 793 |  | 
|---|
| 794 | switch(n - i){ | 
|---|
| 795 | case 7 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i; | 
|---|
| 796 | case 6 : e[i]=-y[i]; sum1+=e[i]*e[i]; ++i; | 
|---|
| 797 | case 5 : e[i]=-y[i]; sum2+=e[i]*e[i]; ++i; | 
|---|
| 798 | case 4 : e[i]=-y[i]; sum3+=e[i]*e[i]; ++i; | 
|---|
| 799 | case 3 : e[i]=-y[i]; sum0+=e[i]*e[i]; ++i; | 
|---|
| 800 | case 2 : e[i]=-y[i]; sum1+=e[i]*e[i]; ++i; | 
|---|
| 801 | case 1 : e[i]=-y[i]; sum2+=e[i]*e[i]; //++i; | 
|---|
| 802 | } | 
|---|
| 803 | } | 
|---|
| 804 | } | 
|---|
| 805 |  | 
|---|
| 806 | return sum0+sum1+sum2+sum3; | 
|---|
| 807 | } | 
|---|
| 808 |  | 
|---|
| 809 | /* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */ | 
|---|
| 810 | #undef POTF2 | 
|---|
| 811 | #undef GESVD | 
|---|
| 812 | #undef GESDD | 
|---|
| 813 | #undef GEMM | 
|---|
| 814 | #undef LEVMAR_PSEUDOINVERSE | 
|---|
| 815 | #undef LEVMAR_LUINVERSE | 
|---|
| 816 | #undef LEVMAR_BOX_CHECK | 
|---|
| 817 | #undef LEVMAR_CHOLESKY | 
|---|
| 818 | #undef LEVMAR_COVAR | 
|---|
| 819 | #undef LEVMAR_STDDEV | 
|---|
| 820 | #undef LEVMAR_CORCOEF | 
|---|
| 821 | #undef LEVMAR_R2 | 
|---|
| 822 | #undef LEVMAR_CHKJAC | 
|---|
| 823 | #undef LEVMAR_FDIF_FORW_JAC_APPROX | 
|---|
| 824 | #undef LEVMAR_FDIF_CENT_JAC_APPROX | 
|---|
| 825 | #undef LEVMAR_TRANS_MAT_MAT_MULT | 
|---|
| 826 | #undef LEVMAR_L2NRMXMY | 
|---|