| 1 | ///////////////////////////////////////////////////////////////////////////////// | 
|---|
| 2 | // | 
|---|
| 3 | //  Levenberg - Marquardt non-linear minimization algorithm | 
|---|
| 4 | //  Copyright (C) 2004-05  Manolis Lourakis (lourakis at ics forth gr) | 
|---|
| 5 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas | 
|---|
| 6 | //  Heraklion, Crete, Greece. | 
|---|
| 7 | // | 
|---|
| 8 | //  This program is free software; you can redistribute it and/or modify | 
|---|
| 9 | //  it under the terms of the GNU General Public License as published by | 
|---|
| 10 | //  the Free Software Foundation; either version 2 of the License, or | 
|---|
| 11 | //  (at your option) any later version. | 
|---|
| 12 | // | 
|---|
| 13 | //  This program is distributed in the hope that it will be useful, | 
|---|
| 14 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
| 15 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
| 16 | //  GNU General Public License for more details. | 
|---|
| 17 | // | 
|---|
| 18 | ///////////////////////////////////////////////////////////////////////////////// | 
|---|
| 19 |  | 
|---|
| 20 | #ifndef LM_REAL // not included by lmlec.c | 
|---|
| 21 | #error This file should not be compiled directly! | 
|---|
| 22 | #endif | 
|---|
| 23 |  | 
|---|
| 24 |  | 
|---|
| 25 | /* precision-specific definitions */ | 
|---|
| 26 | #define LMLEC_DATA LM_ADD_PREFIX(lmlec_data) | 
|---|
| 27 | #define LMLEC_ELIM LM_ADD_PREFIX(lmlec_elim) | 
|---|
| 28 | #define LMLEC_FUNC LM_ADD_PREFIX(lmlec_func) | 
|---|
| 29 | #define LMLEC_JACF LM_ADD_PREFIX(lmlec_jacf) | 
|---|
| 30 | #define LEVMAR_LEC_DER LM_ADD_PREFIX(levmar_lec_der) | 
|---|
| 31 | #define LEVMAR_LEC_DIF LM_ADD_PREFIX(levmar_lec_dif) | 
|---|
| 32 | #define LEVMAR_DER LM_ADD_PREFIX(levmar_der) | 
|---|
| 33 | #define LEVMAR_DIF LM_ADD_PREFIX(levmar_dif) | 
|---|
| 34 | #define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult) | 
|---|
| 35 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar) | 
|---|
| 36 | #define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx) | 
|---|
| 37 |  | 
|---|
| 38 | #define GEQP3 LM_MK_LAPACK_NAME(geqp3) | 
|---|
| 39 | #define ORGQR LM_MK_LAPACK_NAME(orgqr) | 
|---|
| 40 | #define TRTRI LM_MK_LAPACK_NAME(trtri) | 
|---|
| 41 |  | 
|---|
| 42 | struct LMLEC_DATA{ | 
|---|
| 43 | LM_REAL *c, *Z, *p, *jac; | 
|---|
| 44 | int ncnstr; | 
|---|
| 45 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata); | 
|---|
| 46 | void (*jacf)(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata); | 
|---|
| 47 | void *adata; | 
|---|
| 48 | }; | 
|---|
| 49 |  | 
|---|
| 50 | /* prototypes for LAPACK routines */ | 
|---|
| 51 | #ifdef __cplusplus | 
|---|
| 52 | extern "C" { | 
|---|
| 53 | #endif | 
|---|
| 54 | extern int GEQP3(int *m, int *n, LM_REAL *a, int *lda, int *jpvt, | 
|---|
| 55 | LM_REAL *tau, LM_REAL *work, int *lwork, int *info); | 
|---|
| 56 |  | 
|---|
| 57 | extern int ORGQR(int *m, int *n, int *k, LM_REAL *a, int *lda, LM_REAL *tau, | 
|---|
| 58 | LM_REAL *work, int *lwork, int *info); | 
|---|
| 59 |  | 
|---|
| 60 | extern int TRTRI(char *uplo, char *diag, int *n, LM_REAL *a, int *lda, int *info); | 
|---|
| 61 | #ifdef __cplusplus | 
|---|
| 62 | } | 
|---|
| 63 | #endif | 
|---|
| 64 |  | 
|---|
| 65 | /* | 
|---|
| 66 | * This function implements an elimination strategy for linearly constrained | 
|---|
| 67 | * optimization problems. The strategy relies on QR decomposition to transform | 
|---|
| 68 | * an optimization problem constrained by Ax=b to an equivalent, unconstrained | 
|---|
| 69 | * one. Also referred to as "null space" or "reduced Hessian" method. | 
|---|
| 70 | * See pp. 430-433 (chap. 15) of "Numerical Optimization" by Nocedal-Wright | 
|---|
| 71 | * for details. | 
|---|
| 72 | * | 
|---|
| 73 | * A is mxn with m<=n and rank(A)=m | 
|---|
| 74 | * Two matrices Y and Z of dimensions nxm and nx(n-m) are computed from A^T so that | 
|---|
| 75 | * their columns are orthonormal and every x can be written as x=Y*b + Z*x_z= | 
|---|
| 76 | * c + Z*x_z, where c=Y*b is a fixed vector of dimension n and x_z is an | 
|---|
| 77 | * arbitrary vector of dimension n-m. Then, the problem of minimizing f(x) | 
|---|
| 78 | * subject to Ax=b is equivalent to minimizing f(c + Z*x_z) with no constraints. | 
|---|
| 79 | * The computed Y and Z are such that any solution of Ax=b can be written as | 
|---|
| 80 | * x=Y*x_y + Z*x_z for some x_y, x_z. Furthermore, A*Y is nonsingular, A*Z=0 | 
|---|
| 81 | * and Z spans the null space of A. | 
|---|
| 82 | * | 
|---|
| 83 | * The function accepts A, b and computes c, Y, Z. If b or c is NULL, c is not | 
|---|
| 84 | * computed. Also, Y can be NULL in which case it is not referenced. | 
|---|
| 85 | * The function returns LM_ERROR in case of error, A's computed rank if successful | 
|---|
| 86 | * | 
|---|
| 87 | */ | 
|---|
| 88 | static int LMLEC_ELIM(LM_REAL *A, LM_REAL *b, LM_REAL *c, LM_REAL *Y, LM_REAL *Z, int m, int n) | 
|---|
| 89 | { | 
|---|
| 90 | static LM_REAL eps=LM_CNST(-1.0); | 
|---|
| 91 |  | 
|---|
| 92 | LM_REAL *buf=NULL; | 
|---|
| 93 | LM_REAL *a, *tau, *work, *r, aux; | 
|---|
| 94 | register LM_REAL tmp; | 
|---|
| 95 | int a_sz, jpvt_sz, tau_sz, r_sz, Y_sz, worksz; | 
|---|
| 96 | int info, rank, *jpvt, tot_sz, mintmn, tm, tn; | 
|---|
| 97 | register int i, j, k; | 
|---|
| 98 |  | 
|---|
| 99 | if(m>n){ | 
|---|
| 100 | fprintf(stderr, RCAT("matrix of constraints cannot have more rows than columns in", LMLEC_ELIM) "()!\n"); | 
|---|
| 101 | return LM_ERROR; | 
|---|
| 102 | } | 
|---|
| 103 |  | 
|---|
| 104 | tm=n; tn=m; // transpose dimensions | 
|---|
| 105 | mintmn=m; | 
|---|
| 106 |  | 
|---|
| 107 | /* calculate required memory size */ | 
|---|
| 108 | worksz=-1; // workspace query. Optimal work size is returned in aux | 
|---|
| 109 | //ORGQR((int *)&tm, (int *)&tm, (int *)&mintmn, NULL, (int *)&tm, NULL, (LM_REAL *)&aux, &worksz, &info); | 
|---|
| 110 | GEQP3((int *)&tm, (int *)&tn, NULL, (int *)&tm, NULL, NULL, (LM_REAL *)&aux, (int *)&worksz, &info); | 
|---|
| 111 | worksz=(int)aux; | 
|---|
| 112 | a_sz=tm*tm; // tm*tn is enough for xgeqp3() | 
|---|
| 113 | jpvt_sz=tn; | 
|---|
| 114 | tau_sz=mintmn; | 
|---|
| 115 | r_sz=mintmn*mintmn; // actually smaller if a is not of full row rank | 
|---|
| 116 | Y_sz=(Y)? 0 : tm*tn; | 
|---|
| 117 |  | 
|---|
| 118 | tot_sz=(a_sz + tau_sz + r_sz + worksz + Y_sz)*sizeof(LM_REAL) + jpvt_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ | 
|---|
| 119 | buf=(LM_REAL *)malloc(tot_sz); /* allocate a "big" memory chunk at once */ | 
|---|
| 120 | if(!buf){ | 
|---|
| 121 | fprintf(stderr, RCAT("Memory allocation request failed in ", LMLEC_ELIM) "()\n"); | 
|---|
| 122 | return LM_ERROR; | 
|---|
| 123 | } | 
|---|
| 124 |  | 
|---|
| 125 | a=buf; | 
|---|
| 126 | tau=a+a_sz; | 
|---|
| 127 | r=tau+tau_sz; | 
|---|
| 128 | work=r+r_sz; | 
|---|
| 129 | if(!Y){ | 
|---|
| 130 | Y=work+worksz; | 
|---|
| 131 | jpvt=(int *)(Y+Y_sz); | 
|---|
| 132 | } | 
|---|
| 133 | else | 
|---|
| 134 | jpvt=(int *)(work+worksz); | 
|---|
| 135 |  | 
|---|
| 136 | /* copy input array so that LAPACK won't destroy it. Note that copying is | 
|---|
| 137 | * done in row-major order, which equals A^T in column-major | 
|---|
| 138 | */ | 
|---|
| 139 | for(i=0; i<tm*tn; ++i) | 
|---|
| 140 | a[i]=A[i]; | 
|---|
| 141 |  | 
|---|
| 142 | /* clear jpvt */ | 
|---|
| 143 | for(i=0; i<jpvt_sz; ++i) jpvt[i]=0; | 
|---|
| 144 |  | 
|---|
| 145 | /* rank revealing QR decomposition of A^T*/ | 
|---|
| 146 | GEQP3((int *)&tm, (int *)&tn, a, (int *)&tm, jpvt, tau, work, (int *)&worksz, &info); | 
|---|
| 147 | //dgeqpf_((int *)&tm, (int *)&tn, a, (int *)&tm, jpvt, tau, work, &info); | 
|---|
| 148 | /* error checking */ | 
|---|
| 149 | if(info!=0){ | 
|---|
| 150 | if(info<0){ | 
|---|
| 151 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQP3) " in ", LMLEC_ELIM) "()\n", -info); | 
|---|
| 152 | } | 
|---|
| 153 | else if(info>0){ | 
|---|
| 154 | fprintf(stderr, RCAT(RCAT("unknown LAPACK error (%d) for ", GEQP3) " in ", LMLEC_ELIM) "()\n", info); | 
|---|
| 155 | } | 
|---|
| 156 | free(buf); | 
|---|
| 157 | return LM_ERROR; | 
|---|
| 158 | } | 
|---|
| 159 | /* the upper triangular part of a now contains the upper triangle of the unpermuted R */ | 
|---|
| 160 |  | 
|---|
| 161 | if(eps<0.0){ | 
|---|
| 162 | LM_REAL aux; | 
|---|
| 163 |  | 
|---|
| 164 | /* compute machine epsilon. DBL_EPSILON should do also */ | 
|---|
| 165 | for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5)) | 
|---|
| 166 | ; | 
|---|
| 167 | eps*=LM_CNST(2.0); | 
|---|
| 168 | } | 
|---|
| 169 |  | 
|---|
| 170 | tmp=tm*LM_CNST(10.0)*eps*FABS(a[0]); // threshold. tm is max(tm, tn) | 
|---|
| 171 | tmp=(tmp>LM_CNST(1E-12))? tmp : LM_CNST(1E-12); // ensure that threshold is not too small | 
|---|
| 172 | /* compute A^T's numerical rank by counting the non-zeros in R's diagonal */ | 
|---|
| 173 | for(i=rank=0; i<mintmn; ++i) | 
|---|
| 174 | if(a[i*(tm+1)]>tmp || a[i*(tm+1)]<-tmp) ++rank; /* loop across R's diagonal elements */ | 
|---|
| 175 | else break; /* diagonal is arranged in absolute decreasing order */ | 
|---|
| 176 |  | 
|---|
| 177 | if(rank<tn){ | 
|---|
| 178 | fprintf(stderr, RCAT("\nConstraints matrix in ",  LMLEC_ELIM) "() is not of full row rank (i.e. %d < %d)!\n" | 
|---|
| 179 | "Make sure that you do not specify redundant or inconsistent constraints.\n\n", rank, tn); | 
|---|
| 180 | free(buf); | 
|---|
| 181 | return LM_ERROR; | 
|---|
| 182 | } | 
|---|
| 183 |  | 
|---|
| 184 | /* compute the permuted inverse transpose of R */ | 
|---|
| 185 | /* first, copy R from the upper triangular part of a to the lower part of r (thus transposing it). R is rank x rank */ | 
|---|
| 186 | for(j=0; j<rank; ++j){ | 
|---|
| 187 | for(i=0; i<=j; ++i) | 
|---|
| 188 | r[j+i*rank]=a[i+j*tm]; | 
|---|
| 189 | for(i=j+1; i<rank; ++i) | 
|---|
| 190 | r[j+i*rank]=0.0; // upper part is zero | 
|---|
| 191 | } | 
|---|
| 192 | /* r now contains R^T */ | 
|---|
| 193 |  | 
|---|
| 194 | /* compute the inverse */ | 
|---|
| 195 | TRTRI("L", "N", (int *)&rank, r, (int *)&rank, &info); | 
|---|
| 196 | /* error checking */ | 
|---|
| 197 | if(info!=0){ | 
|---|
| 198 | if(info<0){ | 
|---|
| 199 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRI) " in ", LMLEC_ELIM) "()\n", -info); | 
|---|
| 200 | } | 
|---|
| 201 | else if(info>0){ | 
|---|
| 202 | fprintf(stderr, RCAT(RCAT("A(%d, %d) is exactly zero for ", TRTRI) " (singular matrix) in ", LMLEC_ELIM) "()\n", info, info); | 
|---|
| 203 | } | 
|---|
| 204 | free(buf); | 
|---|
| 205 | return LM_ERROR; | 
|---|
| 206 | } | 
|---|
| 207 |  | 
|---|
| 208 | /* finally, permute R^-T using Y as intermediate storage */ | 
|---|
| 209 | for(j=0; j<rank; ++j) | 
|---|
| 210 | for(i=0, k=jpvt[j]-1; i<rank; ++i) | 
|---|
| 211 | Y[i+k*rank]=r[i+j*rank]; | 
|---|
| 212 |  | 
|---|
| 213 | for(i=0; i<rank*rank; ++i) // copy back to r | 
|---|
| 214 | r[i]=Y[i]; | 
|---|
| 215 |  | 
|---|
| 216 | /* resize a to be tm x tm, filling with zeroes */ | 
|---|
| 217 | for(i=tm*tn; i<tm*tm; ++i) | 
|---|
| 218 | a[i]=0.0; | 
|---|
| 219 |  | 
|---|
| 220 | /* compute Q in a as the product of elementary reflectors. Q is tm x tm */ | 
|---|
| 221 | ORGQR((int *)&tm, (int *)&tm, (int *)&mintmn, a, (int *)&tm, tau, work, &worksz, &info); | 
|---|
| 222 | /* error checking */ | 
|---|
| 223 | if(info!=0){ | 
|---|
| 224 | if(info<0){ | 
|---|
| 225 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", ORGQR) " in ", LMLEC_ELIM) "()\n", -info); | 
|---|
| 226 | } | 
|---|
| 227 | else if(info>0){ | 
|---|
| 228 | fprintf(stderr, RCAT(RCAT("unknown LAPACK error (%d) for ", ORGQR) " in ", LMLEC_ELIM) "()\n", info); | 
|---|
| 229 | } | 
|---|
| 230 | free(buf); | 
|---|
| 231 | return LM_ERROR; | 
|---|
| 232 | } | 
|---|
| 233 |  | 
|---|
| 234 | /* compute Y=Q_1*R^-T*P^T. Y is tm x rank */ | 
|---|
| 235 | for(i=0; i<tm; ++i) | 
|---|
| 236 | for(j=0; j<rank; ++j){ | 
|---|
| 237 | for(k=0, tmp=0.0; k<rank; ++k) | 
|---|
| 238 | tmp+=a[i+k*tm]*r[k+j*rank]; | 
|---|
| 239 | Y[i*rank+j]=tmp; | 
|---|
| 240 | } | 
|---|
| 241 |  | 
|---|
| 242 | if(b && c){ | 
|---|
| 243 | /* compute c=Y*b */ | 
|---|
| 244 | for(i=0; i<tm; ++i){ | 
|---|
| 245 | for(j=0, tmp=0.0; j<rank; ++j) | 
|---|
| 246 | tmp+=Y[i*rank+j]*b[j]; | 
|---|
| 247 |  | 
|---|
| 248 | c[i]=tmp; | 
|---|
| 249 | } | 
|---|
| 250 | } | 
|---|
| 251 |  | 
|---|
| 252 | /* copy Q_2 into Z. Z is tm x (tm-rank) */ | 
|---|
| 253 | for(j=0; j<tm-rank; ++j) | 
|---|
| 254 | for(i=0, k=j+rank; i<tm; ++i) | 
|---|
| 255 | Z[i*(tm-rank)+j]=a[i+k*tm]; | 
|---|
| 256 |  | 
|---|
| 257 | free(buf); | 
|---|
| 258 |  | 
|---|
| 259 | return rank; | 
|---|
| 260 | } | 
|---|
| 261 |  | 
|---|
| 262 | /* constrained measurements: given pp, compute the measurements at c + Z*pp */ | 
|---|
| 263 | static void LMLEC_FUNC(LM_REAL *pp, LM_REAL *hx, int mm, int n, void *adata) | 
|---|
| 264 | { | 
|---|
| 265 | struct LMLEC_DATA *data=(struct LMLEC_DATA *)adata; | 
|---|
| 266 | int m; | 
|---|
| 267 | register int i, j; | 
|---|
| 268 | register LM_REAL sum; | 
|---|
| 269 | LM_REAL *c, *Z, *p, *Zimm; | 
|---|
| 270 |  | 
|---|
| 271 | m=mm+data->ncnstr; | 
|---|
| 272 | c=data->c; | 
|---|
| 273 | Z=data->Z; | 
|---|
| 274 | p=data->p; | 
|---|
| 275 | /* p=c + Z*pp */ | 
|---|
| 276 | for(i=0; i<m; ++i){ | 
|---|
| 277 | Zimm=Z+i*mm; | 
|---|
| 278 | for(j=0, sum=c[i]; j<mm; ++j) | 
|---|
| 279 | sum+=Zimm[j]*pp[j]; // sum+=Z[i*mm+j]*pp[j]; | 
|---|
| 280 | p[i]=sum; | 
|---|
| 281 | } | 
|---|
| 282 |  | 
|---|
| 283 | (*(data->func))(p, hx, m, n, data->adata); | 
|---|
| 284 | } | 
|---|
| 285 |  | 
|---|
| 286 | /* constrained Jacobian: given pp, compute the Jacobian at c + Z*pp | 
|---|
| 287 | * Using the chain rule, the Jacobian with respect to pp equals the | 
|---|
| 288 | * product of the Jacobian with respect to p (at c + Z*pp) times Z | 
|---|
| 289 | */ | 
|---|
| 290 | static void LMLEC_JACF(LM_REAL *pp, LM_REAL *jacjac, int mm, int n, void *adata) | 
|---|
| 291 | { | 
|---|
| 292 | struct LMLEC_DATA *data=(struct LMLEC_DATA *)adata; | 
|---|
| 293 | int m; | 
|---|
| 294 | register int i, j, l; | 
|---|
| 295 | register LM_REAL sum, *aux1, *aux2; | 
|---|
| 296 | LM_REAL *c, *Z, *p, *jac; | 
|---|
| 297 |  | 
|---|
| 298 | m=mm+data->ncnstr; | 
|---|
| 299 | c=data->c; | 
|---|
| 300 | Z=data->Z; | 
|---|
| 301 | p=data->p; | 
|---|
| 302 | jac=data->jac; | 
|---|
| 303 | /* p=c + Z*pp */ | 
|---|
| 304 | for(i=0; i<m; ++i){ | 
|---|
| 305 | aux1=Z+i*mm; | 
|---|
| 306 | for(j=0, sum=c[i]; j<mm; ++j) | 
|---|
| 307 | sum+=aux1[j]*pp[j]; // sum+=Z[i*mm+j]*pp[j]; | 
|---|
| 308 | p[i]=sum; | 
|---|
| 309 | } | 
|---|
| 310 |  | 
|---|
| 311 | (*(data->jacf))(p, jac, m, n, data->adata); | 
|---|
| 312 |  | 
|---|
| 313 | /* compute jac*Z in jacjac */ | 
|---|
| 314 | if(n*m<=__BLOCKSZ__SQ){ // this is a small problem | 
|---|
| 315 | /* This is the straightforward way to compute jac*Z. However, due to | 
|---|
| 316 | * its noncontinuous memory access pattern, it incures many cache misses when | 
|---|
| 317 | * applied to large minimization problems (i.e. problems involving a large | 
|---|
| 318 | * number of free variables and measurements), in which jac is too large to | 
|---|
| 319 | * fit in the L1 cache. For such problems, a cache-efficient blocking scheme | 
|---|
| 320 | * is preferable. On the other hand, the straightforward algorithm is faster | 
|---|
| 321 | * on small problems since in this case it avoids the overheads of blocking. | 
|---|
| 322 | */ | 
|---|
| 323 |  | 
|---|
| 324 | for(i=0; i<n; ++i){ | 
|---|
| 325 | aux1=jac+i*m; | 
|---|
| 326 | aux2=jacjac+i*mm; | 
|---|
| 327 | for(j=0; j<mm; ++j){ | 
|---|
| 328 | for(l=0, sum=0.0; l<m; ++l) | 
|---|
| 329 | sum+=aux1[l]*Z[l*mm+j]; // sum+=jac[i*m+l]*Z[l*mm+j]; | 
|---|
| 330 |  | 
|---|
| 331 | aux2[j]=sum; // jacjac[i*mm+j]=sum; | 
|---|
| 332 | } | 
|---|
| 333 | } | 
|---|
| 334 | } | 
|---|
| 335 | else{ // this is a large problem | 
|---|
| 336 | /* Cache efficient computation of jac*Z based on blocking | 
|---|
| 337 | */ | 
|---|
| 338 | #define __MIN__(x, y) (((x)<=(y))? (x) : (y)) | 
|---|
| 339 | register int jj, ll; | 
|---|
| 340 |  | 
|---|
| 341 | for(jj=0; jj<mm; jj+=__BLOCKSZ__){ | 
|---|
| 342 | for(i=0; i<n; ++i){ | 
|---|
| 343 | aux1=jacjac+i*mm; | 
|---|
| 344 | for(j=jj; j<__MIN__(jj+__BLOCKSZ__, mm); ++j) | 
|---|
| 345 | aux1[j]=0.0; //jacjac[i*mm+j]=0.0; | 
|---|
| 346 | } | 
|---|
| 347 |  | 
|---|
| 348 | for(ll=0; ll<m; ll+=__BLOCKSZ__){ | 
|---|
| 349 | for(i=0; i<n; ++i){ | 
|---|
| 350 | aux1=jacjac+i*mm; aux2=jac+i*m; | 
|---|
| 351 | for(j=jj; j<__MIN__(jj+__BLOCKSZ__, mm); ++j){ | 
|---|
| 352 | sum=0.0; | 
|---|
| 353 | for(l=ll; l<__MIN__(ll+__BLOCKSZ__, m); ++l) | 
|---|
| 354 | sum+=aux2[l]*Z[l*mm+j]; //jac[i*m+l]*Z[l*mm+j]; | 
|---|
| 355 | aux1[j]+=sum; //jacjac[i*mm+j]+=sum; | 
|---|
| 356 | } | 
|---|
| 357 | } | 
|---|
| 358 | } | 
|---|
| 359 | } | 
|---|
| 360 | } | 
|---|
| 361 | } | 
|---|
| 362 | #undef __MIN__ | 
|---|
| 363 |  | 
|---|
| 364 |  | 
|---|
| 365 | /* | 
|---|
| 366 | * This function is similar to LEVMAR_DER except that the minimization | 
|---|
| 367 | * is performed subject to the linear constraints A p=b, A is kxm, b kx1 | 
|---|
| 368 | * | 
|---|
| 369 | * This function requires an analytic Jacobian. In case the latter is unavailable, | 
|---|
| 370 | * use LEVMAR_LEC_DIF() bellow | 
|---|
| 371 | * | 
|---|
| 372 | */ | 
|---|
| 373 | int LEVMAR_LEC_DER( | 
|---|
| 374 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */ | 
|---|
| 375 | void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the Jacobian \part x / \part p */ | 
|---|
| 376 | LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */ | 
|---|
| 377 | LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */ | 
|---|
| 378 | int m,              /* I: parameter vector dimension (i.e. #unknowns) */ | 
|---|
| 379 | int n,              /* I: measurement vector dimension */ | 
|---|
| 380 | LM_REAL *A,         /* I: constraints matrix, kxm */ | 
|---|
| 381 | LM_REAL *b,         /* I: right hand constraints vector, kx1 */ | 
|---|
| 382 | int k,              /* I: number of constraints (i.e. A's #rows) */ | 
|---|
| 383 | int itmax,          /* I: maximum number of iterations */ | 
|---|
| 384 | LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu, | 
|---|
| 385 | * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used | 
|---|
| 386 | */ | 
|---|
| 387 | LM_REAL info[LM_INFO_SZ], | 
|---|
| 388 | /* O: information regarding the minimization. Set to NULL if don't care | 
|---|
| 389 | * info[0]= ||e||_2 at initial p. | 
|---|
| 390 | * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. | 
|---|
| 391 | * info[5]= # iterations, | 
|---|
| 392 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e | 
|---|
| 393 | *                                 2 - stopped by small Dp | 
|---|
| 394 | *                                 3 - stopped by itmax | 
|---|
| 395 | *                                 4 - singular matrix. Restart from current p with increased mu | 
|---|
| 396 | *                                 5 - no further error reduction is possible. Restart with increased mu | 
|---|
| 397 | *                                 6 - stopped by small ||e||_2 | 
|---|
| 398 | *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error | 
|---|
| 399 | * info[7]= # function evaluations | 
|---|
| 400 | * info[8]= # Jacobian evaluations | 
|---|
| 401 | * info[9]= # linear systems solved, i.e. # attempts for reducing error | 
|---|
| 402 | */ | 
|---|
| 403 | LM_REAL *work,     /* working memory at least LM_LEC_DER_WORKSZ() reals large, allocated if NULL */ | 
|---|
| 404 | LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ | 
|---|
| 405 | void *adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf. | 
|---|
| 406 | * Set to NULL if not needed | 
|---|
| 407 | */ | 
|---|
| 408 | { | 
|---|
| 409 | struct LMLEC_DATA data; | 
|---|
| 410 | LM_REAL *ptr, *Z, *pp, *p0, *Zimm; /* Z is mxmm */ | 
|---|
| 411 | int mm, ret; | 
|---|
| 412 | register int i, j; | 
|---|
| 413 | register LM_REAL tmp; | 
|---|
| 414 | LM_REAL locinfo[LM_INFO_SZ]; | 
|---|
| 415 |  | 
|---|
| 416 | if(!jacf){ | 
|---|
| 417 | fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_LEC_DER) | 
|---|
| 418 | RCAT("().\nIf no such function is available, use ", LEVMAR_LEC_DIF) RCAT("() rather than ", LEVMAR_LEC_DER) "()\n"); | 
|---|
| 419 | return LM_ERROR; | 
|---|
| 420 | } | 
|---|
| 421 |  | 
|---|
| 422 | mm=m-k; | 
|---|
| 423 |  | 
|---|
| 424 | if(n<mm){ | 
|---|
| 425 | fprintf(stderr, LCAT(LEVMAR_LEC_DER, "(): cannot solve a problem with fewer measurements + equality constraints [%d + %d] than unknowns [%d]\n"), n, k, m); | 
|---|
| 426 | return LM_ERROR; | 
|---|
| 427 | } | 
|---|
| 428 |  | 
|---|
| 429 | ptr=(LM_REAL *)malloc((2*m + m*mm + n*m + mm)*sizeof(LM_REAL)); | 
|---|
| 430 | if(!ptr){ | 
|---|
| 431 | fprintf(stderr, LCAT(LEVMAR_LEC_DER, "(): memory allocation request failed\n")); | 
|---|
| 432 | return LM_ERROR; | 
|---|
| 433 | } | 
|---|
| 434 | data.p=p; | 
|---|
| 435 | p0=ptr; | 
|---|
| 436 | data.c=p0+m; | 
|---|
| 437 | data.Z=Z=data.c+m; | 
|---|
| 438 | data.jac=data.Z+m*mm; | 
|---|
| 439 | pp=data.jac+n*m; | 
|---|
| 440 | data.ncnstr=k; | 
|---|
| 441 | data.func=func; | 
|---|
| 442 | data.jacf=jacf; | 
|---|
| 443 | data.adata=adata; | 
|---|
| 444 |  | 
|---|
| 445 | ret=LMLEC_ELIM(A, b, data.c, NULL, Z, k, m); // compute c, Z | 
|---|
| 446 | if(ret==LM_ERROR){ | 
|---|
| 447 | free(ptr); | 
|---|
| 448 | return LM_ERROR; | 
|---|
| 449 | } | 
|---|
| 450 |  | 
|---|
| 451 | /* compute pp s.t. p = c + Z*pp or (Z^T Z)*pp=Z^T*(p-c) | 
|---|
| 452 | * Due to orthogonality, Z^T Z = I and the last equation | 
|---|
| 453 | * becomes pp=Z^T*(p-c). Also, save the starting p in p0 | 
|---|
| 454 | */ | 
|---|
| 455 | for(i=0; i<m; ++i){ | 
|---|
| 456 | p0[i]=p[i]; | 
|---|
| 457 | p[i]-=data.c[i]; | 
|---|
| 458 | } | 
|---|
| 459 |  | 
|---|
| 460 | /* Z^T*(p-c) */ | 
|---|
| 461 | for(i=0; i<mm; ++i){ | 
|---|
| 462 | for(j=0, tmp=0.0; j<m; ++j) | 
|---|
| 463 | tmp+=Z[j*mm+i]*p[j]; | 
|---|
| 464 | pp[i]=tmp; | 
|---|
| 465 | } | 
|---|
| 466 |  | 
|---|
| 467 | /* compute the p corresponding to pp (i.e. c + Z*pp) and compare with p0 */ | 
|---|
| 468 | for(i=0; i<m; ++i){ | 
|---|
| 469 | Zimm=Z+i*mm; | 
|---|
| 470 | for(j=0, tmp=data.c[i]; j<mm; ++j) | 
|---|
| 471 | tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j]; | 
|---|
| 472 | if(FABS(tmp-p0[i])>LM_CNST(1E-03)) | 
|---|
| 473 | fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_LEC_DER) "()! [%.10g reset to %.10g]\n", | 
|---|
| 474 | i, p0[i], tmp); | 
|---|
| 475 | } | 
|---|
| 476 |  | 
|---|
| 477 | if(!info) info=locinfo; /* make sure that LEVMAR_DER() is called with non-null info */ | 
|---|
| 478 | /* note that covariance computation is not requested from LEVMAR_DER() */ | 
|---|
| 479 | ret=LEVMAR_DER(LMLEC_FUNC, LMLEC_JACF, pp, x, mm, n, itmax, opts, info, work, NULL, (void *)&data); | 
|---|
| 480 |  | 
|---|
| 481 | /* p=c + Z*pp */ | 
|---|
| 482 | for(i=0; i<m; ++i){ | 
|---|
| 483 | Zimm=Z+i*mm; | 
|---|
| 484 | for(j=0, tmp=data.c[i]; j<mm; ++j) | 
|---|
| 485 | tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j]; | 
|---|
| 486 | p[i]=tmp; | 
|---|
| 487 | } | 
|---|
| 488 |  | 
|---|
| 489 | /* compute the covariance from the Jacobian in data.jac */ | 
|---|
| 490 | if(covar){ | 
|---|
| 491 | LEVMAR_TRANS_MAT_MAT_MULT(data.jac, covar, n, m); /* covar = J^T J */ | 
|---|
| 492 | LEVMAR_COVAR(covar, covar, info[1], m, n); | 
|---|
| 493 | } | 
|---|
| 494 |  | 
|---|
| 495 | free(ptr); | 
|---|
| 496 |  | 
|---|
| 497 | return ret; | 
|---|
| 498 | } | 
|---|
| 499 |  | 
|---|
| 500 | /* Similar to the LEVMAR_LEC_DER() function above, except that the Jacobian is approximated | 
|---|
| 501 | * with the aid of finite differences (forward or central, see the comment for the opts argument) | 
|---|
| 502 | */ | 
|---|
| 503 | int LEVMAR_LEC_DIF( | 
|---|
| 504 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */ | 
|---|
| 505 | LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */ | 
|---|
| 506 | LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */ | 
|---|
| 507 | int m,              /* I: parameter vector dimension (i.e. #unknowns) */ | 
|---|
| 508 | int n,              /* I: measurement vector dimension */ | 
|---|
| 509 | LM_REAL *A,         /* I: constraints matrix, kxm */ | 
|---|
| 510 | LM_REAL *b,         /* I: right hand constraints vector, kx1 */ | 
|---|
| 511 | int k,              /* I: number of constraints (i.e. A's #rows) */ | 
|---|
| 512 | int itmax,          /* I: maximum number of iterations */ | 
|---|
| 513 | LM_REAL opts[5],    /* I: opts[0-3] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the | 
|---|
| 514 | * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and | 
|---|
| 515 | * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used. | 
|---|
| 516 | * If \delta<0, the Jacobian is approximated with central differences which are more accurate | 
|---|
| 517 | * (but slower!) compared to the forward differences employed by default. | 
|---|
| 518 | */ | 
|---|
| 519 | LM_REAL info[LM_INFO_SZ], | 
|---|
| 520 | /* O: information regarding the minimization. Set to NULL if don't care | 
|---|
| 521 | * info[0]= ||e||_2 at initial p. | 
|---|
| 522 | * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. | 
|---|
| 523 | * info[5]= # iterations, | 
|---|
| 524 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e | 
|---|
| 525 | *                                 2 - stopped by small Dp | 
|---|
| 526 | *                                 3 - stopped by itmax | 
|---|
| 527 | *                                 4 - singular matrix. Restart from current p with increased mu | 
|---|
| 528 | *                                 5 - no further error reduction is possible. Restart with increased mu | 
|---|
| 529 | *                                 6 - stopped by small ||e||_2 | 
|---|
| 530 | *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error | 
|---|
| 531 | * info[7]= # function evaluations | 
|---|
| 532 | * info[8]= # Jacobian evaluations | 
|---|
| 533 | * info[9]= # linear systems solved, i.e. # attempts for reducing error | 
|---|
| 534 | */ | 
|---|
| 535 | LM_REAL *work,     /* working memory at least LM_LEC_DIF_WORKSZ() reals large, allocated if NULL */ | 
|---|
| 536 | LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ | 
|---|
| 537 | void *adata)       /* pointer to possibly additional data, passed uninterpreted to func. | 
|---|
| 538 | * Set to NULL if not needed | 
|---|
| 539 | */ | 
|---|
| 540 | { | 
|---|
| 541 | struct LMLEC_DATA data; | 
|---|
| 542 | LM_REAL *ptr, *Z, *pp, *p0, *Zimm; /* Z is mxmm */ | 
|---|
| 543 | int mm, ret; | 
|---|
| 544 | register int i, j; | 
|---|
| 545 | register LM_REAL tmp; | 
|---|
| 546 | LM_REAL locinfo[LM_INFO_SZ]; | 
|---|
| 547 |  | 
|---|
| 548 | mm=m-k; | 
|---|
| 549 |  | 
|---|
| 550 | if(n<mm){ | 
|---|
| 551 | fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): cannot solve a problem with fewer measurements + equality constraints [%d + %d] than unknowns [%d]\n"), n, k, m); | 
|---|
| 552 | return LM_ERROR; | 
|---|
| 553 | } | 
|---|
| 554 |  | 
|---|
| 555 | ptr=(LM_REAL *)malloc((2*m + m*mm + mm)*sizeof(LM_REAL)); | 
|---|
| 556 | if(!ptr){ | 
|---|
| 557 | fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): memory allocation request failed\n")); | 
|---|
| 558 | return LM_ERROR; | 
|---|
| 559 | } | 
|---|
| 560 | data.p=p; | 
|---|
| 561 | p0=ptr; | 
|---|
| 562 | data.c=p0+m; | 
|---|
| 563 | data.Z=Z=data.c+m; | 
|---|
| 564 | data.jac=NULL; | 
|---|
| 565 | pp=data.Z+m*mm; | 
|---|
| 566 | data.ncnstr=k; | 
|---|
| 567 | data.func=func; | 
|---|
| 568 | data.jacf=NULL; | 
|---|
| 569 | data.adata=adata; | 
|---|
| 570 |  | 
|---|
| 571 | ret=LMLEC_ELIM(A, b, data.c, NULL, Z, k, m); // compute c, Z | 
|---|
| 572 | if(ret==LM_ERROR){ | 
|---|
| 573 | free(ptr); | 
|---|
| 574 | return LM_ERROR; | 
|---|
| 575 | } | 
|---|
| 576 |  | 
|---|
| 577 | /* compute pp s.t. p = c + Z*pp or (Z^T Z)*pp=Z^T*(p-c) | 
|---|
| 578 | * Due to orthogonality, Z^T Z = I and the last equation | 
|---|
| 579 | * becomes pp=Z^T*(p-c). Also, save the starting p in p0 | 
|---|
| 580 | */ | 
|---|
| 581 | for(i=0; i<m; ++i){ | 
|---|
| 582 | p0[i]=p[i]; | 
|---|
| 583 | p[i]-=data.c[i]; | 
|---|
| 584 | } | 
|---|
| 585 |  | 
|---|
| 586 | /* Z^T*(p-c) */ | 
|---|
| 587 | for(i=0; i<mm; ++i){ | 
|---|
| 588 | for(j=0, tmp=0.0; j<m; ++j) | 
|---|
| 589 | tmp+=Z[j*mm+i]*p[j]; | 
|---|
| 590 | pp[i]=tmp; | 
|---|
| 591 | } | 
|---|
| 592 |  | 
|---|
| 593 | /* compute the p corresponding to pp (i.e. c + Z*pp) and compare with p0 */ | 
|---|
| 594 | for(i=0; i<m; ++i){ | 
|---|
| 595 | Zimm=Z+i*mm; | 
|---|
| 596 | for(j=0, tmp=data.c[i]; j<mm; ++j) | 
|---|
| 597 | tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j]; | 
|---|
| 598 | if(FABS(tmp-p0[i])>LM_CNST(1E-03)) | 
|---|
| 599 | fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_LEC_DIF) "()! [%.10g reset to %.10g]\n", | 
|---|
| 600 | i, p0[i], tmp); | 
|---|
| 601 | } | 
|---|
| 602 |  | 
|---|
| 603 | if(!info) info=locinfo; /* make sure that LEVMAR_DIF() is called with non-null info */ | 
|---|
| 604 | /* note that covariance computation is not requested from LEVMAR_DIF() */ | 
|---|
| 605 | ret=LEVMAR_DIF(LMLEC_FUNC, pp, x, mm, n, itmax, opts, info, work, NULL, (void *)&data); | 
|---|
| 606 |  | 
|---|
| 607 | /* p=c + Z*pp */ | 
|---|
| 608 | for(i=0; i<m; ++i){ | 
|---|
| 609 | Zimm=Z+i*mm; | 
|---|
| 610 | for(j=0, tmp=data.c[i]; j<mm; ++j) | 
|---|
| 611 | tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j]; | 
|---|
| 612 | p[i]=tmp; | 
|---|
| 613 | } | 
|---|
| 614 |  | 
|---|
| 615 | /* compute the Jacobian with finite differences and use it to estimate the covariance */ | 
|---|
| 616 | if(covar){ | 
|---|
| 617 | LM_REAL *hx, *wrk, *jac; | 
|---|
| 618 |  | 
|---|
| 619 | hx=(LM_REAL *)malloc((2*n+n*m)*sizeof(LM_REAL)); | 
|---|
| 620 | if(!hx){ | 
|---|
| 621 | fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): memory allocation request failed\n")); | 
|---|
| 622 | free(ptr); | 
|---|
| 623 | return LM_ERROR; | 
|---|
| 624 | } | 
|---|
| 625 |  | 
|---|
| 626 | wrk=hx+n; | 
|---|
| 627 | jac=wrk+n; | 
|---|
| 628 |  | 
|---|
| 629 | (*func)(p, hx, m, n, adata); /* evaluate function at p */ | 
|---|
| 630 | LEVMAR_FDIF_FORW_JAC_APPROX(func, p, hx, wrk, (LM_REAL)LM_DIFF_DELTA, jac, m, n, adata); /* compute the Jacobian at p */ | 
|---|
| 631 | LEVMAR_TRANS_MAT_MAT_MULT(jac, covar, n, m); /* covar = J^T J */ | 
|---|
| 632 | LEVMAR_COVAR(covar, covar, info[1], m, n); | 
|---|
| 633 | free(hx); | 
|---|
| 634 | } | 
|---|
| 635 |  | 
|---|
| 636 | free(ptr); | 
|---|
| 637 |  | 
|---|
| 638 | return ret; | 
|---|
| 639 | } | 
|---|
| 640 |  | 
|---|
| 641 | /* undefine all. THIS MUST REMAIN AT THE END OF THE FILE */ | 
|---|
| 642 | #undef LMLEC_DATA | 
|---|
| 643 | #undef LMLEC_ELIM | 
|---|
| 644 | #undef LMLEC_FUNC | 
|---|
| 645 | #undef LMLEC_JACF | 
|---|
| 646 | #undef LEVMAR_FDIF_FORW_JAC_APPROX | 
|---|
| 647 | #undef LEVMAR_COVAR | 
|---|
| 648 | #undef LEVMAR_TRANS_MAT_MAT_MULT | 
|---|
| 649 | #undef LEVMAR_LEC_DER | 
|---|
| 650 | #undef LEVMAR_LEC_DIF | 
|---|
| 651 | #undef LEVMAR_DER | 
|---|
| 652 | #undef LEVMAR_DIF | 
|---|
| 653 |  | 
|---|
| 654 | #undef GEQP3 | 
|---|
| 655 | #undef ORGQR | 
|---|
| 656 | #undef TRTRI | 
|---|