| [5443b1] | 1 | ///////////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 2 | // | 
|---|
|  | 3 | //  Levenberg - Marquardt non-linear minimization algorithm | 
|---|
|  | 4 | //  Copyright (C) 2004-05  Manolis Lourakis (lourakis at ics forth gr) | 
|---|
|  | 5 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas | 
|---|
|  | 6 | //  Heraklion, Crete, Greece. | 
|---|
|  | 7 | // | 
|---|
|  | 8 | //  This program is free software; you can redistribute it and/or modify | 
|---|
|  | 9 | //  it under the terms of the GNU General Public License as published by | 
|---|
|  | 10 | //  the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 11 | //  (at your option) any later version. | 
|---|
|  | 12 | // | 
|---|
|  | 13 | //  This program is distributed in the hope that it will be useful, | 
|---|
|  | 14 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 15 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 16 | //  GNU General Public License for more details. | 
|---|
|  | 17 | // | 
|---|
|  | 18 | ///////////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 19 |  | 
|---|
|  | 20 | #ifndef LM_REAL // not included by lmlec.c | 
|---|
|  | 21 | #error This file should not be compiled directly! | 
|---|
|  | 22 | #endif | 
|---|
|  | 23 |  | 
|---|
|  | 24 |  | 
|---|
|  | 25 | /* precision-specific definitions */ | 
|---|
|  | 26 | #define LMLEC_DATA LM_ADD_PREFIX(lmlec_data) | 
|---|
|  | 27 | #define LMLEC_ELIM LM_ADD_PREFIX(lmlec_elim) | 
|---|
|  | 28 | #define LMLEC_FUNC LM_ADD_PREFIX(lmlec_func) | 
|---|
|  | 29 | #define LMLEC_JACF LM_ADD_PREFIX(lmlec_jacf) | 
|---|
|  | 30 | #define LEVMAR_LEC_DER LM_ADD_PREFIX(levmar_lec_der) | 
|---|
|  | 31 | #define LEVMAR_LEC_DIF LM_ADD_PREFIX(levmar_lec_dif) | 
|---|
|  | 32 | #define LEVMAR_DER LM_ADD_PREFIX(levmar_der) | 
|---|
|  | 33 | #define LEVMAR_DIF LM_ADD_PREFIX(levmar_dif) | 
|---|
|  | 34 | #define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult) | 
|---|
|  | 35 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar) | 
|---|
|  | 36 | #define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx) | 
|---|
|  | 37 |  | 
|---|
|  | 38 | #define GEQP3 LM_MK_LAPACK_NAME(geqp3) | 
|---|
|  | 39 | #define ORGQR LM_MK_LAPACK_NAME(orgqr) | 
|---|
|  | 40 | #define TRTRI LM_MK_LAPACK_NAME(trtri) | 
|---|
|  | 41 |  | 
|---|
|  | 42 | struct LMLEC_DATA{ | 
|---|
|  | 43 | LM_REAL *c, *Z, *p, *jac; | 
|---|
|  | 44 | int ncnstr; | 
|---|
|  | 45 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata); | 
|---|
|  | 46 | void (*jacf)(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata); | 
|---|
|  | 47 | void *adata; | 
|---|
|  | 48 | }; | 
|---|
|  | 49 |  | 
|---|
|  | 50 | /* prototypes for LAPACK routines */ | 
|---|
|  | 51 | #ifdef __cplusplus | 
|---|
|  | 52 | extern "C" { | 
|---|
|  | 53 | #endif | 
|---|
|  | 54 | extern int GEQP3(int *m, int *n, LM_REAL *a, int *lda, int *jpvt, | 
|---|
|  | 55 | LM_REAL *tau, LM_REAL *work, int *lwork, int *info); | 
|---|
|  | 56 |  | 
|---|
|  | 57 | extern int ORGQR(int *m, int *n, int *k, LM_REAL *a, int *lda, LM_REAL *tau, | 
|---|
|  | 58 | LM_REAL *work, int *lwork, int *info); | 
|---|
|  | 59 |  | 
|---|
|  | 60 | extern int TRTRI(char *uplo, char *diag, int *n, LM_REAL *a, int *lda, int *info); | 
|---|
|  | 61 | #ifdef __cplusplus | 
|---|
|  | 62 | } | 
|---|
|  | 63 | #endif | 
|---|
|  | 64 |  | 
|---|
|  | 65 | /* | 
|---|
|  | 66 | * This function implements an elimination strategy for linearly constrained | 
|---|
|  | 67 | * optimization problems. The strategy relies on QR decomposition to transform | 
|---|
|  | 68 | * an optimization problem constrained by Ax=b to an equivalent, unconstrained | 
|---|
|  | 69 | * one. Also referred to as "null space" or "reduced Hessian" method. | 
|---|
|  | 70 | * See pp. 430-433 (chap. 15) of "Numerical Optimization" by Nocedal-Wright | 
|---|
|  | 71 | * for details. | 
|---|
|  | 72 | * | 
|---|
|  | 73 | * A is mxn with m<=n and rank(A)=m | 
|---|
|  | 74 | * Two matrices Y and Z of dimensions nxm and nx(n-m) are computed from A^T so that | 
|---|
|  | 75 | * their columns are orthonormal and every x can be written as x=Y*b + Z*x_z= | 
|---|
|  | 76 | * c + Z*x_z, where c=Y*b is a fixed vector of dimension n and x_z is an | 
|---|
|  | 77 | * arbitrary vector of dimension n-m. Then, the problem of minimizing f(x) | 
|---|
|  | 78 | * subject to Ax=b is equivalent to minimizing f(c + Z*x_z) with no constraints. | 
|---|
|  | 79 | * The computed Y and Z are such that any solution of Ax=b can be written as | 
|---|
|  | 80 | * x=Y*x_y + Z*x_z for some x_y, x_z. Furthermore, A*Y is nonsingular, A*Z=0 | 
|---|
|  | 81 | * and Z spans the null space of A. | 
|---|
|  | 82 | * | 
|---|
|  | 83 | * The function accepts A, b and computes c, Y, Z. If b or c is NULL, c is not | 
|---|
|  | 84 | * computed. Also, Y can be NULL in which case it is not referenced. | 
|---|
|  | 85 | * The function returns LM_ERROR in case of error, A's computed rank if successful | 
|---|
|  | 86 | * | 
|---|
|  | 87 | */ | 
|---|
|  | 88 | static int LMLEC_ELIM(LM_REAL *A, LM_REAL *b, LM_REAL *c, LM_REAL *Y, LM_REAL *Z, int m, int n) | 
|---|
|  | 89 | { | 
|---|
|  | 90 | static LM_REAL eps=LM_CNST(-1.0); | 
|---|
|  | 91 |  | 
|---|
|  | 92 | LM_REAL *buf=NULL; | 
|---|
|  | 93 | LM_REAL *a, *tau, *work, *r, aux; | 
|---|
|  | 94 | register LM_REAL tmp; | 
|---|
|  | 95 | int a_sz, jpvt_sz, tau_sz, r_sz, Y_sz, worksz; | 
|---|
|  | 96 | int info, rank, *jpvt, tot_sz, mintmn, tm, tn; | 
|---|
|  | 97 | register int i, j, k; | 
|---|
|  | 98 |  | 
|---|
|  | 99 | if(m>n){ | 
|---|
|  | 100 | fprintf(stderr, RCAT("matrix of constraints cannot have more rows than columns in", LMLEC_ELIM) "()!\n"); | 
|---|
|  | 101 | return LM_ERROR; | 
|---|
|  | 102 | } | 
|---|
|  | 103 |  | 
|---|
|  | 104 | tm=n; tn=m; // transpose dimensions | 
|---|
|  | 105 | mintmn=m; | 
|---|
|  | 106 |  | 
|---|
|  | 107 | /* calculate required memory size */ | 
|---|
|  | 108 | worksz=-1; // workspace query. Optimal work size is returned in aux | 
|---|
|  | 109 | //ORGQR((int *)&tm, (int *)&tm, (int *)&mintmn, NULL, (int *)&tm, NULL, (LM_REAL *)&aux, &worksz, &info); | 
|---|
|  | 110 | GEQP3((int *)&tm, (int *)&tn, NULL, (int *)&tm, NULL, NULL, (LM_REAL *)&aux, (int *)&worksz, &info); | 
|---|
|  | 111 | worksz=(int)aux; | 
|---|
|  | 112 | a_sz=tm*tm; // tm*tn is enough for xgeqp3() | 
|---|
|  | 113 | jpvt_sz=tn; | 
|---|
|  | 114 | tau_sz=mintmn; | 
|---|
|  | 115 | r_sz=mintmn*mintmn; // actually smaller if a is not of full row rank | 
|---|
|  | 116 | Y_sz=(Y)? 0 : tm*tn; | 
|---|
|  | 117 |  | 
|---|
|  | 118 | tot_sz=(a_sz + tau_sz + r_sz + worksz + Y_sz)*sizeof(LM_REAL) + jpvt_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */ | 
|---|
|  | 119 | buf=(LM_REAL *)malloc(tot_sz); /* allocate a "big" memory chunk at once */ | 
|---|
|  | 120 | if(!buf){ | 
|---|
|  | 121 | fprintf(stderr, RCAT("Memory allocation request failed in ", LMLEC_ELIM) "()\n"); | 
|---|
|  | 122 | return LM_ERROR; | 
|---|
|  | 123 | } | 
|---|
|  | 124 |  | 
|---|
|  | 125 | a=buf; | 
|---|
|  | 126 | tau=a+a_sz; | 
|---|
|  | 127 | r=tau+tau_sz; | 
|---|
|  | 128 | work=r+r_sz; | 
|---|
|  | 129 | if(!Y){ | 
|---|
|  | 130 | Y=work+worksz; | 
|---|
|  | 131 | jpvt=(int *)(Y+Y_sz); | 
|---|
|  | 132 | } | 
|---|
|  | 133 | else | 
|---|
|  | 134 | jpvt=(int *)(work+worksz); | 
|---|
|  | 135 |  | 
|---|
|  | 136 | /* copy input array so that LAPACK won't destroy it. Note that copying is | 
|---|
|  | 137 | * done in row-major order, which equals A^T in column-major | 
|---|
|  | 138 | */ | 
|---|
|  | 139 | for(i=0; i<tm*tn; ++i) | 
|---|
|  | 140 | a[i]=A[i]; | 
|---|
|  | 141 |  | 
|---|
|  | 142 | /* clear jpvt */ | 
|---|
|  | 143 | for(i=0; i<jpvt_sz; ++i) jpvt[i]=0; | 
|---|
|  | 144 |  | 
|---|
|  | 145 | /* rank revealing QR decomposition of A^T*/ | 
|---|
|  | 146 | GEQP3((int *)&tm, (int *)&tn, a, (int *)&tm, jpvt, tau, work, (int *)&worksz, &info); | 
|---|
|  | 147 | //dgeqpf_((int *)&tm, (int *)&tn, a, (int *)&tm, jpvt, tau, work, &info); | 
|---|
|  | 148 | /* error checking */ | 
|---|
|  | 149 | if(info!=0){ | 
|---|
|  | 150 | if(info<0){ | 
|---|
|  | 151 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQP3) " in ", LMLEC_ELIM) "()\n", -info); | 
|---|
|  | 152 | } | 
|---|
|  | 153 | else if(info>0){ | 
|---|
|  | 154 | fprintf(stderr, RCAT(RCAT("unknown LAPACK error (%d) for ", GEQP3) " in ", LMLEC_ELIM) "()\n", info); | 
|---|
|  | 155 | } | 
|---|
|  | 156 | free(buf); | 
|---|
|  | 157 | return LM_ERROR; | 
|---|
|  | 158 | } | 
|---|
|  | 159 | /* the upper triangular part of a now contains the upper triangle of the unpermuted R */ | 
|---|
|  | 160 |  | 
|---|
|  | 161 | if(eps<0.0){ | 
|---|
|  | 162 | LM_REAL aux; | 
|---|
|  | 163 |  | 
|---|
|  | 164 | /* compute machine epsilon. DBL_EPSILON should do also */ | 
|---|
|  | 165 | for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5)) | 
|---|
|  | 166 | ; | 
|---|
|  | 167 | eps*=LM_CNST(2.0); | 
|---|
|  | 168 | } | 
|---|
|  | 169 |  | 
|---|
|  | 170 | tmp=tm*LM_CNST(10.0)*eps*FABS(a[0]); // threshold. tm is max(tm, tn) | 
|---|
|  | 171 | tmp=(tmp>LM_CNST(1E-12))? tmp : LM_CNST(1E-12); // ensure that threshold is not too small | 
|---|
|  | 172 | /* compute A^T's numerical rank by counting the non-zeros in R's diagonal */ | 
|---|
|  | 173 | for(i=rank=0; i<mintmn; ++i) | 
|---|
|  | 174 | if(a[i*(tm+1)]>tmp || a[i*(tm+1)]<-tmp) ++rank; /* loop across R's diagonal elements */ | 
|---|
|  | 175 | else break; /* diagonal is arranged in absolute decreasing order */ | 
|---|
|  | 176 |  | 
|---|
|  | 177 | if(rank<tn){ | 
|---|
|  | 178 | fprintf(stderr, RCAT("\nConstraints matrix in ",  LMLEC_ELIM) "() is not of full row rank (i.e. %d < %d)!\n" | 
|---|
|  | 179 | "Make sure that you do not specify redundant or inconsistent constraints.\n\n", rank, tn); | 
|---|
|  | 180 | free(buf); | 
|---|
|  | 181 | return LM_ERROR; | 
|---|
|  | 182 | } | 
|---|
|  | 183 |  | 
|---|
|  | 184 | /* compute the permuted inverse transpose of R */ | 
|---|
|  | 185 | /* first, copy R from the upper triangular part of a to the lower part of r (thus transposing it). R is rank x rank */ | 
|---|
|  | 186 | for(j=0; j<rank; ++j){ | 
|---|
|  | 187 | for(i=0; i<=j; ++i) | 
|---|
|  | 188 | r[j+i*rank]=a[i+j*tm]; | 
|---|
|  | 189 | for(i=j+1; i<rank; ++i) | 
|---|
|  | 190 | r[j+i*rank]=0.0; // upper part is zero | 
|---|
|  | 191 | } | 
|---|
|  | 192 | /* r now contains R^T */ | 
|---|
|  | 193 |  | 
|---|
|  | 194 | /* compute the inverse */ | 
|---|
|  | 195 | TRTRI("L", "N", (int *)&rank, r, (int *)&rank, &info); | 
|---|
|  | 196 | /* error checking */ | 
|---|
|  | 197 | if(info!=0){ | 
|---|
|  | 198 | if(info<0){ | 
|---|
|  | 199 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRI) " in ", LMLEC_ELIM) "()\n", -info); | 
|---|
|  | 200 | } | 
|---|
|  | 201 | else if(info>0){ | 
|---|
|  | 202 | fprintf(stderr, RCAT(RCAT("A(%d, %d) is exactly zero for ", TRTRI) " (singular matrix) in ", LMLEC_ELIM) "()\n", info, info); | 
|---|
|  | 203 | } | 
|---|
|  | 204 | free(buf); | 
|---|
|  | 205 | return LM_ERROR; | 
|---|
|  | 206 | } | 
|---|
|  | 207 |  | 
|---|
|  | 208 | /* finally, permute R^-T using Y as intermediate storage */ | 
|---|
|  | 209 | for(j=0; j<rank; ++j) | 
|---|
|  | 210 | for(i=0, k=jpvt[j]-1; i<rank; ++i) | 
|---|
|  | 211 | Y[i+k*rank]=r[i+j*rank]; | 
|---|
|  | 212 |  | 
|---|
|  | 213 | for(i=0; i<rank*rank; ++i) // copy back to r | 
|---|
|  | 214 | r[i]=Y[i]; | 
|---|
|  | 215 |  | 
|---|
|  | 216 | /* resize a to be tm x tm, filling with zeroes */ | 
|---|
|  | 217 | for(i=tm*tn; i<tm*tm; ++i) | 
|---|
|  | 218 | a[i]=0.0; | 
|---|
|  | 219 |  | 
|---|
|  | 220 | /* compute Q in a as the product of elementary reflectors. Q is tm x tm */ | 
|---|
|  | 221 | ORGQR((int *)&tm, (int *)&tm, (int *)&mintmn, a, (int *)&tm, tau, work, &worksz, &info); | 
|---|
|  | 222 | /* error checking */ | 
|---|
|  | 223 | if(info!=0){ | 
|---|
|  | 224 | if(info<0){ | 
|---|
|  | 225 | fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", ORGQR) " in ", LMLEC_ELIM) "()\n", -info); | 
|---|
|  | 226 | } | 
|---|
|  | 227 | else if(info>0){ | 
|---|
|  | 228 | fprintf(stderr, RCAT(RCAT("unknown LAPACK error (%d) for ", ORGQR) " in ", LMLEC_ELIM) "()\n", info); | 
|---|
|  | 229 | } | 
|---|
|  | 230 | free(buf); | 
|---|
|  | 231 | return LM_ERROR; | 
|---|
|  | 232 | } | 
|---|
|  | 233 |  | 
|---|
|  | 234 | /* compute Y=Q_1*R^-T*P^T. Y is tm x rank */ | 
|---|
|  | 235 | for(i=0; i<tm; ++i) | 
|---|
|  | 236 | for(j=0; j<rank; ++j){ | 
|---|
|  | 237 | for(k=0, tmp=0.0; k<rank; ++k) | 
|---|
|  | 238 | tmp+=a[i+k*tm]*r[k+j*rank]; | 
|---|
|  | 239 | Y[i*rank+j]=tmp; | 
|---|
|  | 240 | } | 
|---|
|  | 241 |  | 
|---|
|  | 242 | if(b && c){ | 
|---|
|  | 243 | /* compute c=Y*b */ | 
|---|
|  | 244 | for(i=0; i<tm; ++i){ | 
|---|
|  | 245 | for(j=0, tmp=0.0; j<rank; ++j) | 
|---|
|  | 246 | tmp+=Y[i*rank+j]*b[j]; | 
|---|
|  | 247 |  | 
|---|
|  | 248 | c[i]=tmp; | 
|---|
|  | 249 | } | 
|---|
|  | 250 | } | 
|---|
|  | 251 |  | 
|---|
|  | 252 | /* copy Q_2 into Z. Z is tm x (tm-rank) */ | 
|---|
|  | 253 | for(j=0; j<tm-rank; ++j) | 
|---|
|  | 254 | for(i=0, k=j+rank; i<tm; ++i) | 
|---|
|  | 255 | Z[i*(tm-rank)+j]=a[i+k*tm]; | 
|---|
|  | 256 |  | 
|---|
|  | 257 | free(buf); | 
|---|
|  | 258 |  | 
|---|
|  | 259 | return rank; | 
|---|
|  | 260 | } | 
|---|
|  | 261 |  | 
|---|
|  | 262 | /* constrained measurements: given pp, compute the measurements at c + Z*pp */ | 
|---|
|  | 263 | static void LMLEC_FUNC(LM_REAL *pp, LM_REAL *hx, int mm, int n, void *adata) | 
|---|
|  | 264 | { | 
|---|
|  | 265 | struct LMLEC_DATA *data=(struct LMLEC_DATA *)adata; | 
|---|
|  | 266 | int m; | 
|---|
|  | 267 | register int i, j; | 
|---|
|  | 268 | register LM_REAL sum; | 
|---|
|  | 269 | LM_REAL *c, *Z, *p, *Zimm; | 
|---|
|  | 270 |  | 
|---|
|  | 271 | m=mm+data->ncnstr; | 
|---|
|  | 272 | c=data->c; | 
|---|
|  | 273 | Z=data->Z; | 
|---|
|  | 274 | p=data->p; | 
|---|
|  | 275 | /* p=c + Z*pp */ | 
|---|
|  | 276 | for(i=0; i<m; ++i){ | 
|---|
|  | 277 | Zimm=Z+i*mm; | 
|---|
|  | 278 | for(j=0, sum=c[i]; j<mm; ++j) | 
|---|
|  | 279 | sum+=Zimm[j]*pp[j]; // sum+=Z[i*mm+j]*pp[j]; | 
|---|
|  | 280 | p[i]=sum; | 
|---|
|  | 281 | } | 
|---|
|  | 282 |  | 
|---|
|  | 283 | (*(data->func))(p, hx, m, n, data->adata); | 
|---|
|  | 284 | } | 
|---|
|  | 285 |  | 
|---|
|  | 286 | /* constrained Jacobian: given pp, compute the Jacobian at c + Z*pp | 
|---|
|  | 287 | * Using the chain rule, the Jacobian with respect to pp equals the | 
|---|
|  | 288 | * product of the Jacobian with respect to p (at c + Z*pp) times Z | 
|---|
|  | 289 | */ | 
|---|
|  | 290 | static void LMLEC_JACF(LM_REAL *pp, LM_REAL *jacjac, int mm, int n, void *adata) | 
|---|
|  | 291 | { | 
|---|
|  | 292 | struct LMLEC_DATA *data=(struct LMLEC_DATA *)adata; | 
|---|
|  | 293 | int m; | 
|---|
|  | 294 | register int i, j, l; | 
|---|
|  | 295 | register LM_REAL sum, *aux1, *aux2; | 
|---|
|  | 296 | LM_REAL *c, *Z, *p, *jac; | 
|---|
|  | 297 |  | 
|---|
|  | 298 | m=mm+data->ncnstr; | 
|---|
|  | 299 | c=data->c; | 
|---|
|  | 300 | Z=data->Z; | 
|---|
|  | 301 | p=data->p; | 
|---|
|  | 302 | jac=data->jac; | 
|---|
|  | 303 | /* p=c + Z*pp */ | 
|---|
|  | 304 | for(i=0; i<m; ++i){ | 
|---|
|  | 305 | aux1=Z+i*mm; | 
|---|
|  | 306 | for(j=0, sum=c[i]; j<mm; ++j) | 
|---|
|  | 307 | sum+=aux1[j]*pp[j]; // sum+=Z[i*mm+j]*pp[j]; | 
|---|
|  | 308 | p[i]=sum; | 
|---|
|  | 309 | } | 
|---|
|  | 310 |  | 
|---|
|  | 311 | (*(data->jacf))(p, jac, m, n, data->adata); | 
|---|
|  | 312 |  | 
|---|
|  | 313 | /* compute jac*Z in jacjac */ | 
|---|
|  | 314 | if(n*m<=__BLOCKSZ__SQ){ // this is a small problem | 
|---|
|  | 315 | /* This is the straightforward way to compute jac*Z. However, due to | 
|---|
|  | 316 | * its noncontinuous memory access pattern, it incures many cache misses when | 
|---|
|  | 317 | * applied to large minimization problems (i.e. problems involving a large | 
|---|
|  | 318 | * number of free variables and measurements), in which jac is too large to | 
|---|
|  | 319 | * fit in the L1 cache. For such problems, a cache-efficient blocking scheme | 
|---|
|  | 320 | * is preferable. On the other hand, the straightforward algorithm is faster | 
|---|
|  | 321 | * on small problems since in this case it avoids the overheads of blocking. | 
|---|
|  | 322 | */ | 
|---|
|  | 323 |  | 
|---|
|  | 324 | for(i=0; i<n; ++i){ | 
|---|
|  | 325 | aux1=jac+i*m; | 
|---|
|  | 326 | aux2=jacjac+i*mm; | 
|---|
|  | 327 | for(j=0; j<mm; ++j){ | 
|---|
|  | 328 | for(l=0, sum=0.0; l<m; ++l) | 
|---|
|  | 329 | sum+=aux1[l]*Z[l*mm+j]; // sum+=jac[i*m+l]*Z[l*mm+j]; | 
|---|
|  | 330 |  | 
|---|
|  | 331 | aux2[j]=sum; // jacjac[i*mm+j]=sum; | 
|---|
|  | 332 | } | 
|---|
|  | 333 | } | 
|---|
|  | 334 | } | 
|---|
|  | 335 | else{ // this is a large problem | 
|---|
|  | 336 | /* Cache efficient computation of jac*Z based on blocking | 
|---|
|  | 337 | */ | 
|---|
|  | 338 | #define __MIN__(x, y) (((x)<=(y))? (x) : (y)) | 
|---|
|  | 339 | register int jj, ll; | 
|---|
|  | 340 |  | 
|---|
|  | 341 | for(jj=0; jj<mm; jj+=__BLOCKSZ__){ | 
|---|
|  | 342 | for(i=0; i<n; ++i){ | 
|---|
|  | 343 | aux1=jacjac+i*mm; | 
|---|
|  | 344 | for(j=jj; j<__MIN__(jj+__BLOCKSZ__, mm); ++j) | 
|---|
|  | 345 | aux1[j]=0.0; //jacjac[i*mm+j]=0.0; | 
|---|
|  | 346 | } | 
|---|
|  | 347 |  | 
|---|
|  | 348 | for(ll=0; ll<m; ll+=__BLOCKSZ__){ | 
|---|
|  | 349 | for(i=0; i<n; ++i){ | 
|---|
|  | 350 | aux1=jacjac+i*mm; aux2=jac+i*m; | 
|---|
|  | 351 | for(j=jj; j<__MIN__(jj+__BLOCKSZ__, mm); ++j){ | 
|---|
|  | 352 | sum=0.0; | 
|---|
|  | 353 | for(l=ll; l<__MIN__(ll+__BLOCKSZ__, m); ++l) | 
|---|
|  | 354 | sum+=aux2[l]*Z[l*mm+j]; //jac[i*m+l]*Z[l*mm+j]; | 
|---|
|  | 355 | aux1[j]+=sum; //jacjac[i*mm+j]+=sum; | 
|---|
|  | 356 | } | 
|---|
|  | 357 | } | 
|---|
|  | 358 | } | 
|---|
|  | 359 | } | 
|---|
|  | 360 | } | 
|---|
|  | 361 | } | 
|---|
|  | 362 | #undef __MIN__ | 
|---|
|  | 363 |  | 
|---|
|  | 364 |  | 
|---|
|  | 365 | /* | 
|---|
|  | 366 | * This function is similar to LEVMAR_DER except that the minimization | 
|---|
|  | 367 | * is performed subject to the linear constraints A p=b, A is kxm, b kx1 | 
|---|
|  | 368 | * | 
|---|
|  | 369 | * This function requires an analytic Jacobian. In case the latter is unavailable, | 
|---|
|  | 370 | * use LEVMAR_LEC_DIF() bellow | 
|---|
|  | 371 | * | 
|---|
|  | 372 | */ | 
|---|
|  | 373 | int LEVMAR_LEC_DER( | 
|---|
|  | 374 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */ | 
|---|
|  | 375 | void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the Jacobian \part x / \part p */ | 
|---|
|  | 376 | LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */ | 
|---|
|  | 377 | LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */ | 
|---|
|  | 378 | int m,              /* I: parameter vector dimension (i.e. #unknowns) */ | 
|---|
|  | 379 | int n,              /* I: measurement vector dimension */ | 
|---|
|  | 380 | LM_REAL *A,         /* I: constraints matrix, kxm */ | 
|---|
|  | 381 | LM_REAL *b,         /* I: right hand constraints vector, kx1 */ | 
|---|
|  | 382 | int k,              /* I: number of constraints (i.e. A's #rows) */ | 
|---|
|  | 383 | int itmax,          /* I: maximum number of iterations */ | 
|---|
|  | 384 | LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu, | 
|---|
|  | 385 | * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used | 
|---|
|  | 386 | */ | 
|---|
|  | 387 | LM_REAL info[LM_INFO_SZ], | 
|---|
|  | 388 | /* O: information regarding the minimization. Set to NULL if don't care | 
|---|
|  | 389 | * info[0]= ||e||_2 at initial p. | 
|---|
|  | 390 | * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. | 
|---|
|  | 391 | * info[5]= # iterations, | 
|---|
|  | 392 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e | 
|---|
|  | 393 | *                                 2 - stopped by small Dp | 
|---|
|  | 394 | *                                 3 - stopped by itmax | 
|---|
|  | 395 | *                                 4 - singular matrix. Restart from current p with increased mu | 
|---|
|  | 396 | *                                 5 - no further error reduction is possible. Restart with increased mu | 
|---|
|  | 397 | *                                 6 - stopped by small ||e||_2 | 
|---|
|  | 398 | *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error | 
|---|
|  | 399 | * info[7]= # function evaluations | 
|---|
|  | 400 | * info[8]= # Jacobian evaluations | 
|---|
|  | 401 | * info[9]= # linear systems solved, i.e. # attempts for reducing error | 
|---|
|  | 402 | */ | 
|---|
|  | 403 | LM_REAL *work,     /* working memory at least LM_LEC_DER_WORKSZ() reals large, allocated if NULL */ | 
|---|
|  | 404 | LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ | 
|---|
|  | 405 | void *adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf. | 
|---|
|  | 406 | * Set to NULL if not needed | 
|---|
|  | 407 | */ | 
|---|
|  | 408 | { | 
|---|
|  | 409 | struct LMLEC_DATA data; | 
|---|
|  | 410 | LM_REAL *ptr, *Z, *pp, *p0, *Zimm; /* Z is mxmm */ | 
|---|
|  | 411 | int mm, ret; | 
|---|
|  | 412 | register int i, j; | 
|---|
|  | 413 | register LM_REAL tmp; | 
|---|
|  | 414 | LM_REAL locinfo[LM_INFO_SZ]; | 
|---|
|  | 415 |  | 
|---|
|  | 416 | if(!jacf){ | 
|---|
|  | 417 | fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_LEC_DER) | 
|---|
|  | 418 | RCAT("().\nIf no such function is available, use ", LEVMAR_LEC_DIF) RCAT("() rather than ", LEVMAR_LEC_DER) "()\n"); | 
|---|
|  | 419 | return LM_ERROR; | 
|---|
|  | 420 | } | 
|---|
|  | 421 |  | 
|---|
|  | 422 | mm=m-k; | 
|---|
|  | 423 |  | 
|---|
|  | 424 | if(n<mm){ | 
|---|
|  | 425 | fprintf(stderr, LCAT(LEVMAR_LEC_DER, "(): cannot solve a problem with fewer measurements + equality constraints [%d + %d] than unknowns [%d]\n"), n, k, m); | 
|---|
|  | 426 | return LM_ERROR; | 
|---|
|  | 427 | } | 
|---|
|  | 428 |  | 
|---|
|  | 429 | ptr=(LM_REAL *)malloc((2*m + m*mm + n*m + mm)*sizeof(LM_REAL)); | 
|---|
|  | 430 | if(!ptr){ | 
|---|
|  | 431 | fprintf(stderr, LCAT(LEVMAR_LEC_DER, "(): memory allocation request failed\n")); | 
|---|
|  | 432 | return LM_ERROR; | 
|---|
|  | 433 | } | 
|---|
|  | 434 | data.p=p; | 
|---|
|  | 435 | p0=ptr; | 
|---|
|  | 436 | data.c=p0+m; | 
|---|
|  | 437 | data.Z=Z=data.c+m; | 
|---|
|  | 438 | data.jac=data.Z+m*mm; | 
|---|
|  | 439 | pp=data.jac+n*m; | 
|---|
|  | 440 | data.ncnstr=k; | 
|---|
|  | 441 | data.func=func; | 
|---|
|  | 442 | data.jacf=jacf; | 
|---|
|  | 443 | data.adata=adata; | 
|---|
|  | 444 |  | 
|---|
|  | 445 | ret=LMLEC_ELIM(A, b, data.c, NULL, Z, k, m); // compute c, Z | 
|---|
|  | 446 | if(ret==LM_ERROR){ | 
|---|
|  | 447 | free(ptr); | 
|---|
|  | 448 | return LM_ERROR; | 
|---|
|  | 449 | } | 
|---|
|  | 450 |  | 
|---|
|  | 451 | /* compute pp s.t. p = c + Z*pp or (Z^T Z)*pp=Z^T*(p-c) | 
|---|
|  | 452 | * Due to orthogonality, Z^T Z = I and the last equation | 
|---|
|  | 453 | * becomes pp=Z^T*(p-c). Also, save the starting p in p0 | 
|---|
|  | 454 | */ | 
|---|
|  | 455 | for(i=0; i<m; ++i){ | 
|---|
|  | 456 | p0[i]=p[i]; | 
|---|
|  | 457 | p[i]-=data.c[i]; | 
|---|
|  | 458 | } | 
|---|
|  | 459 |  | 
|---|
|  | 460 | /* Z^T*(p-c) */ | 
|---|
|  | 461 | for(i=0; i<mm; ++i){ | 
|---|
|  | 462 | for(j=0, tmp=0.0; j<m; ++j) | 
|---|
|  | 463 | tmp+=Z[j*mm+i]*p[j]; | 
|---|
|  | 464 | pp[i]=tmp; | 
|---|
|  | 465 | } | 
|---|
|  | 466 |  | 
|---|
|  | 467 | /* compute the p corresponding to pp (i.e. c + Z*pp) and compare with p0 */ | 
|---|
|  | 468 | for(i=0; i<m; ++i){ | 
|---|
|  | 469 | Zimm=Z+i*mm; | 
|---|
|  | 470 | for(j=0, tmp=data.c[i]; j<mm; ++j) | 
|---|
|  | 471 | tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j]; | 
|---|
|  | 472 | if(FABS(tmp-p0[i])>LM_CNST(1E-03)) | 
|---|
|  | 473 | fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_LEC_DER) "()! [%.10g reset to %.10g]\n", | 
|---|
|  | 474 | i, p0[i], tmp); | 
|---|
|  | 475 | } | 
|---|
|  | 476 |  | 
|---|
|  | 477 | if(!info) info=locinfo; /* make sure that LEVMAR_DER() is called with non-null info */ | 
|---|
|  | 478 | /* note that covariance computation is not requested from LEVMAR_DER() */ | 
|---|
|  | 479 | ret=LEVMAR_DER(LMLEC_FUNC, LMLEC_JACF, pp, x, mm, n, itmax, opts, info, work, NULL, (void *)&data); | 
|---|
|  | 480 |  | 
|---|
|  | 481 | /* p=c + Z*pp */ | 
|---|
|  | 482 | for(i=0; i<m; ++i){ | 
|---|
|  | 483 | Zimm=Z+i*mm; | 
|---|
|  | 484 | for(j=0, tmp=data.c[i]; j<mm; ++j) | 
|---|
|  | 485 | tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j]; | 
|---|
|  | 486 | p[i]=tmp; | 
|---|
|  | 487 | } | 
|---|
|  | 488 |  | 
|---|
|  | 489 | /* compute the covariance from the Jacobian in data.jac */ | 
|---|
|  | 490 | if(covar){ | 
|---|
|  | 491 | LEVMAR_TRANS_MAT_MAT_MULT(data.jac, covar, n, m); /* covar = J^T J */ | 
|---|
|  | 492 | LEVMAR_COVAR(covar, covar, info[1], m, n); | 
|---|
|  | 493 | } | 
|---|
|  | 494 |  | 
|---|
|  | 495 | free(ptr); | 
|---|
|  | 496 |  | 
|---|
|  | 497 | return ret; | 
|---|
|  | 498 | } | 
|---|
|  | 499 |  | 
|---|
|  | 500 | /* Similar to the LEVMAR_LEC_DER() function above, except that the Jacobian is approximated | 
|---|
|  | 501 | * with the aid of finite differences (forward or central, see the comment for the opts argument) | 
|---|
|  | 502 | */ | 
|---|
|  | 503 | int LEVMAR_LEC_DIF( | 
|---|
|  | 504 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */ | 
|---|
|  | 505 | LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */ | 
|---|
|  | 506 | LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */ | 
|---|
|  | 507 | int m,              /* I: parameter vector dimension (i.e. #unknowns) */ | 
|---|
|  | 508 | int n,              /* I: measurement vector dimension */ | 
|---|
|  | 509 | LM_REAL *A,         /* I: constraints matrix, kxm */ | 
|---|
|  | 510 | LM_REAL *b,         /* I: right hand constraints vector, kx1 */ | 
|---|
|  | 511 | int k,              /* I: number of constraints (i.e. A's #rows) */ | 
|---|
|  | 512 | int itmax,          /* I: maximum number of iterations */ | 
|---|
|  | 513 | LM_REAL opts[5],    /* I: opts[0-3] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the | 
|---|
|  | 514 | * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and | 
|---|
|  | 515 | * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used. | 
|---|
|  | 516 | * If \delta<0, the Jacobian is approximated with central differences which are more accurate | 
|---|
|  | 517 | * (but slower!) compared to the forward differences employed by default. | 
|---|
|  | 518 | */ | 
|---|
|  | 519 | LM_REAL info[LM_INFO_SZ], | 
|---|
|  | 520 | /* O: information regarding the minimization. Set to NULL if don't care | 
|---|
|  | 521 | * info[0]= ||e||_2 at initial p. | 
|---|
|  | 522 | * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. | 
|---|
|  | 523 | * info[5]= # iterations, | 
|---|
|  | 524 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e | 
|---|
|  | 525 | *                                 2 - stopped by small Dp | 
|---|
|  | 526 | *                                 3 - stopped by itmax | 
|---|
|  | 527 | *                                 4 - singular matrix. Restart from current p with increased mu | 
|---|
|  | 528 | *                                 5 - no further error reduction is possible. Restart with increased mu | 
|---|
|  | 529 | *                                 6 - stopped by small ||e||_2 | 
|---|
|  | 530 | *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error | 
|---|
|  | 531 | * info[7]= # function evaluations | 
|---|
|  | 532 | * info[8]= # Jacobian evaluations | 
|---|
|  | 533 | * info[9]= # linear systems solved, i.e. # attempts for reducing error | 
|---|
|  | 534 | */ | 
|---|
|  | 535 | LM_REAL *work,     /* working memory at least LM_LEC_DIF_WORKSZ() reals large, allocated if NULL */ | 
|---|
|  | 536 | LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ | 
|---|
|  | 537 | void *adata)       /* pointer to possibly additional data, passed uninterpreted to func. | 
|---|
|  | 538 | * Set to NULL if not needed | 
|---|
|  | 539 | */ | 
|---|
|  | 540 | { | 
|---|
|  | 541 | struct LMLEC_DATA data; | 
|---|
|  | 542 | LM_REAL *ptr, *Z, *pp, *p0, *Zimm; /* Z is mxmm */ | 
|---|
|  | 543 | int mm, ret; | 
|---|
|  | 544 | register int i, j; | 
|---|
|  | 545 | register LM_REAL tmp; | 
|---|
|  | 546 | LM_REAL locinfo[LM_INFO_SZ]; | 
|---|
|  | 547 |  | 
|---|
|  | 548 | mm=m-k; | 
|---|
|  | 549 |  | 
|---|
|  | 550 | if(n<mm){ | 
|---|
|  | 551 | fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): cannot solve a problem with fewer measurements + equality constraints [%d + %d] than unknowns [%d]\n"), n, k, m); | 
|---|
|  | 552 | return LM_ERROR; | 
|---|
|  | 553 | } | 
|---|
|  | 554 |  | 
|---|
|  | 555 | ptr=(LM_REAL *)malloc((2*m + m*mm + mm)*sizeof(LM_REAL)); | 
|---|
|  | 556 | if(!ptr){ | 
|---|
|  | 557 | fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): memory allocation request failed\n")); | 
|---|
|  | 558 | return LM_ERROR; | 
|---|
|  | 559 | } | 
|---|
|  | 560 | data.p=p; | 
|---|
|  | 561 | p0=ptr; | 
|---|
|  | 562 | data.c=p0+m; | 
|---|
|  | 563 | data.Z=Z=data.c+m; | 
|---|
|  | 564 | data.jac=NULL; | 
|---|
|  | 565 | pp=data.Z+m*mm; | 
|---|
|  | 566 | data.ncnstr=k; | 
|---|
|  | 567 | data.func=func; | 
|---|
|  | 568 | data.jacf=NULL; | 
|---|
|  | 569 | data.adata=adata; | 
|---|
|  | 570 |  | 
|---|
|  | 571 | ret=LMLEC_ELIM(A, b, data.c, NULL, Z, k, m); // compute c, Z | 
|---|
|  | 572 | if(ret==LM_ERROR){ | 
|---|
|  | 573 | free(ptr); | 
|---|
|  | 574 | return LM_ERROR; | 
|---|
|  | 575 | } | 
|---|
|  | 576 |  | 
|---|
|  | 577 | /* compute pp s.t. p = c + Z*pp or (Z^T Z)*pp=Z^T*(p-c) | 
|---|
|  | 578 | * Due to orthogonality, Z^T Z = I and the last equation | 
|---|
|  | 579 | * becomes pp=Z^T*(p-c). Also, save the starting p in p0 | 
|---|
|  | 580 | */ | 
|---|
|  | 581 | for(i=0; i<m; ++i){ | 
|---|
|  | 582 | p0[i]=p[i]; | 
|---|
|  | 583 | p[i]-=data.c[i]; | 
|---|
|  | 584 | } | 
|---|
|  | 585 |  | 
|---|
|  | 586 | /* Z^T*(p-c) */ | 
|---|
|  | 587 | for(i=0; i<mm; ++i){ | 
|---|
|  | 588 | for(j=0, tmp=0.0; j<m; ++j) | 
|---|
|  | 589 | tmp+=Z[j*mm+i]*p[j]; | 
|---|
|  | 590 | pp[i]=tmp; | 
|---|
|  | 591 | } | 
|---|
|  | 592 |  | 
|---|
|  | 593 | /* compute the p corresponding to pp (i.e. c + Z*pp) and compare with p0 */ | 
|---|
|  | 594 | for(i=0; i<m; ++i){ | 
|---|
|  | 595 | Zimm=Z+i*mm; | 
|---|
|  | 596 | for(j=0, tmp=data.c[i]; j<mm; ++j) | 
|---|
|  | 597 | tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j]; | 
|---|
|  | 598 | if(FABS(tmp-p0[i])>LM_CNST(1E-03)) | 
|---|
|  | 599 | fprintf(stderr, RCAT("Warning: component %d of starting point not feasible in ", LEVMAR_LEC_DIF) "()! [%.10g reset to %.10g]\n", | 
|---|
|  | 600 | i, p0[i], tmp); | 
|---|
|  | 601 | } | 
|---|
|  | 602 |  | 
|---|
|  | 603 | if(!info) info=locinfo; /* make sure that LEVMAR_DIF() is called with non-null info */ | 
|---|
|  | 604 | /* note that covariance computation is not requested from LEVMAR_DIF() */ | 
|---|
|  | 605 | ret=LEVMAR_DIF(LMLEC_FUNC, pp, x, mm, n, itmax, opts, info, work, NULL, (void *)&data); | 
|---|
|  | 606 |  | 
|---|
|  | 607 | /* p=c + Z*pp */ | 
|---|
|  | 608 | for(i=0; i<m; ++i){ | 
|---|
|  | 609 | Zimm=Z+i*mm; | 
|---|
|  | 610 | for(j=0, tmp=data.c[i]; j<mm; ++j) | 
|---|
|  | 611 | tmp+=Zimm[j]*pp[j]; // tmp+=Z[i*mm+j]*pp[j]; | 
|---|
|  | 612 | p[i]=tmp; | 
|---|
|  | 613 | } | 
|---|
|  | 614 |  | 
|---|
|  | 615 | /* compute the Jacobian with finite differences and use it to estimate the covariance */ | 
|---|
|  | 616 | if(covar){ | 
|---|
|  | 617 | LM_REAL *hx, *wrk, *jac; | 
|---|
|  | 618 |  | 
|---|
|  | 619 | hx=(LM_REAL *)malloc((2*n+n*m)*sizeof(LM_REAL)); | 
|---|
|  | 620 | if(!hx){ | 
|---|
|  | 621 | fprintf(stderr, LCAT(LEVMAR_LEC_DIF, "(): memory allocation request failed\n")); | 
|---|
|  | 622 | free(ptr); | 
|---|
|  | 623 | return LM_ERROR; | 
|---|
|  | 624 | } | 
|---|
|  | 625 |  | 
|---|
|  | 626 | wrk=hx+n; | 
|---|
|  | 627 | jac=wrk+n; | 
|---|
|  | 628 |  | 
|---|
|  | 629 | (*func)(p, hx, m, n, adata); /* evaluate function at p */ | 
|---|
|  | 630 | LEVMAR_FDIF_FORW_JAC_APPROX(func, p, hx, wrk, (LM_REAL)LM_DIFF_DELTA, jac, m, n, adata); /* compute the Jacobian at p */ | 
|---|
|  | 631 | LEVMAR_TRANS_MAT_MAT_MULT(jac, covar, n, m); /* covar = J^T J */ | 
|---|
|  | 632 | LEVMAR_COVAR(covar, covar, info[1], m, n); | 
|---|
|  | 633 | free(hx); | 
|---|
|  | 634 | } | 
|---|
|  | 635 |  | 
|---|
|  | 636 | free(ptr); | 
|---|
|  | 637 |  | 
|---|
|  | 638 | return ret; | 
|---|
|  | 639 | } | 
|---|
|  | 640 |  | 
|---|
|  | 641 | /* undefine all. THIS MUST REMAIN AT THE END OF THE FILE */ | 
|---|
|  | 642 | #undef LMLEC_DATA | 
|---|
|  | 643 | #undef LMLEC_ELIM | 
|---|
|  | 644 | #undef LMLEC_FUNC | 
|---|
|  | 645 | #undef LMLEC_JACF | 
|---|
|  | 646 | #undef LEVMAR_FDIF_FORW_JAC_APPROX | 
|---|
|  | 647 | #undef LEVMAR_COVAR | 
|---|
|  | 648 | #undef LEVMAR_TRANS_MAT_MAT_MULT | 
|---|
|  | 649 | #undef LEVMAR_LEC_DER | 
|---|
|  | 650 | #undef LEVMAR_LEC_DIF | 
|---|
|  | 651 | #undef LEVMAR_DER | 
|---|
|  | 652 | #undef LEVMAR_DIF | 
|---|
|  | 653 |  | 
|---|
|  | 654 | #undef GEQP3 | 
|---|
|  | 655 | #undef ORGQR | 
|---|
|  | 656 | #undef TRTRI | 
|---|