[5443b1] | 1 | /////////////////////////////////////////////////////////////////////////////////
|
---|
| 2 | //
|
---|
| 3 | // Demonstration driver program for the Levenberg - Marquardt minimization
|
---|
| 4 | // algorithm
|
---|
| 5 | // Copyright (C) 2004-05 Manolis Lourakis (lourakis at ics forth gr)
|
---|
| 6 | // Institute of Computer Science, Foundation for Research & Technology - Hellas
|
---|
| 7 | // Heraklion, Crete, Greece.
|
---|
| 8 | //
|
---|
| 9 | // This program is free software; you can redistribute it and/or modify
|
---|
| 10 | // it under the terms of the GNU General Public License as published by
|
---|
| 11 | // the Free Software Foundation; either version 2 of the License, or
|
---|
| 12 | // (at your option) any later version.
|
---|
| 13 | //
|
---|
| 14 | // This program is distributed in the hope that it will be useful,
|
---|
| 15 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 16 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 17 | // GNU General Public License for more details.
|
---|
| 18 | //
|
---|
| 19 | /////////////////////////////////////////////////////////////////////////////////
|
---|
| 20 |
|
---|
| 21 | /********************************************************************************
|
---|
| 22 | * Levenberg-Marquardt minimization demo driver. Only the double precision versions
|
---|
| 23 | * are tested here. See the Meyer case for an example of verifying the Jacobian
|
---|
| 24 | ********************************************************************************/
|
---|
| 25 |
|
---|
| 26 | #include <stdio.h>
|
---|
| 27 | #include <stdlib.h>
|
---|
| 28 | #include <math.h>
|
---|
| 29 | #include <float.h>
|
---|
| 30 |
|
---|
| 31 | #include "levmar.h"
|
---|
| 32 |
|
---|
| 33 | #ifndef LM_DBL_PREC
|
---|
| 34 | #error Demo program assumes that levmar has been compiled with double precision, see LM_DBL_PREC!
|
---|
| 35 | #endif
|
---|
| 36 |
|
---|
| 37 |
|
---|
| 38 | /* Sample functions to be minimized with LM and their Jacobians.
|
---|
| 39 | * More test functions at http://www.csit.fsu.edu/~burkardt/f_src/test_nls/test_nls.html
|
---|
| 40 | * Check also the CUTE problems collection at ftp://ftp.numerical.rl.ac.uk/pub/cute/;
|
---|
| 41 | * CUTE is searchable through http://numawww.mathematik.tu-darmstadt.de:8081/opti/select.html
|
---|
| 42 | * CUTE problems can also be solved through the AMPL web interface at http://www.ampl.com/TRYAMPL/startup.html
|
---|
| 43 | *
|
---|
| 44 | * Nonlinear optimization models in AMPL can be found at http://www.princeton.edu/~rvdb/ampl/nlmodels/
|
---|
| 45 | */
|
---|
| 46 |
|
---|
| 47 | #define ROSD 105.0
|
---|
| 48 |
|
---|
| 49 | /* Rosenbrock function, global minimum at (1, 1) */
|
---|
| 50 | void ros(double *p, double *x, int m, int n, void *data)
|
---|
| 51 | {
|
---|
| 52 | register int i;
|
---|
| 53 |
|
---|
| 54 | for(i=0; i<n; ++i)
|
---|
| 55 | x[i]=((1.0-p[0])*(1.0-p[0]) + ROSD*(p[1]-p[0]*p[0])*(p[1]-p[0]*p[0]));
|
---|
| 56 | }
|
---|
| 57 |
|
---|
| 58 | void jacros(double *p, double *jac, int m, int n, void *data)
|
---|
| 59 | {
|
---|
| 60 | register int i, j;
|
---|
| 61 |
|
---|
| 62 | for(i=j=0; i<n; ++i){
|
---|
| 63 | jac[j++]=(-2 + 2*p[0]-4*ROSD*(p[1]-p[0]*p[0])*p[0]);
|
---|
| 64 | jac[j++]=(2*ROSD*(p[1]-p[0]*p[0]));
|
---|
| 65 | }
|
---|
| 66 | }
|
---|
| 67 |
|
---|
| 68 |
|
---|
| 69 | #define MODROSLAM 1E02
|
---|
| 70 | /* Modified Rosenbrock problem, global minimum at (1, 1) */
|
---|
| 71 | void modros(double *p, double *x, int m, int n, void *data)
|
---|
| 72 | {
|
---|
| 73 | register int i;
|
---|
| 74 |
|
---|
| 75 | for(i=0; i<n; i+=3){
|
---|
| 76 | x[i]=10*(p[1]-p[0]*p[0]);
|
---|
| 77 | x[i+1]=1.0-p[0];
|
---|
| 78 | x[i+2]=MODROSLAM;
|
---|
| 79 | }
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | void jacmodros(double *p, double *jac, int m, int n, void *data)
|
---|
| 83 | {
|
---|
| 84 | register int i, j;
|
---|
| 85 |
|
---|
| 86 | for(i=j=0; i<n; i+=3){
|
---|
| 87 | jac[j++]=-20.0*p[0];
|
---|
| 88 | jac[j++]=10.0;
|
---|
| 89 |
|
---|
| 90 | jac[j++]=-1.0;
|
---|
| 91 | jac[j++]=0.0;
|
---|
| 92 |
|
---|
| 93 | jac[j++]=0.0;
|
---|
| 94 | jac[j++]=0.0;
|
---|
| 95 | }
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 |
|
---|
| 99 | /* Powell's function, minimum at (0, 0) */
|
---|
| 100 | void powell(double *p, double *x, int m, int n, void *data)
|
---|
| 101 | {
|
---|
| 102 | register int i;
|
---|
| 103 |
|
---|
| 104 | for(i=0; i<n; i+=2){
|
---|
| 105 | x[i]=p[0];
|
---|
| 106 | x[i+1]=10.0*p[0]/(p[0]+0.1) + 2*p[1]*p[1];
|
---|
| 107 | }
|
---|
| 108 | }
|
---|
| 109 |
|
---|
| 110 | void jacpowell(double *p, double *jac, int m, int n, void *data)
|
---|
| 111 | {
|
---|
| 112 | register int i, j;
|
---|
| 113 |
|
---|
| 114 | for(i=j=0; i<n; i+=2){
|
---|
| 115 | jac[j++]=1.0;
|
---|
| 116 | jac[j++]=0.0;
|
---|
| 117 |
|
---|
| 118 | jac[j++]=1.0/((p[0]+0.1)*(p[0]+0.1));
|
---|
| 119 | jac[j++]=4.0*p[1];
|
---|
| 120 | }
|
---|
| 121 | }
|
---|
| 122 |
|
---|
| 123 | /* Wood's function, minimum at (1, 1, 1, 1) */
|
---|
| 124 | void wood(double *p, double *x, int m, int n, void *data)
|
---|
| 125 | {
|
---|
| 126 | register int i;
|
---|
| 127 |
|
---|
| 128 | for(i=0; i<n; i+=6){
|
---|
| 129 | x[i]=10.0*(p[1] - p[0]*p[0]);
|
---|
| 130 | x[i+1]=1.0 - p[0];
|
---|
| 131 | x[i+2]=sqrt(90.0)*(p[3] - p[2]*p[2]);
|
---|
| 132 | x[i+3]=1.0 - p[2];
|
---|
| 133 | x[i+4]=sqrt(10.0)*(p[1]+p[3] - 2.0);
|
---|
| 134 | x[i+5]=(p[1] - p[3])/sqrt(10.0);
|
---|
| 135 | }
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | /* Meyer's (reformulated) problem, minimum at (2.48, 6.18, 3.45) */
|
---|
| 139 | void meyer(double *p, double *x, int m, int n, void *data)
|
---|
| 140 | {
|
---|
| 141 | register int i;
|
---|
| 142 | double ui;
|
---|
| 143 |
|
---|
| 144 | for(i=0; i<n; ++i){
|
---|
| 145 | ui=0.45+0.05*i;
|
---|
| 146 | x[i]=p[0]*exp(10.0*p[1]/(ui+p[2]) - 13.0);
|
---|
| 147 | }
|
---|
| 148 | }
|
---|
| 149 |
|
---|
| 150 | void jacmeyer(double *p, double *jac, int m, int n, void *data)
|
---|
| 151 | {
|
---|
| 152 | register int i, j;
|
---|
| 153 | double ui, tmp;
|
---|
| 154 |
|
---|
| 155 | for(i=j=0; i<n; ++i){
|
---|
| 156 | ui=0.45+0.05*i;
|
---|
| 157 | tmp=exp(10.0*p[1]/(ui+p[2]) - 13.0);
|
---|
| 158 |
|
---|
| 159 | jac[j++]=tmp;
|
---|
| 160 | jac[j++]=10.0*p[0]*tmp/(ui+p[2]);
|
---|
| 161 | jac[j++]=-10.0*p[0]*p[1]*tmp/((ui+p[2])*(ui+p[2]));
|
---|
| 162 | }
|
---|
| 163 | }
|
---|
| 164 |
|
---|
| 165 | /* Osborne's problem, minimum at (0.3754, 1.9358, -1.4647, 0.0129, 0.0221) */
|
---|
| 166 | void osborne(double *p, double *x, int m, int n, void *data)
|
---|
| 167 | {
|
---|
| 168 | register int i;
|
---|
| 169 | double t;
|
---|
| 170 |
|
---|
| 171 | for(i=0; i<n; ++i){
|
---|
| 172 | t=10*i;
|
---|
| 173 | x[i]=p[0] + p[1]*exp(-p[3]*t) + p[2]*exp(-p[4]*t);
|
---|
| 174 | }
|
---|
| 175 | }
|
---|
| 176 |
|
---|
| 177 | void jacosborne(double *p, double *jac, int m, int n, void *data)
|
---|
| 178 | {
|
---|
| 179 | register int i, j;
|
---|
| 180 | double t, tmp1, tmp2;
|
---|
| 181 |
|
---|
| 182 | for(i=j=0; i<n; ++i){
|
---|
| 183 | t=10*i;
|
---|
| 184 | tmp1=exp(-p[3]*t);
|
---|
| 185 | tmp2=exp(-p[4]*t);
|
---|
| 186 |
|
---|
| 187 | jac[j++]=1.0;
|
---|
| 188 | jac[j++]=tmp1;
|
---|
| 189 | jac[j++]=tmp2;
|
---|
| 190 | jac[j++]=-p[1]*t*tmp1;
|
---|
| 191 | jac[j++]=-p[2]*t*tmp2;
|
---|
| 192 | }
|
---|
| 193 | }
|
---|
| 194 |
|
---|
| 195 | /* helical valley function, minimum at (1.0, 0.0, 0.0) */
|
---|
| 196 | #ifndef M_PI
|
---|
| 197 | #define M_PI 3.14159265358979323846 /* pi */
|
---|
| 198 | #endif
|
---|
| 199 |
|
---|
| 200 | void helval(double *p, double *x, int m, int n, void *data)
|
---|
| 201 | {
|
---|
| 202 | double theta;
|
---|
| 203 |
|
---|
| 204 | if(p[0]<0.0)
|
---|
| 205 | theta=atan(p[1]/p[0])/(2.0*M_PI) + 0.5;
|
---|
| 206 | else if(0.0<p[0])
|
---|
| 207 | theta=atan(p[1]/p[0])/(2.0*M_PI);
|
---|
| 208 | else
|
---|
| 209 | theta=(p[1]>=0)? 0.25 : -0.25;
|
---|
| 210 |
|
---|
| 211 | x[0]=10.0*(p[2] - 10.0*theta);
|
---|
| 212 | x[1]=10.0*(sqrt(p[0]*p[0] + p[1]*p[1]) - 1.0);
|
---|
| 213 | x[2]=p[2];
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 | void jachelval(double *p, double *jac, int m, int n, void *data)
|
---|
| 217 | {
|
---|
| 218 | register int i=0;
|
---|
| 219 | double tmp;
|
---|
| 220 |
|
---|
| 221 | tmp=p[0]*p[0] + p[1]*p[1];
|
---|
| 222 |
|
---|
| 223 | jac[i++]=50.0*p[1]/(M_PI*tmp);
|
---|
| 224 | jac[i++]=-50.0*p[0]/(M_PI*tmp);
|
---|
| 225 | jac[i++]=10.0;
|
---|
| 226 |
|
---|
| 227 | jac[i++]=10.0*p[0]/sqrt(tmp);
|
---|
| 228 | jac[i++]=10.0*p[1]/sqrt(tmp);
|
---|
| 229 | jac[i++]=0.0;
|
---|
| 230 |
|
---|
| 231 | jac[i++]=0.0;
|
---|
| 232 | jac[i++]=0.0;
|
---|
| 233 | jac[i++]=1.0;
|
---|
| 234 | }
|
---|
| 235 |
|
---|
| 236 | /* Boggs - Tolle problem 3 (linearly constrained), minimum at (-0.76744, 0.25581, 0.62791, -0.11628, 0.25581)
|
---|
| 237 | * constr1: p[0] + 3*p[1] = 0;
|
---|
| 238 | * constr2: p[2] + p[3] - 2*p[4] = 0;
|
---|
| 239 | * constr3: p[1] - p[4] = 0;
|
---|
| 240 | */
|
---|
| 241 | void bt3(double *p, double *x, int m, int n, void *data)
|
---|
| 242 | {
|
---|
| 243 | register int i;
|
---|
| 244 | double t1, t2, t3, t4;
|
---|
| 245 |
|
---|
| 246 | t1=p[0]-p[1];
|
---|
| 247 | t2=p[1]+p[2]-2.0;
|
---|
| 248 | t3=p[3]-1.0;
|
---|
| 249 | t4=p[4]-1.0;
|
---|
| 250 |
|
---|
| 251 | for(i=0; i<n; ++i)
|
---|
| 252 | x[i]=t1*t1 + t2*t2 + t3*t3 + t4*t4;
|
---|
| 253 | }
|
---|
| 254 |
|
---|
| 255 | void jacbt3(double *p, double *jac, int m, int n, void *data)
|
---|
| 256 | {
|
---|
| 257 | register int i, j;
|
---|
| 258 | double t1, t2, t3, t4;
|
---|
| 259 |
|
---|
| 260 | t1=p[0]-p[1];
|
---|
| 261 | t2=p[1]+p[2]-2.0;
|
---|
| 262 | t3=p[3]-1.0;
|
---|
| 263 | t4=p[4]-1.0;
|
---|
| 264 |
|
---|
| 265 | for(i=j=0; i<n; ++i){
|
---|
| 266 | jac[j++]=2.0*t1;
|
---|
| 267 | jac[j++]=2.0*(t2-t1);
|
---|
| 268 | jac[j++]=2.0*t2;
|
---|
| 269 | jac[j++]=2.0*t3;
|
---|
| 270 | jac[j++]=2.0*t4;
|
---|
| 271 | }
|
---|
| 272 | }
|
---|
| 273 |
|
---|
| 274 | /* Hock - Schittkowski problem 28 (linearly constrained), minimum at (0.5, -0.5, 0.5)
|
---|
| 275 | * constr1: p[0] + 2*p[1] + 3*p[2] = 1;
|
---|
| 276 | */
|
---|
| 277 | void hs28(double *p, double *x, int m, int n, void *data)
|
---|
| 278 | {
|
---|
| 279 | register int i;
|
---|
| 280 | double t1, t2;
|
---|
| 281 |
|
---|
| 282 | t1=p[0]+p[1];
|
---|
| 283 | t2=p[1]+p[2];
|
---|
| 284 |
|
---|
| 285 | for(i=0; i<n; ++i)
|
---|
| 286 | x[i]=t1*t1 + t2*t2;
|
---|
| 287 | }
|
---|
| 288 |
|
---|
| 289 | void jachs28(double *p, double *jac, int m, int n, void *data)
|
---|
| 290 | {
|
---|
| 291 | register int i, j;
|
---|
| 292 | double t1, t2;
|
---|
| 293 |
|
---|
| 294 | t1=p[0]+p[1];
|
---|
| 295 | t2=p[1]+p[2];
|
---|
| 296 |
|
---|
| 297 | for(i=j=0; i<n; ++i){
|
---|
| 298 | jac[j++]=2.0*t1;
|
---|
| 299 | jac[j++]=2.0*(t1+t2);
|
---|
| 300 | jac[j++]=2.0*t2;
|
---|
| 301 | }
|
---|
| 302 | }
|
---|
| 303 |
|
---|
| 304 | /* Hock - Schittkowski problem 48 (linearly constrained), minimum at (1.0, 1.0, 1.0, 1.0, 1.0)
|
---|
| 305 | * constr1: sum {i in 0..4} p[i] = 5;
|
---|
| 306 | * constr2: p[2] - 2*(p[3]+p[4]) = -3;
|
---|
| 307 | */
|
---|
| 308 | void hs48(double *p, double *x, int m, int n, void *data)
|
---|
| 309 | {
|
---|
| 310 | register int i;
|
---|
| 311 | double t1, t2, t3;
|
---|
| 312 |
|
---|
| 313 | t1=p[0]-1.0;
|
---|
| 314 | t2=p[1]-p[2];
|
---|
| 315 | t3=p[3]-p[4];
|
---|
| 316 |
|
---|
| 317 | for(i=0; i<n; ++i)
|
---|
| 318 | x[i]=t1*t1 + t2*t2 + t3*t3;
|
---|
| 319 | }
|
---|
| 320 |
|
---|
| 321 | void jachs48(double *p, double *jac, int m, int n, void *data)
|
---|
| 322 | {
|
---|
| 323 | register int i, j;
|
---|
| 324 | double t1, t2, t3;
|
---|
| 325 |
|
---|
| 326 | t1=p[0]-1.0;
|
---|
| 327 | t2=p[1]-p[2];
|
---|
| 328 | t3=p[3]-p[4];
|
---|
| 329 |
|
---|
| 330 | for(i=j=0; i<n; ++i){
|
---|
| 331 | jac[j++]=2.0*t1;
|
---|
| 332 | jac[j++]=2.0*t2;
|
---|
| 333 | jac[j++]=-2.0*t2;
|
---|
| 334 | jac[j++]=2.0*t3;
|
---|
| 335 | jac[j++]=-2.0*t3;
|
---|
| 336 | }
|
---|
| 337 | }
|
---|
| 338 |
|
---|
| 339 | /* Hock - Schittkowski problem 51 (linearly constrained), minimum at (1.0, 1.0, 1.0, 1.0, 1.0)
|
---|
| 340 | * constr1: p[0] + 3*p[1] = 4;
|
---|
| 341 | * constr2: p[2] + p[3] - 2*p[4] = 0;
|
---|
| 342 | * constr3: p[1] - p[4] = 0;
|
---|
| 343 | */
|
---|
| 344 | void hs51(double *p, double *x, int m, int n, void *data)
|
---|
| 345 | {
|
---|
| 346 | register int i;
|
---|
| 347 | double t1, t2, t3, t4;
|
---|
| 348 |
|
---|
| 349 | t1=p[0]-p[1];
|
---|
| 350 | t2=p[1]+p[2]-2.0;
|
---|
| 351 | t3=p[3]-1.0;
|
---|
| 352 | t4=p[4]-1.0;
|
---|
| 353 |
|
---|
| 354 | for(i=0; i<n; ++i)
|
---|
| 355 | x[i]=t1*t1 + t2*t2 + t3*t3 + t4*t4;
|
---|
| 356 | }
|
---|
| 357 |
|
---|
| 358 | void jachs51(double *p, double *jac, int m, int n, void *data)
|
---|
| 359 | {
|
---|
| 360 | register int i, j;
|
---|
| 361 | double t1, t2, t3, t4;
|
---|
| 362 |
|
---|
| 363 | t1=p[0]-p[1];
|
---|
| 364 | t2=p[1]+p[2]-2.0;
|
---|
| 365 | t3=p[3]-1.0;
|
---|
| 366 | t4=p[4]-1.0;
|
---|
| 367 |
|
---|
| 368 | for(i=j=0; i<n; ++i){
|
---|
| 369 | jac[j++]=2.0*t1;
|
---|
| 370 | jac[j++]=2.0*(t2-t1);
|
---|
| 371 | jac[j++]=2.0*t2;
|
---|
| 372 | jac[j++]=2.0*t3;
|
---|
| 373 | jac[j++]=2.0*t4;
|
---|
| 374 | }
|
---|
| 375 | }
|
---|
| 376 |
|
---|
| 377 | /* Hock - Schittkowski problem 01 (box constrained), minimum at (1.0, 1.0)
|
---|
| 378 | * constr1: p[1]>=-1.5;
|
---|
| 379 | */
|
---|
| 380 | void hs01(double *p, double *x, int m, int n, void *data)
|
---|
| 381 | {
|
---|
| 382 | double t;
|
---|
| 383 |
|
---|
| 384 | t=p[0]*p[0];
|
---|
| 385 | x[0]=10.0*(p[1]-t);
|
---|
| 386 | x[1]=1.0-p[0];
|
---|
| 387 | }
|
---|
| 388 |
|
---|
| 389 | void jachs01(double *p, double *jac, int m, int n, void *data)
|
---|
| 390 | {
|
---|
| 391 | register int j=0;
|
---|
| 392 |
|
---|
| 393 | jac[j++]=-20.0*p[0];
|
---|
| 394 | jac[j++]=10.0;
|
---|
| 395 |
|
---|
| 396 | jac[j++]=-1.0;
|
---|
| 397 | jac[j++]=0.0;
|
---|
| 398 | }
|
---|
| 399 |
|
---|
| 400 | /* Hock - Schittkowski MODIFIED problem 21 (box constrained), minimum at (2.0, 0.0)
|
---|
| 401 | * constr1: 2 <= p[0] <=50;
|
---|
| 402 | * constr2: -50 <= p[1] <=50;
|
---|
| 403 | *
|
---|
| 404 | * Original HS21 has the additional constraint 10*p[0] - p[1] >= 10; which is inactive
|
---|
| 405 | * at the solution, so it is dropped here.
|
---|
| 406 | */
|
---|
| 407 | void hs21(double *p, double *x, int m, int n, void *data)
|
---|
| 408 | {
|
---|
| 409 | x[0]=p[0]/10.0;
|
---|
| 410 | x[1]=p[1];
|
---|
| 411 | }
|
---|
| 412 |
|
---|
| 413 | void jachs21(double *p, double *jac, int m, int n, void *data)
|
---|
| 414 | {
|
---|
| 415 | register int j=0;
|
---|
| 416 |
|
---|
| 417 | jac[j++]=0.1;
|
---|
| 418 | jac[j++]=0.0;
|
---|
| 419 |
|
---|
| 420 | jac[j++]=0.0;
|
---|
| 421 | jac[j++]=1.0;
|
---|
| 422 | }
|
---|
| 423 |
|
---|
| 424 | /* Problem hatfldb (box constrained), minimum at (0.947214, 0.8, 0.64, 0.4096)
|
---|
| 425 | * constri: p[i]>=0.0; (i=1..4)
|
---|
| 426 | * constr5: p[1]<=0.8;
|
---|
| 427 | */
|
---|
| 428 | void hatfldb(double *p, double *x, int m, int n, void *data)
|
---|
| 429 | {
|
---|
| 430 | register int i;
|
---|
| 431 |
|
---|
| 432 | x[0]=p[0]-1.0;
|
---|
| 433 |
|
---|
| 434 | for(i=1; i<m; ++i)
|
---|
| 435 | x[i]=p[i-1]-sqrt(p[i]);
|
---|
| 436 | }
|
---|
| 437 |
|
---|
| 438 | void jachatfldb(double *p, double *jac, int m, int n, void *data)
|
---|
| 439 | {
|
---|
| 440 | register int j=0;
|
---|
| 441 |
|
---|
| 442 | jac[j++]=1.0;
|
---|
| 443 | jac[j++]=0.0;
|
---|
| 444 | jac[j++]=0.0;
|
---|
| 445 | jac[j++]=0.0;
|
---|
| 446 |
|
---|
| 447 | jac[j++]=1.0;
|
---|
| 448 | jac[j++]=-0.5/sqrt(p[1]);
|
---|
| 449 | jac[j++]=0.0;
|
---|
| 450 | jac[j++]=0.0;
|
---|
| 451 |
|
---|
| 452 | jac[j++]=0.0;
|
---|
| 453 | jac[j++]=1.0;
|
---|
| 454 | jac[j++]=-0.5/sqrt(p[2]);
|
---|
| 455 | jac[j++]=0.0;
|
---|
| 456 |
|
---|
| 457 | jac[j++]=0.0;
|
---|
| 458 | jac[j++]=0.0;
|
---|
| 459 | jac[j++]=1.0;
|
---|
| 460 | jac[j++]=-0.5/sqrt(p[3]);
|
---|
| 461 | }
|
---|
| 462 |
|
---|
| 463 | /* Problem hatfldc (box constrained), minimum at (1.0, 1.0, 1.0, 1.0)
|
---|
| 464 | * constri: p[i]>=0.0; (i=1..4)
|
---|
| 465 | * constri+4: p[i]<=10.0; (i=1..4)
|
---|
| 466 | */
|
---|
| 467 | void hatfldc(double *p, double *x, int m, int n, void *data)
|
---|
| 468 | {
|
---|
| 469 | register int i;
|
---|
| 470 |
|
---|
| 471 | x[0]=p[0]-1.0;
|
---|
| 472 |
|
---|
| 473 | for(i=1; i<m-1; ++i)
|
---|
| 474 | x[i]=p[i-1]-sqrt(p[i]);
|
---|
| 475 |
|
---|
| 476 | x[m-1]=p[m-1]-1.0;
|
---|
| 477 | }
|
---|
| 478 |
|
---|
| 479 | void jachatfldc(double *p, double *jac, int m, int n, void *data)
|
---|
| 480 | {
|
---|
| 481 | register int j=0;
|
---|
| 482 |
|
---|
| 483 | jac[j++]=1.0;
|
---|
| 484 | jac[j++]=0.0;
|
---|
| 485 | jac[j++]=0.0;
|
---|
| 486 | jac[j++]=0.0;
|
---|
| 487 |
|
---|
| 488 | jac[j++]=1.0;
|
---|
| 489 | jac[j++]=-0.5/sqrt(p[1]);
|
---|
| 490 | jac[j++]=0.0;
|
---|
| 491 | jac[j++]=0.0;
|
---|
| 492 |
|
---|
| 493 | jac[j++]=0.0;
|
---|
| 494 | jac[j++]=1.0;
|
---|
| 495 | jac[j++]=-0.5/sqrt(p[2]);
|
---|
| 496 | jac[j++]=0.0;
|
---|
| 497 |
|
---|
| 498 | jac[j++]=0.0;
|
---|
| 499 | jac[j++]=0.0;
|
---|
| 500 | jac[j++]=0.0;
|
---|
| 501 | jac[j++]=1.0;
|
---|
| 502 | }
|
---|
| 503 |
|
---|
| 504 | /* Hock - Schittkowski (modified #1) problem 52 (box/linearly constrained), minimum at (-0.09, 0.03, 0.25, -0.19, 0.03)
|
---|
| 505 | * constr1: p[0] + 3*p[1] = 0;
|
---|
| 506 | * constr2: p[2] + p[3] - 2*p[4] = 0;
|
---|
| 507 | * constr3: p[1] - p[4] = 0;
|
---|
| 508 | *
|
---|
| 509 | * To the above 3 constraints, we add the following 5:
|
---|
| 510 | * constr4: -0.09 <= p[0];
|
---|
| 511 | * constr5: 0.0 <= p[1] <= 0.3;
|
---|
| 512 | * constr6: p[2] <= 0.25;
|
---|
| 513 | * constr7: -0.2 <= p[3] <= 0.3;
|
---|
| 514 | * constr8: 0.0 <= p[4] <= 0.3;
|
---|
| 515 | *
|
---|
| 516 | */
|
---|
| 517 | void mod1hs52(double *p, double *x, int m, int n, void *data)
|
---|
| 518 | {
|
---|
| 519 | x[0]=4.0*p[0]-p[1];
|
---|
| 520 | x[1]=p[1]+p[2]-2.0;
|
---|
| 521 | x[2]=p[3]-1.0;
|
---|
| 522 | x[3]=p[4]-1.0;
|
---|
| 523 | }
|
---|
| 524 |
|
---|
| 525 | void jacmod1hs52(double *p, double *jac, int m, int n, void *data)
|
---|
| 526 | {
|
---|
| 527 | register int j=0;
|
---|
| 528 |
|
---|
| 529 | jac[j++]=4.0;
|
---|
| 530 | jac[j++]=-1.0;
|
---|
| 531 | jac[j++]=0.0;
|
---|
| 532 | jac[j++]=0.0;
|
---|
| 533 | jac[j++]=0.0;
|
---|
| 534 |
|
---|
| 535 | jac[j++]=0.0;
|
---|
| 536 | jac[j++]=1.0;
|
---|
| 537 | jac[j++]=1.0;
|
---|
| 538 | jac[j++]=0.0;
|
---|
| 539 | jac[j++]=0.0;
|
---|
| 540 |
|
---|
| 541 | jac[j++]=0.0;
|
---|
| 542 | jac[j++]=0.0;
|
---|
| 543 | jac[j++]=0.0;
|
---|
| 544 | jac[j++]=1.0;
|
---|
| 545 | jac[j++]=0.0;
|
---|
| 546 |
|
---|
| 547 | jac[j++]=0.0;
|
---|
| 548 | jac[j++]=0.0;
|
---|
| 549 | jac[j++]=0.0;
|
---|
| 550 | jac[j++]=0.0;
|
---|
| 551 | jac[j++]=1.0;
|
---|
| 552 | }
|
---|
| 553 |
|
---|
| 554 |
|
---|
| 555 | /* Hock - Schittkowski (modified #2) problem 52 (linear inequality constrained), minimum at (0.5, 2.0, 0.0, 1.0, 1.0)
|
---|
| 556 | * A fifth term [(p[0]-0.5)^2] is added to the objective function and
|
---|
| 557 | * the equality contraints are replaced by the following inequalities:
|
---|
| 558 | * constr1: p[0] + 3*p[1] >= -1.0;
|
---|
| 559 | * constr2: p[2] + p[3] - 2*p[4] >= -2.0;
|
---|
| 560 | * constr3: p[1] - p[4] <= 7.0;
|
---|
| 561 | *
|
---|
| 562 | *
|
---|
| 563 | */
|
---|
| 564 | void mod2hs52(double *p, double *x, int m, int n, void *data)
|
---|
| 565 | {
|
---|
| 566 | x[0]=4.0*p[0]-p[1];
|
---|
| 567 | x[1]=p[1]+p[2]-2.0;
|
---|
| 568 | x[2]=p[3]-1.0;
|
---|
| 569 | x[3]=p[4]-1.0;
|
---|
| 570 | x[4]=p[0]-0.5;
|
---|
| 571 | }
|
---|
| 572 |
|
---|
| 573 | void jacmod2hs52(double *p, double *jac, int m, int n, void *data)
|
---|
| 574 | {
|
---|
| 575 | register int j=0;
|
---|
| 576 |
|
---|
| 577 | jac[j++]=4.0;
|
---|
| 578 | jac[j++]=-1.0;
|
---|
| 579 | jac[j++]=0.0;
|
---|
| 580 | jac[j++]=0.0;
|
---|
| 581 | jac[j++]=0.0;
|
---|
| 582 |
|
---|
| 583 | jac[j++]=0.0;
|
---|
| 584 | jac[j++]=1.0;
|
---|
| 585 | jac[j++]=1.0;
|
---|
| 586 | jac[j++]=0.0;
|
---|
| 587 | jac[j++]=0.0;
|
---|
| 588 |
|
---|
| 589 | jac[j++]=0.0;
|
---|
| 590 | jac[j++]=0.0;
|
---|
| 591 | jac[j++]=0.0;
|
---|
| 592 | jac[j++]=1.0;
|
---|
| 593 | jac[j++]=0.0;
|
---|
| 594 |
|
---|
| 595 | jac[j++]=0.0;
|
---|
| 596 | jac[j++]=0.0;
|
---|
| 597 | jac[j++]=0.0;
|
---|
| 598 | jac[j++]=0.0;
|
---|
| 599 | jac[j++]=1.0;
|
---|
| 600 |
|
---|
| 601 | jac[j++]=1.0;
|
---|
| 602 | jac[j++]=0.0;
|
---|
| 603 | jac[j++]=0.0;
|
---|
| 604 | jac[j++]=0.0;
|
---|
| 605 | jac[j++]=0.0;
|
---|
| 606 | }
|
---|
| 607 |
|
---|
| 608 | /* Schittkowski (modified) problem 235 (box/linearly constrained), minimum at (-1.725, 2.9, 0.725)
|
---|
| 609 | * constr1: p[0] + p[2] = -1.0;
|
---|
| 610 | *
|
---|
| 611 | * To the above constraint, we add the following 2:
|
---|
| 612 | * constr2: p[1] - 4*p[2] = 0;
|
---|
| 613 | * constr3: 0.1 <= p[1] <= 2.9;
|
---|
| 614 | * constr4: 0.7 <= p[2];
|
---|
| 615 | *
|
---|
| 616 | */
|
---|
| 617 | void mods235(double *p, double *x, int m, int n, void *data)
|
---|
| 618 | {
|
---|
| 619 | x[0]=0.1*(p[0]-1.0);
|
---|
| 620 | x[1]=p[1]-p[0]*p[0];
|
---|
| 621 | }
|
---|
| 622 |
|
---|
| 623 | void jacmods235(double *p, double *jac, int m, int n, void *data)
|
---|
| 624 | {
|
---|
| 625 | register int j=0;
|
---|
| 626 |
|
---|
| 627 | jac[j++]=0.1;
|
---|
| 628 | jac[j++]=0.0;
|
---|
| 629 | jac[j++]=0.0;
|
---|
| 630 |
|
---|
| 631 | jac[j++]=-2.0*p[0];
|
---|
| 632 | jac[j++]=1.0;
|
---|
| 633 | jac[j++]=0.0;
|
---|
| 634 | }
|
---|
| 635 |
|
---|
| 636 | /* Boggs and Tolle modified problem 7 (box/linearly constrained), minimum at (0.7, 0.49, 0.19, 1.19, -0.2)
|
---|
| 637 | * We keep the original objective function & starting point and use the following constraints:
|
---|
| 638 | *
|
---|
| 639 | * subject to cons1:
|
---|
| 640 | * x[1]+x[2] - x[3] = 1.0;
|
---|
| 641 | * subject to cons2:
|
---|
| 642 | * x[2] - x[4] + x[1] = 0.0;
|
---|
| 643 | * subject to cons3:
|
---|
| 644 | * x[5] + x[1] = 0.5;
|
---|
| 645 | * subject to cons4:
|
---|
| 646 | * x[5]>=-0.3;
|
---|
| 647 | * subject to cons5:
|
---|
| 648 | * x[1]<=0.7;
|
---|
| 649 | *
|
---|
| 650 | */
|
---|
| 651 | void modbt7(double *p, double *x, int m, int n, void *data)
|
---|
| 652 | {
|
---|
| 653 | register int i;
|
---|
| 654 |
|
---|
| 655 | for(i=0; i<n; ++i)
|
---|
| 656 | x[i]=100.0*(p[1]-p[0]*p[0])*(p[1]-p[0]*p[0]) + (p[0]-1.0)*(p[0]-1.0);
|
---|
| 657 | }
|
---|
| 658 |
|
---|
| 659 | void jacmodbt7(double *p, double *jac, int m, int n, void *data)
|
---|
| 660 | {
|
---|
| 661 | register int i, j;
|
---|
| 662 |
|
---|
| 663 | for(i=j=0; i<m; ++i){
|
---|
| 664 | jac[j++]=-400.0*(p[1]-p[0]*p[0])*p[0] + 2.0*p[0] - 2.0;
|
---|
| 665 | jac[j++]=200.0*(p[1]-p[0]*p[0]);
|
---|
| 666 | jac[j++]=0.0;
|
---|
| 667 | jac[j++]=0.0;
|
---|
| 668 | jac[j++]=0.0;
|
---|
| 669 | }
|
---|
| 670 | }
|
---|
| 671 |
|
---|
| 672 | /* Equilibrium combustion problem, constrained nonlinear equation from the book by Floudas et al.
|
---|
| 673 | * Minimum at (0.0034, 31.3265, 0.0684, 0.8595, 0.0370)
|
---|
| 674 | * constri: p[i]>=0.0001; (i=1..5)
|
---|
| 675 | * constri+5: p[i]<=100.0; (i=1..5)
|
---|
| 676 | */
|
---|
| 677 | void combust(double *p, double *x, int m, int n, void *data)
|
---|
| 678 | {
|
---|
| 679 | double R, R5, R6, R7, R8, R9, R10;
|
---|
| 680 |
|
---|
| 681 | R=10;
|
---|
| 682 | R5=0.193;
|
---|
| 683 | R6=4.10622*1e-4;
|
---|
| 684 | R7=5.45177*1e-4;
|
---|
| 685 | R8=4.4975*1e-7;
|
---|
| 686 | R9=3.40735*1e-5;
|
---|
| 687 | R10=9.615*1e-7;
|
---|
| 688 |
|
---|
| 689 | x[0]=p[0]*p[1]+p[0]-3*p[4];
|
---|
| 690 | x[1]=2*p[0]*p[1]+p[0]+3*R10*p[1]*p[1]+p[1]*p[2]*p[2]+R7*p[1]*p[2]+R9*p[1]*p[3]+R8*p[1]-R*p[4];
|
---|
| 691 | x[2]=2*p[1]*p[2]*p[2]+R7*p[1]*p[2]+2*R5*p[2]*p[2]+R6*p[2]-8*p[4];
|
---|
| 692 | x[3]=R9*p[1]*p[3]+2*p[3]*p[3]-4*R*p[4];
|
---|
| 693 | x[4]=p[0]*p[1]+p[0]+R10*p[1]*p[1]+p[1]*p[2]*p[2]+R7*p[1]*p[2]+R9*p[1]*p[3]+R8*p[1]+R5*p[2]*p[2]+R6*p[2]+p[3]*p[3]-1.0;
|
---|
| 694 | }
|
---|
| 695 |
|
---|
| 696 | void jaccombust(double *p, double *jac, int m, int n, void *data)
|
---|
| 697 | {
|
---|
| 698 | register int j=0;
|
---|
| 699 | double R, R5, R6, R7, R8, R9, R10;
|
---|
| 700 |
|
---|
| 701 | R=10;
|
---|
| 702 | R5=0.193;
|
---|
| 703 | R6=4.10622*1e-4;
|
---|
| 704 | R7=5.45177*1e-4;
|
---|
| 705 | R8=4.4975*1e-7;
|
---|
| 706 | R9=3.40735*1e-5;
|
---|
| 707 | R10=9.615*1e-7;
|
---|
| 708 |
|
---|
| 709 | for(j=0; j<m*n; ++j) jac[j]=0.0;
|
---|
| 710 |
|
---|
| 711 | j=0;
|
---|
| 712 | jac[j]=p[1]+1;
|
---|
| 713 | jac[j+1]=p[0];
|
---|
| 714 | jac[j+4]=-3;
|
---|
| 715 |
|
---|
| 716 | j+=m;
|
---|
| 717 | jac[j]=2*p[1]+1;
|
---|
| 718 | jac[j+1]=2*p[0]+6*R10*p[1]+p[2]*p[2]+R7*p[2]+R9*p[3]+R8;
|
---|
| 719 | jac[j+2]=2*p[1]*p[2]+R7*p[1];
|
---|
| 720 | jac[j+3]=R9*p[1];
|
---|
| 721 | jac[j+4]=-R;
|
---|
| 722 |
|
---|
| 723 | j+=m;
|
---|
| 724 | jac[j+1]=2*p[2]*p[2]+R7*p[2];
|
---|
| 725 | jac[j+2]=4*p[1]*p[2]+R7*p[1]+4*R5*p[2]+R6;
|
---|
| 726 | jac[j+4]=-8;
|
---|
| 727 |
|
---|
| 728 | j+=m;
|
---|
| 729 | jac[j+1]=R9*p[3];
|
---|
| 730 | jac[j+3]=R9*p[1]+4*p[3];
|
---|
| 731 | jac[j+4]=-4*R;
|
---|
| 732 |
|
---|
| 733 | j+=m;
|
---|
| 734 | jac[j]=p[1]+1;
|
---|
| 735 | jac[j+1]=p[0]+2*R10*p[1]+p[2]*p[2]+R7*p[2]+R9*p[3]+R8;
|
---|
| 736 | jac[j+2]=2*p[1]*p[2]+R7*p[1]+2*R5*p[2]+R6;
|
---|
| 737 | jac[j+3]=R9*p[1]+2*p[3];
|
---|
| 738 | }
|
---|
| 739 |
|
---|
| 740 | /* Hock - Schittkowski (modified) problem 76 (linear inequalities & equations constrained), minimum at (0.0, 0.00909091, 0.372727, 0.354545)
|
---|
| 741 | * The non-squared terms in the objective function have been removed, the rhs of constr2 has been changed to 0.4 (from 4)
|
---|
| 742 | * and constr3 has been changed to an equation.
|
---|
| 743 | *
|
---|
| 744 | * constr1: p[0] + 2*p[1] + p[2] + p[3] <= 5;
|
---|
| 745 | * constr2: 3*p[0] + p[1] + 2*p[2] - p[3] <= 0.4;
|
---|
| 746 | * constr3: p[1] + 4*p[2] = 1.5;
|
---|
| 747 | *
|
---|
| 748 | */
|
---|
| 749 | void modhs76(double *p, double *x, int m, int n, void *data)
|
---|
| 750 | {
|
---|
| 751 | x[0]=p[0];
|
---|
| 752 | x[1]=sqrt(0.5)*p[1];
|
---|
| 753 | x[2]=p[2];
|
---|
| 754 | x[3]=sqrt(0.5)*p[3];
|
---|
| 755 | }
|
---|
| 756 |
|
---|
| 757 | void jacmodhs76(double *p, double *jac, int m, int n, void *data)
|
---|
| 758 | {
|
---|
| 759 | register int j=0;
|
---|
| 760 |
|
---|
| 761 | jac[j++]=1.0;
|
---|
| 762 | jac[j++]=0.0;
|
---|
| 763 | jac[j++]=0.0;
|
---|
| 764 | jac[j++]=0.0;
|
---|
| 765 |
|
---|
| 766 | jac[j++]=0.0;
|
---|
| 767 | jac[j++]=sqrt(0.5);
|
---|
| 768 | jac[j++]=0.0;
|
---|
| 769 | jac[j++]=0.0;
|
---|
| 770 |
|
---|
| 771 | jac[j++]=0.0;
|
---|
| 772 | jac[j++]=0.0;
|
---|
| 773 | jac[j++]=1.0;
|
---|
| 774 | jac[j++]=0.0;
|
---|
| 775 |
|
---|
| 776 | jac[j++]=0.0;
|
---|
| 777 | jac[j++]=0.0;
|
---|
| 778 | jac[j++]=0.0;
|
---|
| 779 | jac[j++]=sqrt(0.5);
|
---|
| 780 | }
|
---|
| 781 |
|
---|
| 782 |
|
---|
| 783 |
|
---|
| 784 | int main()
|
---|
| 785 | {
|
---|
| 786 | register int i, j;
|
---|
| 787 | int problem, ret;
|
---|
| 788 | double p[5], // 5 is max(2, 3, 5)
|
---|
| 789 | x[16]; // 16 is max(2, 3, 5, 6, 16)
|
---|
| 790 | int m, n;
|
---|
| 791 | double opts[LM_OPTS_SZ], info[LM_INFO_SZ];
|
---|
| 792 | char *probname[]={
|
---|
| 793 | "Rosenbrock function",
|
---|
| 794 | "modified Rosenbrock problem",
|
---|
| 795 | "Powell's function",
|
---|
| 796 | "Wood's function",
|
---|
| 797 | "Meyer's (reformulated) problem",
|
---|
| 798 | "Osborne's problem",
|
---|
| 799 | "helical valley function",
|
---|
| 800 | "Boggs & Tolle's problem #3",
|
---|
| 801 | "Hock - Schittkowski problem #28",
|
---|
| 802 | "Hock - Schittkowski problem #48",
|
---|
| 803 | "Hock - Schittkowski problem #51",
|
---|
| 804 | "Hock - Schittkowski problem #01",
|
---|
| 805 | "Hock - Schittkowski modified problem #21",
|
---|
| 806 | "hatfldb problem",
|
---|
| 807 | "hatfldc problem",
|
---|
| 808 | "equilibrium combustion problem",
|
---|
| 809 | "Hock - Schittkowski modified #1 problem #52",
|
---|
| 810 | "Schittkowski modified problem #235",
|
---|
| 811 | "Boggs & Tolle modified problem #7",
|
---|
| 812 | "Hock - Schittkowski modified #2 problem #52",
|
---|
| 813 | "Hock - Schittkowski modified problem #76",
|
---|
| 814 | };
|
---|
| 815 |
|
---|
| 816 | opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
|
---|
| 817 | opts[4]= LM_DIFF_DELTA; // relevant only if the Jacobian is approximated using finite differences; specifies forward differencing
|
---|
| 818 | //opts[4]=-LM_DIFF_DELTA; // specifies central differencing to approximate Jacobian; more accurate but more expensive to compute!
|
---|
| 819 |
|
---|
| 820 | /* uncomment the appropriate line below to select a minimization problem */
|
---|
| 821 | problem=
|
---|
| 822 | //0; // Rosenbrock function
|
---|
| 823 | //1; // modified Rosenbrock problem
|
---|
| 824 | //2; // Powell's function
|
---|
| 825 | //3; // Wood's function
|
---|
| 826 | 4; // Meyer's (reformulated) problem
|
---|
| 827 | //5; // Osborne's problem
|
---|
| 828 | //6; // helical valley function
|
---|
| 829 | #ifdef HAVE_LAPACK
|
---|
| 830 | //7; // Boggs & Tolle's problem 3
|
---|
| 831 | //8; // Hock - Schittkowski problem 28
|
---|
| 832 | //9; // Hock - Schittkowski problem 48
|
---|
| 833 | //10; // Hock - Schittkowski problem 51
|
---|
| 834 | #else // no LAPACK
|
---|
| 835 | #ifdef _MSC_VER
|
---|
| 836 | #pragma message("LAPACK not available, some test problems cannot be used")
|
---|
| 837 | #else
|
---|
| 838 | #warning LAPACK not available, some test problems cannot be used
|
---|
| 839 | #endif // _MSC_VER
|
---|
| 840 |
|
---|
| 841 | #endif /* HAVE_LAPACK */
|
---|
| 842 | //11; // Hock - Schittkowski problem 01
|
---|
| 843 | //12; // Hock - Schittkowski modified problem 21
|
---|
| 844 | //13; // hatfldb problem
|
---|
| 845 | //14; // hatfldc problem
|
---|
| 846 | //15; // equilibrium combustion problem
|
---|
| 847 | #ifdef HAVE_LAPACK
|
---|
| 848 | //16; // Hock - Schittkowski modified #1 problem 52
|
---|
| 849 | //17; // Schittkowski modified problem 235
|
---|
| 850 | //18; // Boggs & Tolle modified problem #7
|
---|
| 851 | //19; // Hock - Schittkowski modified #2 problem 52
|
---|
| 852 | //20; // Hock - Schittkowski modified problem #76"
|
---|
| 853 | #endif /* HAVE_LAPACK */
|
---|
| 854 |
|
---|
| 855 | switch(problem){
|
---|
| 856 | default: fprintf(stderr, "unknown problem specified (#%d)! Note that some minimization problems require LAPACK.\n", problem);
|
---|
| 857 | exit(1);
|
---|
| 858 | break;
|
---|
| 859 |
|
---|
| 860 | case 0:
|
---|
| 861 | /* Rosenbrock function */
|
---|
| 862 | m=2; n=2;
|
---|
| 863 | p[0]=-1.2; p[1]=1.0;
|
---|
| 864 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 865 | ret=dlevmar_der(ros, jacros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 866 | //ret=dlevmar_dif(ros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // no Jacobian
|
---|
| 867 | break;
|
---|
| 868 |
|
---|
| 869 | case 1:
|
---|
| 870 | /* modified Rosenbrock problem */
|
---|
| 871 | m=2; n=3;
|
---|
| 872 | p[0]=-1.2; p[1]=1.0;
|
---|
| 873 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 874 | ret=dlevmar_der(modros, jacmodros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 875 | //ret=dlevmar_dif(modros, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // no Jacobian
|
---|
| 876 | break;
|
---|
| 877 |
|
---|
| 878 | case 2:
|
---|
| 879 | /* Powell's function */
|
---|
| 880 | m=2; n=2;
|
---|
| 881 | p[0]=3.0; p[1]=1.0;
|
---|
| 882 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 883 | ret=dlevmar_der(powell, jacpowell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 884 | //ret=dlevmar_dif(powell, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // no Jacobian
|
---|
| 885 | break;
|
---|
| 886 |
|
---|
| 887 | case 3:
|
---|
| 888 | /* Wood's function */
|
---|
| 889 | m=4; n=6;
|
---|
| 890 | p[0]=-3.0; p[1]=-1.0; p[2]=-3.0; p[3]=-1.0;
|
---|
| 891 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 892 | ret=dlevmar_dif(wood, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // no Jacobian
|
---|
| 893 | break;
|
---|
| 894 |
|
---|
| 895 | case 4:
|
---|
| 896 | /* Meyer's data fitting problem */
|
---|
| 897 | m=3; n=16;
|
---|
| 898 | p[0]=8.85; p[1]=4.0; p[2]=2.5;
|
---|
| 899 | x[0]=34.780; x[1]=28.610; x[2]=23.650; x[3]=19.630;
|
---|
| 900 | x[4]=16.370; x[5]=13.720; x[6]=11.540; x[7]=9.744;
|
---|
| 901 | x[8]=8.261; x[9]=7.030; x[10]=6.005; x[11]=5.147;
|
---|
| 902 | x[12]=4.427; x[13]=3.820; x[14]=3.307; x[15]=2.872;
|
---|
| 903 | //ret=dlevmar_der(meyer, jacmeyer, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 904 |
|
---|
| 905 | { double *work, *covar;
|
---|
| 906 | work=malloc((LM_DIF_WORKSZ(m, n)+m*m)*sizeof(double));
|
---|
| 907 | if(!work){
|
---|
| 908 | fprintf(stderr, "memory allocation request failed in main()\n");
|
---|
| 909 | exit(1);
|
---|
| 910 | }
|
---|
| 911 | covar=work+LM_DIF_WORKSZ(m, n);
|
---|
| 912 |
|
---|
| 913 | ret=dlevmar_dif(meyer, p, x, m, n, 1000, opts, info, work, covar, NULL); // no Jacobian, caller allocates work memory, covariance estimated
|
---|
| 914 |
|
---|
| 915 | printf("Covariance of the fit:\n");
|
---|
| 916 | for(i=0; i<m; ++i){
|
---|
| 917 | for(j=0; j<m; ++j)
|
---|
| 918 | printf("%g ", covar[i*m+j]);
|
---|
| 919 | printf("\n");
|
---|
| 920 | }
|
---|
| 921 | printf("\n");
|
---|
| 922 |
|
---|
| 923 | free(work);
|
---|
| 924 | }
|
---|
| 925 |
|
---|
| 926 | /* uncomment the following block to verify Jacobian */
|
---|
| 927 | /*
|
---|
| 928 | {
|
---|
| 929 | double err[16];
|
---|
| 930 | dlevmar_chkjac(meyer, jacmeyer, p, m, n, NULL, err);
|
---|
| 931 | for(i=0; i<n; ++i) printf("gradient %d, err %g\n", i, err[i]);
|
---|
| 932 | }
|
---|
| 933 | */
|
---|
| 934 | break;
|
---|
| 935 |
|
---|
| 936 | case 5:
|
---|
| 937 | /* Osborne's data fitting problem */
|
---|
| 938 | {
|
---|
| 939 | double x33[]={
|
---|
| 940 | 8.44E-1, 9.08E-1, 9.32E-1, 9.36E-1, 9.25E-1, 9.08E-1, 8.81E-1,
|
---|
| 941 | 8.5E-1, 8.18E-1, 7.84E-1, 7.51E-1, 7.18E-1, 6.85E-1, 6.58E-1,
|
---|
| 942 | 6.28E-1, 6.03E-1, 5.8E-1, 5.58E-1, 5.38E-1, 5.22E-1, 5.06E-1,
|
---|
| 943 | 4.9E-1, 4.78E-1, 4.67E-1, 4.57E-1, 4.48E-1, 4.38E-1, 4.31E-1,
|
---|
| 944 | 4.24E-1, 4.2E-1, 4.14E-1, 4.11E-1, 4.06E-1};
|
---|
| 945 |
|
---|
| 946 | m=5; n=33;
|
---|
| 947 | p[0]=0.5; p[1]=1.5; p[2]=-1.0; p[3]=1.0E-2; p[4]=2.0E-2;
|
---|
| 948 |
|
---|
| 949 | ret=dlevmar_der(osborne, jacosborne, p, x33, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 950 | //ret=dlevmar_dif(osborne, p, x33, m, n, 1000, opts, info, NULL, NULL, NULL); // no Jacobian
|
---|
| 951 | }
|
---|
| 952 | break;
|
---|
| 953 |
|
---|
| 954 | case 6:
|
---|
| 955 | /* helical valley function */
|
---|
| 956 | m=3; n=3;
|
---|
| 957 | p[0]=-1.0; p[1]=0.0; p[2]=0.0;
|
---|
| 958 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 959 | ret=dlevmar_der(helval, jachelval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 960 | //ret=dlevmar_dif(helval, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // no Jacobian
|
---|
| 961 | break;
|
---|
| 962 |
|
---|
| 963 | #ifdef HAVE_LAPACK
|
---|
| 964 | case 7:
|
---|
| 965 | /* Boggs-Tolle problem 3 */
|
---|
| 966 | m=5; n=5;
|
---|
| 967 | p[0]=2.0; p[1]=2.0; p[2]=2.0;
|
---|
| 968 | p[3]=2.0; p[4]=2.0;
|
---|
| 969 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 970 |
|
---|
| 971 | {
|
---|
| 972 | double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -2.0, 0.0, 1.0, 0.0, 0.0, -1.0},
|
---|
| 973 | b[3]={0.0, 0.0, 0.0};
|
---|
| 974 |
|
---|
| 975 | ret=dlevmar_lec_der(bt3, jacbt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
|
---|
| 976 | //ret=dlevmar_lec_dif(bt3, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
|
---|
| 977 | }
|
---|
| 978 | break;
|
---|
| 979 |
|
---|
| 980 | case 8:
|
---|
| 981 | /* Hock - Schittkowski problem 28 */
|
---|
| 982 | m=3; n=3;
|
---|
| 983 | p[0]=-4.0; p[1]=1.0; p[2]=1.0;
|
---|
| 984 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 985 |
|
---|
| 986 | {
|
---|
| 987 | double A[1*3]={1.0, 2.0, 3.0},
|
---|
| 988 | b[1]={1.0};
|
---|
| 989 |
|
---|
| 990 | ret=dlevmar_lec_der(hs28, jachs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
|
---|
| 991 | //ret=dlevmar_lec_dif(hs28, p, x, m, n, A, b, 1, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
|
---|
| 992 | }
|
---|
| 993 | break;
|
---|
| 994 |
|
---|
| 995 | case 9:
|
---|
| 996 | /* Hock - Schittkowski problem 48 */
|
---|
| 997 | m=5; n=5;
|
---|
| 998 | p[0]=3.0; p[1]=5.0; p[2]=-3.0;
|
---|
| 999 | p[3]=2.0; p[4]=-2.0;
|
---|
| 1000 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1001 |
|
---|
| 1002 | {
|
---|
| 1003 | double A[2*5]={1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0, -2.0, -2.0},
|
---|
| 1004 | b[2]={5.0, -3.0};
|
---|
| 1005 |
|
---|
| 1006 | ret=dlevmar_lec_der(hs48, jachs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
|
---|
| 1007 | //ret=dlevmar_lec_dif(hs48, p, x, m, n, A, b, 2, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
|
---|
| 1008 | }
|
---|
| 1009 | break;
|
---|
| 1010 |
|
---|
| 1011 | case 10:
|
---|
| 1012 | /* Hock - Schittkowski problem 51 */
|
---|
| 1013 | m=5; n=5;
|
---|
| 1014 | p[0]=2.5; p[1]=0.5; p[2]=2.0;
|
---|
| 1015 | p[3]=-1.0; p[4]=0.5;
|
---|
| 1016 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1017 |
|
---|
| 1018 | {
|
---|
| 1019 | double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -2.0, 0.0, 1.0, 0.0, 0.0, -1.0},
|
---|
| 1020 | b[3]={4.0, 0.0, 0.0};
|
---|
| 1021 |
|
---|
| 1022 | ret=dlevmar_lec_der(hs51, jachs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, analytic Jacobian
|
---|
| 1023 | //ret=dlevmar_lec_dif(hs51, p, x, m, n, A, b, 3, 1000, opts, info, NULL, NULL, NULL); // lin. constraints, no Jacobian
|
---|
| 1024 | }
|
---|
| 1025 | break;
|
---|
| 1026 |
|
---|
| 1027 | #endif /* HAVE_LAPACK */
|
---|
| 1028 |
|
---|
| 1029 | case 11:
|
---|
| 1030 | /* Hock - Schittkowski problem 01 */
|
---|
| 1031 | m=2; n=2;
|
---|
| 1032 | p[0]=-2.0; p[1]=1.0;
|
---|
| 1033 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1034 | //ret=dlevmar_der(hs01, jachs01, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 1035 | {
|
---|
| 1036 | double lb[2], ub[2];
|
---|
| 1037 |
|
---|
| 1038 | lb[0]=-DBL_MAX; lb[1]=-1.5;
|
---|
| 1039 | ub[0]=ub[1]=DBL_MAX;
|
---|
| 1040 |
|
---|
| 1041 | ret=dlevmar_bc_der(hs01, jachs01, p, x, m, n, lb, ub, NULL, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 1042 | }
|
---|
| 1043 | break;
|
---|
| 1044 |
|
---|
| 1045 | case 12:
|
---|
| 1046 | /* Hock - Schittkowski (modified) problem 21 */
|
---|
| 1047 | m=2; n=2;
|
---|
| 1048 | p[0]=-1.0; p[1]=-1.0;
|
---|
| 1049 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1050 | //ret=dlevmar_der(hs21, jachs21, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 1051 | {
|
---|
| 1052 | double lb[2], ub[2];
|
---|
| 1053 |
|
---|
| 1054 | lb[0]=2.0; lb[1]=-50.0;
|
---|
| 1055 | ub[0]=50.0; ub[1]=50.0;
|
---|
| 1056 |
|
---|
| 1057 | ret=dlevmar_bc_der(hs21, jachs21, p, x, m, n, lb, ub, NULL, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 1058 | }
|
---|
| 1059 | break;
|
---|
| 1060 |
|
---|
| 1061 | case 13:
|
---|
| 1062 | /* hatfldb problem */
|
---|
| 1063 | m=4; n=4;
|
---|
| 1064 | p[0]=p[1]=p[2]=p[3]=0.1;
|
---|
| 1065 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1066 | //ret=dlevmar_der(hatfldb, jachatfldb, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 1067 | {
|
---|
| 1068 | double lb[4], ub[4];
|
---|
| 1069 |
|
---|
| 1070 | lb[0]=lb[1]=lb[2]=lb[3]=0.0;
|
---|
| 1071 |
|
---|
| 1072 | ub[0]=ub[2]=ub[3]=DBL_MAX;
|
---|
| 1073 | ub[1]=0.8;
|
---|
| 1074 |
|
---|
| 1075 | ret=dlevmar_bc_der(hatfldb, jachatfldb, p, x, m, n, lb, ub, NULL, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 1076 | }
|
---|
| 1077 | break;
|
---|
| 1078 |
|
---|
| 1079 | case 14:
|
---|
| 1080 | /* hatfldc problem */
|
---|
| 1081 | m=4; n=4;
|
---|
| 1082 | p[0]=p[1]=p[2]=p[3]=0.9;
|
---|
| 1083 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1084 | //ret=dlevmar_der(hatfldc, jachatfldc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 1085 | {
|
---|
| 1086 | double lb[4], ub[4];
|
---|
| 1087 |
|
---|
| 1088 | lb[0]=lb[1]=lb[2]=lb[3]=0.0;
|
---|
| 1089 |
|
---|
| 1090 | ub[0]=ub[1]=ub[2]=ub[3]=10.0;
|
---|
| 1091 |
|
---|
| 1092 | ret=dlevmar_bc_der(hatfldc, jachatfldc, p, x, m, n, lb, ub, NULL, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 1093 | }
|
---|
| 1094 | break;
|
---|
| 1095 |
|
---|
| 1096 | case 15:
|
---|
| 1097 | /* equilibrium combustion problem */
|
---|
| 1098 | m=5; n=5;
|
---|
| 1099 | p[0]=p[1]=p[2]=p[3]=p[4]=0.0001;
|
---|
| 1100 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1101 | //ret=dlevmar_der(combust, jaccombust, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 1102 | {
|
---|
| 1103 | double lb[5], ub[5];
|
---|
| 1104 |
|
---|
| 1105 | lb[0]=lb[1]=lb[2]=lb[3]=lb[4]=0.0001;
|
---|
| 1106 |
|
---|
| 1107 | ub[0]=ub[1]=ub[2]=ub[3]=ub[4]=100.0;
|
---|
| 1108 |
|
---|
| 1109 | ret=dlevmar_bc_der(combust, jaccombust, p, x, m, n, lb, ub, NULL, 5000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
|
---|
| 1110 | }
|
---|
| 1111 | break;
|
---|
| 1112 |
|
---|
| 1113 | #ifdef HAVE_LAPACK
|
---|
| 1114 | case 16:
|
---|
| 1115 | /* Hock - Schittkowski modified #1 problem 52 */
|
---|
| 1116 | m=5; n=4;
|
---|
| 1117 | p[0]=2.0; p[1]=2.0; p[2]=2.0;
|
---|
| 1118 | p[3]=2.0; p[4]=2.0;
|
---|
| 1119 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1120 |
|
---|
| 1121 | {
|
---|
| 1122 | double A[3*5]={1.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -2.0, 0.0, 1.0, 0.0, 0.0, -1.0},
|
---|
| 1123 | b[3]={0.0, 0.0, 0.0};
|
---|
| 1124 |
|
---|
| 1125 | double lb[5], ub[5];
|
---|
| 1126 |
|
---|
| 1127 | double weights[5]={2000.0, 2000.0, 2000.0, 2000.0, 2000.0}; // penalty terms weights
|
---|
| 1128 |
|
---|
| 1129 | lb[0]=-0.09; lb[1]=0.0; lb[2]=-DBL_MAX; lb[3]=-0.2; lb[4]=0.0;
|
---|
| 1130 | ub[0]=DBL_MAX; ub[1]=0.3; ub[2]=0.25; ub[3]=0.3; ub[4]=0.3;
|
---|
| 1131 |
|
---|
| 1132 | ret=dlevmar_blec_der(mod1hs52, jacmod1hs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
|
---|
| 1133 | //ret=dlevmar_blec_dif(mod1hs52, p, x, m, n, lb, ub, A, b, 3, weights, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
|
---|
| 1134 | }
|
---|
| 1135 | break;
|
---|
| 1136 |
|
---|
| 1137 | case 17:
|
---|
| 1138 | /* Schittkowski modified problem 235 */
|
---|
| 1139 | m=3; n=2;
|
---|
| 1140 | p[0]=-2.0; p[1]=3.0; p[2]=1.0;
|
---|
| 1141 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1142 |
|
---|
| 1143 | {
|
---|
| 1144 | double A[2*3]={1.0, 0.0, 1.0, 0.0, 1.0, -4.0},
|
---|
| 1145 | b[2]={-1.0, 0.0};
|
---|
| 1146 |
|
---|
| 1147 | double lb[3], ub[3];
|
---|
| 1148 |
|
---|
| 1149 | lb[0]=-DBL_MAX; lb[1]=0.1; lb[2]=0.7;
|
---|
| 1150 | ub[0]=DBL_MAX; ub[1]=2.9; ub[2]=DBL_MAX;
|
---|
| 1151 |
|
---|
| 1152 | ret=dlevmar_blec_der(mods235, jacmods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
|
---|
| 1153 | //ret=dlevmar_blec_dif(mods235, p, x, m, n, lb, ub, A, b, 2, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
|
---|
| 1154 | }
|
---|
| 1155 | break;
|
---|
| 1156 |
|
---|
| 1157 | case 18:
|
---|
| 1158 | /* Boggs & Tolle modified problem 7 */
|
---|
| 1159 | m=5; n=5;
|
---|
| 1160 | p[0]=-2.0; p[1]=1.0; p[2]=1.0; p[3]=1.0; p[4]=1.0;
|
---|
| 1161 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1162 |
|
---|
| 1163 | {
|
---|
| 1164 | double A[3*5]={1.0, 1.0, -1.0, 0.0, 0.0, 1.0, 1.0, 0.0, -1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0},
|
---|
| 1165 | b[3]={1.0, 0.0, 0.5};
|
---|
| 1166 |
|
---|
| 1167 | double lb[5], ub[5];
|
---|
| 1168 |
|
---|
| 1169 | lb[0]=-DBL_MAX; lb[1]=-DBL_MAX; lb[2]=-DBL_MAX; lb[3]=-DBL_MAX; lb[4]=-0.3;
|
---|
| 1170 | ub[0]=0.7; ub[1]= DBL_MAX; ub[2]= DBL_MAX; ub[3]= DBL_MAX; ub[4]=DBL_MAX;
|
---|
| 1171 |
|
---|
| 1172 | ret=dlevmar_blec_der(modbt7, jacmodbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 1000, opts, info, NULL, NULL, NULL); // box & lin. constraints, analytic Jacobian
|
---|
| 1173 | //ret=dlevmar_blec_dif(modbt7, p, x, m, n, lb, ub, A, b, 3, NULL, 10000, opts, info, NULL, NULL, NULL); // box & lin. constraints, no Jacobian
|
---|
| 1174 | }
|
---|
| 1175 | break;
|
---|
| 1176 |
|
---|
| 1177 | case 19:
|
---|
| 1178 | /* Hock - Schittkowski modified #2 problem 52 */
|
---|
| 1179 | m=5; n=5;
|
---|
| 1180 | p[0]=2.0; p[1]=2.0; p[2]=2.0;
|
---|
| 1181 | p[3]=2.0; p[4]=2.0;
|
---|
| 1182 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1183 |
|
---|
| 1184 | {
|
---|
| 1185 | double C[3*5]={1.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, -2.0, 0.0, -1.0, 0.0, 0.0, 1.0},
|
---|
| 1186 | d[3]={-1.0, -2.0, -7.0};
|
---|
| 1187 |
|
---|
| 1188 | ret=dlevmar_bleic_der(mod2hs52, jacmod2hs52, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, 3, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, analytic Jacobian
|
---|
| 1189 | //ret=dlevmar_bleic_dif(mod2hs52, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, 3, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, no Jacobian
|
---|
| 1190 | }
|
---|
| 1191 | break;
|
---|
| 1192 |
|
---|
| 1193 | case 20:
|
---|
| 1194 | /* Hock - Schittkowski modified problem 76 */
|
---|
| 1195 | m=4; n=4;
|
---|
| 1196 | p[0]=0.5; p[1]=0.5; p[2]=0.5; p[3]=0.5;
|
---|
| 1197 | for(i=0; i<n; i++) x[i]=0.0;
|
---|
| 1198 |
|
---|
| 1199 | {
|
---|
| 1200 | double A[1*4]={0.0, 1.0, 4.0, 0.0},
|
---|
| 1201 | b[1]={1.5};
|
---|
| 1202 |
|
---|
| 1203 | double C[2*4]={-1.0, -2.0, -1.0, -1.0, -3.0, -1.0, -2.0, 1.0},
|
---|
| 1204 | d[2]={-5.0, -0.4};
|
---|
| 1205 |
|
---|
| 1206 | double lb[4]={0.0, 0.0, 0.0, 0.0};
|
---|
| 1207 |
|
---|
| 1208 | ret=dlevmar_bleic_der(modhs76, jacmodhs76, p, x, m, n, lb, NULL, A, b, 1, C, d, 2, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, analytic Jacobian
|
---|
| 1209 | //ret=dlevmar_bleic_dif(modhs76, p, x, m, n, lb, NULL, A, b, 1, C, d, 2, 1000, opts, info, NULL, NULL, NULL); // lin. ineq. constraints, no Jacobian
|
---|
| 1210 | /* variations:
|
---|
| 1211 | * if no lb is used, the minimizer is (-0.1135922 0.1330097 0.3417476 0.07572816)
|
---|
| 1212 | * if the rhs of constr2 is 4.0, the minimizer is (0.0, 0.166667, 0.333333, 0.0)
|
---|
| 1213 | */
|
---|
| 1214 | }
|
---|
| 1215 | break;
|
---|
| 1216 |
|
---|
| 1217 | #endif /* HAVE_LAPACK */
|
---|
| 1218 | } /* switch */
|
---|
| 1219 |
|
---|
| 1220 | printf("Results for %s:\n", probname[problem]);
|
---|
| 1221 | printf("Levenberg-Marquardt returned %d in %g iter, reason %g\nSolution: ", ret, info[5], info[6]);
|
---|
| 1222 | for(i=0; i<m; ++i)
|
---|
| 1223 | printf("%.7g ", p[i]);
|
---|
| 1224 | printf("\n\nMinimization info:\n");
|
---|
| 1225 | for(i=0; i<LM_INFO_SZ; ++i)
|
---|
| 1226 | printf("%g ", info[i]);
|
---|
| 1227 | printf("\n");
|
---|
| 1228 |
|
---|
| 1229 | return 0;
|
---|
| 1230 | }
|
---|