1 | /////////////////////////////////////////////////////////////////////////////////
|
---|
2 | //
|
---|
3 | // Levenberg - Marquardt non-linear minimization algorithm
|
---|
4 | // Copyright (C) 2009 Manolis Lourakis (lourakis at ics forth gr)
|
---|
5 | // Institute of Computer Science, Foundation for Research & Technology - Hellas
|
---|
6 | // Heraklion, Crete, Greece.
|
---|
7 | //
|
---|
8 | // This program is free software; you can redistribute it and/or modify
|
---|
9 | // it under the terms of the GNU General Public License as published by
|
---|
10 | // the Free Software Foundation; either version 2 of the License, or
|
---|
11 | // (at your option) any later version.
|
---|
12 | //
|
---|
13 | // This program is distributed in the hope that it will be useful,
|
---|
14 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | // GNU General Public License for more details.
|
---|
17 | //
|
---|
18 | /////////////////////////////////////////////////////////////////////////////////
|
---|
19 |
|
---|
20 | #ifndef LM_REAL // not included by lmbleic.c
|
---|
21 | #error This file should not be compiled directly!
|
---|
22 | #endif
|
---|
23 |
|
---|
24 |
|
---|
25 | /* precision-specific definitions */
|
---|
26 | #define LMBLEIC_DATA LM_ADD_PREFIX(lmbleic_data)
|
---|
27 | #define LMBLEIC_ELIM LM_ADD_PREFIX(lmbleic_elim)
|
---|
28 | #define LMBLEIC_FUNC LM_ADD_PREFIX(lmbleic_func)
|
---|
29 | #define LMBLEIC_JACF LM_ADD_PREFIX(lmbleic_jacf)
|
---|
30 | #define LEVMAR_BLEIC_DER LM_ADD_PREFIX(levmar_bleic_der)
|
---|
31 | #define LEVMAR_BLEIC_DIF LM_ADD_PREFIX(levmar_bleic_dif)
|
---|
32 | #define LEVMAR_BLIC_DER LM_ADD_PREFIX(levmar_blic_der)
|
---|
33 | #define LEVMAR_BLIC_DIF LM_ADD_PREFIX(levmar_blic_dif)
|
---|
34 | #define LEVMAR_LEIC_DER LM_ADD_PREFIX(levmar_leic_der)
|
---|
35 | #define LEVMAR_LEIC_DIF LM_ADD_PREFIX(levmar_leic_dif)
|
---|
36 | #define LEVMAR_LIC_DER LM_ADD_PREFIX(levmar_lic_der)
|
---|
37 | #define LEVMAR_LIC_DIF LM_ADD_PREFIX(levmar_lic_dif)
|
---|
38 | #define LEVMAR_BLEC_DER LM_ADD_PREFIX(levmar_blec_der)
|
---|
39 | #define LEVMAR_BLEC_DIF LM_ADD_PREFIX(levmar_blec_dif)
|
---|
40 | #define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
|
---|
41 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
|
---|
42 | #define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
|
---|
43 |
|
---|
44 | struct LMBLEIC_DATA{
|
---|
45 | LM_REAL *jac;
|
---|
46 | int nineqcnstr; // #inequality constraints
|
---|
47 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata);
|
---|
48 | void (*jacf)(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata);
|
---|
49 | void *adata;
|
---|
50 | };
|
---|
51 |
|
---|
52 |
|
---|
53 | /* wrapper ensuring that the user-supplied function is called with the right number of variables (i.e. m) */
|
---|
54 | static void LMBLEIC_FUNC(LM_REAL *pext, LM_REAL *hx, int mm, int n, void *adata)
|
---|
55 | {
|
---|
56 | struct LMBLEIC_DATA *data=(struct LMBLEIC_DATA *)adata;
|
---|
57 | int m;
|
---|
58 |
|
---|
59 | m=mm-data->nineqcnstr;
|
---|
60 | (*(data->func))(pext, hx, m, n, data->adata);
|
---|
61 | }
|
---|
62 |
|
---|
63 |
|
---|
64 | /* wrapper for computing the Jacobian at pext. The Jacobian is nxmm */
|
---|
65 | static void LMBLEIC_JACF(LM_REAL *pext, LM_REAL *jacext, int mm, int n, void *adata)
|
---|
66 | {
|
---|
67 | struct LMBLEIC_DATA *data=(struct LMBLEIC_DATA *)adata;
|
---|
68 | int m;
|
---|
69 | register int i, j;
|
---|
70 | LM_REAL *jac, *jacim, *jacextimm;
|
---|
71 |
|
---|
72 | m=mm-data->nineqcnstr;
|
---|
73 | jac=data->jac;
|
---|
74 |
|
---|
75 | (*(data->jacf))(pext, jac, m, n, data->adata);
|
---|
76 |
|
---|
77 | for(i=0; i<n; ++i){
|
---|
78 | jacextimm=jacext+i*mm;
|
---|
79 | jacim=jac+i*m;
|
---|
80 | for(j=0; j<m; ++j)
|
---|
81 | jacextimm[j]=jacim[j]; //jacext[i*mm+j]=jac[i*m+j];
|
---|
82 |
|
---|
83 | for(j=m; j<mm; ++j)
|
---|
84 | jacextimm[j]=0.0; //jacext[i*mm+j]=0.0;
|
---|
85 | }
|
---|
86 | }
|
---|
87 |
|
---|
88 |
|
---|
89 | /*
|
---|
90 | * This function is similar to LEVMAR_DER except that the minimization is
|
---|
91 | * performed subject to the box constraints lb[i]<=p[i]<=ub[i], the linear
|
---|
92 | * equation constraints A*p=b, A being k1xm, b k1x1, and the linear inequality
|
---|
93 | * constraints C*p>=d, C being k2xm, d k2x1.
|
---|
94 | *
|
---|
95 | * The inequalities are converted to equations by introducing surplus variables,
|
---|
96 | * i.e. c^T*p >= d becomes c^T*p - y = d, with y>=0. To transform all inequalities
|
---|
97 | * to equations, a total of k2 surplus variables are introduced; a problem with only
|
---|
98 | * box and linear constraints results then and is solved with LEVMAR_BLEC_DER()
|
---|
99 | * Note that opposite direction inequalities should be converted to the desired
|
---|
100 | * direction by negating, i.e. c^T*p <= d becomes -c^T*p >= -d
|
---|
101 | *
|
---|
102 | * This function requires an analytic Jacobian. In case the latter is unavailable,
|
---|
103 | * use LEVMAR_BLEIC_DIF() bellow
|
---|
104 | *
|
---|
105 | */
|
---|
106 | int LEVMAR_BLEIC_DER(
|
---|
107 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
|
---|
108 | void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), /* function to evaluate the Jacobian \part x / \part p */
|
---|
109 | LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
|
---|
110 | LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
|
---|
111 | int m, /* I: parameter vector dimension (i.e. #unknowns) */
|
---|
112 | int n, /* I: measurement vector dimension */
|
---|
113 | LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */
|
---|
114 | LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */
|
---|
115 | LM_REAL *A, /* I: equality constraints matrix, k1xm. If NULL, no linear equation constraints apply */
|
---|
116 | LM_REAL *b, /* I: right hand constraints vector, k1x1 */
|
---|
117 | int k1, /* I: number of constraints (i.e. A's #rows) */
|
---|
118 | LM_REAL *C, /* I: inequality constraints matrix, k2xm */
|
---|
119 | LM_REAL *d, /* I: right hand constraints vector, k2x1 */
|
---|
120 | int k2, /* I: number of inequality constraints (i.e. C's #rows) */
|
---|
121 | int itmax, /* I: maximum number of iterations */
|
---|
122 | LM_REAL opts[4], /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
|
---|
123 | * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
|
---|
124 | */
|
---|
125 | LM_REAL info[LM_INFO_SZ],
|
---|
126 | /* O: information regarding the minimization. Set to NULL if don't care
|
---|
127 | * info[0]= ||e||_2 at initial p.
|
---|
128 | * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
|
---|
129 | * info[5]= # iterations,
|
---|
130 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
|
---|
131 | * 2 - stopped by small Dp
|
---|
132 | * 3 - stopped by itmax
|
---|
133 | * 4 - singular matrix. Restart from current p with increased mu
|
---|
134 | * 5 - no further error reduction is possible. Restart with increased mu
|
---|
135 | * 6 - stopped by small ||e||_2
|
---|
136 | * 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
|
---|
137 | * info[7]= # function evaluations
|
---|
138 | * info[8]= # Jacobian evaluations
|
---|
139 | * info[9]= # linear systems solved, i.e. # attempts for reducing error
|
---|
140 | */
|
---|
141 | LM_REAL *work, /* working memory at least LM_BLEIC_DER_WORKSZ() reals large, allocated if NULL */
|
---|
142 | LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
|
---|
143 | void *adata) /* pointer to possibly additional data, passed uninterpreted to func & jacf.
|
---|
144 | * Set to NULL if not needed
|
---|
145 | */
|
---|
146 | {
|
---|
147 | struct LMBLEIC_DATA data;
|
---|
148 | LM_REAL *ptr, *pext, *Aext, *bext, *covext; /* corresponding to p, A, b, covar for the full set of variables;
|
---|
149 | pext=[p, surplus], pext is mm, Aext is (k1+k2)xmm, bext (k1+k2), covext is mmxmm
|
---|
150 | */
|
---|
151 | LM_REAL *lbext, *ubext; // corresponding to lb, ub for the full set of variables
|
---|
152 | int mm, ret, k12;
|
---|
153 | register int i, j, ii;
|
---|
154 | register LM_REAL tmp;
|
---|
155 | LM_REAL locinfo[LM_INFO_SZ];
|
---|
156 |
|
---|
157 | if(!jacf){
|
---|
158 | fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_BLEIC_DER)
|
---|
159 | RCAT("().\nIf no such function is available, use ", LEVMAR_BLEIC_DIF) RCAT("() rather than ", LEVMAR_BLEIC_DER) "()\n");
|
---|
160 | return LM_ERROR;
|
---|
161 | }
|
---|
162 |
|
---|
163 | if(!C || !d){
|
---|
164 | fprintf(stderr, RCAT(LCAT(LEVMAR_BLEIC_DER, "(): missing inequality constraints, use "), LEVMAR_BLEC_DER) "() in this case!\n");
|
---|
165 | return LM_ERROR;
|
---|
166 | }
|
---|
167 |
|
---|
168 | if(!A || !b) k1=0; // sanity check
|
---|
169 |
|
---|
170 | mm=m+k2;
|
---|
171 |
|
---|
172 | if(n<m-k1){
|
---|
173 | fprintf(stderr, LCAT(LEVMAR_BLEIC_DER, "(): cannot solve a problem with fewer measurements + equality constraints [%d + %d] than unknowns [%d]\n"), n, k1, m);
|
---|
174 | return LM_ERROR;
|
---|
175 | }
|
---|
176 |
|
---|
177 | k12=k1+k2;
|
---|
178 | ptr=(LM_REAL *)malloc((3*mm + k12*mm + k12 + n*m + (covar? mm*mm : 0))*sizeof(LM_REAL));
|
---|
179 | if(!ptr){
|
---|
180 | fprintf(stderr, LCAT(LEVMAR_BLEIC_DER, "(): memory allocation request failed\n"));
|
---|
181 | return LM_ERROR;
|
---|
182 | }
|
---|
183 | pext=ptr;
|
---|
184 | lbext=pext+mm;
|
---|
185 | ubext=lbext+mm;
|
---|
186 | Aext=ubext+mm;
|
---|
187 | bext=Aext+k12*mm;
|
---|
188 | data.jac=bext+k12;
|
---|
189 | covext=covar? data.jac+n*m : NULL;
|
---|
190 | data.nineqcnstr=k2;
|
---|
191 | data.func=func;
|
---|
192 | data.jacf=jacf;
|
---|
193 | data.adata=adata;
|
---|
194 |
|
---|
195 | /* compute y s.t. C*p - y=d, i.e. y=C*p-d.
|
---|
196 | * y is stored in the last k2 elements of pext
|
---|
197 | */
|
---|
198 | for(i=0; i<k2; ++i){
|
---|
199 | for(j=0, tmp=0.0; j<m; ++j)
|
---|
200 | tmp+=C[i*m+j]*p[j];
|
---|
201 | pext[j=i+m]=tmp-d[i];
|
---|
202 |
|
---|
203 | /* surplus variables must be >=0 */
|
---|
204 | lbext[j]=0.0;
|
---|
205 | ubext[j]=LM_REAL_MAX;
|
---|
206 | }
|
---|
207 | /* set the first m elements of pext equal to p */
|
---|
208 | for(i=0; i<m; ++i){
|
---|
209 | pext[i]=p[i];
|
---|
210 | lbext[i]=lb? lb[i] : LM_REAL_MIN;
|
---|
211 | ubext[i]=ub? ub[i] : LM_REAL_MAX;
|
---|
212 | }
|
---|
213 |
|
---|
214 | /* setup the constraints matrix */
|
---|
215 | /* original linear equation constraints */
|
---|
216 | for(i=0; i<k1; ++i){
|
---|
217 | for(j=0; j<m; ++j)
|
---|
218 | Aext[i*mm+j]=A[i*m+j];
|
---|
219 |
|
---|
220 | for(j=m; j<mm; ++j)
|
---|
221 | Aext[i*mm+j]=0.0;
|
---|
222 |
|
---|
223 | bext[i]=b[i];
|
---|
224 | }
|
---|
225 | /* linear equation constraints resulting from surplus variables */
|
---|
226 | for(i=0, ii=k1; i<k2; ++i, ++ii){
|
---|
227 | for(j=0; j<m; ++j)
|
---|
228 | Aext[ii*mm+j]=C[i*m+j];
|
---|
229 |
|
---|
230 | for(j=m; j<mm; ++j)
|
---|
231 | Aext[ii*mm+j]=0.0;
|
---|
232 |
|
---|
233 | Aext[ii*mm+m+i]=-1.0;
|
---|
234 |
|
---|
235 | bext[ii]=d[i];
|
---|
236 | }
|
---|
237 |
|
---|
238 | if(!info) info=locinfo; /* make sure that LEVMAR_BLEC_DER() is called with non-null info */
|
---|
239 | /* note that the default weights for the penalty terms are being used below */
|
---|
240 | ret=LEVMAR_BLEC_DER(LMBLEIC_FUNC, LMBLEIC_JACF, pext, x, mm, n, lbext, ubext, Aext, bext, k12, NULL, itmax, opts, info, work, covext, (void *)&data);
|
---|
241 |
|
---|
242 | /* copy back the minimizer */
|
---|
243 | for(i=0; i<m; ++i)
|
---|
244 | p[i]=pext[i];
|
---|
245 |
|
---|
246 | #if 0
|
---|
247 | printf("Surplus variables for the minimizer:\n");
|
---|
248 | for(i=m; i<mm; ++i)
|
---|
249 | printf("%g ", pext[i]);
|
---|
250 | printf("\n\n");
|
---|
251 | #endif
|
---|
252 |
|
---|
253 | if(covar){
|
---|
254 | for(i=0; i<m; ++i){
|
---|
255 | for(j=0; j<m; ++j)
|
---|
256 | covar[i*m+j]=covext[i*mm+j];
|
---|
257 | }
|
---|
258 | }
|
---|
259 |
|
---|
260 | free(ptr);
|
---|
261 |
|
---|
262 | return ret;
|
---|
263 | }
|
---|
264 |
|
---|
265 | /* Similar to the LEVMAR_BLEIC_DER() function above, except that the Jacobian is approximated
|
---|
266 | * with the aid of finite differences (forward or central, see the comment for the opts argument)
|
---|
267 | */
|
---|
268 | int LEVMAR_BLEIC_DIF(
|
---|
269 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
|
---|
270 | LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
|
---|
271 | LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
|
---|
272 | int m, /* I: parameter vector dimension (i.e. #unknowns) */
|
---|
273 | int n, /* I: measurement vector dimension */
|
---|
274 | LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */
|
---|
275 | LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */
|
---|
276 | LM_REAL *A, /* I: equality constraints matrix, k1xm. If NULL, no linear equation constraints apply */
|
---|
277 | LM_REAL *b, /* I: right hand constraints vector, k1x1 */
|
---|
278 | int k1, /* I: number of constraints (i.e. A's #rows) */
|
---|
279 | LM_REAL *C, /* I: inequality constraints matrix, k2xm */
|
---|
280 | LM_REAL *d, /* I: right hand constraints vector, k2x1 */
|
---|
281 | int k2, /* I: number of inequality constraints (i.e. C's #rows) */
|
---|
282 | int itmax, /* I: maximum number of iterations */
|
---|
283 | LM_REAL opts[5], /* I: opts[0-3] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
|
---|
284 | * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
|
---|
285 | * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
|
---|
286 | * If \delta<0, the Jacobian is approximated with central differences which are more accurate
|
---|
287 | * (but slower!) compared to the forward differences employed by default.
|
---|
288 | */
|
---|
289 | LM_REAL info[LM_INFO_SZ],
|
---|
290 | /* O: information regarding the minimization. Set to NULL if don't care
|
---|
291 | * info[0]= ||e||_2 at initial p.
|
---|
292 | * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
|
---|
293 | * info[5]= # iterations,
|
---|
294 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
|
---|
295 | * 2 - stopped by small Dp
|
---|
296 | * 3 - stopped by itmax
|
---|
297 | * 4 - singular matrix. Restart from current p with increased mu
|
---|
298 | * 5 - no further error reduction is possible. Restart with increased mu
|
---|
299 | * 6 - stopped by small ||e||_2
|
---|
300 | * 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
|
---|
301 | * info[7]= # function evaluations
|
---|
302 | * info[8]= # Jacobian evaluations
|
---|
303 | * info[9]= # linear systems solved, i.e. # attempts for reducing error
|
---|
304 | */
|
---|
305 | LM_REAL *work, /* working memory at least LM_BLEIC_DIF_WORKSZ() reals large, allocated if NULL */
|
---|
306 | LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
|
---|
307 | void *adata) /* pointer to possibly additional data, passed uninterpreted to func.
|
---|
308 | * Set to NULL if not needed
|
---|
309 | */
|
---|
310 | {
|
---|
311 | struct LMBLEIC_DATA data;
|
---|
312 | LM_REAL *ptr, *pext, *Aext, *bext, *covext; /* corresponding to p, A, b, covar for the full set of variables;
|
---|
313 | pext=[p, surplus], pext is mm, Aext is (k1+k2)xmm, bext (k1+k2), covext is mmxmm
|
---|
314 | */
|
---|
315 | LM_REAL *lbext, *ubext; // corresponding to lb, ub for the full set of variables
|
---|
316 | int mm, ret, k12;
|
---|
317 | register int i, j, ii;
|
---|
318 | register LM_REAL tmp;
|
---|
319 | LM_REAL locinfo[LM_INFO_SZ];
|
---|
320 |
|
---|
321 | if(!C || !d){
|
---|
322 | fprintf(stderr, RCAT(LCAT(LEVMAR_BLEIC_DIF, "(): missing inequality constraints, use "), LEVMAR_BLEC_DIF) "() in this case!\n");
|
---|
323 | return LM_ERROR;
|
---|
324 | }
|
---|
325 | if(!A || !b) k1=0; // sanity check
|
---|
326 |
|
---|
327 | mm=m+k2;
|
---|
328 |
|
---|
329 | if(n<m-k1){
|
---|
330 | fprintf(stderr, LCAT(LEVMAR_BLEIC_DIF, "(): cannot solve a problem with fewer measurements + equality constraints [%d + %d] than unknowns [%d]\n"), n, k1, m);
|
---|
331 | return LM_ERROR;
|
---|
332 | }
|
---|
333 |
|
---|
334 | k12=k1+k2;
|
---|
335 | ptr=(LM_REAL *)malloc((3*mm + k12*mm + k12 + (covar? mm*mm : 0))*sizeof(LM_REAL));
|
---|
336 | if(!ptr){
|
---|
337 | fprintf(stderr, LCAT(LEVMAR_BLEIC_DIF, "(): memory allocation request failed\n"));
|
---|
338 | return LM_ERROR;
|
---|
339 | }
|
---|
340 | pext=ptr;
|
---|
341 | lbext=pext+mm;
|
---|
342 | ubext=lbext+mm;
|
---|
343 | Aext=ubext+mm;
|
---|
344 | bext=Aext+k12*mm;
|
---|
345 | data.jac=NULL;
|
---|
346 | covext=covar? bext+k12 : NULL;
|
---|
347 | data.nineqcnstr=k2;
|
---|
348 | data.func=func;
|
---|
349 | data.jacf=NULL;
|
---|
350 | data.adata=adata;
|
---|
351 |
|
---|
352 | /* compute y s.t. C*p - y=d, i.e. y=C*p-d.
|
---|
353 | * y is stored in the last k2 elements of pext
|
---|
354 | */
|
---|
355 | for(i=0; i<k2; ++i){
|
---|
356 | for(j=0, tmp=0.0; j<m; ++j)
|
---|
357 | tmp+=C[i*m+j]*p[j];
|
---|
358 | pext[j=i+m]=tmp-d[i];
|
---|
359 |
|
---|
360 | /* surplus variables must be >=0 */
|
---|
361 | lbext[j]=0.0;
|
---|
362 | ubext[j]=LM_REAL_MAX;
|
---|
363 | }
|
---|
364 | /* set the first m elements of pext equal to p */
|
---|
365 | for(i=0; i<m; ++i){
|
---|
366 | pext[i]=p[i];
|
---|
367 | lbext[i]=lb? lb[i] : LM_REAL_MIN;
|
---|
368 | ubext[i]=ub? ub[i] : LM_REAL_MAX;
|
---|
369 | }
|
---|
370 |
|
---|
371 | /* setup the constraints matrix */
|
---|
372 | /* original linear equation constraints */
|
---|
373 | for(i=0; i<k1; ++i){
|
---|
374 | for(j=0; j<m; ++j)
|
---|
375 | Aext[i*mm+j]=A[i*m+j];
|
---|
376 |
|
---|
377 | for(j=m; j<mm; ++j)
|
---|
378 | Aext[i*mm+j]=0.0;
|
---|
379 |
|
---|
380 | bext[i]=b[i];
|
---|
381 | }
|
---|
382 | /* linear equation constraints resulting from surplus variables */
|
---|
383 | for(i=0, ii=k1; i<k2; ++i, ++ii){
|
---|
384 | for(j=0; j<m; ++j)
|
---|
385 | Aext[ii*mm+j]=C[i*m+j];
|
---|
386 |
|
---|
387 | for(j=m; j<mm; ++j)
|
---|
388 | Aext[ii*mm+j]=0.0;
|
---|
389 |
|
---|
390 | Aext[ii*mm+m+i]=-1.0;
|
---|
391 |
|
---|
392 | bext[ii]=d[i];
|
---|
393 | }
|
---|
394 |
|
---|
395 | if(!info) info=locinfo; /* make sure that LEVMAR_BLEC_DIF() is called with non-null info */
|
---|
396 | /* note that the default weights for the penalty terms are being used below */
|
---|
397 | ret=LEVMAR_BLEC_DIF(LMBLEIC_FUNC, pext, x, mm, n, lbext, ubext, Aext, bext, k12, NULL, itmax, opts, info, work, covext, (void *)&data);
|
---|
398 |
|
---|
399 | /* copy back the minimizer */
|
---|
400 | for(i=0; i<m; ++i)
|
---|
401 | p[i]=pext[i];
|
---|
402 |
|
---|
403 | #if 0
|
---|
404 | printf("Surplus variables for the minimizer:\n");
|
---|
405 | for(i=m; i<mm; ++i)
|
---|
406 | printf("%g ", pext[i]);
|
---|
407 | printf("\n\n");
|
---|
408 | #endif
|
---|
409 |
|
---|
410 | if(covar){
|
---|
411 | for(i=0; i<m; ++i){
|
---|
412 | for(j=0; j<m; ++j)
|
---|
413 | covar[i*m+j]=covext[i*mm+j];
|
---|
414 | }
|
---|
415 | }
|
---|
416 |
|
---|
417 | free(ptr);
|
---|
418 |
|
---|
419 | return ret;
|
---|
420 | }
|
---|
421 |
|
---|
422 |
|
---|
423 | /* convenience wrappers to LEVMAR_BLEIC_DER/LEVMAR_BLEIC_DIF */
|
---|
424 |
|
---|
425 | /* box & linear inequality constraints */
|
---|
426 | int LEVMAR_BLIC_DER(
|
---|
427 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
---|
428 | void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),
|
---|
429 | LM_REAL *p, LM_REAL *x, int m, int n,
|
---|
430 | LM_REAL *lb, LM_REAL *ub,
|
---|
431 | LM_REAL *C, LM_REAL *d, int k2,
|
---|
432 | int itmax, LM_REAL opts[4], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
---|
433 | {
|
---|
434 | return LEVMAR_BLEIC_DER(func, jacf, p, x, m, n, lb, ub, NULL, NULL, 0, C, d, k2, itmax, opts, info, work, covar, adata);
|
---|
435 | }
|
---|
436 |
|
---|
437 | int LEVMAR_BLIC_DIF(
|
---|
438 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
---|
439 | LM_REAL *p, LM_REAL *x, int m, int n,
|
---|
440 | LM_REAL *lb, LM_REAL *ub,
|
---|
441 | LM_REAL *C, LM_REAL *d, int k2,
|
---|
442 | int itmax, LM_REAL opts[5], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
---|
443 | {
|
---|
444 | return LEVMAR_BLEIC_DIF(func, p, x, m, n, lb, ub, NULL, NULL, 0, C, d, k2, itmax, opts, info, work, covar, adata);
|
---|
445 | }
|
---|
446 |
|
---|
447 | /* linear equation & inequality constraints */
|
---|
448 | int LEVMAR_LEIC_DER(
|
---|
449 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
---|
450 | void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),
|
---|
451 | LM_REAL *p, LM_REAL *x, int m, int n,
|
---|
452 | LM_REAL *A, LM_REAL *b, int k1,
|
---|
453 | LM_REAL *C, LM_REAL *d, int k2,
|
---|
454 | int itmax, LM_REAL opts[4], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
---|
455 | {
|
---|
456 | return LEVMAR_BLEIC_DER(func, jacf, p, x, m, n, NULL, NULL, A, b, k1, C, d, k2, itmax, opts, info, work, covar, adata);
|
---|
457 | }
|
---|
458 |
|
---|
459 | int LEVMAR_LEIC_DIF(
|
---|
460 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
---|
461 | LM_REAL *p, LM_REAL *x, int m, int n,
|
---|
462 | LM_REAL *A, LM_REAL *b, int k1,
|
---|
463 | LM_REAL *C, LM_REAL *d, int k2,
|
---|
464 | int itmax, LM_REAL opts[5], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
---|
465 | {
|
---|
466 | return LEVMAR_BLEIC_DIF(func, p, x, m, n, NULL, NULL, A, b, k1, C, d, k2, itmax, opts, info, work, covar, adata);
|
---|
467 | }
|
---|
468 |
|
---|
469 | /* linear inequality constraints */
|
---|
470 | int LEVMAR_LIC_DER(
|
---|
471 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
---|
472 | void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),
|
---|
473 | LM_REAL *p, LM_REAL *x, int m, int n,
|
---|
474 | LM_REAL *C, LM_REAL *d, int k2,
|
---|
475 | int itmax, LM_REAL opts[4], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
---|
476 | {
|
---|
477 | return LEVMAR_BLEIC_DER(func, jacf, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, k2, itmax, opts, info, work, covar, adata);
|
---|
478 | }
|
---|
479 |
|
---|
480 | int LEVMAR_LIC_DIF(
|
---|
481 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata),
|
---|
482 | LM_REAL *p, LM_REAL *x, int m, int n,
|
---|
483 | LM_REAL *C, LM_REAL *d, int k2,
|
---|
484 | int itmax, LM_REAL opts[5], LM_REAL info[LM_INFO_SZ], LM_REAL *work, LM_REAL *covar, void *adata)
|
---|
485 | {
|
---|
486 | return LEVMAR_BLEIC_DIF(func, p, x, m, n, NULL, NULL, NULL, NULL, 0, C, d, k2, itmax, opts, info, work, covar, adata);
|
---|
487 | }
|
---|
488 |
|
---|
489 | /* undefine all. THIS MUST REMAIN AT THE END OF THE FILE */
|
---|
490 | #undef LMBLEIC_DATA
|
---|
491 | #undef LMBLEIC_ELIM
|
---|
492 | #undef LMBLEIC_FUNC
|
---|
493 | #undef LMBLEIC_JACF
|
---|
494 | #undef LEVMAR_FDIF_FORW_JAC_APPROX
|
---|
495 | #undef LEVMAR_COVAR
|
---|
496 | #undef LEVMAR_TRANS_MAT_MAT_MULT
|
---|
497 | #undef LEVMAR_BLEIC_DER
|
---|
498 | #undef LEVMAR_BLEIC_DIF
|
---|
499 | #undef LEVMAR_BLIC_DER
|
---|
500 | #undef LEVMAR_BLIC_DIF
|
---|
501 | #undef LEVMAR_LEIC_DER
|
---|
502 | #undef LEVMAR_LEIC_DIF
|
---|
503 | #undef LEVMAR_LIC_DER
|
---|
504 | #undef LEVMAR_LIC_DIF
|
---|
505 | #undef LEVMAR_BLEC_DER
|
---|
506 | #undef LEVMAR_BLEC_DIF
|
---|