| 1 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 2 | // 
 | 
|---|
| 3 | //  Levenberg - Marquardt non-linear minimization algorithm
 | 
|---|
| 4 | //  Copyright (C) 2004-06  Manolis Lourakis (lourakis at ics forth gr)
 | 
|---|
| 5 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas
 | 
|---|
| 6 | //  Heraklion, Crete, Greece.
 | 
|---|
| 7 | //
 | 
|---|
| 8 | //  This program is free software; you can redistribute it and/or modify
 | 
|---|
| 9 | //  it under the terms of the GNU General Public License as published by
 | 
|---|
| 10 | //  the Free Software Foundation; either version 2 of the License, or
 | 
|---|
| 11 | //  (at your option) any later version.
 | 
|---|
| 12 | //
 | 
|---|
| 13 | //  This program is distributed in the hope that it will be useful,
 | 
|---|
| 14 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 15 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 16 | //  GNU General Public License for more details.
 | 
|---|
| 17 | //
 | 
|---|
| 18 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 19 | 
 | 
|---|
| 20 | /*******************************************************************************
 | 
|---|
| 21 |  * This file implements combined box and linear equation constraints.
 | 
|---|
| 22 |  *
 | 
|---|
| 23 |  * Note that the algorithm implementing linearly constrained minimization does
 | 
|---|
| 24 |  * so by a change in parameters that transforms the original program into an
 | 
|---|
| 25 |  * unconstrained one. To employ the same idea for implementing box & linear
 | 
|---|
| 26 |  * constraints would require the transformation of box constraints on the
 | 
|---|
| 27 |  * original parameters to box constraints for the new parameter set. This
 | 
|---|
| 28 |  * being impossible, a different approach is used here for finding the minimum.
 | 
|---|
| 29 |  * The trick is to remove the box constraints by augmenting the function to
 | 
|---|
| 30 |  * be fitted with penalty terms and then solve the resulting problem (which
 | 
|---|
| 31 |  * involves linear constrains only) with the functions in lmlec.c
 | 
|---|
| 32 |  *
 | 
|---|
| 33 |  * More specifically, for the constraint a<=x[i]<=b to hold, the term C[i]=
 | 
|---|
| 34 |  * (2*x[i]-(a+b))/(b-a) should be within [-1, 1]. This is enforced by adding
 | 
|---|
| 35 |  * the penalty term w[i]*max((C[i])^2-1, 0) to the objective function, where
 | 
|---|
| 36 |  * w[i] is a large weight. In the case of constraints of the form a<=x[i],
 | 
|---|
| 37 |  * the term C[i]=a-x[i] has to be non positive, thus the penalty term is
 | 
|---|
| 38 |  * w[i]*max(C[i], 0). If x[i]<=b, C[i]=x[i]-b has to be non negative and
 | 
|---|
| 39 |  * the penalty is w[i]*max(C[i], 0). The derivatives needed for the Jacobian
 | 
|---|
| 40 |  * are as follows:
 | 
|---|
| 41 |  * For the constraint a<=x[i]<=b: 4*(2*x[i]-(a+b))/(b-a)^2 if x[i] not in [a, b],
 | 
|---|
| 42 |  *                                0 otherwise
 | 
|---|
| 43 |  * For the constraint a<=x[i]: -1 if x[i]<=a, 0 otherwise
 | 
|---|
| 44 |  * For the constraint x[i]<=b: 1 if b<=x[i], 0 otherwise
 | 
|---|
| 45 |  *
 | 
|---|
| 46 |  * Note that for the above to work, the weights w[i] should be large enough;
 | 
|---|
| 47 |  * depending on your minimization problem, the default values might need some
 | 
|---|
| 48 |  * tweaking (see arg "wghts" below).
 | 
|---|
| 49 |  *******************************************************************************/
 | 
|---|
| 50 | 
 | 
|---|
| 51 | #ifndef LM_REAL // not included by lmblec.c
 | 
|---|
| 52 | #error This file should not be compiled directly!
 | 
|---|
| 53 | #endif
 | 
|---|
| 54 | 
 | 
|---|
| 55 | 
 | 
|---|
| 56 | #define __MAX__(x, y)   (((x)>=(y))? (x) : (y))
 | 
|---|
| 57 | #define __BC_WEIGHT__   LM_CNST(1E+04)
 | 
|---|
| 58 | 
 | 
|---|
| 59 | #define __BC_INTERVAL__ 0
 | 
|---|
| 60 | #define __BC_LOW__      1
 | 
|---|
| 61 | #define __BC_HIGH__     2
 | 
|---|
| 62 | 
 | 
|---|
| 63 | /* precision-specific definitions */
 | 
|---|
| 64 | #define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check)
 | 
|---|
| 65 | #define LMBLEC_DATA LM_ADD_PREFIX(lmblec_data)
 | 
|---|
| 66 | #define LMBLEC_FUNC LM_ADD_PREFIX(lmblec_func)
 | 
|---|
| 67 | #define LMBLEC_JACF LM_ADD_PREFIX(lmblec_jacf)
 | 
|---|
| 68 | #define LEVMAR_LEC_DER LM_ADD_PREFIX(levmar_lec_der)
 | 
|---|
| 69 | #define LEVMAR_LEC_DIF LM_ADD_PREFIX(levmar_lec_dif)
 | 
|---|
| 70 | #define LEVMAR_BLEC_DER LM_ADD_PREFIX(levmar_blec_der)
 | 
|---|
| 71 | #define LEVMAR_BLEC_DIF LM_ADD_PREFIX(levmar_blec_dif)
 | 
|---|
| 72 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
 | 
|---|
| 73 | 
 | 
|---|
| 74 | struct LMBLEC_DATA{
 | 
|---|
| 75 |   LM_REAL *x, *lb, *ub, *w;
 | 
|---|
| 76 |   int *bctype;
 | 
|---|
| 77 |   void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata);
 | 
|---|
| 78 |   void (*jacf)(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata);
 | 
|---|
| 79 |   void *adata;
 | 
|---|
| 80 | };
 | 
|---|
| 81 | 
 | 
|---|
| 82 | /* augmented measurements */
 | 
|---|
| 83 | static void LMBLEC_FUNC(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata)
 | 
|---|
| 84 | {
 | 
|---|
| 85 | struct LMBLEC_DATA *data=(struct LMBLEC_DATA *)adata;
 | 
|---|
| 86 | int nn;
 | 
|---|
| 87 | register int i, j, *typ;
 | 
|---|
| 88 | register LM_REAL *lb, *ub, *w, tmp;
 | 
|---|
| 89 | 
 | 
|---|
| 90 |   nn=n-m;
 | 
|---|
| 91 |   lb=data->lb;
 | 
|---|
| 92 |   ub=data->ub;
 | 
|---|
| 93 |   w=data->w;
 | 
|---|
| 94 |   typ=data->bctype;
 | 
|---|
| 95 |   (*(data->func))(p, hx, m, nn, data->adata);
 | 
|---|
| 96 | 
 | 
|---|
| 97 |   for(i=nn, j=0; i<n; ++i, ++j){
 | 
|---|
| 98 |     switch(typ[j]){
 | 
|---|
| 99 |       case __BC_INTERVAL__:
 | 
|---|
| 100 |         tmp=(LM_CNST(2.0)*p[j]-(lb[j]+ub[j]))/(ub[j]-lb[j]);
 | 
|---|
| 101 |         hx[i]=w[j]*__MAX__(tmp*tmp-LM_CNST(1.0), LM_CNST(0.0));
 | 
|---|
| 102 |       break;
 | 
|---|
| 103 | 
 | 
|---|
| 104 |       case __BC_LOW__:
 | 
|---|
| 105 |         hx[i]=w[j]*__MAX__(lb[j]-p[j], LM_CNST(0.0));
 | 
|---|
| 106 |       break;
 | 
|---|
| 107 | 
 | 
|---|
| 108 |       case __BC_HIGH__:
 | 
|---|
| 109 |         hx[i]=w[j]*__MAX__(p[j]-ub[j], LM_CNST(0.0));
 | 
|---|
| 110 |       break;
 | 
|---|
| 111 |     }
 | 
|---|
| 112 |   }
 | 
|---|
| 113 | }
 | 
|---|
| 114 | 
 | 
|---|
| 115 | /* augmented Jacobian */
 | 
|---|
| 116 | static void LMBLEC_JACF(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata)
 | 
|---|
| 117 | {
 | 
|---|
| 118 | struct LMBLEC_DATA *data=(struct LMBLEC_DATA *)adata;
 | 
|---|
| 119 | int nn, *typ;
 | 
|---|
| 120 | register int i, j;
 | 
|---|
| 121 | register LM_REAL *lb, *ub, *w, tmp;
 | 
|---|
| 122 | 
 | 
|---|
| 123 |   nn=n-m;
 | 
|---|
| 124 |   lb=data->lb;
 | 
|---|
| 125 |   ub=data->ub;
 | 
|---|
| 126 |   w=data->w;
 | 
|---|
| 127 |   typ=data->bctype;
 | 
|---|
| 128 |   (*(data->jacf))(p, jac, m, nn, data->adata);
 | 
|---|
| 129 | 
 | 
|---|
| 130 |   /* clear all extra rows */
 | 
|---|
| 131 |   for(i=nn*m; i<n*m; ++i)
 | 
|---|
| 132 |     jac[i]=0.0;
 | 
|---|
| 133 | 
 | 
|---|
| 134 |   for(i=nn, j=0; i<n; ++i, ++j){
 | 
|---|
| 135 |     switch(typ[j]){
 | 
|---|
| 136 |       case __BC_INTERVAL__:
 | 
|---|
| 137 |         if(lb[j]<=p[j] && p[j]<=ub[j])
 | 
|---|
| 138 |           continue; // corresp. jac element already 0
 | 
|---|
| 139 | 
 | 
|---|
| 140 |         /* out of interval */
 | 
|---|
| 141 |         tmp=ub[j]-lb[j];
 | 
|---|
| 142 |         tmp=LM_CNST(4.0)*(LM_CNST(2.0)*p[j]-(lb[j]+ub[j]))/(tmp*tmp);
 | 
|---|
| 143 |         jac[i*m+j]=w[j]*tmp;
 | 
|---|
| 144 |       break;
 | 
|---|
| 145 | 
 | 
|---|
| 146 |       case __BC_LOW__: // (lb[j]<=p[j])? 0.0 : -1.0;
 | 
|---|
| 147 |         if(lb[j]<=p[j])
 | 
|---|
| 148 |           continue; // corresp. jac element already 0
 | 
|---|
| 149 | 
 | 
|---|
| 150 |         /* smaller than lower bound */
 | 
|---|
| 151 |         jac[i*m+j]=-w[j];
 | 
|---|
| 152 |       break;
 | 
|---|
| 153 | 
 | 
|---|
| 154 |       case __BC_HIGH__: // (p[j]<=ub[j])? 0.0 : 1.0;
 | 
|---|
| 155 |         if(p[j]<=ub[j])
 | 
|---|
| 156 |           continue; // corresp. jac element already 0
 | 
|---|
| 157 | 
 | 
|---|
| 158 |         /* greater than upper bound */
 | 
|---|
| 159 |         jac[i*m+j]=w[j];
 | 
|---|
| 160 |       break;
 | 
|---|
| 161 |     }
 | 
|---|
| 162 |   }
 | 
|---|
| 163 | }
 | 
|---|
| 164 | 
 | 
|---|
| 165 | /* 
 | 
|---|
| 166 |  * This function seeks the parameter vector p that best describes the measurements
 | 
|---|
| 167 |  * vector x under box & linear constraints.
 | 
|---|
| 168 |  * More precisely, given a vector function  func : R^m --> R^n with n>=m,
 | 
|---|
| 169 |  * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of
 | 
|---|
| 170 |  * e=x-func(p) is minimized under the constraints lb[i]<=p[i]<=ub[i] and A p=b;
 | 
|---|
| 171 |  * A is kxm, b kx1. Note that this function DOES NOT check the satisfiability of
 | 
|---|
| 172 |  * the specified box and linear equation constraints.
 | 
|---|
| 173 |  * If no lower bound constraint applies for p[i], use -DBL_MAX/-FLT_MAX for lb[i];
 | 
|---|
| 174 |  * If no upper bound constraint applies for p[i], use DBL_MAX/FLT_MAX for ub[i].
 | 
|---|
| 175 |  *
 | 
|---|
| 176 |  * This function requires an analytic Jacobian. In case the latter is unavailable,
 | 
|---|
| 177 |  * use LEVMAR_BLEC_DIF() bellow
 | 
|---|
| 178 |  *
 | 
|---|
| 179 |  * Returns the number of iterations (>=0) if successful, LM_ERROR if failed
 | 
|---|
| 180 |  *
 | 
|---|
| 181 |  * For more details on the algorithm implemented by this function, please refer to
 | 
|---|
| 182 |  * the comments in the top of this file.
 | 
|---|
| 183 |  *
 | 
|---|
| 184 |  */
 | 
|---|
| 185 | int LEVMAR_BLEC_DER(
 | 
|---|
| 186 |   void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
 | 
|---|
| 187 |   void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the Jacobian \part x / \part p */ 
 | 
|---|
| 188 |   LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
 | 
|---|
| 189 |   LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */
 | 
|---|
| 190 |   int m,              /* I: parameter vector dimension (i.e. #unknowns) */
 | 
|---|
| 191 |   int n,              /* I: measurement vector dimension */
 | 
|---|
| 192 |   LM_REAL *lb,        /* I: vector of lower bounds. If NULL, no lower bounds apply */
 | 
|---|
| 193 |   LM_REAL *ub,        /* I: vector of upper bounds. If NULL, no upper bounds apply */
 | 
|---|
| 194 |   LM_REAL *A,         /* I: constraints matrix, kxm */
 | 
|---|
| 195 |   LM_REAL *b,         /* I: right hand constraints vector, kx1 */
 | 
|---|
| 196 |   int k,              /* I: number of constraints (i.e. A's #rows) */
 | 
|---|
| 197 |   LM_REAL *wghts,     /* mx1 weights for penalty terms, defaults used if NULL */
 | 
|---|
| 198 |   int itmax,          /* I: maximum number of iterations */
 | 
|---|
| 199 |   LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
 | 
|---|
| 200 |                        * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
 | 
|---|
| 201 |                        */
 | 
|---|
| 202 |   LM_REAL info[LM_INFO_SZ],
 | 
|---|
| 203 |                                                    /* O: information regarding the minimization. Set to NULL if don't care
 | 
|---|
| 204 |                       * info[0]= ||e||_2 at initial p.
 | 
|---|
| 205 |                       * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
 | 
|---|
| 206 |                       * info[5]= # iterations,
 | 
|---|
| 207 |                       * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
 | 
|---|
| 208 |                       *                                 2 - stopped by small Dp
 | 
|---|
| 209 |                       *                                 3 - stopped by itmax
 | 
|---|
| 210 |                       *                                 4 - singular matrix. Restart from current p with increased mu 
 | 
|---|
| 211 |                       *                                 5 - no further error reduction is possible. Restart with increased mu
 | 
|---|
| 212 |                       *                                 6 - stopped by small ||e||_2
 | 
|---|
| 213 |                       *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
 | 
|---|
| 214 |                       * info[7]= # function evaluations
 | 
|---|
| 215 |                       * info[8]= # Jacobian evaluations
 | 
|---|
| 216 |                       * info[9]= # linear systems solved, i.e. # attempts for reducing error
 | 
|---|
| 217 |                       */
 | 
|---|
| 218 |   LM_REAL *work,     /* working memory at least LM_BLEC_DER_WORKSZ() reals large, allocated if NULL */
 | 
|---|
| 219 |   LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
 | 
|---|
| 220 |   void *adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf.
 | 
|---|
| 221 |                       * Set to NULL if not needed
 | 
|---|
| 222 |                       */
 | 
|---|
| 223 | {
 | 
|---|
| 224 |   struct LMBLEC_DATA data;
 | 
|---|
| 225 |   int ret;
 | 
|---|
| 226 |   LM_REAL locinfo[LM_INFO_SZ];
 | 
|---|
| 227 |   register int i;
 | 
|---|
| 228 | 
 | 
|---|
| 229 |   if(!jacf){
 | 
|---|
| 230 |     fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_BLEC_DER)
 | 
|---|
| 231 |       RCAT("().\nIf no such function is available, use ", LEVMAR_BLEC_DIF) RCAT("() rather than ", LEVMAR_BLEC_DER) "()\n");
 | 
|---|
| 232 |     return LM_ERROR;
 | 
|---|
| 233 |   }
 | 
|---|
| 234 | 
 | 
|---|
| 235 |   if(!lb && !ub){
 | 
|---|
| 236 |     fprintf(stderr, RCAT(LCAT(LEVMAR_BLEC_DER, "(): lower and upper bounds for box constraints cannot be both NULL, use "),
 | 
|---|
| 237 |           LEVMAR_LEC_DER) "() in this case!\n");
 | 
|---|
| 238 |     return LM_ERROR;
 | 
|---|
| 239 |   }
 | 
|---|
| 240 | 
 | 
|---|
| 241 |   if(!LEVMAR_BOX_CHECK(lb, ub, m)){
 | 
|---|
| 242 |     fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): at least one lower bound exceeds the upper one\n"));
 | 
|---|
| 243 |     return LM_ERROR;
 | 
|---|
| 244 |   }
 | 
|---|
| 245 | 
 | 
|---|
| 246 |   /* measurement vector needs to be extended by m */
 | 
|---|
| 247 |   if(x){ /* nonzero x */
 | 
|---|
| 248 |     data.x=(LM_REAL *)malloc((n+m)*sizeof(LM_REAL));
 | 
|---|
| 249 |     if(!data.x){
 | 
|---|
| 250 |       fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #1 failed\n"));
 | 
|---|
| 251 |       return LM_ERROR;
 | 
|---|
| 252 |     }
 | 
|---|
| 253 | 
 | 
|---|
| 254 |     for(i=0; i<n; ++i)
 | 
|---|
| 255 |       data.x[i]=x[i];
 | 
|---|
| 256 |     for(i=n; i<n+m; ++i)
 | 
|---|
| 257 |       data.x[i]=0.0;
 | 
|---|
| 258 |   }
 | 
|---|
| 259 |   else
 | 
|---|
| 260 |     data.x=NULL;
 | 
|---|
| 261 | 
 | 
|---|
| 262 |   data.w=(LM_REAL *)malloc(m*sizeof(LM_REAL) + m*sizeof(int)); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
| 263 |   if(!data.w){
 | 
|---|
| 264 |     fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #2 failed\n"));
 | 
|---|
| 265 |     if(data.x) free(data.x);
 | 
|---|
| 266 |     return LM_ERROR;
 | 
|---|
| 267 |   }
 | 
|---|
| 268 |   data.bctype=(int *)(data.w+m);
 | 
|---|
| 269 | 
 | 
|---|
| 270 |   /* note: at this point, one of lb, ub are not NULL */
 | 
|---|
| 271 |   for(i=0; i<m; ++i){
 | 
|---|
| 272 |     data.w[i]=(!wghts)? __BC_WEIGHT__ : wghts[i];
 | 
|---|
| 273 |     if(!lb) data.bctype[i]=__BC_HIGH__;
 | 
|---|
| 274 |     else if(!ub) data.bctype[i]=__BC_LOW__;
 | 
|---|
| 275 |     else if(ub[i]!=LM_REAL_MAX && lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_INTERVAL__;
 | 
|---|
| 276 |     else if(lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_LOW__;
 | 
|---|
| 277 |     else data.bctype[i]=__BC_HIGH__;
 | 
|---|
| 278 |   }
 | 
|---|
| 279 | 
 | 
|---|
| 280 |   data.lb=lb;
 | 
|---|
| 281 |   data.ub=ub;
 | 
|---|
| 282 |   data.func=func;
 | 
|---|
| 283 |   data.jacf=jacf;
 | 
|---|
| 284 |   data.adata=adata;
 | 
|---|
| 285 | 
 | 
|---|
| 286 |   if(!info) info=locinfo; /* make sure that LEVMAR_LEC_DER() is called with non-null info */
 | 
|---|
| 287 |   ret=LEVMAR_LEC_DER(LMBLEC_FUNC, LMBLEC_JACF, p, data.x, m, n+m, A, b, k, itmax, opts, info, work, covar, (void *)&data);
 | 
|---|
| 288 | 
 | 
|---|
| 289 |   if(data.x) free(data.x);
 | 
|---|
| 290 |   free(data.w);
 | 
|---|
| 291 | 
 | 
|---|
| 292 |   return ret;
 | 
|---|
| 293 | }
 | 
|---|
| 294 | 
 | 
|---|
| 295 | /* Similar to the LEVMAR_BLEC_DER() function above, except that the Jacobian is approximated
 | 
|---|
| 296 |  * with the aid of finite differences (forward or central, see the comment for the opts argument)
 | 
|---|
| 297 |  */
 | 
|---|
| 298 | int LEVMAR_BLEC_DIF(
 | 
|---|
| 299 |   void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
 | 
|---|
| 300 |   LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
 | 
|---|
| 301 |   LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */
 | 
|---|
| 302 |   int m,              /* I: parameter vector dimension (i.e. #unknowns) */
 | 
|---|
| 303 |   int n,              /* I: measurement vector dimension */
 | 
|---|
| 304 |   LM_REAL *lb,        /* I: vector of lower bounds. If NULL, no lower bounds apply */
 | 
|---|
| 305 |   LM_REAL *ub,        /* I: vector of upper bounds. If NULL, no upper bounds apply */
 | 
|---|
| 306 |   LM_REAL *A,         /* I: constraints matrix, kxm */
 | 
|---|
| 307 |   LM_REAL *b,         /* I: right hand constraints vector, kx1 */
 | 
|---|
| 308 |   int k,              /* I: number of constraints (i.e. A's #rows) */
 | 
|---|
| 309 |   LM_REAL *wghts,     /* mx1 weights for penalty terms, defaults used if NULL */
 | 
|---|
| 310 |   int itmax,          /* I: maximum number of iterations */
 | 
|---|
| 311 |   LM_REAL opts[5],    /* I: opts[0-3] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
 | 
|---|
| 312 |                        * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
 | 
|---|
| 313 |                        * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
 | 
|---|
| 314 |                        * If \delta<0, the Jacobian is approximated with central differences which are more accurate
 | 
|---|
| 315 |                        * (but slower!) compared to the forward differences employed by default. 
 | 
|---|
| 316 |                        */
 | 
|---|
| 317 |   LM_REAL info[LM_INFO_SZ],
 | 
|---|
| 318 |                                                    /* O: information regarding the minimization. Set to NULL if don't care
 | 
|---|
| 319 |                       * info[0]= ||e||_2 at initial p.
 | 
|---|
| 320 |                       * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
 | 
|---|
| 321 |                       * info[5]= # iterations,
 | 
|---|
| 322 |                       * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
 | 
|---|
| 323 |                       *                                 2 - stopped by small Dp
 | 
|---|
| 324 |                       *                                 3 - stopped by itmax
 | 
|---|
| 325 |                       *                                 4 - singular matrix. Restart from current p with increased mu 
 | 
|---|
| 326 |                       *                                 5 - no further error reduction is possible. Restart with increased mu
 | 
|---|
| 327 |                       *                                 6 - stopped by small ||e||_2
 | 
|---|
| 328 |                       *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
 | 
|---|
| 329 |                       * info[7]= # function evaluations
 | 
|---|
| 330 |                       * info[8]= # Jacobian evaluations
 | 
|---|
| 331 |                       * info[9]= # linear systems solved, i.e. # attempts for reducing error
 | 
|---|
| 332 |                       */
 | 
|---|
| 333 |   LM_REAL *work,     /* working memory at least LM_BLEC_DIF_WORKSZ() reals large, allocated if NULL */
 | 
|---|
| 334 |   LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
 | 
|---|
| 335 |   void *adata)       /* pointer to possibly additional data, passed uninterpreted to func.
 | 
|---|
| 336 |                       * Set to NULL if not needed
 | 
|---|
| 337 |                       */
 | 
|---|
| 338 | {
 | 
|---|
| 339 |   struct LMBLEC_DATA data;
 | 
|---|
| 340 |   int ret;
 | 
|---|
| 341 |   register int i;
 | 
|---|
| 342 |   LM_REAL locinfo[LM_INFO_SZ];
 | 
|---|
| 343 | 
 | 
|---|
| 344 |   if(!lb && !ub){
 | 
|---|
| 345 |     fprintf(stderr, RCAT(LCAT(LEVMAR_BLEC_DIF, "(): lower and upper bounds for box constraints cannot be both NULL, use "),
 | 
|---|
| 346 |           LEVMAR_LEC_DIF) "() in this case!\n");
 | 
|---|
| 347 |     return LM_ERROR;
 | 
|---|
| 348 |   }
 | 
|---|
| 349 | 
 | 
|---|
| 350 |   if(!LEVMAR_BOX_CHECK(lb, ub, m)){
 | 
|---|
| 351 |     fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): at least one lower bound exceeds the upper one\n"));
 | 
|---|
| 352 |     return LM_ERROR;
 | 
|---|
| 353 |   }
 | 
|---|
| 354 | 
 | 
|---|
| 355 |   /* measurement vector needs to be extended by m */
 | 
|---|
| 356 |   if(x){ /* nonzero x */
 | 
|---|
| 357 |     data.x=(LM_REAL *)malloc((n+m)*sizeof(LM_REAL));
 | 
|---|
| 358 |     if(!data.x){
 | 
|---|
| 359 |       fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #1 failed\n"));
 | 
|---|
| 360 |       return LM_ERROR;
 | 
|---|
| 361 |     }
 | 
|---|
| 362 | 
 | 
|---|
| 363 |     for(i=0; i<n; ++i)
 | 
|---|
| 364 |       data.x[i]=x[i];
 | 
|---|
| 365 |     for(i=n; i<n+m; ++i)
 | 
|---|
| 366 |       data.x[i]=0.0;
 | 
|---|
| 367 |   }
 | 
|---|
| 368 |   else
 | 
|---|
| 369 |     data.x=NULL;
 | 
|---|
| 370 | 
 | 
|---|
| 371 |   data.w=(LM_REAL *)malloc(m*sizeof(LM_REAL) + m*sizeof(int)); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
| 372 |   if(!data.w){
 | 
|---|
| 373 |     fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #2 failed\n"));
 | 
|---|
| 374 |     if(data.x) free(data.x);
 | 
|---|
| 375 |     return LM_ERROR;
 | 
|---|
| 376 |   }
 | 
|---|
| 377 |   data.bctype=(int *)(data.w+m);
 | 
|---|
| 378 | 
 | 
|---|
| 379 |   /* note: at this point, one of lb, ub are not NULL */
 | 
|---|
| 380 |   for(i=0; i<m; ++i){
 | 
|---|
| 381 |     data.w[i]=(!wghts)? __BC_WEIGHT__ : wghts[i];
 | 
|---|
| 382 |     if(!lb) data.bctype[i]=__BC_HIGH__;
 | 
|---|
| 383 |     else if(!ub) data.bctype[i]=__BC_LOW__;
 | 
|---|
| 384 |     else if(ub[i]!=LM_REAL_MAX && lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_INTERVAL__;
 | 
|---|
| 385 |     else if(lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_LOW__;
 | 
|---|
| 386 |     else data.bctype[i]=__BC_HIGH__;
 | 
|---|
| 387 |   }
 | 
|---|
| 388 | 
 | 
|---|
| 389 |   data.lb=lb;
 | 
|---|
| 390 |   data.ub=ub;
 | 
|---|
| 391 |   data.func=func;
 | 
|---|
| 392 |   data.jacf=NULL;
 | 
|---|
| 393 |   data.adata=adata;
 | 
|---|
| 394 | 
 | 
|---|
| 395 |   if(!info) info=locinfo; /* make sure that LEVMAR_LEC_DIF() is called with non-null info */
 | 
|---|
| 396 |   ret=LEVMAR_LEC_DIF(LMBLEC_FUNC, p, data.x, m, n+m, A, b, k, itmax, opts, info, work, covar, (void *)&data);
 | 
|---|
| 397 | 
 | 
|---|
| 398 |   if(data.x) free(data.x);
 | 
|---|
| 399 |   free(data.w);
 | 
|---|
| 400 | 
 | 
|---|
| 401 |   return ret;
 | 
|---|
| 402 | }
 | 
|---|
| 403 | 
 | 
|---|
| 404 | /* undefine all. THIS MUST REMAIN AT THE END OF THE FILE */
 | 
|---|
| 405 | #undef LEVMAR_BOX_CHECK
 | 
|---|
| 406 | #undef LMBLEC_DATA
 | 
|---|
| 407 | #undef LMBLEC_FUNC
 | 
|---|
| 408 | #undef LMBLEC_JACF
 | 
|---|
| 409 | #undef LEVMAR_COVAR
 | 
|---|
| 410 | #undef LEVMAR_LEC_DER
 | 
|---|
| 411 | #undef LEVMAR_LEC_DIF
 | 
|---|
| 412 | #undef LEVMAR_BLEC_DER
 | 
|---|
| 413 | #undef LEVMAR_BLEC_DIF
 | 
|---|