| [5443b1] | 1 | ///////////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 2 | // | 
|---|
|  | 3 | //  Levenberg - Marquardt non-linear minimization algorithm | 
|---|
|  | 4 | //  Copyright (C) 2004-06  Manolis Lourakis (lourakis at ics forth gr) | 
|---|
|  | 5 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas | 
|---|
|  | 6 | //  Heraklion, Crete, Greece. | 
|---|
|  | 7 | // | 
|---|
|  | 8 | //  This program is free software; you can redistribute it and/or modify | 
|---|
|  | 9 | //  it under the terms of the GNU General Public License as published by | 
|---|
|  | 10 | //  the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 11 | //  (at your option) any later version. | 
|---|
|  | 12 | // | 
|---|
|  | 13 | //  This program is distributed in the hope that it will be useful, | 
|---|
|  | 14 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 15 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 16 | //  GNU General Public License for more details. | 
|---|
|  | 17 | // | 
|---|
|  | 18 | ///////////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 19 |  | 
|---|
|  | 20 | /******************************************************************************* | 
|---|
|  | 21 | * This file implements combined box and linear equation constraints. | 
|---|
|  | 22 | * | 
|---|
|  | 23 | * Note that the algorithm implementing linearly constrained minimization does | 
|---|
|  | 24 | * so by a change in parameters that transforms the original program into an | 
|---|
|  | 25 | * unconstrained one. To employ the same idea for implementing box & linear | 
|---|
|  | 26 | * constraints would require the transformation of box constraints on the | 
|---|
|  | 27 | * original parameters to box constraints for the new parameter set. This | 
|---|
|  | 28 | * being impossible, a different approach is used here for finding the minimum. | 
|---|
|  | 29 | * The trick is to remove the box constraints by augmenting the function to | 
|---|
|  | 30 | * be fitted with penalty terms and then solve the resulting problem (which | 
|---|
|  | 31 | * involves linear constrains only) with the functions in lmlec.c | 
|---|
|  | 32 | * | 
|---|
|  | 33 | * More specifically, for the constraint a<=x[i]<=b to hold, the term C[i]= | 
|---|
|  | 34 | * (2*x[i]-(a+b))/(b-a) should be within [-1, 1]. This is enforced by adding | 
|---|
|  | 35 | * the penalty term w[i]*max((C[i])^2-1, 0) to the objective function, where | 
|---|
|  | 36 | * w[i] is a large weight. In the case of constraints of the form a<=x[i], | 
|---|
|  | 37 | * the term C[i]=a-x[i] has to be non positive, thus the penalty term is | 
|---|
|  | 38 | * w[i]*max(C[i], 0). If x[i]<=b, C[i]=x[i]-b has to be non negative and | 
|---|
|  | 39 | * the penalty is w[i]*max(C[i], 0). The derivatives needed for the Jacobian | 
|---|
|  | 40 | * are as follows: | 
|---|
|  | 41 | * For the constraint a<=x[i]<=b: 4*(2*x[i]-(a+b))/(b-a)^2 if x[i] not in [a, b], | 
|---|
|  | 42 | *                                0 otherwise | 
|---|
|  | 43 | * For the constraint a<=x[i]: -1 if x[i]<=a, 0 otherwise | 
|---|
|  | 44 | * For the constraint x[i]<=b: 1 if b<=x[i], 0 otherwise | 
|---|
|  | 45 | * | 
|---|
|  | 46 | * Note that for the above to work, the weights w[i] should be large enough; | 
|---|
|  | 47 | * depending on your minimization problem, the default values might need some | 
|---|
|  | 48 | * tweaking (see arg "wghts" below). | 
|---|
|  | 49 | *******************************************************************************/ | 
|---|
|  | 50 |  | 
|---|
|  | 51 | #ifndef LM_REAL // not included by lmblec.c | 
|---|
|  | 52 | #error This file should not be compiled directly! | 
|---|
|  | 53 | #endif | 
|---|
|  | 54 |  | 
|---|
|  | 55 |  | 
|---|
|  | 56 | #define __MAX__(x, y)   (((x)>=(y))? (x) : (y)) | 
|---|
|  | 57 | #define __BC_WEIGHT__   LM_CNST(1E+04) | 
|---|
|  | 58 |  | 
|---|
|  | 59 | #define __BC_INTERVAL__ 0 | 
|---|
|  | 60 | #define __BC_LOW__      1 | 
|---|
|  | 61 | #define __BC_HIGH__     2 | 
|---|
|  | 62 |  | 
|---|
|  | 63 | /* precision-specific definitions */ | 
|---|
|  | 64 | #define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check) | 
|---|
|  | 65 | #define LMBLEC_DATA LM_ADD_PREFIX(lmblec_data) | 
|---|
|  | 66 | #define LMBLEC_FUNC LM_ADD_PREFIX(lmblec_func) | 
|---|
|  | 67 | #define LMBLEC_JACF LM_ADD_PREFIX(lmblec_jacf) | 
|---|
|  | 68 | #define LEVMAR_LEC_DER LM_ADD_PREFIX(levmar_lec_der) | 
|---|
|  | 69 | #define LEVMAR_LEC_DIF LM_ADD_PREFIX(levmar_lec_dif) | 
|---|
|  | 70 | #define LEVMAR_BLEC_DER LM_ADD_PREFIX(levmar_blec_der) | 
|---|
|  | 71 | #define LEVMAR_BLEC_DIF LM_ADD_PREFIX(levmar_blec_dif) | 
|---|
|  | 72 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar) | 
|---|
|  | 73 |  | 
|---|
|  | 74 | struct LMBLEC_DATA{ | 
|---|
|  | 75 | LM_REAL *x, *lb, *ub, *w; | 
|---|
|  | 76 | int *bctype; | 
|---|
|  | 77 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata); | 
|---|
|  | 78 | void (*jacf)(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata); | 
|---|
|  | 79 | void *adata; | 
|---|
|  | 80 | }; | 
|---|
|  | 81 |  | 
|---|
|  | 82 | /* augmented measurements */ | 
|---|
|  | 83 | static void LMBLEC_FUNC(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata) | 
|---|
|  | 84 | { | 
|---|
|  | 85 | struct LMBLEC_DATA *data=(struct LMBLEC_DATA *)adata; | 
|---|
|  | 86 | int nn; | 
|---|
|  | 87 | register int i, j, *typ; | 
|---|
|  | 88 | register LM_REAL *lb, *ub, *w, tmp; | 
|---|
|  | 89 |  | 
|---|
|  | 90 | nn=n-m; | 
|---|
|  | 91 | lb=data->lb; | 
|---|
|  | 92 | ub=data->ub; | 
|---|
|  | 93 | w=data->w; | 
|---|
|  | 94 | typ=data->bctype; | 
|---|
|  | 95 | (*(data->func))(p, hx, m, nn, data->adata); | 
|---|
|  | 96 |  | 
|---|
|  | 97 | for(i=nn, j=0; i<n; ++i, ++j){ | 
|---|
|  | 98 | switch(typ[j]){ | 
|---|
|  | 99 | case __BC_INTERVAL__: | 
|---|
|  | 100 | tmp=(LM_CNST(2.0)*p[j]-(lb[j]+ub[j]))/(ub[j]-lb[j]); | 
|---|
|  | 101 | hx[i]=w[j]*__MAX__(tmp*tmp-LM_CNST(1.0), LM_CNST(0.0)); | 
|---|
|  | 102 | break; | 
|---|
|  | 103 |  | 
|---|
|  | 104 | case __BC_LOW__: | 
|---|
|  | 105 | hx[i]=w[j]*__MAX__(lb[j]-p[j], LM_CNST(0.0)); | 
|---|
|  | 106 | break; | 
|---|
|  | 107 |  | 
|---|
|  | 108 | case __BC_HIGH__: | 
|---|
|  | 109 | hx[i]=w[j]*__MAX__(p[j]-ub[j], LM_CNST(0.0)); | 
|---|
|  | 110 | break; | 
|---|
|  | 111 | } | 
|---|
|  | 112 | } | 
|---|
|  | 113 | } | 
|---|
|  | 114 |  | 
|---|
|  | 115 | /* augmented Jacobian */ | 
|---|
|  | 116 | static void LMBLEC_JACF(LM_REAL *p, LM_REAL *jac, int m, int n, void *adata) | 
|---|
|  | 117 | { | 
|---|
|  | 118 | struct LMBLEC_DATA *data=(struct LMBLEC_DATA *)adata; | 
|---|
|  | 119 | int nn, *typ; | 
|---|
|  | 120 | register int i, j; | 
|---|
|  | 121 | register LM_REAL *lb, *ub, *w, tmp; | 
|---|
|  | 122 |  | 
|---|
|  | 123 | nn=n-m; | 
|---|
|  | 124 | lb=data->lb; | 
|---|
|  | 125 | ub=data->ub; | 
|---|
|  | 126 | w=data->w; | 
|---|
|  | 127 | typ=data->bctype; | 
|---|
|  | 128 | (*(data->jacf))(p, jac, m, nn, data->adata); | 
|---|
|  | 129 |  | 
|---|
|  | 130 | /* clear all extra rows */ | 
|---|
|  | 131 | for(i=nn*m; i<n*m; ++i) | 
|---|
|  | 132 | jac[i]=0.0; | 
|---|
|  | 133 |  | 
|---|
|  | 134 | for(i=nn, j=0; i<n; ++i, ++j){ | 
|---|
|  | 135 | switch(typ[j]){ | 
|---|
|  | 136 | case __BC_INTERVAL__: | 
|---|
|  | 137 | if(lb[j]<=p[j] && p[j]<=ub[j]) | 
|---|
|  | 138 | continue; // corresp. jac element already 0 | 
|---|
|  | 139 |  | 
|---|
|  | 140 | /* out of interval */ | 
|---|
|  | 141 | tmp=ub[j]-lb[j]; | 
|---|
|  | 142 | tmp=LM_CNST(4.0)*(LM_CNST(2.0)*p[j]-(lb[j]+ub[j]))/(tmp*tmp); | 
|---|
|  | 143 | jac[i*m+j]=w[j]*tmp; | 
|---|
|  | 144 | break; | 
|---|
|  | 145 |  | 
|---|
|  | 146 | case __BC_LOW__: // (lb[j]<=p[j])? 0.0 : -1.0; | 
|---|
|  | 147 | if(lb[j]<=p[j]) | 
|---|
|  | 148 | continue; // corresp. jac element already 0 | 
|---|
|  | 149 |  | 
|---|
|  | 150 | /* smaller than lower bound */ | 
|---|
|  | 151 | jac[i*m+j]=-w[j]; | 
|---|
|  | 152 | break; | 
|---|
|  | 153 |  | 
|---|
|  | 154 | case __BC_HIGH__: // (p[j]<=ub[j])? 0.0 : 1.0; | 
|---|
|  | 155 | if(p[j]<=ub[j]) | 
|---|
|  | 156 | continue; // corresp. jac element already 0 | 
|---|
|  | 157 |  | 
|---|
|  | 158 | /* greater than upper bound */ | 
|---|
|  | 159 | jac[i*m+j]=w[j]; | 
|---|
|  | 160 | break; | 
|---|
|  | 161 | } | 
|---|
|  | 162 | } | 
|---|
|  | 163 | } | 
|---|
|  | 164 |  | 
|---|
|  | 165 | /* | 
|---|
|  | 166 | * This function seeks the parameter vector p that best describes the measurements | 
|---|
|  | 167 | * vector x under box & linear constraints. | 
|---|
|  | 168 | * More precisely, given a vector function  func : R^m --> R^n with n>=m, | 
|---|
|  | 169 | * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of | 
|---|
|  | 170 | * e=x-func(p) is minimized under the constraints lb[i]<=p[i]<=ub[i] and A p=b; | 
|---|
|  | 171 | * A is kxm, b kx1. Note that this function DOES NOT check the satisfiability of | 
|---|
|  | 172 | * the specified box and linear equation constraints. | 
|---|
|  | 173 | * If no lower bound constraint applies for p[i], use -DBL_MAX/-FLT_MAX for lb[i]; | 
|---|
|  | 174 | * If no upper bound constraint applies for p[i], use DBL_MAX/FLT_MAX for ub[i]. | 
|---|
|  | 175 | * | 
|---|
|  | 176 | * This function requires an analytic Jacobian. In case the latter is unavailable, | 
|---|
|  | 177 | * use LEVMAR_BLEC_DIF() bellow | 
|---|
|  | 178 | * | 
|---|
|  | 179 | * Returns the number of iterations (>=0) if successful, LM_ERROR if failed | 
|---|
|  | 180 | * | 
|---|
|  | 181 | * For more details on the algorithm implemented by this function, please refer to | 
|---|
|  | 182 | * the comments in the top of this file. | 
|---|
|  | 183 | * | 
|---|
|  | 184 | */ | 
|---|
|  | 185 | int LEVMAR_BLEC_DER( | 
|---|
|  | 186 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */ | 
|---|
|  | 187 | void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the Jacobian \part x / \part p */ | 
|---|
|  | 188 | LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */ | 
|---|
|  | 189 | LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */ | 
|---|
|  | 190 | int m,              /* I: parameter vector dimension (i.e. #unknowns) */ | 
|---|
|  | 191 | int n,              /* I: measurement vector dimension */ | 
|---|
|  | 192 | LM_REAL *lb,        /* I: vector of lower bounds. If NULL, no lower bounds apply */ | 
|---|
|  | 193 | LM_REAL *ub,        /* I: vector of upper bounds. If NULL, no upper bounds apply */ | 
|---|
|  | 194 | LM_REAL *A,         /* I: constraints matrix, kxm */ | 
|---|
|  | 195 | LM_REAL *b,         /* I: right hand constraints vector, kx1 */ | 
|---|
|  | 196 | int k,              /* I: number of constraints (i.e. A's #rows) */ | 
|---|
|  | 197 | LM_REAL *wghts,     /* mx1 weights for penalty terms, defaults used if NULL */ | 
|---|
|  | 198 | int itmax,          /* I: maximum number of iterations */ | 
|---|
|  | 199 | LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu, | 
|---|
|  | 200 | * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used | 
|---|
|  | 201 | */ | 
|---|
|  | 202 | LM_REAL info[LM_INFO_SZ], | 
|---|
|  | 203 | /* O: information regarding the minimization. Set to NULL if don't care | 
|---|
|  | 204 | * info[0]= ||e||_2 at initial p. | 
|---|
|  | 205 | * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. | 
|---|
|  | 206 | * info[5]= # iterations, | 
|---|
|  | 207 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e | 
|---|
|  | 208 | *                                 2 - stopped by small Dp | 
|---|
|  | 209 | *                                 3 - stopped by itmax | 
|---|
|  | 210 | *                                 4 - singular matrix. Restart from current p with increased mu | 
|---|
|  | 211 | *                                 5 - no further error reduction is possible. Restart with increased mu | 
|---|
|  | 212 | *                                 6 - stopped by small ||e||_2 | 
|---|
|  | 213 | *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error | 
|---|
|  | 214 | * info[7]= # function evaluations | 
|---|
|  | 215 | * info[8]= # Jacobian evaluations | 
|---|
|  | 216 | * info[9]= # linear systems solved, i.e. # attempts for reducing error | 
|---|
|  | 217 | */ | 
|---|
|  | 218 | LM_REAL *work,     /* working memory at least LM_BLEC_DER_WORKSZ() reals large, allocated if NULL */ | 
|---|
|  | 219 | LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ | 
|---|
|  | 220 | void *adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf. | 
|---|
|  | 221 | * Set to NULL if not needed | 
|---|
|  | 222 | */ | 
|---|
|  | 223 | { | 
|---|
|  | 224 | struct LMBLEC_DATA data; | 
|---|
|  | 225 | int ret; | 
|---|
|  | 226 | LM_REAL locinfo[LM_INFO_SZ]; | 
|---|
|  | 227 | register int i; | 
|---|
|  | 228 |  | 
|---|
|  | 229 | if(!jacf){ | 
|---|
|  | 230 | fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_BLEC_DER) | 
|---|
|  | 231 | RCAT("().\nIf no such function is available, use ", LEVMAR_BLEC_DIF) RCAT("() rather than ", LEVMAR_BLEC_DER) "()\n"); | 
|---|
|  | 232 | return LM_ERROR; | 
|---|
|  | 233 | } | 
|---|
|  | 234 |  | 
|---|
|  | 235 | if(!lb && !ub){ | 
|---|
|  | 236 | fprintf(stderr, RCAT(LCAT(LEVMAR_BLEC_DER, "(): lower and upper bounds for box constraints cannot be both NULL, use "), | 
|---|
|  | 237 | LEVMAR_LEC_DER) "() in this case!\n"); | 
|---|
|  | 238 | return LM_ERROR; | 
|---|
|  | 239 | } | 
|---|
|  | 240 |  | 
|---|
|  | 241 | if(!LEVMAR_BOX_CHECK(lb, ub, m)){ | 
|---|
|  | 242 | fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): at least one lower bound exceeds the upper one\n")); | 
|---|
|  | 243 | return LM_ERROR; | 
|---|
|  | 244 | } | 
|---|
|  | 245 |  | 
|---|
|  | 246 | /* measurement vector needs to be extended by m */ | 
|---|
|  | 247 | if(x){ /* nonzero x */ | 
|---|
|  | 248 | data.x=(LM_REAL *)malloc((n+m)*sizeof(LM_REAL)); | 
|---|
|  | 249 | if(!data.x){ | 
|---|
|  | 250 | fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #1 failed\n")); | 
|---|
|  | 251 | return LM_ERROR; | 
|---|
|  | 252 | } | 
|---|
|  | 253 |  | 
|---|
|  | 254 | for(i=0; i<n; ++i) | 
|---|
|  | 255 | data.x[i]=x[i]; | 
|---|
|  | 256 | for(i=n; i<n+m; ++i) | 
|---|
|  | 257 | data.x[i]=0.0; | 
|---|
|  | 258 | } | 
|---|
|  | 259 | else | 
|---|
|  | 260 | data.x=NULL; | 
|---|
|  | 261 |  | 
|---|
|  | 262 | data.w=(LM_REAL *)malloc(m*sizeof(LM_REAL) + m*sizeof(int)); /* should be arranged in that order for proper doubles alignment */ | 
|---|
|  | 263 | if(!data.w){ | 
|---|
|  | 264 | fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #2 failed\n")); | 
|---|
|  | 265 | if(data.x) free(data.x); | 
|---|
|  | 266 | return LM_ERROR; | 
|---|
|  | 267 | } | 
|---|
|  | 268 | data.bctype=(int *)(data.w+m); | 
|---|
|  | 269 |  | 
|---|
|  | 270 | /* note: at this point, one of lb, ub are not NULL */ | 
|---|
|  | 271 | for(i=0; i<m; ++i){ | 
|---|
|  | 272 | data.w[i]=(!wghts)? __BC_WEIGHT__ : wghts[i]; | 
|---|
|  | 273 | if(!lb) data.bctype[i]=__BC_HIGH__; | 
|---|
|  | 274 | else if(!ub) data.bctype[i]=__BC_LOW__; | 
|---|
|  | 275 | else if(ub[i]!=LM_REAL_MAX && lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_INTERVAL__; | 
|---|
|  | 276 | else if(lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_LOW__; | 
|---|
|  | 277 | else data.bctype[i]=__BC_HIGH__; | 
|---|
|  | 278 | } | 
|---|
|  | 279 |  | 
|---|
|  | 280 | data.lb=lb; | 
|---|
|  | 281 | data.ub=ub; | 
|---|
|  | 282 | data.func=func; | 
|---|
|  | 283 | data.jacf=jacf; | 
|---|
|  | 284 | data.adata=adata; | 
|---|
|  | 285 |  | 
|---|
|  | 286 | if(!info) info=locinfo; /* make sure that LEVMAR_LEC_DER() is called with non-null info */ | 
|---|
|  | 287 | ret=LEVMAR_LEC_DER(LMBLEC_FUNC, LMBLEC_JACF, p, data.x, m, n+m, A, b, k, itmax, opts, info, work, covar, (void *)&data); | 
|---|
|  | 288 |  | 
|---|
|  | 289 | if(data.x) free(data.x); | 
|---|
|  | 290 | free(data.w); | 
|---|
|  | 291 |  | 
|---|
|  | 292 | return ret; | 
|---|
|  | 293 | } | 
|---|
|  | 294 |  | 
|---|
|  | 295 | /* Similar to the LEVMAR_BLEC_DER() function above, except that the Jacobian is approximated | 
|---|
|  | 296 | * with the aid of finite differences (forward or central, see the comment for the opts argument) | 
|---|
|  | 297 | */ | 
|---|
|  | 298 | int LEVMAR_BLEC_DIF( | 
|---|
|  | 299 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */ | 
|---|
|  | 300 | LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */ | 
|---|
|  | 301 | LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */ | 
|---|
|  | 302 | int m,              /* I: parameter vector dimension (i.e. #unknowns) */ | 
|---|
|  | 303 | int n,              /* I: measurement vector dimension */ | 
|---|
|  | 304 | LM_REAL *lb,        /* I: vector of lower bounds. If NULL, no lower bounds apply */ | 
|---|
|  | 305 | LM_REAL *ub,        /* I: vector of upper bounds. If NULL, no upper bounds apply */ | 
|---|
|  | 306 | LM_REAL *A,         /* I: constraints matrix, kxm */ | 
|---|
|  | 307 | LM_REAL *b,         /* I: right hand constraints vector, kx1 */ | 
|---|
|  | 308 | int k,              /* I: number of constraints (i.e. A's #rows) */ | 
|---|
|  | 309 | LM_REAL *wghts,     /* mx1 weights for penalty terms, defaults used if NULL */ | 
|---|
|  | 310 | int itmax,          /* I: maximum number of iterations */ | 
|---|
|  | 311 | LM_REAL opts[5],    /* I: opts[0-3] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the | 
|---|
|  | 312 | * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and | 
|---|
|  | 313 | * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used. | 
|---|
|  | 314 | * If \delta<0, the Jacobian is approximated with central differences which are more accurate | 
|---|
|  | 315 | * (but slower!) compared to the forward differences employed by default. | 
|---|
|  | 316 | */ | 
|---|
|  | 317 | LM_REAL info[LM_INFO_SZ], | 
|---|
|  | 318 | /* O: information regarding the minimization. Set to NULL if don't care | 
|---|
|  | 319 | * info[0]= ||e||_2 at initial p. | 
|---|
|  | 320 | * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. | 
|---|
|  | 321 | * info[5]= # iterations, | 
|---|
|  | 322 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e | 
|---|
|  | 323 | *                                 2 - stopped by small Dp | 
|---|
|  | 324 | *                                 3 - stopped by itmax | 
|---|
|  | 325 | *                                 4 - singular matrix. Restart from current p with increased mu | 
|---|
|  | 326 | *                                 5 - no further error reduction is possible. Restart with increased mu | 
|---|
|  | 327 | *                                 6 - stopped by small ||e||_2 | 
|---|
|  | 328 | *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error | 
|---|
|  | 329 | * info[7]= # function evaluations | 
|---|
|  | 330 | * info[8]= # Jacobian evaluations | 
|---|
|  | 331 | * info[9]= # linear systems solved, i.e. # attempts for reducing error | 
|---|
|  | 332 | */ | 
|---|
|  | 333 | LM_REAL *work,     /* working memory at least LM_BLEC_DIF_WORKSZ() reals large, allocated if NULL */ | 
|---|
|  | 334 | LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ | 
|---|
|  | 335 | void *adata)       /* pointer to possibly additional data, passed uninterpreted to func. | 
|---|
|  | 336 | * Set to NULL if not needed | 
|---|
|  | 337 | */ | 
|---|
|  | 338 | { | 
|---|
|  | 339 | struct LMBLEC_DATA data; | 
|---|
|  | 340 | int ret; | 
|---|
|  | 341 | register int i; | 
|---|
|  | 342 | LM_REAL locinfo[LM_INFO_SZ]; | 
|---|
|  | 343 |  | 
|---|
|  | 344 | if(!lb && !ub){ | 
|---|
|  | 345 | fprintf(stderr, RCAT(LCAT(LEVMAR_BLEC_DIF, "(): lower and upper bounds for box constraints cannot be both NULL, use "), | 
|---|
|  | 346 | LEVMAR_LEC_DIF) "() in this case!\n"); | 
|---|
|  | 347 | return LM_ERROR; | 
|---|
|  | 348 | } | 
|---|
|  | 349 |  | 
|---|
|  | 350 | if(!LEVMAR_BOX_CHECK(lb, ub, m)){ | 
|---|
|  | 351 | fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): at least one lower bound exceeds the upper one\n")); | 
|---|
|  | 352 | return LM_ERROR; | 
|---|
|  | 353 | } | 
|---|
|  | 354 |  | 
|---|
|  | 355 | /* measurement vector needs to be extended by m */ | 
|---|
|  | 356 | if(x){ /* nonzero x */ | 
|---|
|  | 357 | data.x=(LM_REAL *)malloc((n+m)*sizeof(LM_REAL)); | 
|---|
|  | 358 | if(!data.x){ | 
|---|
|  | 359 | fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #1 failed\n")); | 
|---|
|  | 360 | return LM_ERROR; | 
|---|
|  | 361 | } | 
|---|
|  | 362 |  | 
|---|
|  | 363 | for(i=0; i<n; ++i) | 
|---|
|  | 364 | data.x[i]=x[i]; | 
|---|
|  | 365 | for(i=n; i<n+m; ++i) | 
|---|
|  | 366 | data.x[i]=0.0; | 
|---|
|  | 367 | } | 
|---|
|  | 368 | else | 
|---|
|  | 369 | data.x=NULL; | 
|---|
|  | 370 |  | 
|---|
|  | 371 | data.w=(LM_REAL *)malloc(m*sizeof(LM_REAL) + m*sizeof(int)); /* should be arranged in that order for proper doubles alignment */ | 
|---|
|  | 372 | if(!data.w){ | 
|---|
|  | 373 | fprintf(stderr, LCAT(LEVMAR_BLEC_DER, "(): memory allocation request #2 failed\n")); | 
|---|
|  | 374 | if(data.x) free(data.x); | 
|---|
|  | 375 | return LM_ERROR; | 
|---|
|  | 376 | } | 
|---|
|  | 377 | data.bctype=(int *)(data.w+m); | 
|---|
|  | 378 |  | 
|---|
|  | 379 | /* note: at this point, one of lb, ub are not NULL */ | 
|---|
|  | 380 | for(i=0; i<m; ++i){ | 
|---|
|  | 381 | data.w[i]=(!wghts)? __BC_WEIGHT__ : wghts[i]; | 
|---|
|  | 382 | if(!lb) data.bctype[i]=__BC_HIGH__; | 
|---|
|  | 383 | else if(!ub) data.bctype[i]=__BC_LOW__; | 
|---|
|  | 384 | else if(ub[i]!=LM_REAL_MAX && lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_INTERVAL__; | 
|---|
|  | 385 | else if(lb[i]!=LM_REAL_MIN) data.bctype[i]=__BC_LOW__; | 
|---|
|  | 386 | else data.bctype[i]=__BC_HIGH__; | 
|---|
|  | 387 | } | 
|---|
|  | 388 |  | 
|---|
|  | 389 | data.lb=lb; | 
|---|
|  | 390 | data.ub=ub; | 
|---|
|  | 391 | data.func=func; | 
|---|
|  | 392 | data.jacf=NULL; | 
|---|
|  | 393 | data.adata=adata; | 
|---|
|  | 394 |  | 
|---|
|  | 395 | if(!info) info=locinfo; /* make sure that LEVMAR_LEC_DIF() is called with non-null info */ | 
|---|
|  | 396 | ret=LEVMAR_LEC_DIF(LMBLEC_FUNC, p, data.x, m, n+m, A, b, k, itmax, opts, info, work, covar, (void *)&data); | 
|---|
|  | 397 |  | 
|---|
|  | 398 | if(data.x) free(data.x); | 
|---|
|  | 399 | free(data.w); | 
|---|
|  | 400 |  | 
|---|
|  | 401 | return ret; | 
|---|
|  | 402 | } | 
|---|
|  | 403 |  | 
|---|
|  | 404 | /* undefine all. THIS MUST REMAIN AT THE END OF THE FILE */ | 
|---|
|  | 405 | #undef LEVMAR_BOX_CHECK | 
|---|
|  | 406 | #undef LMBLEC_DATA | 
|---|
|  | 407 | #undef LMBLEC_FUNC | 
|---|
|  | 408 | #undef LMBLEC_JACF | 
|---|
|  | 409 | #undef LEVMAR_COVAR | 
|---|
|  | 410 | #undef LEVMAR_LEC_DER | 
|---|
|  | 411 | #undef LEVMAR_LEC_DIF | 
|---|
|  | 412 | #undef LEVMAR_BLEC_DER | 
|---|
|  | 413 | #undef LEVMAR_BLEC_DIF | 
|---|