///////////////////////////////////////////////////////////////////////////////// // // Levenberg - Marquardt non-linear minimization algorithm // Copyright (C) 2004-05 Manolis Lourakis (lourakis at ics forth gr) // Institute of Computer Science, Foundation for Research & Technology - Hellas // Heraklion, Crete, Greece. // // This program is free software; you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation; either version 2 of the License, or // (at your option) any later version. // // This program is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // ///////////////////////////////////////////////////////////////////////////////// #ifndef LM_REAL // not included by lmbc.c #error This file should not be compiled directly! #endif /* precision-specific definitions */ #define FUNC_STATE LM_ADD_PREFIX(func_state) #define LNSRCH LM_ADD_PREFIX(lnsrch) #define BOXPROJECT LM_ADD_PREFIX(boxProject) #define BOXSCALE LM_ADD_PREFIX(boxScale) #define LEVMAR_BOX_CHECK LM_ADD_PREFIX(levmar_box_check) #define VECNORM LM_ADD_PREFIX(vecnorm) #define LEVMAR_BC_DER LM_ADD_PREFIX(levmar_bc_der) #define LEVMAR_BC_DIF LM_ADD_PREFIX(levmar_bc_dif) #define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx) #define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx) #define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult) #define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy) #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar) #define LMBC_DIF_DATA LM_ADD_PREFIX(lmbc_dif_data) #define LMBC_DIF_FUNC LM_ADD_PREFIX(lmbc_dif_func) #define LMBC_DIF_JACF LM_ADD_PREFIX(lmbc_dif_jacf) #ifdef HAVE_LAPACK #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU) #define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol) #define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR) #define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS) #define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD) #define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK) #else #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack) #endif /* HAVE_LAPACK */ #ifdef HAVE_PLASMA #define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol) #endif /* find the median of 3 numbers */ #define __MEDIAN3(a, b, c) ( ((a) >= (b))?\ ( ((c) >= (a))? (a) : ( ((c) <= (b))? (b) : (c) ) ) : \ ( ((c) >= (b))? (b) : ( ((c) <= (a))? (a) : (c) ) ) ) /* Projections to feasible set \Omega: P_{\Omega}(y) := arg min { ||x - y|| : x \in \Omega}, y \in R^m */ /* project vector p to a box shaped feasible set. p is a mx1 vector. * Either lb, ub can be NULL. If not NULL, they are mx1 vectors */ static void BOXPROJECT(LM_REAL *p, LM_REAL *lb, LM_REAL *ub, int m) { register int i; if(!lb){ /* no lower bounds */ if(!ub) /* no upper bounds */ return; else{ /* upper bounds only */ for(i=m; i-->0; ) if(p[i]>ub[i]) p[i]=ub[i]; } } else if(!ub){ /* lower bounds only */ for(i=m; i-->0; ) if(p[i]0; ) p[i]=__MEDIAN3(lb[i], p[i], ub[i]); } #undef __MEDIAN3 /* pointwise scaling of bounds with the mx1 vector scl. If div=1 scaling is by 1./scl. * Either lb, ub can be NULL. If not NULL, they are mx1 vectors */ static void BOXSCALE(LM_REAL *lb, LM_REAL *ub, LM_REAL *scl, int m, int div) { register int i; if(!lb){ /* no lower bounds */ if(!ub) /* no upper bounds */ return; else{ /* upper bounds only */ if(div){ for(i=m; i-->0; ) if(ub[i]!=LM_REAL_MAX) ub[i]=ub[i]/scl[i]; }else{ for(i=m; i-->0; ) if(ub[i]!=LM_REAL_MAX) ub[i]=ub[i]*scl[i]; } } } else if(!ub){ /* lower bounds only */ if(div){ for(i=m; i-->0; ) if(lb[i]!=LM_REAL_MIN) lb[i]=lb[i]/scl[i]; }else{ for(i=m; i-->0; ) if(lb[i]!=LM_REAL_MIN) lb[i]=lb[i]*scl[i]; } } else{ /* box bounds */ if(div){ for(i=m; i-->0; ){ if(ub[i]!=LM_REAL_MAX) ub[i]=ub[i]/scl[i]; if(lb[i]!=LM_REAL_MIN) lb[i]=lb[i]/scl[i]; } }else{ for(i=m; i-->0; ){ if(ub[i]!=LM_REAL_MAX) ub[i]=ub[i]*scl[i]; if(lb[i]!=LM_REAL_MIN) lb[i]=lb[i]*scl[i]; } } } } /* compute the norm of a vector in a manner that avoids overflows */ static LM_REAL VECNORM(LM_REAL *x, int n) { #ifdef HAVE_LAPACK #define NRM2 LM_MK_BLAS_NAME(nrm2) extern LM_REAL NRM2(int *n, LM_REAL *dx, int *incx); int one=1; return NRM2(&n, x, &one); #undef NRM2 #else // no LAPACK, use the simple method described by Blue in TOMS78 register int i; LM_REAL max, sum, tmp; for(i=n, max=0.0; i-->0; ) if(x[i]>max) max=x[i]; else if(x[i]<-max) max=-x[i]; for(i=n, sum=0.0; i-->0; ){ tmp=x[i]/max; sum+=tmp*tmp; } return max*(LM_REAL)sqrt(sum); #endif /* HAVE_LAPACK */ } struct FUNC_STATE{ int n, *nfev; LM_REAL *hx, *x; LM_REAL *lb, *ub; void *adata; }; static void LNSRCH(int m, LM_REAL *x, LM_REAL f, LM_REAL *g, LM_REAL *p, LM_REAL alpha, LM_REAL *xpls, LM_REAL *ffpls, void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), struct FUNC_STATE *state, int *mxtake, int *iretcd, LM_REAL stepmx, LM_REAL steptl, LM_REAL *sx) { /* Find a next newton iterate by backtracking line search. * Specifically, finds a \lambda such that for a fixed alpha<0.5 (usually 1e-4), * f(x + \lambda*p) <= f(x) + alpha * \lambda * g^T*p * * Translated (with a few changes) from Schnabel, Koontz & Weiss uncmin.f, v1.3 * Main changes include the addition of box projection and modification of the scaling * logic since uncmin.f operates in the original (unscaled) variable space. * PARAMETERS : * m --> dimension of problem (i.e. number of variables) * x(m) --> old iterate: x[k-1] * f --> function value at old iterate, f(x) * g(m) --> gradient at old iterate, g(x), or approximate * p(m) --> non-zero newton step * alpha --> fixed constant < 0.5 for line search (see above) * xpls(m) <-- new iterate x[k] * ffpls <-- function value at new iterate, f(xpls) * func --> name of subroutine to evaluate function * state <--> information other than x and m that func requires. * state is not modified in xlnsrch (but can be modified by func). * iretcd <-- return code * mxtake <-- boolean flag indicating step of maximum length used * stepmx --> maximum allowable step size * steptl --> relative step size at which successive iterates * considered close enough to terminate algorithm * sx(m) --> diagonal scaling matrix for x, can be NULL * internal variables * sln newton length * rln relative length of newton step */ register int i, j; int firstback = 1; LM_REAL disc; LM_REAL a3, b; LM_REAL t1, t2, t3, lambda, tlmbda, rmnlmb; LM_REAL scl, rln, sln, slp; LM_REAL tmp1, tmp2; LM_REAL fpls, pfpls = 0., plmbda = 0.; /* -Wall */ f*=LM_CNST(0.5); *mxtake = 0; *iretcd = 2; tmp1 = 0.; for (i = m; i-- > 0; ) tmp1 += p[i] * p[i]; sln = (LM_REAL)sqrt(tmp1); if (sln > stepmx) { /* newton step longer than maximum allowed */ scl = stepmx / sln; for (i = m; i-- > 0; ) /* p * scl */ p[i]*=scl; sln = stepmx; } for (i = m, slp = rln = 0.; i-- > 0; ){ slp+=g[i]*p[i]; /* g^T * p */ tmp1 = (FABS(x[i])>=LM_CNST(1.))? FABS(x[i]) : LM_CNST(1.); tmp2 = FABS(p[i])/tmp1; if(rln < tmp2) rln = tmp2; } rmnlmb = steptl / rln; lambda = LM_CNST(1.0); /* check if new iterate satisfactory. generate new lambda if necessary. */ for(j = _LSITMAX_; j-- > 0; ) { for (i = m; i-- > 0; ) xpls[i] = x[i] + lambda * p[i]; BOXPROJECT(xpls, state->lb, state->ub, m); /* project to feasible set */ /* evaluate function at new point */ if(!sx){ (*func)(xpls, state->hx, m, state->n, state->adata); ++(*(state->nfev)); } else{ for (i = m; i-- > 0; ) xpls[i] *= sx[i]; (*func)(xpls, state->hx, m, state->n, state->adata); ++(*(state->nfev)); for (i = m; i-- > 0; ) xpls[i] /= sx[i]; } /* ### state->hx=state->x-state->hx, tmp1=||state->hx|| */ #if 1 tmp1=LEVMAR_L2NRMXMY(state->hx, state->x, state->hx, state->n); #else for(i=0, tmp1=0.0; in; ++i){ state->hx[i]=tmp2=state->x[i]-state->hx[i]; tmp1+=tmp2*tmp2; } #endif fpls=LM_CNST(0.5)*tmp1; *ffpls=tmp1; if (fpls <= f + slp * alpha * lambda) { /* solution found */ *iretcd = 0; if (lambda == LM_CNST(1.) && sln > stepmx * LM_CNST(.99)) *mxtake = 1; return; } /* else : solution not (yet) found */ /* First find a point with a finite value */ if (lambda < rmnlmb) { /* no satisfactory xpls found sufficiently distinct from x */ *iretcd = 1; return; } else { /* calculate new lambda */ /* modifications to cover non-finite values */ if (!LM_FINITE(fpls)) { lambda *= LM_CNST(0.1); firstback = 1; } else { if (firstback) { /* first backtrack: quadratic fit */ tlmbda = -lambda * slp / ((fpls - f - slp) * LM_CNST(2.)); firstback = 0; } else { /* all subsequent backtracks: cubic fit */ t1 = fpls - f - lambda * slp; t2 = pfpls - f - plmbda * slp; t3 = LM_CNST(1.) / (lambda - plmbda); a3 = LM_CNST(3.) * t3 * (t1 / (lambda * lambda) - t2 / (plmbda * plmbda)); b = t3 * (t2 * lambda / (plmbda * plmbda) - t1 * plmbda / (lambda * lambda)); disc = b * b - a3 * slp; if (disc > b * b) /* only one positive critical point, must be minimum */ tlmbda = (-b + ((a3 < 0)? -(LM_REAL)sqrt(disc): (LM_REAL)sqrt(disc))) /a3; else /* both critical points positive, first is minimum */ tlmbda = (-b + ((a3 < 0)? (LM_REAL)sqrt(disc): -(LM_REAL)sqrt(disc))) /a3; if (tlmbda > lambda * LM_CNST(.5)) tlmbda = lambda * LM_CNST(.5); } plmbda = lambda; pfpls = fpls; if (tlmbda < lambda * LM_CNST(.1)) lambda *= LM_CNST(.1); else lambda = tlmbda; } } } /* this point is reached when the iterations limit is exceeded */ *iretcd = 1; /* failed */ return; } /* LNSRCH */ /* * This function seeks the parameter vector p that best describes the measurements * vector x under box constraints. * More precisely, given a vector function func : R^m --> R^n with n>=m, * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of * e=x-func(p) is minimized under the constraints lb[i]<=p[i]<=ub[i]. * If no lower bound constraint applies for p[i], use -DBL_MAX/-FLT_MAX for lb[i]; * If no upper bound constraint applies for p[i], use DBL_MAX/FLT_MAX for ub[i]. * * This function requires an analytic Jacobian. In case the latter is unavailable, * use LEVMAR_BC_DIF() bellow * * Returns the number of iterations (>=0) if successful, LM_ERROR if failed * * For details, see C. Kanzow, N. Yamashita and M. Fukushima: "Levenberg-Marquardt * methods for constrained nonlinear equations with strong local convergence properties", * Journal of Computational and Applied Mathematics 172, 2004, pp. 375-397. * Also, see K. Madsen, H.B. Nielsen and O. Tingleff's lecture notes on * unconstrained Levenberg-Marquardt at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf * * The algorithm implemented by this function employs projected gradient steps. Since steepest descent * is very sensitive to poor scaling, diagonal scaling has been implemented through the dscl argument: * Instead of minimizing f(p) for p, f(D*q) is minimized for q=D^-1*p, D being a diagonal scaling * matrix whose diagonal equals dscl (see Nocedal-Wright p.27). dscl should contain "typical" magnitudes * for the parameters p. A NULL value for dscl implies no scaling. i.e. D=I. * To account for scaling, the code divides the starting point and box bounds pointwise by dscl. Moreover, * before calling func and jacf the scaling has to be undone (by multiplying), as should be done with * the final point. Note also that jac_q=jac_p*D, where jac_q, jac_p are the jacobians w.r.t. q & p, resp. */ int LEVMAR_BC_DER( void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */ void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), /* function to evaluate the Jacobian \part x / \part p */ LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */ LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */ int m, /* I: parameter vector dimension (i.e. #unknowns) */ int n, /* I: measurement vector dimension */ LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */ LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */ LM_REAL *dscl, /* I: diagonal scaling constants. NULL implies no scaling */ int itmax, /* I: maximum number of iterations */ LM_REAL opts[4], /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu, * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used. * Note that ||J^T e||_inf is computed on free (not equal to lb[i] or ub[i]) variables only. */ LM_REAL info[LM_INFO_SZ], /* O: information regarding the minimization. Set to NULL if don't care * info[0]= ||e||_2 at initial p. * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. * info[5]= # iterations, * info[6]=reason for terminating: 1 - stopped by small gradient J^T e * 2 - stopped by small Dp * 3 - stopped by itmax * 4 - singular matrix. Restart from current p with increased mu * 5 - no further error reduction is possible. Restart with increased mu * 6 - stopped by small ||e||_2 * 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error * info[7]= # function evaluations * info[8]= # Jacobian evaluations * info[9]= # linear systems solved, i.e. # attempts for reducing error */ LM_REAL *work, /* working memory at least LM_BC_DER_WORKSZ() reals large, allocated if NULL */ LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ void *adata) /* pointer to possibly additional data, passed uninterpreted to func & jacf. * Set to NULL if not needed */ { register int i, j, k, l; int worksz, freework=0, issolved; /* temp work arrays */ LM_REAL *e, /* nx1 */ *hx, /* \hat{x}_i, nx1 */ *jacTe, /* J^T e_i mx1 */ *jac, /* nxm */ *jacTjac, /* mxm */ *Dp, /* mx1 */ *diag_jacTjac, /* diagonal of J^T J, mx1 */ *pDp, /* p + Dp, mx1 */ *sp_pDp=NULL; /* dscl*p or dscl*pDp, mx1 */ register LM_REAL mu, /* damping constant */ tmp; /* mainly used in matrix & vector multiplications */ LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */ LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL; LM_REAL tau, eps1, eps2, eps2_sq, eps3; LM_REAL init_p_eL2; int nu=2, nu2, stop=0, nfev, njev=0, nlss=0; const int nm=n*m; /* variables for constrained LM */ struct FUNC_STATE fstate; LM_REAL alpha=LM_CNST(1e-4), beta=LM_CNST(0.9), gamma=LM_CNST(0.99995), rho=LM_CNST(1e-8); LM_REAL t, t0, jacTeDp; LM_REAL tmin=LM_CNST(1e-12), tming=LM_CNST(1e-18); /* minimum step length for LS and PG steps */ const LM_REAL tini=LM_CNST(1.0); /* initial step length for LS and PG steps */ int nLMsteps=0, nLSsteps=0, nPGsteps=0, gprevtaken=0; int numactive; int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL; mu=jacTe_inf=t=0.0; tmin=tmin; /* -Wall */ if(n0; ) if(dscl[i]<=0.0){ fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): scaling constants should be positive (scale %d: %g <= 0)\n"), i, dscl[i]); return LM_ERROR; } sp_pDp=(LM_REAL *)malloc(m*sizeof(LM_REAL)); if(!sp_pDp){ fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): memory allocation request failed\n")); return LM_ERROR; } } if(opts){ tau=opts[0]; eps1=opts[1]; eps2=opts[2]; eps2_sq=opts[2]*opts[2]; eps3=opts[3]; } else{ // use default values tau=LM_CNST(LM_INIT_MU); eps1=LM_CNST(LM_STOP_THRESH); eps2=LM_CNST(LM_STOP_THRESH); eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH); eps3=LM_CNST(LM_STOP_THRESH); } if(!work){ worksz=LM_BC_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m; work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */ if(!work){ fprintf(stderr, LCAT(LEVMAR_BC_DER, "(): memory allocation request failed\n")); return LM_ERROR; } freework=1; } /* set up work arrays */ e=work; hx=e + n; jacTe=hx + n; jac=jacTe + m; jacTjac=jac + nm; Dp=jacTjac + m*m; diag_jacTjac=Dp + m; pDp=diag_jacTjac + m; fstate.n=n; fstate.hx=hx; fstate.x=x; fstate.lb=lb; fstate.ub=ub; fstate.adata=adata; fstate.nfev=&nfev; /* see if starting point is within the feasible set */ for(i=0; i0; ) p[i]/=dscl[i]; BOXSCALE(lb, ub, dscl, m, 1); } for(k=0; k0; ) sp_pDp[i]=p[i]*dscl[i]; (*jacf)(sp_pDp, jac, m, n, adata); ++njev; /* compute jac*D */ for(i=n; i-->0; ){ register LM_REAL *jacim; jacim=jac+i*m; for(j=m; j-->0; ) jacim[j]*=dscl[j]; // jac[i*m+j]*=dscl[j]; } } /* J^T J, J^T e */ if(nm<__BLOCKSZ__SQ){ // this is a small problem /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj. * Thus, the product J^T J can be computed using an outer loop for * l that adds J_li*J_lj to each element ij of the result. Note that * with this scheme, the accesses to J and JtJ are always along rows, * therefore induces less cache misses compared to the straightforward * algorithm for computing the product (i.e., l loop is innermost one). * A similar scheme applies to the computation of J^T e. * However, for large minimization problems (i.e., involving a large number * of unknowns and measurements) for which J/J^T J rows are too large to * fit in the L1 cache, even this scheme incures many cache misses. In * such cases, a cache-efficient blocking scheme is preferable. * * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this * performance problem. * * Note that the non-blocking algorithm is faster on small * problems since in this case it avoids the overheads of blocking. */ register LM_REAL alpha, *jaclm, *jacTjacim; /* looping downwards saves a few computations */ for(i=m*m; i-->0; ) jacTjac[i]=0.0; for(i=m; i-->0; ) jacTe[i]=0.0; for(l=n; l-->0; ){ jaclm=jac+l*m; for(i=m; i-->0; ){ jacTjacim=jacTjac+i*m; alpha=jaclm[i]; //jac[l*m+i]; for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */ jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha /* J^T e */ jacTe[i]+=alpha*e[l]; } } for(i=m; i-->0; ) /* copy to upper part */ for(j=i+1; j0; * if p[i]==lb[i] g[i]<0; otherwise g[i]=0 */ for(i=j=numactive=0, p_L2=jacTe_inf=0.0; i0.0) ++j; } else if(lb && p[i]==lb[i]){ ++numactive; if(jacTe[i]<0.0) ++j; } else if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp; diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */ p_L2+=p[i]*p[i]; } //p_L2=sqrt(p_L2); #if 0 if(!(k%100)){ printf("Current estimate: "); for(i=0; itmp) tmp=diag_jacTjac[i]; /* find max diagonal element */ mu=tau*tmp; } else mu=LM_CNST(0.5)*tau*p_eL2; /* use Kanzow's starting mu */ } /* determine increment using a combination of adaptive damping, line search and projected gradient search */ while(1){ /* augment normal equations */ for(i=0; i=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */ stop=4; break; } if(!dscl){ (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */ } else{ for(i=m; i-->0; ) sp_pDp[i]=pDp[i]*dscl[i]; (*func)(sp_pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */ } /* ### hx=x-hx, pDp_eL2=||hx|| */ #if 1 pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n); #else for(i=0, pDp_eL2=0.0; i0.0){ dF=p_eL2-pDp_eL2; tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0)); tmp=LM_CNST(1.0)-tmp*tmp*tmp; mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) ); } else{ tmp=LM_CNST(0.1)*pDp_eL2; /* pDp_eL2 is the new p_eL2 */ mu=(mu>=tmp)? tmp : mu; } #else tmp=LM_CNST(0.1)*pDp_eL2; /* pDp_eL2 is the new p_eL2 */ mu=(mu>=tmp)? tmp : mu; #endif nu=2; for(i=0 ; i=LM_CNST(1.0))? tmp : LM_CNST(1.0) ); LNSRCH(m, p, p_eL2, jacTe, Dp, alpha, pDp, &pDp_eL2, func, &fstate, &mxtake, &iretcd, stepmx, steptl, dscl); /* NOTE: LNSRCH() updates hx */ if(iretcd!=0 || !LM_FINITE(pDp_eL2)) goto gradproj; /* rather inelegant but effective way to handle LNSRCH() failures... */ } #else /* use the simpler (but slower!) line search described by Kanzow et al */ for(t=tini; t>tmin; t*=beta){ for(i=0; i0; ) sp_pDp[i]=pDp[i]*dscl[i]; (*func)(sp_pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + t*Dp */ } /* compute ||e(pDp)||_2 */ /* ### hx=x-hx, pDp_eL2=||hx|| */ #if 1 pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n); #else for(i=0, pDp_eL2=0.0; itming; t*=beta){ for(i=0; i0; ) sp_pDp[i]=pDp[i]*dscl[i]; (*func)(sp_pDp, hx, m, n, adata); ++nfev; /* evaluate function at p - t*g */ } /* compute ||e(pDp)||_2 */ /* ### hx=x-hx, pDp_eL2=||hx|| */ #if 1 pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n); #else for(i=0, pDp_eL2=0.0; i=itmax) stop=3; for(i=0; i0; ) for(j=m; j-->0; ) covar[i*m+j]*=(dscl[i]*dscl[j]); } } if(freework) free(work); #ifdef LINSOLVERS_RETAIN_MEMORY if(linsolver) (*linsolver)(NULL, NULL, NULL, 0); #endif #if 0 printf("%d LM steps, %d line search, %d projected gradient\n", nLMsteps, nLSsteps, nPGsteps); #endif if(dscl){ /* scale final point and constraints */ for(i=0; ifunc))(p, hx, m, n, dta->adata); } static void LMBC_DIF_JACF(LM_REAL *p, LM_REAL *jac, int m, int n, void *data) { struct LMBC_DIF_DATA *dta=(struct LMBC_DIF_DATA *)data; if(dta->ffdif){ /* evaluate user-supplied function at p */ (*(dta->func))(p, dta->hx, m, n, dta->adata); LEVMAR_FDIF_FORW_JAC_APPROX(dta->func, p, dta->hx, dta->hxx, dta->delta, jac, m, n, dta->adata); } else LEVMAR_FDIF_CENT_JAC_APPROX(dta->func, p, dta->hx, dta->hxx, dta->delta, jac, m, n, dta->adata); } /* No Jacobian version of the LEVMAR_BC_DER() function above: the Jacobian is approximated with * the aid of finite differences (forward or central, see the comment for the opts argument) * Ideally, this function should be implemented with a secant approach. Currently, it just calls * LEVMAR_BC_DER() */ int LEVMAR_BC_DIF( void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */ LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */ LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */ int m, /* I: parameter vector dimension (i.e. #unknowns) */ int n, /* I: measurement vector dimension */ LM_REAL *lb, /* I: vector of lower bounds. If NULL, no lower bounds apply */ LM_REAL *ub, /* I: vector of upper bounds. If NULL, no upper bounds apply */ LM_REAL *dscl, /* I: diagonal scaling constants. NULL implies no scaling */ int itmax, /* I: maximum number of iterations */ LM_REAL opts[5], /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used. * If \delta<0, the Jacobian is approximated with central differences which are more accurate * (but slower!) compared to the forward differences employed by default. */ LM_REAL info[LM_INFO_SZ], /* O: information regarding the minimization. Set to NULL if don't care * info[0]= ||e||_2 at initial p. * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. * info[5]= # iterations, * info[6]=reason for terminating: 1 - stopped by small gradient J^T e * 2 - stopped by small Dp * 3 - stopped by itmax * 4 - singular matrix. Restart from current p with increased mu * 5 - no further error reduction is possible. Restart with increased mu * 6 - stopped by small ||e||_2 * 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error * info[7]= # function evaluations * info[8]= # Jacobian evaluations * info[9]= # linear systems solved, i.e. # attempts for reducing error */ LM_REAL *work, /* working memory at least LM_BC_DIF_WORKSZ() reals large, allocated if NULL */ LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ void *adata) /* pointer to possibly additional data, passed uninterpreted to func. * Set to NULL if not needed */ { struct LMBC_DIF_DATA data; int ret; //fprintf(stderr, RCAT("\nWarning: current implementation of ", LEVMAR_BC_DIF) "() does not use a secant approach!\n\n"); data.ffdif=!opts || opts[4]>=0.0; data.func=func; data.hx=(LM_REAL *)malloc(2*n*sizeof(LM_REAL)); /* allocate a big chunk in one step */ if(!data.hx){ fprintf(stderr, LCAT(LEVMAR_BC_DIF, "(): memory allocation request failed\n")); return LM_ERROR; } data.hxx=data.hx+n; data.adata=adata; data.delta=(opts)? FABS(opts[4]) : (LM_REAL)LM_DIFF_DELTA; ret=LEVMAR_BC_DER(LMBC_DIF_FUNC, LMBC_DIF_JACF, p, x, m, n, lb, ub, dscl, itmax, opts, info, work, covar, (void *)&data); if(info){ /* correct the number of function calls */ if(data.ffdif) info[7]+=info[8]*(m+1); /* each Jacobian evaluation costs m+1 function calls */ else info[7]+=info[8]*(2*m); /* each Jacobian evaluation costs 2*m function calls */ } free(data.hx); return ret; } /* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */ #undef FUNC_STATE #undef LNSRCH #undef BOXPROJECT #undef BOXSCALE #undef LEVMAR_BOX_CHECK #undef VECNORM #undef LEVMAR_BC_DER #undef LMBC_DIF_DATA #undef LMBC_DIF_FUNC #undef LMBC_DIF_JACF #undef LEVMAR_BC_DIF #undef LEVMAR_FDIF_FORW_JAC_APPROX #undef LEVMAR_FDIF_CENT_JAC_APPROX #undef LEVMAR_COVAR #undef LEVMAR_TRANS_MAT_MAT_MULT #undef LEVMAR_L2NRMXMY #undef AX_EQ_B_LU #undef AX_EQ_B_CHOL #undef AX_EQ_B_PLASMA_CHOL #undef AX_EQ_B_QR #undef AX_EQ_B_QRLS #undef AX_EQ_B_SVD #undef AX_EQ_B_BK