source: ThirdParty/levmar/src/lm_core.c@ 7516f6

Action_Thermostats Adding_MD_integration_tests Adding_StructOpt_integration_tests AutomationFragmentation_failures Candidate_v1.6.1 ChemicalSpaceEvaluator Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Exclude_Hydrogens_annealWithBondGraph Fix_Verbose_Codepatterns ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion Gui_displays_atomic_force_velocity JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool PythonUI_with_named_parameters Recreated_GuiChecks StoppableMakroAction TremoloParser_IncreasedPrecision
Last change on this file since 7516f6 was 8ce1a9, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '5443b10a06f0c125d0ae0500abb09901fda9666b' as 'ThirdParty/levmar'

  • Property mode set to 100644
File size: 30.5 KB
Line 
1/////////////////////////////////////////////////////////////////////////////////
2//
3// Levenberg - Marquardt non-linear minimization algorithm
4// Copyright (C) 2004 Manolis Lourakis (lourakis at ics forth gr)
5// Institute of Computer Science, Foundation for Research & Technology - Hellas
6// Heraklion, Crete, Greece.
7//
8// This program is free software; you can redistribute it and/or modify
9// it under the terms of the GNU General Public License as published by
10// the Free Software Foundation; either version 2 of the License, or
11// (at your option) any later version.
12//
13// This program is distributed in the hope that it will be useful,
14// but WITHOUT ANY WARRANTY; without even the implied warranty of
15// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16// GNU General Public License for more details.
17//
18/////////////////////////////////////////////////////////////////////////////////
19
20#ifndef LM_REAL // not included by lm.c
21#error This file should not be compiled directly!
22#endif
23
24
25/* precision-specific definitions */
26#define LEVMAR_DER LM_ADD_PREFIX(levmar_der)
27#define LEVMAR_DIF LM_ADD_PREFIX(levmar_dif)
28#define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
29#define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx)
30#define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
31#define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy)
32#define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
33
34#ifdef HAVE_LAPACK
35#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)
36#define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)
37#define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)
38#define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)
39#define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)
40#define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK)
41#else
42#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)
43#endif /* HAVE_LAPACK */
44
45#ifdef HAVE_PLASMA
46#define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol)
47#endif
48
49/*
50 * This function seeks the parameter vector p that best describes the measurements vector x.
51 * More precisely, given a vector function func : R^m --> R^n with n>=m,
52 * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of
53 * e=x-func(p) is minimized.
54 *
55 * This function requires an analytic Jacobian. In case the latter is unavailable,
56 * use LEVMAR_DIF() bellow
57 *
58 * Returns the number of iterations (>=0) if successful, LM_ERROR if failed
59 *
60 * For more details, see K. Madsen, H.B. Nielsen and O. Tingleff's lecture notes on
61 * non-linear least squares at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
62 */
63
64int LEVMAR_DER(
65 void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
66 void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), /* function to evaluate the Jacobian \part x / \part p */
67 LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
68 LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
69 int m, /* I: parameter vector dimension (i.e. #unknowns) */
70 int n, /* I: measurement vector dimension */
71 int itmax, /* I: maximum number of iterations */
72 LM_REAL opts[4], /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
73 * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
74 */
75 LM_REAL info[LM_INFO_SZ],
76 /* O: information regarding the minimization. Set to NULL if don't care
77 * info[0]= ||e||_2 at initial p.
78 * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
79 * info[5]= # iterations,
80 * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
81 * 2 - stopped by small Dp
82 * 3 - stopped by itmax
83 * 4 - singular matrix. Restart from current p with increased mu
84 * 5 - no further error reduction is possible. Restart with increased mu
85 * 6 - stopped by small ||e||_2
86 * 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
87 * info[7]= # function evaluations
88 * info[8]= # Jacobian evaluations
89 * info[9]= # linear systems solved, i.e. # attempts for reducing error
90 */
91 LM_REAL *work, /* working memory at least LM_DER_WORKSZ() reals large, allocated if NULL */
92 LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
93 void *adata) /* pointer to possibly additional data, passed uninterpreted to func & jacf.
94 * Set to NULL if not needed
95 */
96{
97register int i, j, k, l;
98int worksz, freework=0, issolved;
99/* temp work arrays */
100LM_REAL *e, /* nx1 */
101 *hx, /* \hat{x}_i, nx1 */
102 *jacTe, /* J^T e_i mx1 */
103 *jac, /* nxm */
104 *jacTjac, /* mxm */
105 *Dp, /* mx1 */
106 *diag_jacTjac, /* diagonal of J^T J, mx1 */
107 *pDp; /* p + Dp, mx1 */
108
109register LM_REAL mu, /* damping constant */
110 tmp; /* mainly used in matrix & vector multiplications */
111LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
112LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
113LM_REAL tau, eps1, eps2, eps2_sq, eps3;
114LM_REAL init_p_eL2;
115int nu=2, nu2, stop=0, nfev, njev=0, nlss=0;
116const int nm=n*m;
117int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;
118
119 mu=jacTe_inf=0.0; /* -Wall */
120
121 if(n<m){
122 fprintf(stderr, LCAT(LEVMAR_DER, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
123 return LM_ERROR;
124 }
125
126 if(!jacf){
127 fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_DER)
128 RCAT("().\nIf no such function is available, use ", LEVMAR_DIF) RCAT("() rather than ", LEVMAR_DER) "()\n");
129 return LM_ERROR;
130 }
131
132 if(opts){
133 tau=opts[0];
134 eps1=opts[1];
135 eps2=opts[2];
136 eps2_sq=opts[2]*opts[2];
137 eps3=opts[3];
138 }
139 else{ // use default values
140 tau=LM_CNST(LM_INIT_MU);
141 eps1=LM_CNST(LM_STOP_THRESH);
142 eps2=LM_CNST(LM_STOP_THRESH);
143 eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);
144 eps3=LM_CNST(LM_STOP_THRESH);
145 }
146
147 if(!work){
148 worksz=LM_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m;
149 work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
150 if(!work){
151 fprintf(stderr, LCAT(LEVMAR_DER, "(): memory allocation request failed\n"));
152 return LM_ERROR;
153 }
154 freework=1;
155 }
156
157 /* set up work arrays */
158 e=work;
159 hx=e + n;
160 jacTe=hx + n;
161 jac=jacTe + m;
162 jacTjac=jac + nm;
163 Dp=jacTjac + m*m;
164 diag_jacTjac=Dp + m;
165 pDp=diag_jacTjac + m;
166
167 /* compute e=x - f(p) and its L2 norm */
168 (*func)(p, hx, m, n, adata); nfev=1;
169 /* ### e=x-hx, p_eL2=||e|| */
170#if 1
171 p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);
172#else
173 for(i=0, p_eL2=0.0; i<n; ++i){
174 e[i]=tmp=x[i]-hx[i];
175 p_eL2+=tmp*tmp;
176 }
177#endif
178 init_p_eL2=p_eL2;
179 if(!LM_FINITE(p_eL2)) stop=7;
180
181 for(k=0; k<itmax && !stop; ++k){
182 /* Note that p and e have been updated at a previous iteration */
183
184 if(p_eL2<=eps3){ /* error is small */
185 stop=6;
186 break;
187 }
188
189 /* Compute the Jacobian J at p, J^T J, J^T e, ||J^T e||_inf and ||p||^2.
190 * Since J^T J is symmetric, its computation can be sped up by computing
191 * only its upper triangular part and copying it to the lower part
192 */
193
194 (*jacf)(p, jac, m, n, adata); ++njev;
195
196 /* J^T J, J^T e */
197 if(nm<__BLOCKSZ__SQ){ // this is a small problem
198 /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.
199 * Thus, the product J^T J can be computed using an outer loop for
200 * l that adds J_li*J_lj to each element ij of the result. Note that
201 * with this scheme, the accesses to J and JtJ are always along rows,
202 * therefore induces less cache misses compared to the straightforward
203 * algorithm for computing the product (i.e., l loop is innermost one).
204 * A similar scheme applies to the computation of J^T e.
205 * However, for large minimization problems (i.e., involving a large number
206 * of unknowns and measurements) for which J/J^T J rows are too large to
207 * fit in the L1 cache, even this scheme incures many cache misses. In
208 * such cases, a cache-efficient blocking scheme is preferable.
209 *
210 * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
211 * performance problem.
212 *
213 * Note that the non-blocking algorithm is faster on small
214 * problems since in this case it avoids the overheads of blocking.
215 */
216
217 /* looping downwards saves a few computations */
218 register int l;
219 register LM_REAL alpha, *jaclm, *jacTjacim;
220
221 for(i=m*m; i-->0; )
222 jacTjac[i]=0.0;
223 for(i=m; i-->0; )
224 jacTe[i]=0.0;
225
226 for(l=n; l-->0; ){
227 jaclm=jac+l*m;
228 for(i=m; i-->0; ){
229 jacTjacim=jacTjac+i*m;
230 alpha=jaclm[i]; //jac[l*m+i];
231 for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */
232 jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha
233
234 /* J^T e */
235 jacTe[i]+=alpha*e[l];
236 }
237 }
238
239 for(i=m; i-->0; ) /* copy to upper part */
240 for(j=i+1; j<m; ++j)
241 jacTjac[i*m+j]=jacTjac[j*m+i];
242
243 }
244 else{ // this is a large problem
245 /* Cache efficient computation of J^T J based on blocking
246 */
247 LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);
248
249 /* cache efficient computation of J^T e */
250 for(i=0; i<m; ++i)
251 jacTe[i]=0.0;
252
253 for(i=0; i<n; ++i){
254 register LM_REAL *jacrow;
255
256 for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
257 jacTe[l]+=jacrow[l]*tmp;
258 }
259 }
260
261 /* Compute ||J^T e||_inf and ||p||^2 */
262 for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){
263 if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;
264
265 diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
266 p_L2+=p[i]*p[i];
267 }
268 //p_L2=sqrt(p_L2);
269
270#if 0
271if(!(k%100)){
272 printf("Current estimate: ");
273 for(i=0; i<m; ++i)
274 printf("%.9g ", p[i]);
275 printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
276}
277#endif
278
279 /* check for convergence */
280 if((jacTe_inf <= eps1)){
281 Dp_L2=0.0; /* no increment for p in this case */
282 stop=1;
283 break;
284 }
285
286 /* compute initial damping factor */
287 if(k==0){
288 for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
289 if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
290 mu=tau*tmp;
291 }
292
293 /* determine increment using adaptive damping */
294 while(1){
295 /* augment normal equations */
296 for(i=0; i<m; ++i)
297 jacTjac[i*m+i]+=mu;
298
299 /* solve augmented equations */
300#ifdef HAVE_LAPACK
301 /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD.
302 * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest.
303 * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off;
304 * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but
305 * slower than LDLt; LDLt offers a good tradeoff between robustness and speed
306 */
307
308 issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK;
309 //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
310 //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;
311#ifdef HAVE_PLASMA
312 //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL;
313#endif
314 //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;
315 //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;
316 //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;
317
318#else
319 /* use the LU included with levmar */
320 issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
321#endif /* HAVE_LAPACK */
322
323 if(issolved){
324 /* compute p's new estimate and ||Dp||^2 */
325 for(i=0, Dp_L2=0.0; i<m; ++i){
326 pDp[i]=p[i] + (tmp=Dp[i]);
327 Dp_L2+=tmp*tmp;
328 }
329 //Dp_L2=sqrt(Dp_L2);
330
331 if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
332 //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
333 stop=2;
334 break;
335 }
336
337 if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */
338 //if(Dp_L2>=(p_L2+eps2)/LM_CNST(EPSILON)){ /* almost singular */
339 stop=4;
340 break;
341 }
342
343 (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */
344 /* compute ||e(pDp)||_2 */
345 /* ### hx=x-hx, pDp_eL2=||hx|| */
346#if 1
347 pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n);
348#else
349 for(i=0, pDp_eL2=0.0; i<n; ++i){
350 hx[i]=tmp=x[i]-hx[i];
351 pDp_eL2+=tmp*tmp;
352 }
353#endif
354 if(!LM_FINITE(pDp_eL2)){ /* sum of squares is not finite, most probably due to a user error.
355 * This check makes sure that the inner loop does not run indefinitely.
356 * Thanks to Steve Danauskas for reporting such cases
357 */
358 stop=7;
359 break;
360 }
361
362 for(i=0, dL=0.0; i<m; ++i)
363 dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);
364
365 dF=p_eL2-pDp_eL2;
366
367 if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */
368 tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));
369 tmp=LM_CNST(1.0)-tmp*tmp*tmp;
370 mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );
371 nu=2;
372
373 for(i=0 ; i<m; ++i) /* update p's estimate */
374 p[i]=pDp[i];
375
376 for(i=0; i<n; ++i) /* update e and ||e||_2 */
377 e[i]=hx[i];
378 p_eL2=pDp_eL2;
379 break;
380 }
381 }
382
383 /* if this point is reached, either the linear system could not be solved or
384 * the error did not reduce; in any case, the increment must be rejected
385 */
386
387 mu*=nu;
388 nu2=nu<<1; // 2*nu;
389 if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
390 stop=5;
391 break;
392 }
393 nu=nu2;
394
395 for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
396 jacTjac[i*m+i]=diag_jacTjac[i];
397 } /* inner loop */
398 }
399
400 if(k>=itmax) stop=3;
401
402 for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
403 jacTjac[i*m+i]=diag_jacTjac[i];
404
405 if(info){
406 info[0]=init_p_eL2;
407 info[1]=p_eL2;
408 info[2]=jacTe_inf;
409 info[3]=Dp_L2;
410 for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
411 if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
412 info[4]=mu/tmp;
413 info[5]=(LM_REAL)k;
414 info[6]=(LM_REAL)stop;
415 info[7]=(LM_REAL)nfev;
416 info[8]=(LM_REAL)njev;
417 info[9]=(LM_REAL)nlss;
418 }
419
420 /* covariance matrix */
421 if(covar){
422 LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
423 }
424
425 if(freework) free(work);
426
427#ifdef LINSOLVERS_RETAIN_MEMORY
428 if(linsolver) (*linsolver)(NULL, NULL, NULL, 0);
429#endif
430
431 return (stop!=4 && stop!=7)? k : LM_ERROR;
432}
433
434
435/* Secant version of the LEVMAR_DER() function above: the Jacobian is approximated with
436 * the aid of finite differences (forward or central, see the comment for the opts argument)
437 */
438int LEVMAR_DIF(
439 void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
440 LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
441 LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
442 int m, /* I: parameter vector dimension (i.e. #unknowns) */
443 int n, /* I: measurement vector dimension */
444 int itmax, /* I: maximum number of iterations */
445 LM_REAL opts[5], /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
446 * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
447 * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
448 * If \delta<0, the Jacobian is approximated with central differences which are more accurate
449 * (but slower!) compared to the forward differences employed by default.
450 */
451 LM_REAL info[LM_INFO_SZ],
452 /* O: information regarding the minimization. Set to NULL if don't care
453 * info[0]= ||e||_2 at initial p.
454 * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
455 * info[5]= # iterations,
456 * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
457 * 2 - stopped by small Dp
458 * 3 - stopped by itmax
459 * 4 - singular matrix. Restart from current p with increased mu
460 * 5 - no further error reduction is possible. Restart with increased mu
461 * 6 - stopped by small ||e||_2
462 * 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
463 * info[7]= # function evaluations
464 * info[8]= # Jacobian evaluations
465 * info[9]= # linear systems solved, i.e. # attempts for reducing error
466 */
467 LM_REAL *work, /* working memory at least LM_DIF_WORKSZ() reals large, allocated if NULL */
468 LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
469 void *adata) /* pointer to possibly additional data, passed uninterpreted to func.
470 * Set to NULL if not needed
471 */
472{
473register int i, j, k, l;
474int worksz, freework=0, issolved;
475/* temp work arrays */
476LM_REAL *e, /* nx1 */
477 *hx, /* \hat{x}_i, nx1 */
478 *jacTe, /* J^T e_i mx1 */
479 *jac, /* nxm */
480 *jacTjac, /* mxm */
481 *Dp, /* mx1 */
482 *diag_jacTjac, /* diagonal of J^T J, mx1 */
483 *pDp, /* p + Dp, mx1 */
484 *wrk, /* nx1 */
485 *wrk2; /* nx1, used only for holding a temporary e vector and when differentiating with central differences */
486
487int using_ffdif=1;
488
489register LM_REAL mu, /* damping constant */
490 tmp; /* mainly used in matrix & vector multiplications */
491LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
492LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
493LM_REAL tau, eps1, eps2, eps2_sq, eps3, delta;
494LM_REAL init_p_eL2;
495int nu, nu2, stop=0, nfev, njap=0, nlss=0, K=(m>=10)? m: 10, updjac, updp=1, newjac;
496const int nm=n*m;
497int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;
498
499 mu=jacTe_inf=p_L2=0.0; /* -Wall */
500 updjac=newjac=0; /* -Wall */
501
502 if(n<m){
503 fprintf(stderr, LCAT(LEVMAR_DIF, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
504 return LM_ERROR;
505 }
506
507 if(opts){
508 tau=opts[0];
509 eps1=opts[1];
510 eps2=opts[2];
511 eps2_sq=opts[2]*opts[2];
512 eps3=opts[3];
513 delta=opts[4];
514 if(delta<0.0){
515 delta=-delta; /* make positive */
516 using_ffdif=0; /* use central differencing */
517 }
518 }
519 else{ // use default values
520 tau=LM_CNST(LM_INIT_MU);
521 eps1=LM_CNST(LM_STOP_THRESH);
522 eps2=LM_CNST(LM_STOP_THRESH);
523 eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);
524 eps3=LM_CNST(LM_STOP_THRESH);
525 delta=LM_CNST(LM_DIFF_DELTA);
526 }
527
528 if(!work){
529 worksz=LM_DIF_WORKSZ(m, n); //4*n+4*m + n*m + m*m;
530 work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
531 if(!work){
532 fprintf(stderr, LCAT(LEVMAR_DIF, "(): memory allocation request failed\n"));
533 return LM_ERROR;
534 }
535 freework=1;
536 }
537
538 /* set up work arrays */
539 e=work;
540 hx=e + n;
541 jacTe=hx + n;
542 jac=jacTe + m;
543 jacTjac=jac + nm;
544 Dp=jacTjac + m*m;
545 diag_jacTjac=Dp + m;
546 pDp=diag_jacTjac + m;
547 wrk=pDp + m;
548 wrk2=wrk + n;
549
550 /* compute e=x - f(p) and its L2 norm */
551 (*func)(p, hx, m, n, adata); nfev=1;
552 /* ### e=x-hx, p_eL2=||e|| */
553#if 1
554 p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);
555#else
556 for(i=0, p_eL2=0.0; i<n; ++i){
557 e[i]=tmp=x[i]-hx[i];
558 p_eL2+=tmp*tmp;
559 }
560#endif
561 init_p_eL2=p_eL2;
562 if(!LM_FINITE(p_eL2)) stop=7;
563
564 nu=20; /* force computation of J */
565
566 for(k=0; k<itmax && !stop; ++k){
567 /* Note that p and e have been updated at a previous iteration */
568
569 if(p_eL2<=eps3){ /* error is small */
570 stop=6;
571 break;
572 }
573
574 /* Compute the Jacobian J at p, J^T J, J^T e, ||J^T e||_inf and ||p||^2.
575 * The symmetry of J^T J is again exploited for speed
576 */
577
578 if((updp && nu>16) || updjac==K){ /* compute difference approximation to J */
579 if(using_ffdif){ /* use forward differences */
580 LEVMAR_FDIF_FORW_JAC_APPROX(func, p, hx, wrk, delta, jac, m, n, adata);
581 ++njap; nfev+=m;
582 }
583 else{ /* use central differences */
584 LEVMAR_FDIF_CENT_JAC_APPROX(func, p, wrk, wrk2, delta, jac, m, n, adata);
585 ++njap; nfev+=2*m;
586 }
587 nu=2; updjac=0; updp=0; newjac=1;
588 }
589
590 if(newjac){ /* Jacobian has changed, recompute J^T J, J^t e, etc */
591 newjac=0;
592
593 /* J^T J, J^T e */
594 if(nm<=__BLOCKSZ__SQ){ // this is a small problem
595 /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.
596 * Thus, the product J^T J can be computed using an outer loop for
597 * l that adds J_li*J_lj to each element ij of the result. Note that
598 * with this scheme, the accesses to J and JtJ are always along rows,
599 * therefore induces less cache misses compared to the straightforward
600 * algorithm for computing the product (i.e., l loop is innermost one).
601 * A similar scheme applies to the computation of J^T e.
602 * However, for large minimization problems (i.e., involving a large number
603 * of unknowns and measurements) for which J/J^T J rows are too large to
604 * fit in the L1 cache, even this scheme incures many cache misses. In
605 * such cases, a cache-efficient blocking scheme is preferable.
606 *
607 * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
608 * performance problem.
609 *
610 * Note that the non-blocking algorithm is faster on small
611 * problems since in this case it avoids the overheads of blocking.
612 */
613 register int l;
614 register LM_REAL alpha, *jaclm, *jacTjacim;
615
616 /* looping downwards saves a few computations */
617 for(i=m*m; i-->0; )
618 jacTjac[i]=0.0;
619 for(i=m; i-->0; )
620 jacTe[i]=0.0;
621
622 for(l=n; l-->0; ){
623 jaclm=jac+l*m;
624 for(i=m; i-->0; ){
625 jacTjacim=jacTjac+i*m;
626 alpha=jaclm[i]; //jac[l*m+i];
627 for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */
628 jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha
629
630 /* J^T e */
631 jacTe[i]+=alpha*e[l];
632 }
633 }
634
635 for(i=m; i-->0; ) /* copy to upper part */
636 for(j=i+1; j<m; ++j)
637 jacTjac[i*m+j]=jacTjac[j*m+i];
638 }
639 else{ // this is a large problem
640 /* Cache efficient computation of J^T J based on blocking
641 */
642 LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);
643
644 /* cache efficient computation of J^T e */
645 for(i=0; i<m; ++i)
646 jacTe[i]=0.0;
647
648 for(i=0; i<n; ++i){
649 register LM_REAL *jacrow;
650
651 for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
652 jacTe[l]+=jacrow[l]*tmp;
653 }
654 }
655
656 /* Compute ||J^T e||_inf and ||p||^2 */
657 for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){
658 if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;
659
660 diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
661 p_L2+=p[i]*p[i];
662 }
663 //p_L2=sqrt(p_L2);
664 }
665
666#if 0
667if(!(k%100)){
668 printf("Current estimate: ");
669 for(i=0; i<m; ++i)
670 printf("%.9g ", p[i]);
671 printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
672}
673#endif
674
675 /* check for convergence */
676 if((jacTe_inf <= eps1)){
677 Dp_L2=0.0; /* no increment for p in this case */
678 stop=1;
679 break;
680 }
681
682 /* compute initial damping factor */
683 if(k==0){
684 for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
685 if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
686 mu=tau*tmp;
687 }
688
689 /* determine increment using adaptive damping */
690
691 /* augment normal equations */
692 for(i=0; i<m; ++i)
693 jacTjac[i*m+i]+=mu;
694
695 /* solve augmented equations */
696#ifdef HAVE_LAPACK
697 /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD.
698 * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest.
699 * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off;
700 * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but
701 * slower than LDLt; LDLt offers a good tradeoff between robustness and speed
702 */
703
704 issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK;
705 //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
706 //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;
707#ifdef HAVE_PLASMA
708 //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL;
709#endif
710 //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;
711 //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;
712 //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;
713#else
714 /* use the LU included with levmar */
715 issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
716#endif /* HAVE_LAPACK */
717
718 if(issolved){
719 /* compute p's new estimate and ||Dp||^2 */
720 for(i=0, Dp_L2=0.0; i<m; ++i){
721 pDp[i]=p[i] + (tmp=Dp[i]);
722 Dp_L2+=tmp*tmp;
723 }
724 //Dp_L2=sqrt(Dp_L2);
725
726 if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
727 //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
728 stop=2;
729 break;
730 }
731
732 if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */
733 //if(Dp_L2>=(p_L2+eps2)/LM_CNST(EPSILON)){ /* almost singular */
734 stop=4;
735 break;
736 }
737
738 (*func)(pDp, wrk, m, n, adata); ++nfev; /* evaluate function at p + Dp */
739 /* compute ||e(pDp)||_2 */
740 /* ### wrk2=x-wrk, pDp_eL2=||wrk2|| */
741#if 1
742 pDp_eL2=LEVMAR_L2NRMXMY(wrk2, x, wrk, n);
743#else
744 for(i=0, pDp_eL2=0.0; i<n; ++i){
745 wrk2[i]=tmp=x[i]-wrk[i];
746 pDp_eL2+=tmp*tmp;
747 }
748#endif
749 if(!LM_FINITE(pDp_eL2)){ /* sum of squares is not finite, most probably due to a user error.
750 * This check makes sure that the loop terminates early in the case
751 * of invalid input. Thanks to Steve Danauskas for suggesting it
752 */
753
754 stop=7;
755 break;
756 }
757
758 dF=p_eL2-pDp_eL2;
759 if(updp || dF>0){ /* update jac */
760 for(i=0; i<n; ++i){
761 for(l=0, tmp=0.0; l<m; ++l)
762 tmp+=jac[i*m+l]*Dp[l]; /* (J * Dp)[i] */
763 tmp=(wrk[i] - hx[i] - tmp)/Dp_L2; /* (f(p+dp)[i] - f(p)[i] - (J * Dp)[i])/(dp^T*dp) */
764 for(j=0; j<m; ++j)
765 jac[i*m+j]+=tmp*Dp[j];
766 }
767 ++updjac;
768 newjac=1;
769 }
770
771 for(i=0, dL=0.0; i<m; ++i)
772 dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);
773
774 if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */
775 tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));
776 tmp=LM_CNST(1.0)-tmp*tmp*tmp;
777 mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );
778 nu=2;
779
780 for(i=0 ; i<m; ++i) /* update p's estimate */
781 p[i]=pDp[i];
782
783 for(i=0; i<n; ++i){ /* update e, hx and ||e||_2 */
784 e[i]=wrk2[i]; //x[i]-wrk[i];
785 hx[i]=wrk[i];
786 }
787 p_eL2=pDp_eL2;
788 updp=1;
789 continue;
790 }
791 }
792
793 /* if this point is reached, either the linear system could not be solved or
794 * the error did not reduce; in any case, the increment must be rejected
795 */
796
797 mu*=nu;
798 nu2=nu<<1; // 2*nu;
799 if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
800 stop=5;
801 break;
802 }
803 nu=nu2;
804
805 for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
806 jacTjac[i*m+i]=diag_jacTjac[i];
807 }
808
809 if(k>=itmax) stop=3;
810
811 for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
812 jacTjac[i*m+i]=diag_jacTjac[i];
813
814 if(info){
815 info[0]=init_p_eL2;
816 info[1]=p_eL2;
817 info[2]=jacTe_inf;
818 info[3]=Dp_L2;
819 for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
820 if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
821 info[4]=mu/tmp;
822 info[5]=(LM_REAL)k;
823 info[6]=(LM_REAL)stop;
824 info[7]=(LM_REAL)nfev;
825 info[8]=(LM_REAL)njap;
826 info[9]=(LM_REAL)nlss;
827 }
828
829 /* covariance matrix */
830 if(covar){
831 LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
832 }
833
834
835 if(freework) free(work);
836
837#ifdef LINSOLVERS_RETAIN_MEMORY
838 if(linsolver) (*linsolver)(NULL, NULL, NULL, 0);
839#endif
840
841 return (stop!=4 && stop!=7)? k : LM_ERROR;
842}
843
844/* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */
845#undef LEVMAR_DER
846#undef LEVMAR_DIF
847#undef LEVMAR_FDIF_FORW_JAC_APPROX
848#undef LEVMAR_FDIF_CENT_JAC_APPROX
849#undef LEVMAR_COVAR
850#undef LEVMAR_TRANS_MAT_MAT_MULT
851#undef LEVMAR_L2NRMXMY
852#undef AX_EQ_B_LU
853#undef AX_EQ_B_CHOL
854#undef AX_EQ_B_PLASMA_CHOL
855#undef AX_EQ_B_QR
856#undef AX_EQ_B_QRLS
857#undef AX_EQ_B_SVD
858#undef AX_EQ_B_BK
Note: See TracBrowser for help on using the repository browser.