1 | /////////////////////////////////////////////////////////////////////////////////
|
---|
2 | //
|
---|
3 | // Levenberg - Marquardt non-linear minimization algorithm
|
---|
4 | // Copyright (C) 2004 Manolis Lourakis (lourakis at ics forth gr)
|
---|
5 | // Institute of Computer Science, Foundation for Research & Technology - Hellas
|
---|
6 | // Heraklion, Crete, Greece.
|
---|
7 | //
|
---|
8 | // This program is free software; you can redistribute it and/or modify
|
---|
9 | // it under the terms of the GNU General Public License as published by
|
---|
10 | // the Free Software Foundation; either version 2 of the License, or
|
---|
11 | // (at your option) any later version.
|
---|
12 | //
|
---|
13 | // This program is distributed in the hope that it will be useful,
|
---|
14 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
15 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
16 | // GNU General Public License for more details.
|
---|
17 | //
|
---|
18 | /////////////////////////////////////////////////////////////////////////////////
|
---|
19 |
|
---|
20 | #ifndef LM_REAL // not included by lm.c
|
---|
21 | #error This file should not be compiled directly!
|
---|
22 | #endif
|
---|
23 |
|
---|
24 |
|
---|
25 | /* precision-specific definitions */
|
---|
26 | #define LEVMAR_DER LM_ADD_PREFIX(levmar_der)
|
---|
27 | #define LEVMAR_DIF LM_ADD_PREFIX(levmar_dif)
|
---|
28 | #define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
|
---|
29 | #define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx)
|
---|
30 | #define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
|
---|
31 | #define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy)
|
---|
32 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
|
---|
33 |
|
---|
34 | #ifdef HAVE_LAPACK
|
---|
35 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)
|
---|
36 | #define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)
|
---|
37 | #define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)
|
---|
38 | #define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)
|
---|
39 | #define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)
|
---|
40 | #define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK)
|
---|
41 | #else
|
---|
42 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)
|
---|
43 | #endif /* HAVE_LAPACK */
|
---|
44 |
|
---|
45 | #ifdef HAVE_PLASMA
|
---|
46 | #define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol)
|
---|
47 | #endif
|
---|
48 |
|
---|
49 | /*
|
---|
50 | * This function seeks the parameter vector p that best describes the measurements vector x.
|
---|
51 | * More precisely, given a vector function func : R^m --> R^n with n>=m,
|
---|
52 | * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of
|
---|
53 | * e=x-func(p) is minimized.
|
---|
54 | *
|
---|
55 | * This function requires an analytic Jacobian. In case the latter is unavailable,
|
---|
56 | * use LEVMAR_DIF() bellow
|
---|
57 | *
|
---|
58 | * Returns the number of iterations (>=0) if successful, LM_ERROR if failed
|
---|
59 | *
|
---|
60 | * For more details, see K. Madsen, H.B. Nielsen and O. Tingleff's lecture notes on
|
---|
61 | * non-linear least squares at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
|
---|
62 | */
|
---|
63 |
|
---|
64 | int LEVMAR_DER(
|
---|
65 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
|
---|
66 | void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata), /* function to evaluate the Jacobian \part x / \part p */
|
---|
67 | LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
|
---|
68 | LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
|
---|
69 | int m, /* I: parameter vector dimension (i.e. #unknowns) */
|
---|
70 | int n, /* I: measurement vector dimension */
|
---|
71 | int itmax, /* I: maximum number of iterations */
|
---|
72 | LM_REAL opts[4], /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
|
---|
73 | * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
|
---|
74 | */
|
---|
75 | LM_REAL info[LM_INFO_SZ],
|
---|
76 | /* O: information regarding the minimization. Set to NULL if don't care
|
---|
77 | * info[0]= ||e||_2 at initial p.
|
---|
78 | * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
|
---|
79 | * info[5]= # iterations,
|
---|
80 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
|
---|
81 | * 2 - stopped by small Dp
|
---|
82 | * 3 - stopped by itmax
|
---|
83 | * 4 - singular matrix. Restart from current p with increased mu
|
---|
84 | * 5 - no further error reduction is possible. Restart with increased mu
|
---|
85 | * 6 - stopped by small ||e||_2
|
---|
86 | * 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
|
---|
87 | * info[7]= # function evaluations
|
---|
88 | * info[8]= # Jacobian evaluations
|
---|
89 | * info[9]= # linear systems solved, i.e. # attempts for reducing error
|
---|
90 | */
|
---|
91 | LM_REAL *work, /* working memory at least LM_DER_WORKSZ() reals large, allocated if NULL */
|
---|
92 | LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
|
---|
93 | void *adata) /* pointer to possibly additional data, passed uninterpreted to func & jacf.
|
---|
94 | * Set to NULL if not needed
|
---|
95 | */
|
---|
96 | {
|
---|
97 | register int i, j, k, l;
|
---|
98 | int worksz, freework=0, issolved;
|
---|
99 | /* temp work arrays */
|
---|
100 | LM_REAL *e, /* nx1 */
|
---|
101 | *hx, /* \hat{x}_i, nx1 */
|
---|
102 | *jacTe, /* J^T e_i mx1 */
|
---|
103 | *jac, /* nxm */
|
---|
104 | *jacTjac, /* mxm */
|
---|
105 | *Dp, /* mx1 */
|
---|
106 | *diag_jacTjac, /* diagonal of J^T J, mx1 */
|
---|
107 | *pDp; /* p + Dp, mx1 */
|
---|
108 |
|
---|
109 | register LM_REAL mu, /* damping constant */
|
---|
110 | tmp; /* mainly used in matrix & vector multiplications */
|
---|
111 | LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
|
---|
112 | LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
|
---|
113 | LM_REAL tau, eps1, eps2, eps2_sq, eps3;
|
---|
114 | LM_REAL init_p_eL2;
|
---|
115 | int nu=2, nu2, stop=0, nfev, njev=0, nlss=0;
|
---|
116 | const int nm=n*m;
|
---|
117 | int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;
|
---|
118 |
|
---|
119 | mu=jacTe_inf=0.0; /* -Wall */
|
---|
120 |
|
---|
121 | if(n<m){
|
---|
122 | fprintf(stderr, LCAT(LEVMAR_DER, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
|
---|
123 | return LM_ERROR;
|
---|
124 | }
|
---|
125 |
|
---|
126 | if(!jacf){
|
---|
127 | fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_DER)
|
---|
128 | RCAT("().\nIf no such function is available, use ", LEVMAR_DIF) RCAT("() rather than ", LEVMAR_DER) "()\n");
|
---|
129 | return LM_ERROR;
|
---|
130 | }
|
---|
131 |
|
---|
132 | if(opts){
|
---|
133 | tau=opts[0];
|
---|
134 | eps1=opts[1];
|
---|
135 | eps2=opts[2];
|
---|
136 | eps2_sq=opts[2]*opts[2];
|
---|
137 | eps3=opts[3];
|
---|
138 | }
|
---|
139 | else{ // use default values
|
---|
140 | tau=LM_CNST(LM_INIT_MU);
|
---|
141 | eps1=LM_CNST(LM_STOP_THRESH);
|
---|
142 | eps2=LM_CNST(LM_STOP_THRESH);
|
---|
143 | eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);
|
---|
144 | eps3=LM_CNST(LM_STOP_THRESH);
|
---|
145 | }
|
---|
146 |
|
---|
147 | if(!work){
|
---|
148 | worksz=LM_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m;
|
---|
149 | work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
|
---|
150 | if(!work){
|
---|
151 | fprintf(stderr, LCAT(LEVMAR_DER, "(): memory allocation request failed\n"));
|
---|
152 | return LM_ERROR;
|
---|
153 | }
|
---|
154 | freework=1;
|
---|
155 | }
|
---|
156 |
|
---|
157 | /* set up work arrays */
|
---|
158 | e=work;
|
---|
159 | hx=e + n;
|
---|
160 | jacTe=hx + n;
|
---|
161 | jac=jacTe + m;
|
---|
162 | jacTjac=jac + nm;
|
---|
163 | Dp=jacTjac + m*m;
|
---|
164 | diag_jacTjac=Dp + m;
|
---|
165 | pDp=diag_jacTjac + m;
|
---|
166 |
|
---|
167 | /* compute e=x - f(p) and its L2 norm */
|
---|
168 | (*func)(p, hx, m, n, adata); nfev=1;
|
---|
169 | /* ### e=x-hx, p_eL2=||e|| */
|
---|
170 | #if 1
|
---|
171 | p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);
|
---|
172 | #else
|
---|
173 | for(i=0, p_eL2=0.0; i<n; ++i){
|
---|
174 | e[i]=tmp=x[i]-hx[i];
|
---|
175 | p_eL2+=tmp*tmp;
|
---|
176 | }
|
---|
177 | #endif
|
---|
178 | init_p_eL2=p_eL2;
|
---|
179 | if(!LM_FINITE(p_eL2)) stop=7;
|
---|
180 |
|
---|
181 | for(k=0; k<itmax && !stop; ++k){
|
---|
182 | /* Note that p and e have been updated at a previous iteration */
|
---|
183 |
|
---|
184 | if(p_eL2<=eps3){ /* error is small */
|
---|
185 | stop=6;
|
---|
186 | break;
|
---|
187 | }
|
---|
188 |
|
---|
189 | /* Compute the Jacobian J at p, J^T J, J^T e, ||J^T e||_inf and ||p||^2.
|
---|
190 | * Since J^T J is symmetric, its computation can be sped up by computing
|
---|
191 | * only its upper triangular part and copying it to the lower part
|
---|
192 | */
|
---|
193 |
|
---|
194 | (*jacf)(p, jac, m, n, adata); ++njev;
|
---|
195 |
|
---|
196 | /* J^T J, J^T e */
|
---|
197 | if(nm<__BLOCKSZ__SQ){ // this is a small problem
|
---|
198 | /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.
|
---|
199 | * Thus, the product J^T J can be computed using an outer loop for
|
---|
200 | * l that adds J_li*J_lj to each element ij of the result. Note that
|
---|
201 | * with this scheme, the accesses to J and JtJ are always along rows,
|
---|
202 | * therefore induces less cache misses compared to the straightforward
|
---|
203 | * algorithm for computing the product (i.e., l loop is innermost one).
|
---|
204 | * A similar scheme applies to the computation of J^T e.
|
---|
205 | * However, for large minimization problems (i.e., involving a large number
|
---|
206 | * of unknowns and measurements) for which J/J^T J rows are too large to
|
---|
207 | * fit in the L1 cache, even this scheme incures many cache misses. In
|
---|
208 | * such cases, a cache-efficient blocking scheme is preferable.
|
---|
209 | *
|
---|
210 | * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
|
---|
211 | * performance problem.
|
---|
212 | *
|
---|
213 | * Note that the non-blocking algorithm is faster on small
|
---|
214 | * problems since in this case it avoids the overheads of blocking.
|
---|
215 | */
|
---|
216 |
|
---|
217 | /* looping downwards saves a few computations */
|
---|
218 | register int l;
|
---|
219 | register LM_REAL alpha, *jaclm, *jacTjacim;
|
---|
220 |
|
---|
221 | for(i=m*m; i-->0; )
|
---|
222 | jacTjac[i]=0.0;
|
---|
223 | for(i=m; i-->0; )
|
---|
224 | jacTe[i]=0.0;
|
---|
225 |
|
---|
226 | for(l=n; l-->0; ){
|
---|
227 | jaclm=jac+l*m;
|
---|
228 | for(i=m; i-->0; ){
|
---|
229 | jacTjacim=jacTjac+i*m;
|
---|
230 | alpha=jaclm[i]; //jac[l*m+i];
|
---|
231 | for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */
|
---|
232 | jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha
|
---|
233 |
|
---|
234 | /* J^T e */
|
---|
235 | jacTe[i]+=alpha*e[l];
|
---|
236 | }
|
---|
237 | }
|
---|
238 |
|
---|
239 | for(i=m; i-->0; ) /* copy to upper part */
|
---|
240 | for(j=i+1; j<m; ++j)
|
---|
241 | jacTjac[i*m+j]=jacTjac[j*m+i];
|
---|
242 |
|
---|
243 | }
|
---|
244 | else{ // this is a large problem
|
---|
245 | /* Cache efficient computation of J^T J based on blocking
|
---|
246 | */
|
---|
247 | LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);
|
---|
248 |
|
---|
249 | /* cache efficient computation of J^T e */
|
---|
250 | for(i=0; i<m; ++i)
|
---|
251 | jacTe[i]=0.0;
|
---|
252 |
|
---|
253 | for(i=0; i<n; ++i){
|
---|
254 | register LM_REAL *jacrow;
|
---|
255 |
|
---|
256 | for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
|
---|
257 | jacTe[l]+=jacrow[l]*tmp;
|
---|
258 | }
|
---|
259 | }
|
---|
260 |
|
---|
261 | /* Compute ||J^T e||_inf and ||p||^2 */
|
---|
262 | for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){
|
---|
263 | if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;
|
---|
264 |
|
---|
265 | diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
|
---|
266 | p_L2+=p[i]*p[i];
|
---|
267 | }
|
---|
268 | //p_L2=sqrt(p_L2);
|
---|
269 |
|
---|
270 | #if 0
|
---|
271 | if(!(k%100)){
|
---|
272 | printf("Current estimate: ");
|
---|
273 | for(i=0; i<m; ++i)
|
---|
274 | printf("%.9g ", p[i]);
|
---|
275 | printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
|
---|
276 | }
|
---|
277 | #endif
|
---|
278 |
|
---|
279 | /* check for convergence */
|
---|
280 | if((jacTe_inf <= eps1)){
|
---|
281 | Dp_L2=0.0; /* no increment for p in this case */
|
---|
282 | stop=1;
|
---|
283 | break;
|
---|
284 | }
|
---|
285 |
|
---|
286 | /* compute initial damping factor */
|
---|
287 | if(k==0){
|
---|
288 | for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
|
---|
289 | if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
|
---|
290 | mu=tau*tmp;
|
---|
291 | }
|
---|
292 |
|
---|
293 | /* determine increment using adaptive damping */
|
---|
294 | while(1){
|
---|
295 | /* augment normal equations */
|
---|
296 | for(i=0; i<m; ++i)
|
---|
297 | jacTjac[i*m+i]+=mu;
|
---|
298 |
|
---|
299 | /* solve augmented equations */
|
---|
300 | #ifdef HAVE_LAPACK
|
---|
301 | /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD.
|
---|
302 | * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest.
|
---|
303 | * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off;
|
---|
304 | * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but
|
---|
305 | * slower than LDLt; LDLt offers a good tradeoff between robustness and speed
|
---|
306 | */
|
---|
307 |
|
---|
308 | issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK;
|
---|
309 | //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
|
---|
310 | //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;
|
---|
311 | #ifdef HAVE_PLASMA
|
---|
312 | //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL;
|
---|
313 | #endif
|
---|
314 | //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;
|
---|
315 | //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;
|
---|
316 | //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;
|
---|
317 |
|
---|
318 | #else
|
---|
319 | /* use the LU included with levmar */
|
---|
320 | issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
|
---|
321 | #endif /* HAVE_LAPACK */
|
---|
322 |
|
---|
323 | if(issolved){
|
---|
324 | /* compute p's new estimate and ||Dp||^2 */
|
---|
325 | for(i=0, Dp_L2=0.0; i<m; ++i){
|
---|
326 | pDp[i]=p[i] + (tmp=Dp[i]);
|
---|
327 | Dp_L2+=tmp*tmp;
|
---|
328 | }
|
---|
329 | //Dp_L2=sqrt(Dp_L2);
|
---|
330 |
|
---|
331 | if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
|
---|
332 | //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
|
---|
333 | stop=2;
|
---|
334 | break;
|
---|
335 | }
|
---|
336 |
|
---|
337 | if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */
|
---|
338 | //if(Dp_L2>=(p_L2+eps2)/LM_CNST(EPSILON)){ /* almost singular */
|
---|
339 | stop=4;
|
---|
340 | break;
|
---|
341 | }
|
---|
342 |
|
---|
343 | (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */
|
---|
344 | /* compute ||e(pDp)||_2 */
|
---|
345 | /* ### hx=x-hx, pDp_eL2=||hx|| */
|
---|
346 | #if 1
|
---|
347 | pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n);
|
---|
348 | #else
|
---|
349 | for(i=0, pDp_eL2=0.0; i<n; ++i){
|
---|
350 | hx[i]=tmp=x[i]-hx[i];
|
---|
351 | pDp_eL2+=tmp*tmp;
|
---|
352 | }
|
---|
353 | #endif
|
---|
354 | if(!LM_FINITE(pDp_eL2)){ /* sum of squares is not finite, most probably due to a user error.
|
---|
355 | * This check makes sure that the inner loop does not run indefinitely.
|
---|
356 | * Thanks to Steve Danauskas for reporting such cases
|
---|
357 | */
|
---|
358 | stop=7;
|
---|
359 | break;
|
---|
360 | }
|
---|
361 |
|
---|
362 | for(i=0, dL=0.0; i<m; ++i)
|
---|
363 | dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);
|
---|
364 |
|
---|
365 | dF=p_eL2-pDp_eL2;
|
---|
366 |
|
---|
367 | if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */
|
---|
368 | tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));
|
---|
369 | tmp=LM_CNST(1.0)-tmp*tmp*tmp;
|
---|
370 | mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );
|
---|
371 | nu=2;
|
---|
372 |
|
---|
373 | for(i=0 ; i<m; ++i) /* update p's estimate */
|
---|
374 | p[i]=pDp[i];
|
---|
375 |
|
---|
376 | for(i=0; i<n; ++i) /* update e and ||e||_2 */
|
---|
377 | e[i]=hx[i];
|
---|
378 | p_eL2=pDp_eL2;
|
---|
379 | break;
|
---|
380 | }
|
---|
381 | }
|
---|
382 |
|
---|
383 | /* if this point is reached, either the linear system could not be solved or
|
---|
384 | * the error did not reduce; in any case, the increment must be rejected
|
---|
385 | */
|
---|
386 |
|
---|
387 | mu*=nu;
|
---|
388 | nu2=nu<<1; // 2*nu;
|
---|
389 | if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
|
---|
390 | stop=5;
|
---|
391 | break;
|
---|
392 | }
|
---|
393 | nu=nu2;
|
---|
394 |
|
---|
395 | for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
|
---|
396 | jacTjac[i*m+i]=diag_jacTjac[i];
|
---|
397 | } /* inner loop */
|
---|
398 | }
|
---|
399 |
|
---|
400 | if(k>=itmax) stop=3;
|
---|
401 |
|
---|
402 | for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
|
---|
403 | jacTjac[i*m+i]=diag_jacTjac[i];
|
---|
404 |
|
---|
405 | if(info){
|
---|
406 | info[0]=init_p_eL2;
|
---|
407 | info[1]=p_eL2;
|
---|
408 | info[2]=jacTe_inf;
|
---|
409 | info[3]=Dp_L2;
|
---|
410 | for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
|
---|
411 | if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
|
---|
412 | info[4]=mu/tmp;
|
---|
413 | info[5]=(LM_REAL)k;
|
---|
414 | info[6]=(LM_REAL)stop;
|
---|
415 | info[7]=(LM_REAL)nfev;
|
---|
416 | info[8]=(LM_REAL)njev;
|
---|
417 | info[9]=(LM_REAL)nlss;
|
---|
418 | }
|
---|
419 |
|
---|
420 | /* covariance matrix */
|
---|
421 | if(covar){
|
---|
422 | LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
|
---|
423 | }
|
---|
424 |
|
---|
425 | if(freework) free(work);
|
---|
426 |
|
---|
427 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
428 | if(linsolver) (*linsolver)(NULL, NULL, NULL, 0);
|
---|
429 | #endif
|
---|
430 |
|
---|
431 | return (stop!=4 && stop!=7)? k : LM_ERROR;
|
---|
432 | }
|
---|
433 |
|
---|
434 |
|
---|
435 | /* Secant version of the LEVMAR_DER() function above: the Jacobian is approximated with
|
---|
436 | * the aid of finite differences (forward or central, see the comment for the opts argument)
|
---|
437 | */
|
---|
438 | int LEVMAR_DIF(
|
---|
439 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in R^n */
|
---|
440 | LM_REAL *p, /* I/O: initial parameter estimates. On output has the estimated solution */
|
---|
441 | LM_REAL *x, /* I: measurement vector. NULL implies a zero vector */
|
---|
442 | int m, /* I: parameter vector dimension (i.e. #unknowns) */
|
---|
443 | int n, /* I: measurement vector dimension */
|
---|
444 | int itmax, /* I: maximum number of iterations */
|
---|
445 | LM_REAL opts[5], /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
|
---|
446 | * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
|
---|
447 | * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
|
---|
448 | * If \delta<0, the Jacobian is approximated with central differences which are more accurate
|
---|
449 | * (but slower!) compared to the forward differences employed by default.
|
---|
450 | */
|
---|
451 | LM_REAL info[LM_INFO_SZ],
|
---|
452 | /* O: information regarding the minimization. Set to NULL if don't care
|
---|
453 | * info[0]= ||e||_2 at initial p.
|
---|
454 | * info[1-4]=[ ||e||_2, ||J^T e||_inf, ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
|
---|
455 | * info[5]= # iterations,
|
---|
456 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
|
---|
457 | * 2 - stopped by small Dp
|
---|
458 | * 3 - stopped by itmax
|
---|
459 | * 4 - singular matrix. Restart from current p with increased mu
|
---|
460 | * 5 - no further error reduction is possible. Restart with increased mu
|
---|
461 | * 6 - stopped by small ||e||_2
|
---|
462 | * 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
|
---|
463 | * info[7]= # function evaluations
|
---|
464 | * info[8]= # Jacobian evaluations
|
---|
465 | * info[9]= # linear systems solved, i.e. # attempts for reducing error
|
---|
466 | */
|
---|
467 | LM_REAL *work, /* working memory at least LM_DIF_WORKSZ() reals large, allocated if NULL */
|
---|
468 | LM_REAL *covar, /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
|
---|
469 | void *adata) /* pointer to possibly additional data, passed uninterpreted to func.
|
---|
470 | * Set to NULL if not needed
|
---|
471 | */
|
---|
472 | {
|
---|
473 | register int i, j, k, l;
|
---|
474 | int worksz, freework=0, issolved;
|
---|
475 | /* temp work arrays */
|
---|
476 | LM_REAL *e, /* nx1 */
|
---|
477 | *hx, /* \hat{x}_i, nx1 */
|
---|
478 | *jacTe, /* J^T e_i mx1 */
|
---|
479 | *jac, /* nxm */
|
---|
480 | *jacTjac, /* mxm */
|
---|
481 | *Dp, /* mx1 */
|
---|
482 | *diag_jacTjac, /* diagonal of J^T J, mx1 */
|
---|
483 | *pDp, /* p + Dp, mx1 */
|
---|
484 | *wrk, /* nx1 */
|
---|
485 | *wrk2; /* nx1, used only for holding a temporary e vector and when differentiating with central differences */
|
---|
486 |
|
---|
487 | int using_ffdif=1;
|
---|
488 |
|
---|
489 | register LM_REAL mu, /* damping constant */
|
---|
490 | tmp; /* mainly used in matrix & vector multiplications */
|
---|
491 | LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
|
---|
492 | LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
|
---|
493 | LM_REAL tau, eps1, eps2, eps2_sq, eps3, delta;
|
---|
494 | LM_REAL init_p_eL2;
|
---|
495 | int nu, nu2, stop=0, nfev, njap=0, nlss=0, K=(m>=10)? m: 10, updjac, updp=1, newjac;
|
---|
496 | const int nm=n*m;
|
---|
497 | int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;
|
---|
498 |
|
---|
499 | mu=jacTe_inf=p_L2=0.0; /* -Wall */
|
---|
500 | updjac=newjac=0; /* -Wall */
|
---|
501 |
|
---|
502 | if(n<m){
|
---|
503 | fprintf(stderr, LCAT(LEVMAR_DIF, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
|
---|
504 | return LM_ERROR;
|
---|
505 | }
|
---|
506 |
|
---|
507 | if(opts){
|
---|
508 | tau=opts[0];
|
---|
509 | eps1=opts[1];
|
---|
510 | eps2=opts[2];
|
---|
511 | eps2_sq=opts[2]*opts[2];
|
---|
512 | eps3=opts[3];
|
---|
513 | delta=opts[4];
|
---|
514 | if(delta<0.0){
|
---|
515 | delta=-delta; /* make positive */
|
---|
516 | using_ffdif=0; /* use central differencing */
|
---|
517 | }
|
---|
518 | }
|
---|
519 | else{ // use default values
|
---|
520 | tau=LM_CNST(LM_INIT_MU);
|
---|
521 | eps1=LM_CNST(LM_STOP_THRESH);
|
---|
522 | eps2=LM_CNST(LM_STOP_THRESH);
|
---|
523 | eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);
|
---|
524 | eps3=LM_CNST(LM_STOP_THRESH);
|
---|
525 | delta=LM_CNST(LM_DIFF_DELTA);
|
---|
526 | }
|
---|
527 |
|
---|
528 | if(!work){
|
---|
529 | worksz=LM_DIF_WORKSZ(m, n); //4*n+4*m + n*m + m*m;
|
---|
530 | work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
|
---|
531 | if(!work){
|
---|
532 | fprintf(stderr, LCAT(LEVMAR_DIF, "(): memory allocation request failed\n"));
|
---|
533 | return LM_ERROR;
|
---|
534 | }
|
---|
535 | freework=1;
|
---|
536 | }
|
---|
537 |
|
---|
538 | /* set up work arrays */
|
---|
539 | e=work;
|
---|
540 | hx=e + n;
|
---|
541 | jacTe=hx + n;
|
---|
542 | jac=jacTe + m;
|
---|
543 | jacTjac=jac + nm;
|
---|
544 | Dp=jacTjac + m*m;
|
---|
545 | diag_jacTjac=Dp + m;
|
---|
546 | pDp=diag_jacTjac + m;
|
---|
547 | wrk=pDp + m;
|
---|
548 | wrk2=wrk + n;
|
---|
549 |
|
---|
550 | /* compute e=x - f(p) and its L2 norm */
|
---|
551 | (*func)(p, hx, m, n, adata); nfev=1;
|
---|
552 | /* ### e=x-hx, p_eL2=||e|| */
|
---|
553 | #if 1
|
---|
554 | p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);
|
---|
555 | #else
|
---|
556 | for(i=0, p_eL2=0.0; i<n; ++i){
|
---|
557 | e[i]=tmp=x[i]-hx[i];
|
---|
558 | p_eL2+=tmp*tmp;
|
---|
559 | }
|
---|
560 | #endif
|
---|
561 | init_p_eL2=p_eL2;
|
---|
562 | if(!LM_FINITE(p_eL2)) stop=7;
|
---|
563 |
|
---|
564 | nu=20; /* force computation of J */
|
---|
565 |
|
---|
566 | for(k=0; k<itmax && !stop; ++k){
|
---|
567 | /* Note that p and e have been updated at a previous iteration */
|
---|
568 |
|
---|
569 | if(p_eL2<=eps3){ /* error is small */
|
---|
570 | stop=6;
|
---|
571 | break;
|
---|
572 | }
|
---|
573 |
|
---|
574 | /* Compute the Jacobian J at p, J^T J, J^T e, ||J^T e||_inf and ||p||^2.
|
---|
575 | * The symmetry of J^T J is again exploited for speed
|
---|
576 | */
|
---|
577 |
|
---|
578 | if((updp && nu>16) || updjac==K){ /* compute difference approximation to J */
|
---|
579 | if(using_ffdif){ /* use forward differences */
|
---|
580 | LEVMAR_FDIF_FORW_JAC_APPROX(func, p, hx, wrk, delta, jac, m, n, adata);
|
---|
581 | ++njap; nfev+=m;
|
---|
582 | }
|
---|
583 | else{ /* use central differences */
|
---|
584 | LEVMAR_FDIF_CENT_JAC_APPROX(func, p, wrk, wrk2, delta, jac, m, n, adata);
|
---|
585 | ++njap; nfev+=2*m;
|
---|
586 | }
|
---|
587 | nu=2; updjac=0; updp=0; newjac=1;
|
---|
588 | }
|
---|
589 |
|
---|
590 | if(newjac){ /* Jacobian has changed, recompute J^T J, J^t e, etc */
|
---|
591 | newjac=0;
|
---|
592 |
|
---|
593 | /* J^T J, J^T e */
|
---|
594 | if(nm<=__BLOCKSZ__SQ){ // this is a small problem
|
---|
595 | /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.
|
---|
596 | * Thus, the product J^T J can be computed using an outer loop for
|
---|
597 | * l that adds J_li*J_lj to each element ij of the result. Note that
|
---|
598 | * with this scheme, the accesses to J and JtJ are always along rows,
|
---|
599 | * therefore induces less cache misses compared to the straightforward
|
---|
600 | * algorithm for computing the product (i.e., l loop is innermost one).
|
---|
601 | * A similar scheme applies to the computation of J^T e.
|
---|
602 | * However, for large minimization problems (i.e., involving a large number
|
---|
603 | * of unknowns and measurements) for which J/J^T J rows are too large to
|
---|
604 | * fit in the L1 cache, even this scheme incures many cache misses. In
|
---|
605 | * such cases, a cache-efficient blocking scheme is preferable.
|
---|
606 | *
|
---|
607 | * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
|
---|
608 | * performance problem.
|
---|
609 | *
|
---|
610 | * Note that the non-blocking algorithm is faster on small
|
---|
611 | * problems since in this case it avoids the overheads of blocking.
|
---|
612 | */
|
---|
613 | register int l;
|
---|
614 | register LM_REAL alpha, *jaclm, *jacTjacim;
|
---|
615 |
|
---|
616 | /* looping downwards saves a few computations */
|
---|
617 | for(i=m*m; i-->0; )
|
---|
618 | jacTjac[i]=0.0;
|
---|
619 | for(i=m; i-->0; )
|
---|
620 | jacTe[i]=0.0;
|
---|
621 |
|
---|
622 | for(l=n; l-->0; ){
|
---|
623 | jaclm=jac+l*m;
|
---|
624 | for(i=m; i-->0; ){
|
---|
625 | jacTjacim=jacTjac+i*m;
|
---|
626 | alpha=jaclm[i]; //jac[l*m+i];
|
---|
627 | for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */
|
---|
628 | jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha
|
---|
629 |
|
---|
630 | /* J^T e */
|
---|
631 | jacTe[i]+=alpha*e[l];
|
---|
632 | }
|
---|
633 | }
|
---|
634 |
|
---|
635 | for(i=m; i-->0; ) /* copy to upper part */
|
---|
636 | for(j=i+1; j<m; ++j)
|
---|
637 | jacTjac[i*m+j]=jacTjac[j*m+i];
|
---|
638 | }
|
---|
639 | else{ // this is a large problem
|
---|
640 | /* Cache efficient computation of J^T J based on blocking
|
---|
641 | */
|
---|
642 | LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);
|
---|
643 |
|
---|
644 | /* cache efficient computation of J^T e */
|
---|
645 | for(i=0; i<m; ++i)
|
---|
646 | jacTe[i]=0.0;
|
---|
647 |
|
---|
648 | for(i=0; i<n; ++i){
|
---|
649 | register LM_REAL *jacrow;
|
---|
650 |
|
---|
651 | for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
|
---|
652 | jacTe[l]+=jacrow[l]*tmp;
|
---|
653 | }
|
---|
654 | }
|
---|
655 |
|
---|
656 | /* Compute ||J^T e||_inf and ||p||^2 */
|
---|
657 | for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){
|
---|
658 | if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;
|
---|
659 |
|
---|
660 | diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
|
---|
661 | p_L2+=p[i]*p[i];
|
---|
662 | }
|
---|
663 | //p_L2=sqrt(p_L2);
|
---|
664 | }
|
---|
665 |
|
---|
666 | #if 0
|
---|
667 | if(!(k%100)){
|
---|
668 | printf("Current estimate: ");
|
---|
669 | for(i=0; i<m; ++i)
|
---|
670 | printf("%.9g ", p[i]);
|
---|
671 | printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
|
---|
672 | }
|
---|
673 | #endif
|
---|
674 |
|
---|
675 | /* check for convergence */
|
---|
676 | if((jacTe_inf <= eps1)){
|
---|
677 | Dp_L2=0.0; /* no increment for p in this case */
|
---|
678 | stop=1;
|
---|
679 | break;
|
---|
680 | }
|
---|
681 |
|
---|
682 | /* compute initial damping factor */
|
---|
683 | if(k==0){
|
---|
684 | for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
|
---|
685 | if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
|
---|
686 | mu=tau*tmp;
|
---|
687 | }
|
---|
688 |
|
---|
689 | /* determine increment using adaptive damping */
|
---|
690 |
|
---|
691 | /* augment normal equations */
|
---|
692 | for(i=0; i<m; ++i)
|
---|
693 | jacTjac[i*m+i]+=mu;
|
---|
694 |
|
---|
695 | /* solve augmented equations */
|
---|
696 | #ifdef HAVE_LAPACK
|
---|
697 | /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD.
|
---|
698 | * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest.
|
---|
699 | * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off;
|
---|
700 | * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but
|
---|
701 | * slower than LDLt; LDLt offers a good tradeoff between robustness and speed
|
---|
702 | */
|
---|
703 |
|
---|
704 | issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK;
|
---|
705 | //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
|
---|
706 | //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;
|
---|
707 | #ifdef HAVE_PLASMA
|
---|
708 | //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL;
|
---|
709 | #endif
|
---|
710 | //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;
|
---|
711 | //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;
|
---|
712 | //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;
|
---|
713 | #else
|
---|
714 | /* use the LU included with levmar */
|
---|
715 | issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
|
---|
716 | #endif /* HAVE_LAPACK */
|
---|
717 |
|
---|
718 | if(issolved){
|
---|
719 | /* compute p's new estimate and ||Dp||^2 */
|
---|
720 | for(i=0, Dp_L2=0.0; i<m; ++i){
|
---|
721 | pDp[i]=p[i] + (tmp=Dp[i]);
|
---|
722 | Dp_L2+=tmp*tmp;
|
---|
723 | }
|
---|
724 | //Dp_L2=sqrt(Dp_L2);
|
---|
725 |
|
---|
726 | if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
|
---|
727 | //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
|
---|
728 | stop=2;
|
---|
729 | break;
|
---|
730 | }
|
---|
731 |
|
---|
732 | if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */
|
---|
733 | //if(Dp_L2>=(p_L2+eps2)/LM_CNST(EPSILON)){ /* almost singular */
|
---|
734 | stop=4;
|
---|
735 | break;
|
---|
736 | }
|
---|
737 |
|
---|
738 | (*func)(pDp, wrk, m, n, adata); ++nfev; /* evaluate function at p + Dp */
|
---|
739 | /* compute ||e(pDp)||_2 */
|
---|
740 | /* ### wrk2=x-wrk, pDp_eL2=||wrk2|| */
|
---|
741 | #if 1
|
---|
742 | pDp_eL2=LEVMAR_L2NRMXMY(wrk2, x, wrk, n);
|
---|
743 | #else
|
---|
744 | for(i=0, pDp_eL2=0.0; i<n; ++i){
|
---|
745 | wrk2[i]=tmp=x[i]-wrk[i];
|
---|
746 | pDp_eL2+=tmp*tmp;
|
---|
747 | }
|
---|
748 | #endif
|
---|
749 | if(!LM_FINITE(pDp_eL2)){ /* sum of squares is not finite, most probably due to a user error.
|
---|
750 | * This check makes sure that the loop terminates early in the case
|
---|
751 | * of invalid input. Thanks to Steve Danauskas for suggesting it
|
---|
752 | */
|
---|
753 |
|
---|
754 | stop=7;
|
---|
755 | break;
|
---|
756 | }
|
---|
757 |
|
---|
758 | dF=p_eL2-pDp_eL2;
|
---|
759 | if(updp || dF>0){ /* update jac */
|
---|
760 | for(i=0; i<n; ++i){
|
---|
761 | for(l=0, tmp=0.0; l<m; ++l)
|
---|
762 | tmp+=jac[i*m+l]*Dp[l]; /* (J * Dp)[i] */
|
---|
763 | tmp=(wrk[i] - hx[i] - tmp)/Dp_L2; /* (f(p+dp)[i] - f(p)[i] - (J * Dp)[i])/(dp^T*dp) */
|
---|
764 | for(j=0; j<m; ++j)
|
---|
765 | jac[i*m+j]+=tmp*Dp[j];
|
---|
766 | }
|
---|
767 | ++updjac;
|
---|
768 | newjac=1;
|
---|
769 | }
|
---|
770 |
|
---|
771 | for(i=0, dL=0.0; i<m; ++i)
|
---|
772 | dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);
|
---|
773 |
|
---|
774 | if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */
|
---|
775 | tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));
|
---|
776 | tmp=LM_CNST(1.0)-tmp*tmp*tmp;
|
---|
777 | mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );
|
---|
778 | nu=2;
|
---|
779 |
|
---|
780 | for(i=0 ; i<m; ++i) /* update p's estimate */
|
---|
781 | p[i]=pDp[i];
|
---|
782 |
|
---|
783 | for(i=0; i<n; ++i){ /* update e, hx and ||e||_2 */
|
---|
784 | e[i]=wrk2[i]; //x[i]-wrk[i];
|
---|
785 | hx[i]=wrk[i];
|
---|
786 | }
|
---|
787 | p_eL2=pDp_eL2;
|
---|
788 | updp=1;
|
---|
789 | continue;
|
---|
790 | }
|
---|
791 | }
|
---|
792 |
|
---|
793 | /* if this point is reached, either the linear system could not be solved or
|
---|
794 | * the error did not reduce; in any case, the increment must be rejected
|
---|
795 | */
|
---|
796 |
|
---|
797 | mu*=nu;
|
---|
798 | nu2=nu<<1; // 2*nu;
|
---|
799 | if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
|
---|
800 | stop=5;
|
---|
801 | break;
|
---|
802 | }
|
---|
803 | nu=nu2;
|
---|
804 |
|
---|
805 | for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
|
---|
806 | jacTjac[i*m+i]=diag_jacTjac[i];
|
---|
807 | }
|
---|
808 |
|
---|
809 | if(k>=itmax) stop=3;
|
---|
810 |
|
---|
811 | for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
|
---|
812 | jacTjac[i*m+i]=diag_jacTjac[i];
|
---|
813 |
|
---|
814 | if(info){
|
---|
815 | info[0]=init_p_eL2;
|
---|
816 | info[1]=p_eL2;
|
---|
817 | info[2]=jacTe_inf;
|
---|
818 | info[3]=Dp_L2;
|
---|
819 | for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
|
---|
820 | if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
|
---|
821 | info[4]=mu/tmp;
|
---|
822 | info[5]=(LM_REAL)k;
|
---|
823 | info[6]=(LM_REAL)stop;
|
---|
824 | info[7]=(LM_REAL)nfev;
|
---|
825 | info[8]=(LM_REAL)njap;
|
---|
826 | info[9]=(LM_REAL)nlss;
|
---|
827 | }
|
---|
828 |
|
---|
829 | /* covariance matrix */
|
---|
830 | if(covar){
|
---|
831 | LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
|
---|
832 | }
|
---|
833 |
|
---|
834 |
|
---|
835 | if(freework) free(work);
|
---|
836 |
|
---|
837 | #ifdef LINSOLVERS_RETAIN_MEMORY
|
---|
838 | if(linsolver) (*linsolver)(NULL, NULL, NULL, 0);
|
---|
839 | #endif
|
---|
840 |
|
---|
841 | return (stop!=4 && stop!=7)? k : LM_ERROR;
|
---|
842 | }
|
---|
843 |
|
---|
844 | /* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */
|
---|
845 | #undef LEVMAR_DER
|
---|
846 | #undef LEVMAR_DIF
|
---|
847 | #undef LEVMAR_FDIF_FORW_JAC_APPROX
|
---|
848 | #undef LEVMAR_FDIF_CENT_JAC_APPROX
|
---|
849 | #undef LEVMAR_COVAR
|
---|
850 | #undef LEVMAR_TRANS_MAT_MAT_MULT
|
---|
851 | #undef LEVMAR_L2NRMXMY
|
---|
852 | #undef AX_EQ_B_LU
|
---|
853 | #undef AX_EQ_B_CHOL
|
---|
854 | #undef AX_EQ_B_PLASMA_CHOL
|
---|
855 | #undef AX_EQ_B_QR
|
---|
856 | #undef AX_EQ_B_QRLS
|
---|
857 | #undef AX_EQ_B_SVD
|
---|
858 | #undef AX_EQ_B_BK
|
---|