| 1 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 2 | // 
 | 
|---|
| 3 | //  Levenberg - Marquardt non-linear minimization algorithm
 | 
|---|
| 4 | //  Copyright (C) 2004  Manolis Lourakis (lourakis at ics forth gr)
 | 
|---|
| 5 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas
 | 
|---|
| 6 | //  Heraklion, Crete, Greece.
 | 
|---|
| 7 | //
 | 
|---|
| 8 | //  This program is free software; you can redistribute it and/or modify
 | 
|---|
| 9 | //  it under the terms of the GNU General Public License as published by
 | 
|---|
| 10 | //  the Free Software Foundation; either version 2 of the License, or
 | 
|---|
| 11 | //  (at your option) any later version.
 | 
|---|
| 12 | //
 | 
|---|
| 13 | //  This program is distributed in the hope that it will be useful,
 | 
|---|
| 14 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 15 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 16 | //  GNU General Public License for more details.
 | 
|---|
| 17 | //
 | 
|---|
| 18 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 19 | 
 | 
|---|
| 20 | #ifndef LM_REAL // not included by lm.c
 | 
|---|
| 21 | #error This file should not be compiled directly!
 | 
|---|
| 22 | #endif
 | 
|---|
| 23 | 
 | 
|---|
| 24 | 
 | 
|---|
| 25 | /* precision-specific definitions */
 | 
|---|
| 26 | #define LEVMAR_DER LM_ADD_PREFIX(levmar_der)
 | 
|---|
| 27 | #define LEVMAR_DIF LM_ADD_PREFIX(levmar_dif)
 | 
|---|
| 28 | #define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
 | 
|---|
| 29 | #define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx)
 | 
|---|
| 30 | #define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
 | 
|---|
| 31 | #define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy)
 | 
|---|
| 32 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
 | 
|---|
| 33 | 
 | 
|---|
| 34 | #ifdef HAVE_LAPACK
 | 
|---|
| 35 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)
 | 
|---|
| 36 | #define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)
 | 
|---|
| 37 | #define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)
 | 
|---|
| 38 | #define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)
 | 
|---|
| 39 | #define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)
 | 
|---|
| 40 | #define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK)
 | 
|---|
| 41 | #else
 | 
|---|
| 42 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)
 | 
|---|
| 43 | #endif /* HAVE_LAPACK */
 | 
|---|
| 44 | 
 | 
|---|
| 45 | #ifdef HAVE_PLASMA
 | 
|---|
| 46 | #define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol)
 | 
|---|
| 47 | #endif
 | 
|---|
| 48 | 
 | 
|---|
| 49 | /* 
 | 
|---|
| 50 |  * This function seeks the parameter vector p that best describes the measurements vector x.
 | 
|---|
| 51 |  * More precisely, given a vector function  func : R^m --> R^n with n>=m,
 | 
|---|
| 52 |  * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of
 | 
|---|
| 53 |  * e=x-func(p) is minimized.
 | 
|---|
| 54 |  *
 | 
|---|
| 55 |  * This function requires an analytic Jacobian. In case the latter is unavailable,
 | 
|---|
| 56 |  * use LEVMAR_DIF() bellow
 | 
|---|
| 57 |  *
 | 
|---|
| 58 |  * Returns the number of iterations (>=0) if successful, LM_ERROR if failed
 | 
|---|
| 59 |  *
 | 
|---|
| 60 |  * For more details, see K. Madsen, H.B. Nielsen and O. Tingleff's lecture notes on 
 | 
|---|
| 61 |  * non-linear least squares at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
 | 
|---|
| 62 |  */
 | 
|---|
| 63 | 
 | 
|---|
| 64 | int LEVMAR_DER(
 | 
|---|
| 65 |   void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
 | 
|---|
| 66 |   void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the Jacobian \part x / \part p */ 
 | 
|---|
| 67 |   LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
 | 
|---|
| 68 |   LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */
 | 
|---|
| 69 |   int m,              /* I: parameter vector dimension (i.e. #unknowns) */
 | 
|---|
| 70 |   int n,              /* I: measurement vector dimension */
 | 
|---|
| 71 |   int itmax,          /* I: maximum number of iterations */
 | 
|---|
| 72 |   LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
 | 
|---|
| 73 |                        * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
 | 
|---|
| 74 |                        */
 | 
|---|
| 75 |   LM_REAL info[LM_INFO_SZ],
 | 
|---|
| 76 |                                                    /* O: information regarding the minimization. Set to NULL if don't care
 | 
|---|
| 77 |                       * info[0]= ||e||_2 at initial p.
 | 
|---|
| 78 |                       * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
 | 
|---|
| 79 |                       * info[5]= # iterations,
 | 
|---|
| 80 |                       * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
 | 
|---|
| 81 |                       *                                 2 - stopped by small Dp
 | 
|---|
| 82 |                       *                                 3 - stopped by itmax
 | 
|---|
| 83 |                       *                                 4 - singular matrix. Restart from current p with increased mu 
 | 
|---|
| 84 |                       *                                 5 - no further error reduction is possible. Restart with increased mu
 | 
|---|
| 85 |                       *                                 6 - stopped by small ||e||_2
 | 
|---|
| 86 |                       *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
 | 
|---|
| 87 |                       * info[7]= # function evaluations
 | 
|---|
| 88 |                       * info[8]= # Jacobian evaluations
 | 
|---|
| 89 |                       * info[9]= # linear systems solved, i.e. # attempts for reducing error
 | 
|---|
| 90 |                       */
 | 
|---|
| 91 |   LM_REAL *work,     /* working memory at least LM_DER_WORKSZ() reals large, allocated if NULL */
 | 
|---|
| 92 |   LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
 | 
|---|
| 93 |   void *adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf.
 | 
|---|
| 94 |                       * Set to NULL if not needed
 | 
|---|
| 95 |                       */
 | 
|---|
| 96 | {
 | 
|---|
| 97 | register int i, j, k, l;
 | 
|---|
| 98 | int worksz, freework=0, issolved;
 | 
|---|
| 99 | /* temp work arrays */
 | 
|---|
| 100 | LM_REAL *e,          /* nx1 */
 | 
|---|
| 101 |        *hx,         /* \hat{x}_i, nx1 */
 | 
|---|
| 102 |        *jacTe,      /* J^T e_i mx1 */
 | 
|---|
| 103 |        *jac,        /* nxm */
 | 
|---|
| 104 |        *jacTjac,    /* mxm */
 | 
|---|
| 105 |        *Dp,         /* mx1 */
 | 
|---|
| 106 |    *diag_jacTjac,   /* diagonal of J^T J, mx1 */
 | 
|---|
| 107 |        *pDp;        /* p + Dp, mx1 */
 | 
|---|
| 108 | 
 | 
|---|
| 109 | register LM_REAL mu,  /* damping constant */
 | 
|---|
| 110 |                 tmp; /* mainly used in matrix & vector multiplications */
 | 
|---|
| 111 | LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
 | 
|---|
| 112 | LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
 | 
|---|
| 113 | LM_REAL tau, eps1, eps2, eps2_sq, eps3;
 | 
|---|
| 114 | LM_REAL init_p_eL2;
 | 
|---|
| 115 | int nu=2, nu2, stop=0, nfev, njev=0, nlss=0;
 | 
|---|
| 116 | const int nm=n*m;
 | 
|---|
| 117 | int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;
 | 
|---|
| 118 | 
 | 
|---|
| 119 |   mu=jacTe_inf=0.0; /* -Wall */
 | 
|---|
| 120 | 
 | 
|---|
| 121 |   if(n<m){
 | 
|---|
| 122 |     fprintf(stderr, LCAT(LEVMAR_DER, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
 | 
|---|
| 123 |     return LM_ERROR;
 | 
|---|
| 124 |   }
 | 
|---|
| 125 | 
 | 
|---|
| 126 |   if(!jacf){
 | 
|---|
| 127 |     fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_DER)
 | 
|---|
| 128 |         RCAT("().\nIf no such function is available, use ", LEVMAR_DIF) RCAT("() rather than ", LEVMAR_DER) "()\n");
 | 
|---|
| 129 |     return LM_ERROR;
 | 
|---|
| 130 |   }
 | 
|---|
| 131 | 
 | 
|---|
| 132 |   if(opts){
 | 
|---|
| 133 |           tau=opts[0];
 | 
|---|
| 134 |           eps1=opts[1];
 | 
|---|
| 135 |           eps2=opts[2];
 | 
|---|
| 136 |           eps2_sq=opts[2]*opts[2];
 | 
|---|
| 137 |     eps3=opts[3];
 | 
|---|
| 138 |   }
 | 
|---|
| 139 |   else{ // use default values
 | 
|---|
| 140 |           tau=LM_CNST(LM_INIT_MU);
 | 
|---|
| 141 |           eps1=LM_CNST(LM_STOP_THRESH);
 | 
|---|
| 142 |           eps2=LM_CNST(LM_STOP_THRESH);
 | 
|---|
| 143 |           eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);
 | 
|---|
| 144 |     eps3=LM_CNST(LM_STOP_THRESH);
 | 
|---|
| 145 |   }
 | 
|---|
| 146 | 
 | 
|---|
| 147 |   if(!work){
 | 
|---|
| 148 |     worksz=LM_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m;
 | 
|---|
| 149 |     work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
 | 
|---|
| 150 |     if(!work){
 | 
|---|
| 151 |       fprintf(stderr, LCAT(LEVMAR_DER, "(): memory allocation request failed\n"));
 | 
|---|
| 152 |       return LM_ERROR;
 | 
|---|
| 153 |     }
 | 
|---|
| 154 |     freework=1;
 | 
|---|
| 155 |   }
 | 
|---|
| 156 | 
 | 
|---|
| 157 |   /* set up work arrays */
 | 
|---|
| 158 |   e=work;
 | 
|---|
| 159 |   hx=e + n;
 | 
|---|
| 160 |   jacTe=hx + n;
 | 
|---|
| 161 |   jac=jacTe + m;
 | 
|---|
| 162 |   jacTjac=jac + nm;
 | 
|---|
| 163 |   Dp=jacTjac + m*m;
 | 
|---|
| 164 |   diag_jacTjac=Dp + m;
 | 
|---|
| 165 |   pDp=diag_jacTjac + m;
 | 
|---|
| 166 | 
 | 
|---|
| 167 |   /* compute e=x - f(p) and its L2 norm */
 | 
|---|
| 168 |   (*func)(p, hx, m, n, adata); nfev=1;
 | 
|---|
| 169 |   /* ### e=x-hx, p_eL2=||e|| */
 | 
|---|
| 170 | #if 1
 | 
|---|
| 171 |   p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);  
 | 
|---|
| 172 | #else
 | 
|---|
| 173 |   for(i=0, p_eL2=0.0; i<n; ++i){
 | 
|---|
| 174 |     e[i]=tmp=x[i]-hx[i];
 | 
|---|
| 175 |     p_eL2+=tmp*tmp;
 | 
|---|
| 176 |   }
 | 
|---|
| 177 | #endif
 | 
|---|
| 178 |   init_p_eL2=p_eL2;
 | 
|---|
| 179 |   if(!LM_FINITE(p_eL2)) stop=7;
 | 
|---|
| 180 | 
 | 
|---|
| 181 |   for(k=0; k<itmax && !stop; ++k){
 | 
|---|
| 182 |     /* Note that p and e have been updated at a previous iteration */
 | 
|---|
| 183 | 
 | 
|---|
| 184 |     if(p_eL2<=eps3){ /* error is small */
 | 
|---|
| 185 |       stop=6;
 | 
|---|
| 186 |       break;
 | 
|---|
| 187 |     }
 | 
|---|
| 188 | 
 | 
|---|
| 189 |     /* Compute the Jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.
 | 
|---|
| 190 |      * Since J^T J is symmetric, its computation can be sped up by computing
 | 
|---|
| 191 |      * only its upper triangular part and copying it to the lower part
 | 
|---|
| 192 |      */
 | 
|---|
| 193 | 
 | 
|---|
| 194 |     (*jacf)(p, jac, m, n, adata); ++njev;
 | 
|---|
| 195 | 
 | 
|---|
| 196 |     /* J^T J, J^T e */
 | 
|---|
| 197 |     if(nm<__BLOCKSZ__SQ){ // this is a small problem
 | 
|---|
| 198 |       /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.
 | 
|---|
| 199 |        * Thus, the product J^T J can be computed using an outer loop for
 | 
|---|
| 200 |        * l that adds J_li*J_lj to each element ij of the result. Note that
 | 
|---|
| 201 |        * with this scheme, the accesses to J and JtJ are always along rows,
 | 
|---|
| 202 |        * therefore induces less cache misses compared to the straightforward
 | 
|---|
| 203 |        * algorithm for computing the product (i.e., l loop is innermost one).
 | 
|---|
| 204 |        * A similar scheme applies to the computation of J^T e.
 | 
|---|
| 205 |        * However, for large minimization problems (i.e., involving a large number
 | 
|---|
| 206 |        * of unknowns and measurements) for which J/J^T J rows are too large to
 | 
|---|
| 207 |        * fit in the L1 cache, even this scheme incures many cache misses. In
 | 
|---|
| 208 |        * such cases, a cache-efficient blocking scheme is preferable.
 | 
|---|
| 209 |        *
 | 
|---|
| 210 |        * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
 | 
|---|
| 211 |        * performance problem.
 | 
|---|
| 212 |        *
 | 
|---|
| 213 |        * Note that the non-blocking algorithm is faster on small
 | 
|---|
| 214 |        * problems since in this case it avoids the overheads of blocking. 
 | 
|---|
| 215 |        */
 | 
|---|
| 216 | 
 | 
|---|
| 217 |       /* looping downwards saves a few computations */
 | 
|---|
| 218 |       register int l;
 | 
|---|
| 219 |       register LM_REAL alpha, *jaclm, *jacTjacim;
 | 
|---|
| 220 | 
 | 
|---|
| 221 |       for(i=m*m; i-->0; )
 | 
|---|
| 222 |         jacTjac[i]=0.0;
 | 
|---|
| 223 |       for(i=m; i-->0; )
 | 
|---|
| 224 |         jacTe[i]=0.0;
 | 
|---|
| 225 | 
 | 
|---|
| 226 |       for(l=n; l-->0; ){
 | 
|---|
| 227 |         jaclm=jac+l*m;
 | 
|---|
| 228 |         for(i=m; i-->0; ){
 | 
|---|
| 229 |           jacTjacim=jacTjac+i*m;
 | 
|---|
| 230 |           alpha=jaclm[i]; //jac[l*m+i];
 | 
|---|
| 231 |           for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */
 | 
|---|
| 232 |             jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha
 | 
|---|
| 233 | 
 | 
|---|
| 234 |           /* J^T e */
 | 
|---|
| 235 |           jacTe[i]+=alpha*e[l];
 | 
|---|
| 236 |         }
 | 
|---|
| 237 |       }
 | 
|---|
| 238 | 
 | 
|---|
| 239 |       for(i=m; i-->0; ) /* copy to upper part */
 | 
|---|
| 240 |         for(j=i+1; j<m; ++j)
 | 
|---|
| 241 |           jacTjac[i*m+j]=jacTjac[j*m+i];
 | 
|---|
| 242 | 
 | 
|---|
| 243 |     }
 | 
|---|
| 244 |     else{ // this is a large problem
 | 
|---|
| 245 |       /* Cache efficient computation of J^T J based on blocking
 | 
|---|
| 246 |        */
 | 
|---|
| 247 |       LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);
 | 
|---|
| 248 | 
 | 
|---|
| 249 |       /* cache efficient computation of J^T e */
 | 
|---|
| 250 |       for(i=0; i<m; ++i)
 | 
|---|
| 251 |         jacTe[i]=0.0;
 | 
|---|
| 252 | 
 | 
|---|
| 253 |       for(i=0; i<n; ++i){
 | 
|---|
| 254 |         register LM_REAL *jacrow;
 | 
|---|
| 255 | 
 | 
|---|
| 256 |         for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
 | 
|---|
| 257 |           jacTe[l]+=jacrow[l]*tmp;
 | 
|---|
| 258 |       }
 | 
|---|
| 259 |     }
 | 
|---|
| 260 | 
 | 
|---|
| 261 |           /* Compute ||J^T e||_inf and ||p||^2 */
 | 
|---|
| 262 |     for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){
 | 
|---|
| 263 |       if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;
 | 
|---|
| 264 | 
 | 
|---|
| 265 |       diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
 | 
|---|
| 266 |       p_L2+=p[i]*p[i];
 | 
|---|
| 267 |     }
 | 
|---|
| 268 |     //p_L2=sqrt(p_L2);
 | 
|---|
| 269 | 
 | 
|---|
| 270 | #if 0
 | 
|---|
| 271 | if(!(k%100)){
 | 
|---|
| 272 |   printf("Current estimate: ");
 | 
|---|
| 273 |   for(i=0; i<m; ++i)
 | 
|---|
| 274 |     printf("%.9g ", p[i]);
 | 
|---|
| 275 |   printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
 | 
|---|
| 276 | }
 | 
|---|
| 277 | #endif
 | 
|---|
| 278 | 
 | 
|---|
| 279 |     /* check for convergence */
 | 
|---|
| 280 |     if((jacTe_inf <= eps1)){
 | 
|---|
| 281 |       Dp_L2=0.0; /* no increment for p in this case */
 | 
|---|
| 282 |       stop=1;
 | 
|---|
| 283 |       break;
 | 
|---|
| 284 |     }
 | 
|---|
| 285 | 
 | 
|---|
| 286 |    /* compute initial damping factor */
 | 
|---|
| 287 |     if(k==0){
 | 
|---|
| 288 |       for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
 | 
|---|
| 289 |         if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
 | 
|---|
| 290 |       mu=tau*tmp;
 | 
|---|
| 291 |     }
 | 
|---|
| 292 | 
 | 
|---|
| 293 |     /* determine increment using adaptive damping */
 | 
|---|
| 294 |     while(1){
 | 
|---|
| 295 |       /* augment normal equations */
 | 
|---|
| 296 |       for(i=0; i<m; ++i)
 | 
|---|
| 297 |         jacTjac[i*m+i]+=mu;
 | 
|---|
| 298 | 
 | 
|---|
| 299 |       /* solve augmented equations */
 | 
|---|
| 300 | #ifdef HAVE_LAPACK
 | 
|---|
| 301 |       /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD.
 | 
|---|
| 302 |        * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest.
 | 
|---|
| 303 |        * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off;
 | 
|---|
| 304 |        * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but
 | 
|---|
| 305 |        * slower than LDLt; LDLt offers a good tradeoff between robustness and speed
 | 
|---|
| 306 |        */
 | 
|---|
| 307 | 
 | 
|---|
| 308 |       issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK;
 | 
|---|
| 309 |       //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
 | 
|---|
| 310 |       //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;
 | 
|---|
| 311 | #ifdef HAVE_PLASMA
 | 
|---|
| 312 |       //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL;
 | 
|---|
| 313 | #endif
 | 
|---|
| 314 |       //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;
 | 
|---|
| 315 |       //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;
 | 
|---|
| 316 |       //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;
 | 
|---|
| 317 | 
 | 
|---|
| 318 | #else
 | 
|---|
| 319 |       /* use the LU included with levmar */
 | 
|---|
| 320 |       issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
 | 
|---|
| 321 | #endif /* HAVE_LAPACK */
 | 
|---|
| 322 | 
 | 
|---|
| 323 |       if(issolved){
 | 
|---|
| 324 |         /* compute p's new estimate and ||Dp||^2 */
 | 
|---|
| 325 |         for(i=0, Dp_L2=0.0; i<m; ++i){
 | 
|---|
| 326 |           pDp[i]=p[i] + (tmp=Dp[i]);
 | 
|---|
| 327 |           Dp_L2+=tmp*tmp;
 | 
|---|
| 328 |         }
 | 
|---|
| 329 |         //Dp_L2=sqrt(Dp_L2);
 | 
|---|
| 330 | 
 | 
|---|
| 331 |         if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
 | 
|---|
| 332 |         //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
 | 
|---|
| 333 |           stop=2;
 | 
|---|
| 334 |           break;
 | 
|---|
| 335 |         }
 | 
|---|
| 336 | 
 | 
|---|
| 337 |        if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */
 | 
|---|
| 338 |        //if(Dp_L2>=(p_L2+eps2)/LM_CNST(EPSILON)){ /* almost singular */
 | 
|---|
| 339 |          stop=4;
 | 
|---|
| 340 |          break;
 | 
|---|
| 341 |        }
 | 
|---|
| 342 | 
 | 
|---|
| 343 |         (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */
 | 
|---|
| 344 |         /* compute ||e(pDp)||_2 */
 | 
|---|
| 345 |         /* ### hx=x-hx, pDp_eL2=||hx|| */
 | 
|---|
| 346 | #if 1
 | 
|---|
| 347 |         pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n);
 | 
|---|
| 348 | #else
 | 
|---|
| 349 |         for(i=0, pDp_eL2=0.0; i<n; ++i){
 | 
|---|
| 350 |           hx[i]=tmp=x[i]-hx[i];
 | 
|---|
| 351 |           pDp_eL2+=tmp*tmp;
 | 
|---|
| 352 |         }
 | 
|---|
| 353 | #endif
 | 
|---|
| 354 |         if(!LM_FINITE(pDp_eL2)){ /* sum of squares is not finite, most probably due to a user error.
 | 
|---|
| 355 |                                   * This check makes sure that the inner loop does not run indefinitely.
 | 
|---|
| 356 |                                   * Thanks to Steve Danauskas for reporting such cases
 | 
|---|
| 357 |                                   */
 | 
|---|
| 358 |           stop=7;
 | 
|---|
| 359 |           break;
 | 
|---|
| 360 |         }
 | 
|---|
| 361 | 
 | 
|---|
| 362 |         for(i=0, dL=0.0; i<m; ++i)
 | 
|---|
| 363 |           dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);
 | 
|---|
| 364 | 
 | 
|---|
| 365 |         dF=p_eL2-pDp_eL2;
 | 
|---|
| 366 | 
 | 
|---|
| 367 |         if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */
 | 
|---|
| 368 |           tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));
 | 
|---|
| 369 |           tmp=LM_CNST(1.0)-tmp*tmp*tmp;
 | 
|---|
| 370 |           mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );
 | 
|---|
| 371 |           nu=2;
 | 
|---|
| 372 | 
 | 
|---|
| 373 |           for(i=0 ; i<m; ++i) /* update p's estimate */
 | 
|---|
| 374 |             p[i]=pDp[i];
 | 
|---|
| 375 | 
 | 
|---|
| 376 |           for(i=0; i<n; ++i) /* update e and ||e||_2 */
 | 
|---|
| 377 |             e[i]=hx[i];
 | 
|---|
| 378 |           p_eL2=pDp_eL2;
 | 
|---|
| 379 |           break;
 | 
|---|
| 380 |         }
 | 
|---|
| 381 |       }
 | 
|---|
| 382 | 
 | 
|---|
| 383 |       /* if this point is reached, either the linear system could not be solved or
 | 
|---|
| 384 |        * the error did not reduce; in any case, the increment must be rejected
 | 
|---|
| 385 |        */
 | 
|---|
| 386 | 
 | 
|---|
| 387 |       mu*=nu;
 | 
|---|
| 388 |       nu2=nu<<1; // 2*nu;
 | 
|---|
| 389 |       if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
 | 
|---|
| 390 |         stop=5;
 | 
|---|
| 391 |         break;
 | 
|---|
| 392 |       }
 | 
|---|
| 393 |       nu=nu2;
 | 
|---|
| 394 | 
 | 
|---|
| 395 |       for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
 | 
|---|
| 396 |         jacTjac[i*m+i]=diag_jacTjac[i];
 | 
|---|
| 397 |     } /* inner loop */
 | 
|---|
| 398 |   }
 | 
|---|
| 399 | 
 | 
|---|
| 400 |   if(k>=itmax) stop=3;
 | 
|---|
| 401 | 
 | 
|---|
| 402 |   for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
 | 
|---|
| 403 |     jacTjac[i*m+i]=diag_jacTjac[i];
 | 
|---|
| 404 | 
 | 
|---|
| 405 |   if(info){
 | 
|---|
| 406 |     info[0]=init_p_eL2;
 | 
|---|
| 407 |     info[1]=p_eL2;
 | 
|---|
| 408 |     info[2]=jacTe_inf;
 | 
|---|
| 409 |     info[3]=Dp_L2;
 | 
|---|
| 410 |     for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
 | 
|---|
| 411 |       if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
 | 
|---|
| 412 |     info[4]=mu/tmp;
 | 
|---|
| 413 |     info[5]=(LM_REAL)k;
 | 
|---|
| 414 |     info[6]=(LM_REAL)stop;
 | 
|---|
| 415 |     info[7]=(LM_REAL)nfev;
 | 
|---|
| 416 |     info[8]=(LM_REAL)njev;
 | 
|---|
| 417 |     info[9]=(LM_REAL)nlss;
 | 
|---|
| 418 |   }
 | 
|---|
| 419 | 
 | 
|---|
| 420 |   /* covariance matrix */
 | 
|---|
| 421 |   if(covar){
 | 
|---|
| 422 |     LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
 | 
|---|
| 423 |   }
 | 
|---|
| 424 | 
 | 
|---|
| 425 |   if(freework) free(work);
 | 
|---|
| 426 | 
 | 
|---|
| 427 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 428 |   if(linsolver) (*linsolver)(NULL, NULL, NULL, 0);
 | 
|---|
| 429 | #endif
 | 
|---|
| 430 | 
 | 
|---|
| 431 |   return (stop!=4 && stop!=7)?  k : LM_ERROR;
 | 
|---|
| 432 | }
 | 
|---|
| 433 | 
 | 
|---|
| 434 | 
 | 
|---|
| 435 | /* Secant version of the LEVMAR_DER() function above: the Jacobian is approximated with 
 | 
|---|
| 436 |  * the aid of finite differences (forward or central, see the comment for the opts argument)
 | 
|---|
| 437 |  */
 | 
|---|
| 438 | int LEVMAR_DIF(
 | 
|---|
| 439 |   void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
 | 
|---|
| 440 |   LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
 | 
|---|
| 441 |   LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */
 | 
|---|
| 442 |   int m,              /* I: parameter vector dimension (i.e. #unknowns) */
 | 
|---|
| 443 |   int n,              /* I: measurement vector dimension */
 | 
|---|
| 444 |   int itmax,          /* I: maximum number of iterations */
 | 
|---|
| 445 |   LM_REAL opts[5],    /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
 | 
|---|
| 446 |                        * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
 | 
|---|
| 447 |                        * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
 | 
|---|
| 448 |                        * If \delta<0, the Jacobian is approximated with central differences which are more accurate
 | 
|---|
| 449 |                        * (but slower!) compared to the forward differences employed by default. 
 | 
|---|
| 450 |                        */
 | 
|---|
| 451 |   LM_REAL info[LM_INFO_SZ],
 | 
|---|
| 452 |                                                    /* O: information regarding the minimization. Set to NULL if don't care
 | 
|---|
| 453 |                       * info[0]= ||e||_2 at initial p.
 | 
|---|
| 454 |                       * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
 | 
|---|
| 455 |                       * info[5]= # iterations,
 | 
|---|
| 456 |                       * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
 | 
|---|
| 457 |                       *                                 2 - stopped by small Dp
 | 
|---|
| 458 |                       *                                 3 - stopped by itmax
 | 
|---|
| 459 |                       *                                 4 - singular matrix. Restart from current p with increased mu 
 | 
|---|
| 460 |                       *                                 5 - no further error reduction is possible. Restart with increased mu
 | 
|---|
| 461 |                       *                                 6 - stopped by small ||e||_2
 | 
|---|
| 462 |                       *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
 | 
|---|
| 463 |                       * info[7]= # function evaluations
 | 
|---|
| 464 |                       * info[8]= # Jacobian evaluations
 | 
|---|
| 465 |                       * info[9]= # linear systems solved, i.e. # attempts for reducing error
 | 
|---|
| 466 |                       */
 | 
|---|
| 467 |   LM_REAL *work,     /* working memory at least LM_DIF_WORKSZ() reals large, allocated if NULL */
 | 
|---|
| 468 |   LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
 | 
|---|
| 469 |   void *adata)       /* pointer to possibly additional data, passed uninterpreted to func.
 | 
|---|
| 470 |                       * Set to NULL if not needed
 | 
|---|
| 471 |                       */
 | 
|---|
| 472 | {
 | 
|---|
| 473 | register int i, j, k, l;
 | 
|---|
| 474 | int worksz, freework=0, issolved;
 | 
|---|
| 475 | /* temp work arrays */
 | 
|---|
| 476 | LM_REAL *e,          /* nx1 */
 | 
|---|
| 477 |        *hx,         /* \hat{x}_i, nx1 */
 | 
|---|
| 478 |        *jacTe,      /* J^T e_i mx1 */
 | 
|---|
| 479 |        *jac,        /* nxm */
 | 
|---|
| 480 |        *jacTjac,    /* mxm */
 | 
|---|
| 481 |        *Dp,         /* mx1 */
 | 
|---|
| 482 |    *diag_jacTjac,   /* diagonal of J^T J, mx1 */
 | 
|---|
| 483 |        *pDp,        /* p + Dp, mx1 */
 | 
|---|
| 484 |        *wrk,        /* nx1 */
 | 
|---|
| 485 |        *wrk2;       /* nx1, used only for holding a temporary e vector and when differentiating with central differences */
 | 
|---|
| 486 | 
 | 
|---|
| 487 | int using_ffdif=1;
 | 
|---|
| 488 | 
 | 
|---|
| 489 | register LM_REAL mu,  /* damping constant */
 | 
|---|
| 490 |                 tmp; /* mainly used in matrix & vector multiplications */
 | 
|---|
| 491 | LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
 | 
|---|
| 492 | LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
 | 
|---|
| 493 | LM_REAL tau, eps1, eps2, eps2_sq, eps3, delta;
 | 
|---|
| 494 | LM_REAL init_p_eL2;
 | 
|---|
| 495 | int nu, nu2, stop=0, nfev, njap=0, nlss=0, K=(m>=10)? m: 10, updjac, updp=1, newjac;
 | 
|---|
| 496 | const int nm=n*m;
 | 
|---|
| 497 | int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;
 | 
|---|
| 498 | 
 | 
|---|
| 499 |   mu=jacTe_inf=p_L2=0.0; /* -Wall */
 | 
|---|
| 500 |   updjac=newjac=0; /* -Wall */
 | 
|---|
| 501 | 
 | 
|---|
| 502 |   if(n<m){
 | 
|---|
| 503 |     fprintf(stderr, LCAT(LEVMAR_DIF, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
 | 
|---|
| 504 |     return LM_ERROR;
 | 
|---|
| 505 |   }
 | 
|---|
| 506 | 
 | 
|---|
| 507 |   if(opts){
 | 
|---|
| 508 |           tau=opts[0];
 | 
|---|
| 509 |           eps1=opts[1];
 | 
|---|
| 510 |           eps2=opts[2];
 | 
|---|
| 511 |           eps2_sq=opts[2]*opts[2];
 | 
|---|
| 512 |     eps3=opts[3];
 | 
|---|
| 513 |           delta=opts[4];
 | 
|---|
| 514 |     if(delta<0.0){
 | 
|---|
| 515 |       delta=-delta; /* make positive */
 | 
|---|
| 516 |       using_ffdif=0; /* use central differencing */
 | 
|---|
| 517 |     }
 | 
|---|
| 518 |   }
 | 
|---|
| 519 |   else{ // use default values
 | 
|---|
| 520 |           tau=LM_CNST(LM_INIT_MU);
 | 
|---|
| 521 |           eps1=LM_CNST(LM_STOP_THRESH);
 | 
|---|
| 522 |           eps2=LM_CNST(LM_STOP_THRESH);
 | 
|---|
| 523 |           eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);
 | 
|---|
| 524 |     eps3=LM_CNST(LM_STOP_THRESH);
 | 
|---|
| 525 |           delta=LM_CNST(LM_DIFF_DELTA);
 | 
|---|
| 526 |   }
 | 
|---|
| 527 | 
 | 
|---|
| 528 |   if(!work){
 | 
|---|
| 529 |     worksz=LM_DIF_WORKSZ(m, n); //4*n+4*m + n*m + m*m;
 | 
|---|
| 530 |     work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
 | 
|---|
| 531 |     if(!work){
 | 
|---|
| 532 |       fprintf(stderr, LCAT(LEVMAR_DIF, "(): memory allocation request failed\n"));
 | 
|---|
| 533 |       return LM_ERROR;
 | 
|---|
| 534 |     }
 | 
|---|
| 535 |     freework=1;
 | 
|---|
| 536 |   }
 | 
|---|
| 537 | 
 | 
|---|
| 538 |   /* set up work arrays */
 | 
|---|
| 539 |   e=work;
 | 
|---|
| 540 |   hx=e + n;
 | 
|---|
| 541 |   jacTe=hx + n;
 | 
|---|
| 542 |   jac=jacTe + m;
 | 
|---|
| 543 |   jacTjac=jac + nm;
 | 
|---|
| 544 |   Dp=jacTjac + m*m;
 | 
|---|
| 545 |   diag_jacTjac=Dp + m;
 | 
|---|
| 546 |   pDp=diag_jacTjac + m;
 | 
|---|
| 547 |   wrk=pDp + m;
 | 
|---|
| 548 |   wrk2=wrk + n;
 | 
|---|
| 549 | 
 | 
|---|
| 550 |   /* compute e=x - f(p) and its L2 norm */
 | 
|---|
| 551 |   (*func)(p, hx, m, n, adata); nfev=1;
 | 
|---|
| 552 |   /* ### e=x-hx, p_eL2=||e|| */
 | 
|---|
| 553 | #if 1
 | 
|---|
| 554 |   p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);
 | 
|---|
| 555 | #else
 | 
|---|
| 556 |   for(i=0, p_eL2=0.0; i<n; ++i){
 | 
|---|
| 557 |     e[i]=tmp=x[i]-hx[i];
 | 
|---|
| 558 |     p_eL2+=tmp*tmp;
 | 
|---|
| 559 |   }
 | 
|---|
| 560 | #endif
 | 
|---|
| 561 |   init_p_eL2=p_eL2;
 | 
|---|
| 562 |   if(!LM_FINITE(p_eL2)) stop=7;
 | 
|---|
| 563 | 
 | 
|---|
| 564 |   nu=20; /* force computation of J */
 | 
|---|
| 565 | 
 | 
|---|
| 566 |   for(k=0; k<itmax && !stop; ++k){
 | 
|---|
| 567 |     /* Note that p and e have been updated at a previous iteration */
 | 
|---|
| 568 | 
 | 
|---|
| 569 |     if(p_eL2<=eps3){ /* error is small */
 | 
|---|
| 570 |       stop=6;
 | 
|---|
| 571 |       break;
 | 
|---|
| 572 |     }
 | 
|---|
| 573 | 
 | 
|---|
| 574 |     /* Compute the Jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.
 | 
|---|
| 575 |      * The symmetry of J^T J is again exploited for speed
 | 
|---|
| 576 |      */
 | 
|---|
| 577 | 
 | 
|---|
| 578 |     if((updp && nu>16) || updjac==K){ /* compute difference approximation to J */
 | 
|---|
| 579 |       if(using_ffdif){ /* use forward differences */
 | 
|---|
| 580 |         LEVMAR_FDIF_FORW_JAC_APPROX(func, p, hx, wrk, delta, jac, m, n, adata);
 | 
|---|
| 581 |         ++njap; nfev+=m;
 | 
|---|
| 582 |       }
 | 
|---|
| 583 |       else{ /* use central differences */
 | 
|---|
| 584 |         LEVMAR_FDIF_CENT_JAC_APPROX(func, p, wrk, wrk2, delta, jac, m, n, adata);
 | 
|---|
| 585 |         ++njap; nfev+=2*m;
 | 
|---|
| 586 |       }
 | 
|---|
| 587 |       nu=2; updjac=0; updp=0; newjac=1;
 | 
|---|
| 588 |     }
 | 
|---|
| 589 | 
 | 
|---|
| 590 |     if(newjac){ /* Jacobian has changed, recompute J^T J, J^t e, etc */
 | 
|---|
| 591 |       newjac=0;
 | 
|---|
| 592 | 
 | 
|---|
| 593 |       /* J^T J, J^T e */
 | 
|---|
| 594 |       if(nm<=__BLOCKSZ__SQ){ // this is a small problem
 | 
|---|
| 595 |         /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.
 | 
|---|
| 596 |          * Thus, the product J^T J can be computed using an outer loop for
 | 
|---|
| 597 |          * l that adds J_li*J_lj to each element ij of the result. Note that
 | 
|---|
| 598 |          * with this scheme, the accesses to J and JtJ are always along rows,
 | 
|---|
| 599 |          * therefore induces less cache misses compared to the straightforward
 | 
|---|
| 600 |          * algorithm for computing the product (i.e., l loop is innermost one).
 | 
|---|
| 601 |          * A similar scheme applies to the computation of J^T e.
 | 
|---|
| 602 |          * However, for large minimization problems (i.e., involving a large number
 | 
|---|
| 603 |          * of unknowns and measurements) for which J/J^T J rows are too large to
 | 
|---|
| 604 |          * fit in the L1 cache, even this scheme incures many cache misses. In
 | 
|---|
| 605 |          * such cases, a cache-efficient blocking scheme is preferable.
 | 
|---|
| 606 |          *
 | 
|---|
| 607 |          * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
 | 
|---|
| 608 |          * performance problem.
 | 
|---|
| 609 |          *
 | 
|---|
| 610 |          * Note that the non-blocking algorithm is faster on small
 | 
|---|
| 611 |          * problems since in this case it avoids the overheads of blocking. 
 | 
|---|
| 612 |          */
 | 
|---|
| 613 |         register int l;
 | 
|---|
| 614 |         register LM_REAL alpha, *jaclm, *jacTjacim;
 | 
|---|
| 615 | 
 | 
|---|
| 616 |         /* looping downwards saves a few computations */
 | 
|---|
| 617 |         for(i=m*m; i-->0; )
 | 
|---|
| 618 |           jacTjac[i]=0.0;
 | 
|---|
| 619 |         for(i=m; i-->0; )
 | 
|---|
| 620 |           jacTe[i]=0.0;
 | 
|---|
| 621 | 
 | 
|---|
| 622 |         for(l=n; l-->0; ){
 | 
|---|
| 623 |           jaclm=jac+l*m;
 | 
|---|
| 624 |           for(i=m; i-->0; ){
 | 
|---|
| 625 |             jacTjacim=jacTjac+i*m;
 | 
|---|
| 626 |             alpha=jaclm[i]; //jac[l*m+i];
 | 
|---|
| 627 |             for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */
 | 
|---|
| 628 |               jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha
 | 
|---|
| 629 | 
 | 
|---|
| 630 |             /* J^T e */
 | 
|---|
| 631 |             jacTe[i]+=alpha*e[l];
 | 
|---|
| 632 |           }
 | 
|---|
| 633 |         }
 | 
|---|
| 634 | 
 | 
|---|
| 635 |         for(i=m; i-->0; ) /* copy to upper part */
 | 
|---|
| 636 |           for(j=i+1; j<m; ++j)
 | 
|---|
| 637 |             jacTjac[i*m+j]=jacTjac[j*m+i];
 | 
|---|
| 638 |       }
 | 
|---|
| 639 |       else{ // this is a large problem
 | 
|---|
| 640 |         /* Cache efficient computation of J^T J based on blocking
 | 
|---|
| 641 |          */
 | 
|---|
| 642 |         LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);
 | 
|---|
| 643 | 
 | 
|---|
| 644 |         /* cache efficient computation of J^T e */
 | 
|---|
| 645 |         for(i=0; i<m; ++i)
 | 
|---|
| 646 |           jacTe[i]=0.0;
 | 
|---|
| 647 | 
 | 
|---|
| 648 |         for(i=0; i<n; ++i){
 | 
|---|
| 649 |           register LM_REAL *jacrow;
 | 
|---|
| 650 | 
 | 
|---|
| 651 |           for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
 | 
|---|
| 652 |             jacTe[l]+=jacrow[l]*tmp;
 | 
|---|
| 653 |         }
 | 
|---|
| 654 |       }
 | 
|---|
| 655 |       
 | 
|---|
| 656 |       /* Compute ||J^T e||_inf and ||p||^2 */
 | 
|---|
| 657 |       for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){
 | 
|---|
| 658 |         if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;
 | 
|---|
| 659 | 
 | 
|---|
| 660 |         diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
 | 
|---|
| 661 |         p_L2+=p[i]*p[i];
 | 
|---|
| 662 |       }
 | 
|---|
| 663 |       //p_L2=sqrt(p_L2);
 | 
|---|
| 664 |     }
 | 
|---|
| 665 | 
 | 
|---|
| 666 | #if 0
 | 
|---|
| 667 | if(!(k%100)){
 | 
|---|
| 668 |   printf("Current estimate: ");
 | 
|---|
| 669 |   for(i=0; i<m; ++i)
 | 
|---|
| 670 |     printf("%.9g ", p[i]);
 | 
|---|
| 671 |   printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
 | 
|---|
| 672 | }
 | 
|---|
| 673 | #endif
 | 
|---|
| 674 | 
 | 
|---|
| 675 |     /* check for convergence */
 | 
|---|
| 676 |     if((jacTe_inf <= eps1)){
 | 
|---|
| 677 |       Dp_L2=0.0; /* no increment for p in this case */
 | 
|---|
| 678 |       stop=1;
 | 
|---|
| 679 |       break;
 | 
|---|
| 680 |     }
 | 
|---|
| 681 | 
 | 
|---|
| 682 |    /* compute initial damping factor */
 | 
|---|
| 683 |     if(k==0){
 | 
|---|
| 684 |       for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
 | 
|---|
| 685 |         if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
 | 
|---|
| 686 |       mu=tau*tmp;
 | 
|---|
| 687 |     }
 | 
|---|
| 688 | 
 | 
|---|
| 689 |     /* determine increment using adaptive damping */
 | 
|---|
| 690 | 
 | 
|---|
| 691 |     /* augment normal equations */
 | 
|---|
| 692 |     for(i=0; i<m; ++i)
 | 
|---|
| 693 |       jacTjac[i*m+i]+=mu;
 | 
|---|
| 694 | 
 | 
|---|
| 695 |     /* solve augmented equations */
 | 
|---|
| 696 | #ifdef HAVE_LAPACK
 | 
|---|
| 697 |     /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD.
 | 
|---|
| 698 |      * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest.
 | 
|---|
| 699 |      * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off;
 | 
|---|
| 700 |      * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but
 | 
|---|
| 701 |      * slower than LDLt; LDLt offers a good tradeoff between robustness and speed
 | 
|---|
| 702 |      */
 | 
|---|
| 703 | 
 | 
|---|
| 704 |     issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK;
 | 
|---|
| 705 |     //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
 | 
|---|
| 706 |     //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;
 | 
|---|
| 707 | #ifdef HAVE_PLASMA
 | 
|---|
| 708 |     //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL;
 | 
|---|
| 709 | #endif
 | 
|---|
| 710 |     //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;
 | 
|---|
| 711 |     //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;
 | 
|---|
| 712 |     //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;
 | 
|---|
| 713 | #else
 | 
|---|
| 714 |     /* use the LU included with levmar */
 | 
|---|
| 715 |     issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
 | 
|---|
| 716 | #endif /* HAVE_LAPACK */
 | 
|---|
| 717 | 
 | 
|---|
| 718 |     if(issolved){
 | 
|---|
| 719 |     /* compute p's new estimate and ||Dp||^2 */
 | 
|---|
| 720 |       for(i=0, Dp_L2=0.0; i<m; ++i){
 | 
|---|
| 721 |         pDp[i]=p[i] + (tmp=Dp[i]);
 | 
|---|
| 722 |         Dp_L2+=tmp*tmp;
 | 
|---|
| 723 |       }
 | 
|---|
| 724 |       //Dp_L2=sqrt(Dp_L2);
 | 
|---|
| 725 | 
 | 
|---|
| 726 |       if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
 | 
|---|
| 727 |       //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
 | 
|---|
| 728 |         stop=2;
 | 
|---|
| 729 |         break;
 | 
|---|
| 730 |       }
 | 
|---|
| 731 | 
 | 
|---|
| 732 |       if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */
 | 
|---|
| 733 |       //if(Dp_L2>=(p_L2+eps2)/LM_CNST(EPSILON)){ /* almost singular */
 | 
|---|
| 734 |         stop=4;
 | 
|---|
| 735 |         break;
 | 
|---|
| 736 |       }
 | 
|---|
| 737 | 
 | 
|---|
| 738 |       (*func)(pDp, wrk, m, n, adata); ++nfev; /* evaluate function at p + Dp */
 | 
|---|
| 739 |       /* compute ||e(pDp)||_2 */
 | 
|---|
| 740 |       /* ### wrk2=x-wrk, pDp_eL2=||wrk2|| */
 | 
|---|
| 741 | #if 1
 | 
|---|
| 742 |       pDp_eL2=LEVMAR_L2NRMXMY(wrk2, x, wrk, n);
 | 
|---|
| 743 | #else
 | 
|---|
| 744 |       for(i=0, pDp_eL2=0.0; i<n; ++i){
 | 
|---|
| 745 |         wrk2[i]=tmp=x[i]-wrk[i];
 | 
|---|
| 746 |         pDp_eL2+=tmp*tmp;
 | 
|---|
| 747 |       }
 | 
|---|
| 748 | #endif
 | 
|---|
| 749 |       if(!LM_FINITE(pDp_eL2)){ /* sum of squares is not finite, most probably due to a user error.
 | 
|---|
| 750 |                                 * This check makes sure that the loop terminates early in the case
 | 
|---|
| 751 |                                 * of invalid input. Thanks to Steve Danauskas for suggesting it
 | 
|---|
| 752 |                                 */
 | 
|---|
| 753 | 
 | 
|---|
| 754 |         stop=7;
 | 
|---|
| 755 |         break;
 | 
|---|
| 756 |       }
 | 
|---|
| 757 | 
 | 
|---|
| 758 |       dF=p_eL2-pDp_eL2;
 | 
|---|
| 759 |       if(updp || dF>0){ /* update jac */
 | 
|---|
| 760 |         for(i=0; i<n; ++i){
 | 
|---|
| 761 |           for(l=0, tmp=0.0; l<m; ++l)
 | 
|---|
| 762 |             tmp+=jac[i*m+l]*Dp[l]; /* (J * Dp)[i] */
 | 
|---|
| 763 |           tmp=(wrk[i] - hx[i] - tmp)/Dp_L2; /* (f(p+dp)[i] - f(p)[i] - (J * Dp)[i])/(dp^T*dp) */
 | 
|---|
| 764 |           for(j=0; j<m; ++j)
 | 
|---|
| 765 |             jac[i*m+j]+=tmp*Dp[j];
 | 
|---|
| 766 |         }
 | 
|---|
| 767 |         ++updjac;
 | 
|---|
| 768 |         newjac=1;
 | 
|---|
| 769 |       }
 | 
|---|
| 770 | 
 | 
|---|
| 771 |       for(i=0, dL=0.0; i<m; ++i)
 | 
|---|
| 772 |         dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);
 | 
|---|
| 773 | 
 | 
|---|
| 774 |       if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */
 | 
|---|
| 775 |         tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));
 | 
|---|
| 776 |         tmp=LM_CNST(1.0)-tmp*tmp*tmp;
 | 
|---|
| 777 |         mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );
 | 
|---|
| 778 |         nu=2;
 | 
|---|
| 779 | 
 | 
|---|
| 780 |         for(i=0 ; i<m; ++i) /* update p's estimate */
 | 
|---|
| 781 |           p[i]=pDp[i];
 | 
|---|
| 782 | 
 | 
|---|
| 783 |         for(i=0; i<n; ++i){ /* update e, hx and ||e||_2 */
 | 
|---|
| 784 |           e[i]=wrk2[i]; //x[i]-wrk[i];
 | 
|---|
| 785 |           hx[i]=wrk[i];
 | 
|---|
| 786 |         }
 | 
|---|
| 787 |         p_eL2=pDp_eL2;
 | 
|---|
| 788 |         updp=1;
 | 
|---|
| 789 |         continue;
 | 
|---|
| 790 |       }
 | 
|---|
| 791 |     }
 | 
|---|
| 792 | 
 | 
|---|
| 793 |     /* if this point is reached, either the linear system could not be solved or
 | 
|---|
| 794 |      * the error did not reduce; in any case, the increment must be rejected
 | 
|---|
| 795 |      */
 | 
|---|
| 796 | 
 | 
|---|
| 797 |     mu*=nu;
 | 
|---|
| 798 |     nu2=nu<<1; // 2*nu;
 | 
|---|
| 799 |     if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
 | 
|---|
| 800 |       stop=5;
 | 
|---|
| 801 |       break;
 | 
|---|
| 802 |     }
 | 
|---|
| 803 |     nu=nu2;
 | 
|---|
| 804 | 
 | 
|---|
| 805 |     for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
 | 
|---|
| 806 |       jacTjac[i*m+i]=diag_jacTjac[i];
 | 
|---|
| 807 |   }
 | 
|---|
| 808 | 
 | 
|---|
| 809 |   if(k>=itmax) stop=3;
 | 
|---|
| 810 | 
 | 
|---|
| 811 |   for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
 | 
|---|
| 812 |     jacTjac[i*m+i]=diag_jacTjac[i];
 | 
|---|
| 813 | 
 | 
|---|
| 814 |   if(info){
 | 
|---|
| 815 |     info[0]=init_p_eL2;
 | 
|---|
| 816 |     info[1]=p_eL2;
 | 
|---|
| 817 |     info[2]=jacTe_inf;
 | 
|---|
| 818 |     info[3]=Dp_L2;
 | 
|---|
| 819 |     for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
 | 
|---|
| 820 |       if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
 | 
|---|
| 821 |     info[4]=mu/tmp;
 | 
|---|
| 822 |     info[5]=(LM_REAL)k;
 | 
|---|
| 823 |     info[6]=(LM_REAL)stop;
 | 
|---|
| 824 |     info[7]=(LM_REAL)nfev;
 | 
|---|
| 825 |     info[8]=(LM_REAL)njap;
 | 
|---|
| 826 |     info[9]=(LM_REAL)nlss;
 | 
|---|
| 827 |   }
 | 
|---|
| 828 | 
 | 
|---|
| 829 |   /* covariance matrix */
 | 
|---|
| 830 |   if(covar){
 | 
|---|
| 831 |     LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
 | 
|---|
| 832 |   }
 | 
|---|
| 833 | 
 | 
|---|
| 834 |                                                                
 | 
|---|
| 835 |   if(freework) free(work);
 | 
|---|
| 836 | 
 | 
|---|
| 837 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
| 838 |   if(linsolver) (*linsolver)(NULL, NULL, NULL, 0);
 | 
|---|
| 839 | #endif
 | 
|---|
| 840 | 
 | 
|---|
| 841 |   return (stop!=4 && stop!=7)?  k : LM_ERROR;
 | 
|---|
| 842 | }
 | 
|---|
| 843 | 
 | 
|---|
| 844 | /* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */
 | 
|---|
| 845 | #undef LEVMAR_DER
 | 
|---|
| 846 | #undef LEVMAR_DIF
 | 
|---|
| 847 | #undef LEVMAR_FDIF_FORW_JAC_APPROX
 | 
|---|
| 848 | #undef LEVMAR_FDIF_CENT_JAC_APPROX
 | 
|---|
| 849 | #undef LEVMAR_COVAR
 | 
|---|
| 850 | #undef LEVMAR_TRANS_MAT_MAT_MULT
 | 
|---|
| 851 | #undef LEVMAR_L2NRMXMY
 | 
|---|
| 852 | #undef AX_EQ_B_LU
 | 
|---|
| 853 | #undef AX_EQ_B_CHOL
 | 
|---|
| 854 | #undef AX_EQ_B_PLASMA_CHOL
 | 
|---|
| 855 | #undef AX_EQ_B_QR
 | 
|---|
| 856 | #undef AX_EQ_B_QRLS
 | 
|---|
| 857 | #undef AX_EQ_B_SVD
 | 
|---|
| 858 | #undef AX_EQ_B_BK
 | 
|---|