| [5443b1] | 1 | ///////////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 2 | // | 
|---|
|  | 3 | //  Levenberg - Marquardt non-linear minimization algorithm | 
|---|
|  | 4 | //  Copyright (C) 2004  Manolis Lourakis (lourakis at ics forth gr) | 
|---|
|  | 5 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas | 
|---|
|  | 6 | //  Heraklion, Crete, Greece. | 
|---|
|  | 7 | // | 
|---|
|  | 8 | //  This program is free software; you can redistribute it and/or modify | 
|---|
|  | 9 | //  it under the terms of the GNU General Public License as published by | 
|---|
|  | 10 | //  the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 11 | //  (at your option) any later version. | 
|---|
|  | 12 | // | 
|---|
|  | 13 | //  This program is distributed in the hope that it will be useful, | 
|---|
|  | 14 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 15 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 16 | //  GNU General Public License for more details. | 
|---|
|  | 17 | // | 
|---|
|  | 18 | ///////////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 19 |  | 
|---|
|  | 20 | #ifndef LM_REAL // not included by lm.c | 
|---|
|  | 21 | #error This file should not be compiled directly! | 
|---|
|  | 22 | #endif | 
|---|
|  | 23 |  | 
|---|
|  | 24 |  | 
|---|
|  | 25 | /* precision-specific definitions */ | 
|---|
|  | 26 | #define LEVMAR_DER LM_ADD_PREFIX(levmar_der) | 
|---|
|  | 27 | #define LEVMAR_DIF LM_ADD_PREFIX(levmar_dif) | 
|---|
|  | 28 | #define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx) | 
|---|
|  | 29 | #define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx) | 
|---|
|  | 30 | #define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult) | 
|---|
|  | 31 | #define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy) | 
|---|
|  | 32 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar) | 
|---|
|  | 33 |  | 
|---|
|  | 34 | #ifdef HAVE_LAPACK | 
|---|
|  | 35 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU) | 
|---|
|  | 36 | #define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol) | 
|---|
|  | 37 | #define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR) | 
|---|
|  | 38 | #define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS) | 
|---|
|  | 39 | #define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD) | 
|---|
|  | 40 | #define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK) | 
|---|
|  | 41 | #else | 
|---|
|  | 42 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack) | 
|---|
|  | 43 | #endif /* HAVE_LAPACK */ | 
|---|
|  | 44 |  | 
|---|
|  | 45 | #ifdef HAVE_PLASMA | 
|---|
|  | 46 | #define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol) | 
|---|
|  | 47 | #endif | 
|---|
|  | 48 |  | 
|---|
|  | 49 | /* | 
|---|
|  | 50 | * This function seeks the parameter vector p that best describes the measurements vector x. | 
|---|
|  | 51 | * More precisely, given a vector function  func : R^m --> R^n with n>=m, | 
|---|
|  | 52 | * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of | 
|---|
|  | 53 | * e=x-func(p) is minimized. | 
|---|
|  | 54 | * | 
|---|
|  | 55 | * This function requires an analytic Jacobian. In case the latter is unavailable, | 
|---|
|  | 56 | * use LEVMAR_DIF() bellow | 
|---|
|  | 57 | * | 
|---|
|  | 58 | * Returns the number of iterations (>=0) if successful, LM_ERROR if failed | 
|---|
|  | 59 | * | 
|---|
|  | 60 | * For more details, see K. Madsen, H.B. Nielsen and O. Tingleff's lecture notes on | 
|---|
|  | 61 | * non-linear least squares at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf | 
|---|
|  | 62 | */ | 
|---|
|  | 63 |  | 
|---|
|  | 64 | int LEVMAR_DER( | 
|---|
|  | 65 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */ | 
|---|
|  | 66 | void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the Jacobian \part x / \part p */ | 
|---|
|  | 67 | LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */ | 
|---|
|  | 68 | LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */ | 
|---|
|  | 69 | int m,              /* I: parameter vector dimension (i.e. #unknowns) */ | 
|---|
|  | 70 | int n,              /* I: measurement vector dimension */ | 
|---|
|  | 71 | int itmax,          /* I: maximum number of iterations */ | 
|---|
|  | 72 | LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu, | 
|---|
|  | 73 | * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used | 
|---|
|  | 74 | */ | 
|---|
|  | 75 | LM_REAL info[LM_INFO_SZ], | 
|---|
|  | 76 | /* O: information regarding the minimization. Set to NULL if don't care | 
|---|
|  | 77 | * info[0]= ||e||_2 at initial p. | 
|---|
|  | 78 | * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. | 
|---|
|  | 79 | * info[5]= # iterations, | 
|---|
|  | 80 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e | 
|---|
|  | 81 | *                                 2 - stopped by small Dp | 
|---|
|  | 82 | *                                 3 - stopped by itmax | 
|---|
|  | 83 | *                                 4 - singular matrix. Restart from current p with increased mu | 
|---|
|  | 84 | *                                 5 - no further error reduction is possible. Restart with increased mu | 
|---|
|  | 85 | *                                 6 - stopped by small ||e||_2 | 
|---|
|  | 86 | *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error | 
|---|
|  | 87 | * info[7]= # function evaluations | 
|---|
|  | 88 | * info[8]= # Jacobian evaluations | 
|---|
|  | 89 | * info[9]= # linear systems solved, i.e. # attempts for reducing error | 
|---|
|  | 90 | */ | 
|---|
|  | 91 | LM_REAL *work,     /* working memory at least LM_DER_WORKSZ() reals large, allocated if NULL */ | 
|---|
|  | 92 | LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ | 
|---|
|  | 93 | void *adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf. | 
|---|
|  | 94 | * Set to NULL if not needed | 
|---|
|  | 95 | */ | 
|---|
|  | 96 | { | 
|---|
|  | 97 | register int i, j, k, l; | 
|---|
|  | 98 | int worksz, freework=0, issolved; | 
|---|
|  | 99 | /* temp work arrays */ | 
|---|
|  | 100 | LM_REAL *e,          /* nx1 */ | 
|---|
|  | 101 | *hx,         /* \hat{x}_i, nx1 */ | 
|---|
|  | 102 | *jacTe,      /* J^T e_i mx1 */ | 
|---|
|  | 103 | *jac,        /* nxm */ | 
|---|
|  | 104 | *jacTjac,    /* mxm */ | 
|---|
|  | 105 | *Dp,         /* mx1 */ | 
|---|
|  | 106 | *diag_jacTjac,   /* diagonal of J^T J, mx1 */ | 
|---|
|  | 107 | *pDp;        /* p + Dp, mx1 */ | 
|---|
|  | 108 |  | 
|---|
|  | 109 | register LM_REAL mu,  /* damping constant */ | 
|---|
|  | 110 | tmp; /* mainly used in matrix & vector multiplications */ | 
|---|
|  | 111 | LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */ | 
|---|
|  | 112 | LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL; | 
|---|
|  | 113 | LM_REAL tau, eps1, eps2, eps2_sq, eps3; | 
|---|
|  | 114 | LM_REAL init_p_eL2; | 
|---|
|  | 115 | int nu=2, nu2, stop=0, nfev, njev=0, nlss=0; | 
|---|
|  | 116 | const int nm=n*m; | 
|---|
|  | 117 | int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL; | 
|---|
|  | 118 |  | 
|---|
|  | 119 | mu=jacTe_inf=0.0; /* -Wall */ | 
|---|
|  | 120 |  | 
|---|
|  | 121 | if(n<m){ | 
|---|
|  | 122 | fprintf(stderr, LCAT(LEVMAR_DER, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m); | 
|---|
|  | 123 | return LM_ERROR; | 
|---|
|  | 124 | } | 
|---|
|  | 125 |  | 
|---|
|  | 126 | if(!jacf){ | 
|---|
|  | 127 | fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_DER) | 
|---|
|  | 128 | RCAT("().\nIf no such function is available, use ", LEVMAR_DIF) RCAT("() rather than ", LEVMAR_DER) "()\n"); | 
|---|
|  | 129 | return LM_ERROR; | 
|---|
|  | 130 | } | 
|---|
|  | 131 |  | 
|---|
|  | 132 | if(opts){ | 
|---|
|  | 133 | tau=opts[0]; | 
|---|
|  | 134 | eps1=opts[1]; | 
|---|
|  | 135 | eps2=opts[2]; | 
|---|
|  | 136 | eps2_sq=opts[2]*opts[2]; | 
|---|
|  | 137 | eps3=opts[3]; | 
|---|
|  | 138 | } | 
|---|
|  | 139 | else{ // use default values | 
|---|
|  | 140 | tau=LM_CNST(LM_INIT_MU); | 
|---|
|  | 141 | eps1=LM_CNST(LM_STOP_THRESH); | 
|---|
|  | 142 | eps2=LM_CNST(LM_STOP_THRESH); | 
|---|
|  | 143 | eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH); | 
|---|
|  | 144 | eps3=LM_CNST(LM_STOP_THRESH); | 
|---|
|  | 145 | } | 
|---|
|  | 146 |  | 
|---|
|  | 147 | if(!work){ | 
|---|
|  | 148 | worksz=LM_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m; | 
|---|
|  | 149 | work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */ | 
|---|
|  | 150 | if(!work){ | 
|---|
|  | 151 | fprintf(stderr, LCAT(LEVMAR_DER, "(): memory allocation request failed\n")); | 
|---|
|  | 152 | return LM_ERROR; | 
|---|
|  | 153 | } | 
|---|
|  | 154 | freework=1; | 
|---|
|  | 155 | } | 
|---|
|  | 156 |  | 
|---|
|  | 157 | /* set up work arrays */ | 
|---|
|  | 158 | e=work; | 
|---|
|  | 159 | hx=e + n; | 
|---|
|  | 160 | jacTe=hx + n; | 
|---|
|  | 161 | jac=jacTe + m; | 
|---|
|  | 162 | jacTjac=jac + nm; | 
|---|
|  | 163 | Dp=jacTjac + m*m; | 
|---|
|  | 164 | diag_jacTjac=Dp + m; | 
|---|
|  | 165 | pDp=diag_jacTjac + m; | 
|---|
|  | 166 |  | 
|---|
|  | 167 | /* compute e=x - f(p) and its L2 norm */ | 
|---|
|  | 168 | (*func)(p, hx, m, n, adata); nfev=1; | 
|---|
|  | 169 | /* ### e=x-hx, p_eL2=||e|| */ | 
|---|
|  | 170 | #if 1 | 
|---|
|  | 171 | p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n); | 
|---|
|  | 172 | #else | 
|---|
|  | 173 | for(i=0, p_eL2=0.0; i<n; ++i){ | 
|---|
|  | 174 | e[i]=tmp=x[i]-hx[i]; | 
|---|
|  | 175 | p_eL2+=tmp*tmp; | 
|---|
|  | 176 | } | 
|---|
|  | 177 | #endif | 
|---|
|  | 178 | init_p_eL2=p_eL2; | 
|---|
|  | 179 | if(!LM_FINITE(p_eL2)) stop=7; | 
|---|
|  | 180 |  | 
|---|
|  | 181 | for(k=0; k<itmax && !stop; ++k){ | 
|---|
|  | 182 | /* Note that p and e have been updated at a previous iteration */ | 
|---|
|  | 183 |  | 
|---|
|  | 184 | if(p_eL2<=eps3){ /* error is small */ | 
|---|
|  | 185 | stop=6; | 
|---|
|  | 186 | break; | 
|---|
|  | 187 | } | 
|---|
|  | 188 |  | 
|---|
|  | 189 | /* Compute the Jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2. | 
|---|
|  | 190 | * Since J^T J is symmetric, its computation can be sped up by computing | 
|---|
|  | 191 | * only its upper triangular part and copying it to the lower part | 
|---|
|  | 192 | */ | 
|---|
|  | 193 |  | 
|---|
|  | 194 | (*jacf)(p, jac, m, n, adata); ++njev; | 
|---|
|  | 195 |  | 
|---|
|  | 196 | /* J^T J, J^T e */ | 
|---|
|  | 197 | if(nm<__BLOCKSZ__SQ){ // this is a small problem | 
|---|
|  | 198 | /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj. | 
|---|
|  | 199 | * Thus, the product J^T J can be computed using an outer loop for | 
|---|
|  | 200 | * l that adds J_li*J_lj to each element ij of the result. Note that | 
|---|
|  | 201 | * with this scheme, the accesses to J and JtJ are always along rows, | 
|---|
|  | 202 | * therefore induces less cache misses compared to the straightforward | 
|---|
|  | 203 | * algorithm for computing the product (i.e., l loop is innermost one). | 
|---|
|  | 204 | * A similar scheme applies to the computation of J^T e. | 
|---|
|  | 205 | * However, for large minimization problems (i.e., involving a large number | 
|---|
|  | 206 | * of unknowns and measurements) for which J/J^T J rows are too large to | 
|---|
|  | 207 | * fit in the L1 cache, even this scheme incures many cache misses. In | 
|---|
|  | 208 | * such cases, a cache-efficient blocking scheme is preferable. | 
|---|
|  | 209 | * | 
|---|
|  | 210 | * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this | 
|---|
|  | 211 | * performance problem. | 
|---|
|  | 212 | * | 
|---|
|  | 213 | * Note that the non-blocking algorithm is faster on small | 
|---|
|  | 214 | * problems since in this case it avoids the overheads of blocking. | 
|---|
|  | 215 | */ | 
|---|
|  | 216 |  | 
|---|
|  | 217 | /* looping downwards saves a few computations */ | 
|---|
|  | 218 | register int l; | 
|---|
|  | 219 | register LM_REAL alpha, *jaclm, *jacTjacim; | 
|---|
|  | 220 |  | 
|---|
|  | 221 | for(i=m*m; i-->0; ) | 
|---|
|  | 222 | jacTjac[i]=0.0; | 
|---|
|  | 223 | for(i=m; i-->0; ) | 
|---|
|  | 224 | jacTe[i]=0.0; | 
|---|
|  | 225 |  | 
|---|
|  | 226 | for(l=n; l-->0; ){ | 
|---|
|  | 227 | jaclm=jac+l*m; | 
|---|
|  | 228 | for(i=m; i-->0; ){ | 
|---|
|  | 229 | jacTjacim=jacTjac+i*m; | 
|---|
|  | 230 | alpha=jaclm[i]; //jac[l*m+i]; | 
|---|
|  | 231 | for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */ | 
|---|
|  | 232 | jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha | 
|---|
|  | 233 |  | 
|---|
|  | 234 | /* J^T e */ | 
|---|
|  | 235 | jacTe[i]+=alpha*e[l]; | 
|---|
|  | 236 | } | 
|---|
|  | 237 | } | 
|---|
|  | 238 |  | 
|---|
|  | 239 | for(i=m; i-->0; ) /* copy to upper part */ | 
|---|
|  | 240 | for(j=i+1; j<m; ++j) | 
|---|
|  | 241 | jacTjac[i*m+j]=jacTjac[j*m+i]; | 
|---|
|  | 242 |  | 
|---|
|  | 243 | } | 
|---|
|  | 244 | else{ // this is a large problem | 
|---|
|  | 245 | /* Cache efficient computation of J^T J based on blocking | 
|---|
|  | 246 | */ | 
|---|
|  | 247 | LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m); | 
|---|
|  | 248 |  | 
|---|
|  | 249 | /* cache efficient computation of J^T e */ | 
|---|
|  | 250 | for(i=0; i<m; ++i) | 
|---|
|  | 251 | jacTe[i]=0.0; | 
|---|
|  | 252 |  | 
|---|
|  | 253 | for(i=0; i<n; ++i){ | 
|---|
|  | 254 | register LM_REAL *jacrow; | 
|---|
|  | 255 |  | 
|---|
|  | 256 | for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l) | 
|---|
|  | 257 | jacTe[l]+=jacrow[l]*tmp; | 
|---|
|  | 258 | } | 
|---|
|  | 259 | } | 
|---|
|  | 260 |  | 
|---|
|  | 261 | /* Compute ||J^T e||_inf and ||p||^2 */ | 
|---|
|  | 262 | for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){ | 
|---|
|  | 263 | if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp; | 
|---|
|  | 264 |  | 
|---|
|  | 265 | diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */ | 
|---|
|  | 266 | p_L2+=p[i]*p[i]; | 
|---|
|  | 267 | } | 
|---|
|  | 268 | //p_L2=sqrt(p_L2); | 
|---|
|  | 269 |  | 
|---|
|  | 270 | #if 0 | 
|---|
|  | 271 | if(!(k%100)){ | 
|---|
|  | 272 | printf("Current estimate: "); | 
|---|
|  | 273 | for(i=0; i<m; ++i) | 
|---|
|  | 274 | printf("%.9g ", p[i]); | 
|---|
|  | 275 | printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2); | 
|---|
|  | 276 | } | 
|---|
|  | 277 | #endif | 
|---|
|  | 278 |  | 
|---|
|  | 279 | /* check for convergence */ | 
|---|
|  | 280 | if((jacTe_inf <= eps1)){ | 
|---|
|  | 281 | Dp_L2=0.0; /* no increment for p in this case */ | 
|---|
|  | 282 | stop=1; | 
|---|
|  | 283 | break; | 
|---|
|  | 284 | } | 
|---|
|  | 285 |  | 
|---|
|  | 286 | /* compute initial damping factor */ | 
|---|
|  | 287 | if(k==0){ | 
|---|
|  | 288 | for(i=0, tmp=LM_REAL_MIN; i<m; ++i) | 
|---|
|  | 289 | if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */ | 
|---|
|  | 290 | mu=tau*tmp; | 
|---|
|  | 291 | } | 
|---|
|  | 292 |  | 
|---|
|  | 293 | /* determine increment using adaptive damping */ | 
|---|
|  | 294 | while(1){ | 
|---|
|  | 295 | /* augment normal equations */ | 
|---|
|  | 296 | for(i=0; i<m; ++i) | 
|---|
|  | 297 | jacTjac[i*m+i]+=mu; | 
|---|
|  | 298 |  | 
|---|
|  | 299 | /* solve augmented equations */ | 
|---|
|  | 300 | #ifdef HAVE_LAPACK | 
|---|
|  | 301 | /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD. | 
|---|
|  | 302 | * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest. | 
|---|
|  | 303 | * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off; | 
|---|
|  | 304 | * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but | 
|---|
|  | 305 | * slower than LDLt; LDLt offers a good tradeoff between robustness and speed | 
|---|
|  | 306 | */ | 
|---|
|  | 307 |  | 
|---|
|  | 308 | issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK; | 
|---|
|  | 309 | //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU; | 
|---|
|  | 310 | //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL; | 
|---|
|  | 311 | #ifdef HAVE_PLASMA | 
|---|
|  | 312 | //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL; | 
|---|
|  | 313 | #endif | 
|---|
|  | 314 | //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR; | 
|---|
|  | 315 | //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS; | 
|---|
|  | 316 | //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD; | 
|---|
|  | 317 |  | 
|---|
|  | 318 | #else | 
|---|
|  | 319 | /* use the LU included with levmar */ | 
|---|
|  | 320 | issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU; | 
|---|
|  | 321 | #endif /* HAVE_LAPACK */ | 
|---|
|  | 322 |  | 
|---|
|  | 323 | if(issolved){ | 
|---|
|  | 324 | /* compute p's new estimate and ||Dp||^2 */ | 
|---|
|  | 325 | for(i=0, Dp_L2=0.0; i<m; ++i){ | 
|---|
|  | 326 | pDp[i]=p[i] + (tmp=Dp[i]); | 
|---|
|  | 327 | Dp_L2+=tmp*tmp; | 
|---|
|  | 328 | } | 
|---|
|  | 329 | //Dp_L2=sqrt(Dp_L2); | 
|---|
|  | 330 |  | 
|---|
|  | 331 | if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */ | 
|---|
|  | 332 | //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */ | 
|---|
|  | 333 | stop=2; | 
|---|
|  | 334 | break; | 
|---|
|  | 335 | } | 
|---|
|  | 336 |  | 
|---|
|  | 337 | if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */ | 
|---|
|  | 338 | //if(Dp_L2>=(p_L2+eps2)/LM_CNST(EPSILON)){ /* almost singular */ | 
|---|
|  | 339 | stop=4; | 
|---|
|  | 340 | break; | 
|---|
|  | 341 | } | 
|---|
|  | 342 |  | 
|---|
|  | 343 | (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */ | 
|---|
|  | 344 | /* compute ||e(pDp)||_2 */ | 
|---|
|  | 345 | /* ### hx=x-hx, pDp_eL2=||hx|| */ | 
|---|
|  | 346 | #if 1 | 
|---|
|  | 347 | pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n); | 
|---|
|  | 348 | #else | 
|---|
|  | 349 | for(i=0, pDp_eL2=0.0; i<n; ++i){ | 
|---|
|  | 350 | hx[i]=tmp=x[i]-hx[i]; | 
|---|
|  | 351 | pDp_eL2+=tmp*tmp; | 
|---|
|  | 352 | } | 
|---|
|  | 353 | #endif | 
|---|
|  | 354 | if(!LM_FINITE(pDp_eL2)){ /* sum of squares is not finite, most probably due to a user error. | 
|---|
|  | 355 | * This check makes sure that the inner loop does not run indefinitely. | 
|---|
|  | 356 | * Thanks to Steve Danauskas for reporting such cases | 
|---|
|  | 357 | */ | 
|---|
|  | 358 | stop=7; | 
|---|
|  | 359 | break; | 
|---|
|  | 360 | } | 
|---|
|  | 361 |  | 
|---|
|  | 362 | for(i=0, dL=0.0; i<m; ++i) | 
|---|
|  | 363 | dL+=Dp[i]*(mu*Dp[i]+jacTe[i]); | 
|---|
|  | 364 |  | 
|---|
|  | 365 | dF=p_eL2-pDp_eL2; | 
|---|
|  | 366 |  | 
|---|
|  | 367 | if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */ | 
|---|
|  | 368 | tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0)); | 
|---|
|  | 369 | tmp=LM_CNST(1.0)-tmp*tmp*tmp; | 
|---|
|  | 370 | mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) ); | 
|---|
|  | 371 | nu=2; | 
|---|
|  | 372 |  | 
|---|
|  | 373 | for(i=0 ; i<m; ++i) /* update p's estimate */ | 
|---|
|  | 374 | p[i]=pDp[i]; | 
|---|
|  | 375 |  | 
|---|
|  | 376 | for(i=0; i<n; ++i) /* update e and ||e||_2 */ | 
|---|
|  | 377 | e[i]=hx[i]; | 
|---|
|  | 378 | p_eL2=pDp_eL2; | 
|---|
|  | 379 | break; | 
|---|
|  | 380 | } | 
|---|
|  | 381 | } | 
|---|
|  | 382 |  | 
|---|
|  | 383 | /* if this point is reached, either the linear system could not be solved or | 
|---|
|  | 384 | * the error did not reduce; in any case, the increment must be rejected | 
|---|
|  | 385 | */ | 
|---|
|  | 386 |  | 
|---|
|  | 387 | mu*=nu; | 
|---|
|  | 388 | nu2=nu<<1; // 2*nu; | 
|---|
|  | 389 | if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */ | 
|---|
|  | 390 | stop=5; | 
|---|
|  | 391 | break; | 
|---|
|  | 392 | } | 
|---|
|  | 393 | nu=nu2; | 
|---|
|  | 394 |  | 
|---|
|  | 395 | for(i=0; i<m; ++i) /* restore diagonal J^T J entries */ | 
|---|
|  | 396 | jacTjac[i*m+i]=diag_jacTjac[i]; | 
|---|
|  | 397 | } /* inner loop */ | 
|---|
|  | 398 | } | 
|---|
|  | 399 |  | 
|---|
|  | 400 | if(k>=itmax) stop=3; | 
|---|
|  | 401 |  | 
|---|
|  | 402 | for(i=0; i<m; ++i) /* restore diagonal J^T J entries */ | 
|---|
|  | 403 | jacTjac[i*m+i]=diag_jacTjac[i]; | 
|---|
|  | 404 |  | 
|---|
|  | 405 | if(info){ | 
|---|
|  | 406 | info[0]=init_p_eL2; | 
|---|
|  | 407 | info[1]=p_eL2; | 
|---|
|  | 408 | info[2]=jacTe_inf; | 
|---|
|  | 409 | info[3]=Dp_L2; | 
|---|
|  | 410 | for(i=0, tmp=LM_REAL_MIN; i<m; ++i) | 
|---|
|  | 411 | if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i]; | 
|---|
|  | 412 | info[4]=mu/tmp; | 
|---|
|  | 413 | info[5]=(LM_REAL)k; | 
|---|
|  | 414 | info[6]=(LM_REAL)stop; | 
|---|
|  | 415 | info[7]=(LM_REAL)nfev; | 
|---|
|  | 416 | info[8]=(LM_REAL)njev; | 
|---|
|  | 417 | info[9]=(LM_REAL)nlss; | 
|---|
|  | 418 | } | 
|---|
|  | 419 |  | 
|---|
|  | 420 | /* covariance matrix */ | 
|---|
|  | 421 | if(covar){ | 
|---|
|  | 422 | LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n); | 
|---|
|  | 423 | } | 
|---|
|  | 424 |  | 
|---|
|  | 425 | if(freework) free(work); | 
|---|
|  | 426 |  | 
|---|
|  | 427 | #ifdef LINSOLVERS_RETAIN_MEMORY | 
|---|
|  | 428 | if(linsolver) (*linsolver)(NULL, NULL, NULL, 0); | 
|---|
|  | 429 | #endif | 
|---|
|  | 430 |  | 
|---|
|  | 431 | return (stop!=4 && stop!=7)?  k : LM_ERROR; | 
|---|
|  | 432 | } | 
|---|
|  | 433 |  | 
|---|
|  | 434 |  | 
|---|
|  | 435 | /* Secant version of the LEVMAR_DER() function above: the Jacobian is approximated with | 
|---|
|  | 436 | * the aid of finite differences (forward or central, see the comment for the opts argument) | 
|---|
|  | 437 | */ | 
|---|
|  | 438 | int LEVMAR_DIF( | 
|---|
|  | 439 | void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */ | 
|---|
|  | 440 | LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */ | 
|---|
|  | 441 | LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */ | 
|---|
|  | 442 | int m,              /* I: parameter vector dimension (i.e. #unknowns) */ | 
|---|
|  | 443 | int n,              /* I: measurement vector dimension */ | 
|---|
|  | 444 | int itmax,          /* I: maximum number of iterations */ | 
|---|
|  | 445 | LM_REAL opts[5],    /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the | 
|---|
|  | 446 | * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and | 
|---|
|  | 447 | * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used. | 
|---|
|  | 448 | * If \delta<0, the Jacobian is approximated with central differences which are more accurate | 
|---|
|  | 449 | * (but slower!) compared to the forward differences employed by default. | 
|---|
|  | 450 | */ | 
|---|
|  | 451 | LM_REAL info[LM_INFO_SZ], | 
|---|
|  | 452 | /* O: information regarding the minimization. Set to NULL if don't care | 
|---|
|  | 453 | * info[0]= ||e||_2 at initial p. | 
|---|
|  | 454 | * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p. | 
|---|
|  | 455 | * info[5]= # iterations, | 
|---|
|  | 456 | * info[6]=reason for terminating: 1 - stopped by small gradient J^T e | 
|---|
|  | 457 | *                                 2 - stopped by small Dp | 
|---|
|  | 458 | *                                 3 - stopped by itmax | 
|---|
|  | 459 | *                                 4 - singular matrix. Restart from current p with increased mu | 
|---|
|  | 460 | *                                 5 - no further error reduction is possible. Restart with increased mu | 
|---|
|  | 461 | *                                 6 - stopped by small ||e||_2 | 
|---|
|  | 462 | *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error | 
|---|
|  | 463 | * info[7]= # function evaluations | 
|---|
|  | 464 | * info[8]= # Jacobian evaluations | 
|---|
|  | 465 | * info[9]= # linear systems solved, i.e. # attempts for reducing error | 
|---|
|  | 466 | */ | 
|---|
|  | 467 | LM_REAL *work,     /* working memory at least LM_DIF_WORKSZ() reals large, allocated if NULL */ | 
|---|
|  | 468 | LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */ | 
|---|
|  | 469 | void *adata)       /* pointer to possibly additional data, passed uninterpreted to func. | 
|---|
|  | 470 | * Set to NULL if not needed | 
|---|
|  | 471 | */ | 
|---|
|  | 472 | { | 
|---|
|  | 473 | register int i, j, k, l; | 
|---|
|  | 474 | int worksz, freework=0, issolved; | 
|---|
|  | 475 | /* temp work arrays */ | 
|---|
|  | 476 | LM_REAL *e,          /* nx1 */ | 
|---|
|  | 477 | *hx,         /* \hat{x}_i, nx1 */ | 
|---|
|  | 478 | *jacTe,      /* J^T e_i mx1 */ | 
|---|
|  | 479 | *jac,        /* nxm */ | 
|---|
|  | 480 | *jacTjac,    /* mxm */ | 
|---|
|  | 481 | *Dp,         /* mx1 */ | 
|---|
|  | 482 | *diag_jacTjac,   /* diagonal of J^T J, mx1 */ | 
|---|
|  | 483 | *pDp,        /* p + Dp, mx1 */ | 
|---|
|  | 484 | *wrk,        /* nx1 */ | 
|---|
|  | 485 | *wrk2;       /* nx1, used only for holding a temporary e vector and when differentiating with central differences */ | 
|---|
|  | 486 |  | 
|---|
|  | 487 | int using_ffdif=1; | 
|---|
|  | 488 |  | 
|---|
|  | 489 | register LM_REAL mu,  /* damping constant */ | 
|---|
|  | 490 | tmp; /* mainly used in matrix & vector multiplications */ | 
|---|
|  | 491 | LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */ | 
|---|
|  | 492 | LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL; | 
|---|
|  | 493 | LM_REAL tau, eps1, eps2, eps2_sq, eps3, delta; | 
|---|
|  | 494 | LM_REAL init_p_eL2; | 
|---|
|  | 495 | int nu, nu2, stop=0, nfev, njap=0, nlss=0, K=(m>=10)? m: 10, updjac, updp=1, newjac; | 
|---|
|  | 496 | const int nm=n*m; | 
|---|
|  | 497 | int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL; | 
|---|
|  | 498 |  | 
|---|
|  | 499 | mu=jacTe_inf=p_L2=0.0; /* -Wall */ | 
|---|
|  | 500 | updjac=newjac=0; /* -Wall */ | 
|---|
|  | 501 |  | 
|---|
|  | 502 | if(n<m){ | 
|---|
|  | 503 | fprintf(stderr, LCAT(LEVMAR_DIF, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m); | 
|---|
|  | 504 | return LM_ERROR; | 
|---|
|  | 505 | } | 
|---|
|  | 506 |  | 
|---|
|  | 507 | if(opts){ | 
|---|
|  | 508 | tau=opts[0]; | 
|---|
|  | 509 | eps1=opts[1]; | 
|---|
|  | 510 | eps2=opts[2]; | 
|---|
|  | 511 | eps2_sq=opts[2]*opts[2]; | 
|---|
|  | 512 | eps3=opts[3]; | 
|---|
|  | 513 | delta=opts[4]; | 
|---|
|  | 514 | if(delta<0.0){ | 
|---|
|  | 515 | delta=-delta; /* make positive */ | 
|---|
|  | 516 | using_ffdif=0; /* use central differencing */ | 
|---|
|  | 517 | } | 
|---|
|  | 518 | } | 
|---|
|  | 519 | else{ // use default values | 
|---|
|  | 520 | tau=LM_CNST(LM_INIT_MU); | 
|---|
|  | 521 | eps1=LM_CNST(LM_STOP_THRESH); | 
|---|
|  | 522 | eps2=LM_CNST(LM_STOP_THRESH); | 
|---|
|  | 523 | eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH); | 
|---|
|  | 524 | eps3=LM_CNST(LM_STOP_THRESH); | 
|---|
|  | 525 | delta=LM_CNST(LM_DIFF_DELTA); | 
|---|
|  | 526 | } | 
|---|
|  | 527 |  | 
|---|
|  | 528 | if(!work){ | 
|---|
|  | 529 | worksz=LM_DIF_WORKSZ(m, n); //4*n+4*m + n*m + m*m; | 
|---|
|  | 530 | work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */ | 
|---|
|  | 531 | if(!work){ | 
|---|
|  | 532 | fprintf(stderr, LCAT(LEVMAR_DIF, "(): memory allocation request failed\n")); | 
|---|
|  | 533 | return LM_ERROR; | 
|---|
|  | 534 | } | 
|---|
|  | 535 | freework=1; | 
|---|
|  | 536 | } | 
|---|
|  | 537 |  | 
|---|
|  | 538 | /* set up work arrays */ | 
|---|
|  | 539 | e=work; | 
|---|
|  | 540 | hx=e + n; | 
|---|
|  | 541 | jacTe=hx + n; | 
|---|
|  | 542 | jac=jacTe + m; | 
|---|
|  | 543 | jacTjac=jac + nm; | 
|---|
|  | 544 | Dp=jacTjac + m*m; | 
|---|
|  | 545 | diag_jacTjac=Dp + m; | 
|---|
|  | 546 | pDp=diag_jacTjac + m; | 
|---|
|  | 547 | wrk=pDp + m; | 
|---|
|  | 548 | wrk2=wrk + n; | 
|---|
|  | 549 |  | 
|---|
|  | 550 | /* compute e=x - f(p) and its L2 norm */ | 
|---|
|  | 551 | (*func)(p, hx, m, n, adata); nfev=1; | 
|---|
|  | 552 | /* ### e=x-hx, p_eL2=||e|| */ | 
|---|
|  | 553 | #if 1 | 
|---|
|  | 554 | p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n); | 
|---|
|  | 555 | #else | 
|---|
|  | 556 | for(i=0, p_eL2=0.0; i<n; ++i){ | 
|---|
|  | 557 | e[i]=tmp=x[i]-hx[i]; | 
|---|
|  | 558 | p_eL2+=tmp*tmp; | 
|---|
|  | 559 | } | 
|---|
|  | 560 | #endif | 
|---|
|  | 561 | init_p_eL2=p_eL2; | 
|---|
|  | 562 | if(!LM_FINITE(p_eL2)) stop=7; | 
|---|
|  | 563 |  | 
|---|
|  | 564 | nu=20; /* force computation of J */ | 
|---|
|  | 565 |  | 
|---|
|  | 566 | for(k=0; k<itmax && !stop; ++k){ | 
|---|
|  | 567 | /* Note that p and e have been updated at a previous iteration */ | 
|---|
|  | 568 |  | 
|---|
|  | 569 | if(p_eL2<=eps3){ /* error is small */ | 
|---|
|  | 570 | stop=6; | 
|---|
|  | 571 | break; | 
|---|
|  | 572 | } | 
|---|
|  | 573 |  | 
|---|
|  | 574 | /* Compute the Jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2. | 
|---|
|  | 575 | * The symmetry of J^T J is again exploited for speed | 
|---|
|  | 576 | */ | 
|---|
|  | 577 |  | 
|---|
|  | 578 | if((updp && nu>16) || updjac==K){ /* compute difference approximation to J */ | 
|---|
|  | 579 | if(using_ffdif){ /* use forward differences */ | 
|---|
|  | 580 | LEVMAR_FDIF_FORW_JAC_APPROX(func, p, hx, wrk, delta, jac, m, n, adata); | 
|---|
|  | 581 | ++njap; nfev+=m; | 
|---|
|  | 582 | } | 
|---|
|  | 583 | else{ /* use central differences */ | 
|---|
|  | 584 | LEVMAR_FDIF_CENT_JAC_APPROX(func, p, wrk, wrk2, delta, jac, m, n, adata); | 
|---|
|  | 585 | ++njap; nfev+=2*m; | 
|---|
|  | 586 | } | 
|---|
|  | 587 | nu=2; updjac=0; updp=0; newjac=1; | 
|---|
|  | 588 | } | 
|---|
|  | 589 |  | 
|---|
|  | 590 | if(newjac){ /* Jacobian has changed, recompute J^T J, J^t e, etc */ | 
|---|
|  | 591 | newjac=0; | 
|---|
|  | 592 |  | 
|---|
|  | 593 | /* J^T J, J^T e */ | 
|---|
|  | 594 | if(nm<=__BLOCKSZ__SQ){ // this is a small problem | 
|---|
|  | 595 | /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj. | 
|---|
|  | 596 | * Thus, the product J^T J can be computed using an outer loop for | 
|---|
|  | 597 | * l that adds J_li*J_lj to each element ij of the result. Note that | 
|---|
|  | 598 | * with this scheme, the accesses to J and JtJ are always along rows, | 
|---|
|  | 599 | * therefore induces less cache misses compared to the straightforward | 
|---|
|  | 600 | * algorithm for computing the product (i.e., l loop is innermost one). | 
|---|
|  | 601 | * A similar scheme applies to the computation of J^T e. | 
|---|
|  | 602 | * However, for large minimization problems (i.e., involving a large number | 
|---|
|  | 603 | * of unknowns and measurements) for which J/J^T J rows are too large to | 
|---|
|  | 604 | * fit in the L1 cache, even this scheme incures many cache misses. In | 
|---|
|  | 605 | * such cases, a cache-efficient blocking scheme is preferable. | 
|---|
|  | 606 | * | 
|---|
|  | 607 | * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this | 
|---|
|  | 608 | * performance problem. | 
|---|
|  | 609 | * | 
|---|
|  | 610 | * Note that the non-blocking algorithm is faster on small | 
|---|
|  | 611 | * problems since in this case it avoids the overheads of blocking. | 
|---|
|  | 612 | */ | 
|---|
|  | 613 | register int l; | 
|---|
|  | 614 | register LM_REAL alpha, *jaclm, *jacTjacim; | 
|---|
|  | 615 |  | 
|---|
|  | 616 | /* looping downwards saves a few computations */ | 
|---|
|  | 617 | for(i=m*m; i-->0; ) | 
|---|
|  | 618 | jacTjac[i]=0.0; | 
|---|
|  | 619 | for(i=m; i-->0; ) | 
|---|
|  | 620 | jacTe[i]=0.0; | 
|---|
|  | 621 |  | 
|---|
|  | 622 | for(l=n; l-->0; ){ | 
|---|
|  | 623 | jaclm=jac+l*m; | 
|---|
|  | 624 | for(i=m; i-->0; ){ | 
|---|
|  | 625 | jacTjacim=jacTjac+i*m; | 
|---|
|  | 626 | alpha=jaclm[i]; //jac[l*m+i]; | 
|---|
|  | 627 | for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */ | 
|---|
|  | 628 | jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha | 
|---|
|  | 629 |  | 
|---|
|  | 630 | /* J^T e */ | 
|---|
|  | 631 | jacTe[i]+=alpha*e[l]; | 
|---|
|  | 632 | } | 
|---|
|  | 633 | } | 
|---|
|  | 634 |  | 
|---|
|  | 635 | for(i=m; i-->0; ) /* copy to upper part */ | 
|---|
|  | 636 | for(j=i+1; j<m; ++j) | 
|---|
|  | 637 | jacTjac[i*m+j]=jacTjac[j*m+i]; | 
|---|
|  | 638 | } | 
|---|
|  | 639 | else{ // this is a large problem | 
|---|
|  | 640 | /* Cache efficient computation of J^T J based on blocking | 
|---|
|  | 641 | */ | 
|---|
|  | 642 | LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m); | 
|---|
|  | 643 |  | 
|---|
|  | 644 | /* cache efficient computation of J^T e */ | 
|---|
|  | 645 | for(i=0; i<m; ++i) | 
|---|
|  | 646 | jacTe[i]=0.0; | 
|---|
|  | 647 |  | 
|---|
|  | 648 | for(i=0; i<n; ++i){ | 
|---|
|  | 649 | register LM_REAL *jacrow; | 
|---|
|  | 650 |  | 
|---|
|  | 651 | for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l) | 
|---|
|  | 652 | jacTe[l]+=jacrow[l]*tmp; | 
|---|
|  | 653 | } | 
|---|
|  | 654 | } | 
|---|
|  | 655 |  | 
|---|
|  | 656 | /* Compute ||J^T e||_inf and ||p||^2 */ | 
|---|
|  | 657 | for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){ | 
|---|
|  | 658 | if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp; | 
|---|
|  | 659 |  | 
|---|
|  | 660 | diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */ | 
|---|
|  | 661 | p_L2+=p[i]*p[i]; | 
|---|
|  | 662 | } | 
|---|
|  | 663 | //p_L2=sqrt(p_L2); | 
|---|
|  | 664 | } | 
|---|
|  | 665 |  | 
|---|
|  | 666 | #if 0 | 
|---|
|  | 667 | if(!(k%100)){ | 
|---|
|  | 668 | printf("Current estimate: "); | 
|---|
|  | 669 | for(i=0; i<m; ++i) | 
|---|
|  | 670 | printf("%.9g ", p[i]); | 
|---|
|  | 671 | printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2); | 
|---|
|  | 672 | } | 
|---|
|  | 673 | #endif | 
|---|
|  | 674 |  | 
|---|
|  | 675 | /* check for convergence */ | 
|---|
|  | 676 | if((jacTe_inf <= eps1)){ | 
|---|
|  | 677 | Dp_L2=0.0; /* no increment for p in this case */ | 
|---|
|  | 678 | stop=1; | 
|---|
|  | 679 | break; | 
|---|
|  | 680 | } | 
|---|
|  | 681 |  | 
|---|
|  | 682 | /* compute initial damping factor */ | 
|---|
|  | 683 | if(k==0){ | 
|---|
|  | 684 | for(i=0, tmp=LM_REAL_MIN; i<m; ++i) | 
|---|
|  | 685 | if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */ | 
|---|
|  | 686 | mu=tau*tmp; | 
|---|
|  | 687 | } | 
|---|
|  | 688 |  | 
|---|
|  | 689 | /* determine increment using adaptive damping */ | 
|---|
|  | 690 |  | 
|---|
|  | 691 | /* augment normal equations */ | 
|---|
|  | 692 | for(i=0; i<m; ++i) | 
|---|
|  | 693 | jacTjac[i*m+i]+=mu; | 
|---|
|  | 694 |  | 
|---|
|  | 695 | /* solve augmented equations */ | 
|---|
|  | 696 | #ifdef HAVE_LAPACK | 
|---|
|  | 697 | /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD. | 
|---|
|  | 698 | * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest. | 
|---|
|  | 699 | * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off; | 
|---|
|  | 700 | * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but | 
|---|
|  | 701 | * slower than LDLt; LDLt offers a good tradeoff between robustness and speed | 
|---|
|  | 702 | */ | 
|---|
|  | 703 |  | 
|---|
|  | 704 | issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK; | 
|---|
|  | 705 | //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU; | 
|---|
|  | 706 | //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL; | 
|---|
|  | 707 | #ifdef HAVE_PLASMA | 
|---|
|  | 708 | //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL; | 
|---|
|  | 709 | #endif | 
|---|
|  | 710 | //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR; | 
|---|
|  | 711 | //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS; | 
|---|
|  | 712 | //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD; | 
|---|
|  | 713 | #else | 
|---|
|  | 714 | /* use the LU included with levmar */ | 
|---|
|  | 715 | issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU; | 
|---|
|  | 716 | #endif /* HAVE_LAPACK */ | 
|---|
|  | 717 |  | 
|---|
|  | 718 | if(issolved){ | 
|---|
|  | 719 | /* compute p's new estimate and ||Dp||^2 */ | 
|---|
|  | 720 | for(i=0, Dp_L2=0.0; i<m; ++i){ | 
|---|
|  | 721 | pDp[i]=p[i] + (tmp=Dp[i]); | 
|---|
|  | 722 | Dp_L2+=tmp*tmp; | 
|---|
|  | 723 | } | 
|---|
|  | 724 | //Dp_L2=sqrt(Dp_L2); | 
|---|
|  | 725 |  | 
|---|
|  | 726 | if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */ | 
|---|
|  | 727 | //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */ | 
|---|
|  | 728 | stop=2; | 
|---|
|  | 729 | break; | 
|---|
|  | 730 | } | 
|---|
|  | 731 |  | 
|---|
|  | 732 | if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */ | 
|---|
|  | 733 | //if(Dp_L2>=(p_L2+eps2)/LM_CNST(EPSILON)){ /* almost singular */ | 
|---|
|  | 734 | stop=4; | 
|---|
|  | 735 | break; | 
|---|
|  | 736 | } | 
|---|
|  | 737 |  | 
|---|
|  | 738 | (*func)(pDp, wrk, m, n, adata); ++nfev; /* evaluate function at p + Dp */ | 
|---|
|  | 739 | /* compute ||e(pDp)||_2 */ | 
|---|
|  | 740 | /* ### wrk2=x-wrk, pDp_eL2=||wrk2|| */ | 
|---|
|  | 741 | #if 1 | 
|---|
|  | 742 | pDp_eL2=LEVMAR_L2NRMXMY(wrk2, x, wrk, n); | 
|---|
|  | 743 | #else | 
|---|
|  | 744 | for(i=0, pDp_eL2=0.0; i<n; ++i){ | 
|---|
|  | 745 | wrk2[i]=tmp=x[i]-wrk[i]; | 
|---|
|  | 746 | pDp_eL2+=tmp*tmp; | 
|---|
|  | 747 | } | 
|---|
|  | 748 | #endif | 
|---|
|  | 749 | if(!LM_FINITE(pDp_eL2)){ /* sum of squares is not finite, most probably due to a user error. | 
|---|
|  | 750 | * This check makes sure that the loop terminates early in the case | 
|---|
|  | 751 | * of invalid input. Thanks to Steve Danauskas for suggesting it | 
|---|
|  | 752 | */ | 
|---|
|  | 753 |  | 
|---|
|  | 754 | stop=7; | 
|---|
|  | 755 | break; | 
|---|
|  | 756 | } | 
|---|
|  | 757 |  | 
|---|
|  | 758 | dF=p_eL2-pDp_eL2; | 
|---|
|  | 759 | if(updp || dF>0){ /* update jac */ | 
|---|
|  | 760 | for(i=0; i<n; ++i){ | 
|---|
|  | 761 | for(l=0, tmp=0.0; l<m; ++l) | 
|---|
|  | 762 | tmp+=jac[i*m+l]*Dp[l]; /* (J * Dp)[i] */ | 
|---|
|  | 763 | tmp=(wrk[i] - hx[i] - tmp)/Dp_L2; /* (f(p+dp)[i] - f(p)[i] - (J * Dp)[i])/(dp^T*dp) */ | 
|---|
|  | 764 | for(j=0; j<m; ++j) | 
|---|
|  | 765 | jac[i*m+j]+=tmp*Dp[j]; | 
|---|
|  | 766 | } | 
|---|
|  | 767 | ++updjac; | 
|---|
|  | 768 | newjac=1; | 
|---|
|  | 769 | } | 
|---|
|  | 770 |  | 
|---|
|  | 771 | for(i=0, dL=0.0; i<m; ++i) | 
|---|
|  | 772 | dL+=Dp[i]*(mu*Dp[i]+jacTe[i]); | 
|---|
|  | 773 |  | 
|---|
|  | 774 | if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */ | 
|---|
|  | 775 | tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0)); | 
|---|
|  | 776 | tmp=LM_CNST(1.0)-tmp*tmp*tmp; | 
|---|
|  | 777 | mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) ); | 
|---|
|  | 778 | nu=2; | 
|---|
|  | 779 |  | 
|---|
|  | 780 | for(i=0 ; i<m; ++i) /* update p's estimate */ | 
|---|
|  | 781 | p[i]=pDp[i]; | 
|---|
|  | 782 |  | 
|---|
|  | 783 | for(i=0; i<n; ++i){ /* update e, hx and ||e||_2 */ | 
|---|
|  | 784 | e[i]=wrk2[i]; //x[i]-wrk[i]; | 
|---|
|  | 785 | hx[i]=wrk[i]; | 
|---|
|  | 786 | } | 
|---|
|  | 787 | p_eL2=pDp_eL2; | 
|---|
|  | 788 | updp=1; | 
|---|
|  | 789 | continue; | 
|---|
|  | 790 | } | 
|---|
|  | 791 | } | 
|---|
|  | 792 |  | 
|---|
|  | 793 | /* if this point is reached, either the linear system could not be solved or | 
|---|
|  | 794 | * the error did not reduce; in any case, the increment must be rejected | 
|---|
|  | 795 | */ | 
|---|
|  | 796 |  | 
|---|
|  | 797 | mu*=nu; | 
|---|
|  | 798 | nu2=nu<<1; // 2*nu; | 
|---|
|  | 799 | if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */ | 
|---|
|  | 800 | stop=5; | 
|---|
|  | 801 | break; | 
|---|
|  | 802 | } | 
|---|
|  | 803 | nu=nu2; | 
|---|
|  | 804 |  | 
|---|
|  | 805 | for(i=0; i<m; ++i) /* restore diagonal J^T J entries */ | 
|---|
|  | 806 | jacTjac[i*m+i]=diag_jacTjac[i]; | 
|---|
|  | 807 | } | 
|---|
|  | 808 |  | 
|---|
|  | 809 | if(k>=itmax) stop=3; | 
|---|
|  | 810 |  | 
|---|
|  | 811 | for(i=0; i<m; ++i) /* restore diagonal J^T J entries */ | 
|---|
|  | 812 | jacTjac[i*m+i]=diag_jacTjac[i]; | 
|---|
|  | 813 |  | 
|---|
|  | 814 | if(info){ | 
|---|
|  | 815 | info[0]=init_p_eL2; | 
|---|
|  | 816 | info[1]=p_eL2; | 
|---|
|  | 817 | info[2]=jacTe_inf; | 
|---|
|  | 818 | info[3]=Dp_L2; | 
|---|
|  | 819 | for(i=0, tmp=LM_REAL_MIN; i<m; ++i) | 
|---|
|  | 820 | if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i]; | 
|---|
|  | 821 | info[4]=mu/tmp; | 
|---|
|  | 822 | info[5]=(LM_REAL)k; | 
|---|
|  | 823 | info[6]=(LM_REAL)stop; | 
|---|
|  | 824 | info[7]=(LM_REAL)nfev; | 
|---|
|  | 825 | info[8]=(LM_REAL)njap; | 
|---|
|  | 826 | info[9]=(LM_REAL)nlss; | 
|---|
|  | 827 | } | 
|---|
|  | 828 |  | 
|---|
|  | 829 | /* covariance matrix */ | 
|---|
|  | 830 | if(covar){ | 
|---|
|  | 831 | LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n); | 
|---|
|  | 832 | } | 
|---|
|  | 833 |  | 
|---|
|  | 834 |  | 
|---|
|  | 835 | if(freework) free(work); | 
|---|
|  | 836 |  | 
|---|
|  | 837 | #ifdef LINSOLVERS_RETAIN_MEMORY | 
|---|
|  | 838 | if(linsolver) (*linsolver)(NULL, NULL, NULL, 0); | 
|---|
|  | 839 | #endif | 
|---|
|  | 840 |  | 
|---|
|  | 841 | return (stop!=4 && stop!=7)?  k : LM_ERROR; | 
|---|
|  | 842 | } | 
|---|
|  | 843 |  | 
|---|
|  | 844 | /* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */ | 
|---|
|  | 845 | #undef LEVMAR_DER | 
|---|
|  | 846 | #undef LEVMAR_DIF | 
|---|
|  | 847 | #undef LEVMAR_FDIF_FORW_JAC_APPROX | 
|---|
|  | 848 | #undef LEVMAR_FDIF_CENT_JAC_APPROX | 
|---|
|  | 849 | #undef LEVMAR_COVAR | 
|---|
|  | 850 | #undef LEVMAR_TRANS_MAT_MAT_MULT | 
|---|
|  | 851 | #undef LEVMAR_L2NRMXMY | 
|---|
|  | 852 | #undef AX_EQ_B_LU | 
|---|
|  | 853 | #undef AX_EQ_B_CHOL | 
|---|
|  | 854 | #undef AX_EQ_B_PLASMA_CHOL | 
|---|
|  | 855 | #undef AX_EQ_B_QR | 
|---|
|  | 856 | #undef AX_EQ_B_QRLS | 
|---|
|  | 857 | #undef AX_EQ_B_SVD | 
|---|
|  | 858 | #undef AX_EQ_B_BK | 
|---|