| [5443b1] | 1 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 2 | // 
 | 
|---|
 | 3 | //  Levenberg - Marquardt non-linear minimization algorithm
 | 
|---|
 | 4 | //  Copyright (C) 2004  Manolis Lourakis (lourakis at ics forth gr)
 | 
|---|
 | 5 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas
 | 
|---|
 | 6 | //  Heraklion, Crete, Greece.
 | 
|---|
 | 7 | //
 | 
|---|
 | 8 | //  This program is free software; you can redistribute it and/or modify
 | 
|---|
 | 9 | //  it under the terms of the GNU General Public License as published by
 | 
|---|
 | 10 | //  the Free Software Foundation; either version 2 of the License, or
 | 
|---|
 | 11 | //  (at your option) any later version.
 | 
|---|
 | 12 | //
 | 
|---|
 | 13 | //  This program is distributed in the hope that it will be useful,
 | 
|---|
 | 14 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
 | 15 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
 | 16 | //  GNU General Public License for more details.
 | 
|---|
 | 17 | //
 | 
|---|
 | 18 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 19 | 
 | 
|---|
 | 20 | #ifndef LM_REAL // not included by lm.c
 | 
|---|
 | 21 | #error This file should not be compiled directly!
 | 
|---|
 | 22 | #endif
 | 
|---|
 | 23 | 
 | 
|---|
 | 24 | 
 | 
|---|
 | 25 | /* precision-specific definitions */
 | 
|---|
 | 26 | #define LEVMAR_DER LM_ADD_PREFIX(levmar_der)
 | 
|---|
 | 27 | #define LEVMAR_DIF LM_ADD_PREFIX(levmar_dif)
 | 
|---|
 | 28 | #define LEVMAR_FDIF_FORW_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_forw_jac_approx)
 | 
|---|
 | 29 | #define LEVMAR_FDIF_CENT_JAC_APPROX LM_ADD_PREFIX(levmar_fdif_cent_jac_approx)
 | 
|---|
 | 30 | #define LEVMAR_TRANS_MAT_MAT_MULT LM_ADD_PREFIX(levmar_trans_mat_mat_mult)
 | 
|---|
 | 31 | #define LEVMAR_L2NRMXMY LM_ADD_PREFIX(levmar_L2nrmxmy)
 | 
|---|
 | 32 | #define LEVMAR_COVAR LM_ADD_PREFIX(levmar_covar)
 | 
|---|
 | 33 | 
 | 
|---|
 | 34 | #ifdef HAVE_LAPACK
 | 
|---|
 | 35 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)
 | 
|---|
 | 36 | #define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)
 | 
|---|
 | 37 | #define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)
 | 
|---|
 | 38 | #define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)
 | 
|---|
 | 39 | #define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)
 | 
|---|
 | 40 | #define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK)
 | 
|---|
 | 41 | #else
 | 
|---|
 | 42 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)
 | 
|---|
 | 43 | #endif /* HAVE_LAPACK */
 | 
|---|
 | 44 | 
 | 
|---|
 | 45 | #ifdef HAVE_PLASMA
 | 
|---|
 | 46 | #define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol)
 | 
|---|
 | 47 | #endif
 | 
|---|
 | 48 | 
 | 
|---|
 | 49 | /* 
 | 
|---|
 | 50 |  * This function seeks the parameter vector p that best describes the measurements vector x.
 | 
|---|
 | 51 |  * More precisely, given a vector function  func : R^m --> R^n with n>=m,
 | 
|---|
 | 52 |  * it finds p s.t. func(p) ~= x, i.e. the squared second order (i.e. L2) norm of
 | 
|---|
 | 53 |  * e=x-func(p) is minimized.
 | 
|---|
 | 54 |  *
 | 
|---|
 | 55 |  * This function requires an analytic Jacobian. In case the latter is unavailable,
 | 
|---|
 | 56 |  * use LEVMAR_DIF() bellow
 | 
|---|
 | 57 |  *
 | 
|---|
 | 58 |  * Returns the number of iterations (>=0) if successful, LM_ERROR if failed
 | 
|---|
 | 59 |  *
 | 
|---|
 | 60 |  * For more details, see K. Madsen, H.B. Nielsen and O. Tingleff's lecture notes on 
 | 
|---|
 | 61 |  * non-linear least squares at http://www.imm.dtu.dk/pubdb/views/edoc_download.php/3215/pdf/imm3215.pdf
 | 
|---|
 | 62 |  */
 | 
|---|
 | 63 | 
 | 
|---|
 | 64 | int LEVMAR_DER(
 | 
|---|
 | 65 |   void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
 | 
|---|
 | 66 |   void (*jacf)(LM_REAL *p, LM_REAL *j, int m, int n, void *adata),  /* function to evaluate the Jacobian \part x / \part p */ 
 | 
|---|
 | 67 |   LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
 | 
|---|
 | 68 |   LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */
 | 
|---|
 | 69 |   int m,              /* I: parameter vector dimension (i.e. #unknowns) */
 | 
|---|
 | 70 |   int n,              /* I: measurement vector dimension */
 | 
|---|
 | 71 |   int itmax,          /* I: maximum number of iterations */
 | 
|---|
 | 72 |   LM_REAL opts[4],    /* I: minim. options [\mu, \epsilon1, \epsilon2, \epsilon3]. Respectively the scale factor for initial \mu,
 | 
|---|
 | 73 |                        * stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2. Set to NULL for defaults to be used
 | 
|---|
 | 74 |                        */
 | 
|---|
 | 75 |   LM_REAL info[LM_INFO_SZ],
 | 
|---|
 | 76 |                                                    /* O: information regarding the minimization. Set to NULL if don't care
 | 
|---|
 | 77 |                       * info[0]= ||e||_2 at initial p.
 | 
|---|
 | 78 |                       * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
 | 
|---|
 | 79 |                       * info[5]= # iterations,
 | 
|---|
 | 80 |                       * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
 | 
|---|
 | 81 |                       *                                 2 - stopped by small Dp
 | 
|---|
 | 82 |                       *                                 3 - stopped by itmax
 | 
|---|
 | 83 |                       *                                 4 - singular matrix. Restart from current p with increased mu 
 | 
|---|
 | 84 |                       *                                 5 - no further error reduction is possible. Restart with increased mu
 | 
|---|
 | 85 |                       *                                 6 - stopped by small ||e||_2
 | 
|---|
 | 86 |                       *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
 | 
|---|
 | 87 |                       * info[7]= # function evaluations
 | 
|---|
 | 88 |                       * info[8]= # Jacobian evaluations
 | 
|---|
 | 89 |                       * info[9]= # linear systems solved, i.e. # attempts for reducing error
 | 
|---|
 | 90 |                       */
 | 
|---|
 | 91 |   LM_REAL *work,     /* working memory at least LM_DER_WORKSZ() reals large, allocated if NULL */
 | 
|---|
 | 92 |   LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
 | 
|---|
 | 93 |   void *adata)       /* pointer to possibly additional data, passed uninterpreted to func & jacf.
 | 
|---|
 | 94 |                       * Set to NULL if not needed
 | 
|---|
 | 95 |                       */
 | 
|---|
 | 96 | {
 | 
|---|
 | 97 | register int i, j, k, l;
 | 
|---|
 | 98 | int worksz, freework=0, issolved;
 | 
|---|
 | 99 | /* temp work arrays */
 | 
|---|
 | 100 | LM_REAL *e,          /* nx1 */
 | 
|---|
 | 101 |        *hx,         /* \hat{x}_i, nx1 */
 | 
|---|
 | 102 |        *jacTe,      /* J^T e_i mx1 */
 | 
|---|
 | 103 |        *jac,        /* nxm */
 | 
|---|
 | 104 |        *jacTjac,    /* mxm */
 | 
|---|
 | 105 |        *Dp,         /* mx1 */
 | 
|---|
 | 106 |    *diag_jacTjac,   /* diagonal of J^T J, mx1 */
 | 
|---|
 | 107 |        *pDp;        /* p + Dp, mx1 */
 | 
|---|
 | 108 | 
 | 
|---|
 | 109 | register LM_REAL mu,  /* damping constant */
 | 
|---|
 | 110 |                 tmp; /* mainly used in matrix & vector multiplications */
 | 
|---|
 | 111 | LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
 | 
|---|
 | 112 | LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
 | 
|---|
 | 113 | LM_REAL tau, eps1, eps2, eps2_sq, eps3;
 | 
|---|
 | 114 | LM_REAL init_p_eL2;
 | 
|---|
 | 115 | int nu=2, nu2, stop=0, nfev, njev=0, nlss=0;
 | 
|---|
 | 116 | const int nm=n*m;
 | 
|---|
 | 117 | int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;
 | 
|---|
 | 118 | 
 | 
|---|
 | 119 |   mu=jacTe_inf=0.0; /* -Wall */
 | 
|---|
 | 120 | 
 | 
|---|
 | 121 |   if(n<m){
 | 
|---|
 | 122 |     fprintf(stderr, LCAT(LEVMAR_DER, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
 | 
|---|
 | 123 |     return LM_ERROR;
 | 
|---|
 | 124 |   }
 | 
|---|
 | 125 | 
 | 
|---|
 | 126 |   if(!jacf){
 | 
|---|
 | 127 |     fprintf(stderr, RCAT("No function specified for computing the Jacobian in ", LEVMAR_DER)
 | 
|---|
 | 128 |         RCAT("().\nIf no such function is available, use ", LEVMAR_DIF) RCAT("() rather than ", LEVMAR_DER) "()\n");
 | 
|---|
 | 129 |     return LM_ERROR;
 | 
|---|
 | 130 |   }
 | 
|---|
 | 131 | 
 | 
|---|
 | 132 |   if(opts){
 | 
|---|
 | 133 |           tau=opts[0];
 | 
|---|
 | 134 |           eps1=opts[1];
 | 
|---|
 | 135 |           eps2=opts[2];
 | 
|---|
 | 136 |           eps2_sq=opts[2]*opts[2];
 | 
|---|
 | 137 |     eps3=opts[3];
 | 
|---|
 | 138 |   }
 | 
|---|
 | 139 |   else{ // use default values
 | 
|---|
 | 140 |           tau=LM_CNST(LM_INIT_MU);
 | 
|---|
 | 141 |           eps1=LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 142 |           eps2=LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 143 |           eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 144 |     eps3=LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 145 |   }
 | 
|---|
 | 146 | 
 | 
|---|
 | 147 |   if(!work){
 | 
|---|
 | 148 |     worksz=LM_DER_WORKSZ(m, n); //2*n+4*m + n*m + m*m;
 | 
|---|
 | 149 |     work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
 | 
|---|
 | 150 |     if(!work){
 | 
|---|
 | 151 |       fprintf(stderr, LCAT(LEVMAR_DER, "(): memory allocation request failed\n"));
 | 
|---|
 | 152 |       return LM_ERROR;
 | 
|---|
 | 153 |     }
 | 
|---|
 | 154 |     freework=1;
 | 
|---|
 | 155 |   }
 | 
|---|
 | 156 | 
 | 
|---|
 | 157 |   /* set up work arrays */
 | 
|---|
 | 158 |   e=work;
 | 
|---|
 | 159 |   hx=e + n;
 | 
|---|
 | 160 |   jacTe=hx + n;
 | 
|---|
 | 161 |   jac=jacTe + m;
 | 
|---|
 | 162 |   jacTjac=jac + nm;
 | 
|---|
 | 163 |   Dp=jacTjac + m*m;
 | 
|---|
 | 164 |   diag_jacTjac=Dp + m;
 | 
|---|
 | 165 |   pDp=diag_jacTjac + m;
 | 
|---|
 | 166 | 
 | 
|---|
 | 167 |   /* compute e=x - f(p) and its L2 norm */
 | 
|---|
 | 168 |   (*func)(p, hx, m, n, adata); nfev=1;
 | 
|---|
 | 169 |   /* ### e=x-hx, p_eL2=||e|| */
 | 
|---|
 | 170 | #if 1
 | 
|---|
 | 171 |   p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);  
 | 
|---|
 | 172 | #else
 | 
|---|
 | 173 |   for(i=0, p_eL2=0.0; i<n; ++i){
 | 
|---|
 | 174 |     e[i]=tmp=x[i]-hx[i];
 | 
|---|
 | 175 |     p_eL2+=tmp*tmp;
 | 
|---|
 | 176 |   }
 | 
|---|
 | 177 | #endif
 | 
|---|
 | 178 |   init_p_eL2=p_eL2;
 | 
|---|
 | 179 |   if(!LM_FINITE(p_eL2)) stop=7;
 | 
|---|
 | 180 | 
 | 
|---|
 | 181 |   for(k=0; k<itmax && !stop; ++k){
 | 
|---|
 | 182 |     /* Note that p and e have been updated at a previous iteration */
 | 
|---|
 | 183 | 
 | 
|---|
 | 184 |     if(p_eL2<=eps3){ /* error is small */
 | 
|---|
 | 185 |       stop=6;
 | 
|---|
 | 186 |       break;
 | 
|---|
 | 187 |     }
 | 
|---|
 | 188 | 
 | 
|---|
 | 189 |     /* Compute the Jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.
 | 
|---|
 | 190 |      * Since J^T J is symmetric, its computation can be sped up by computing
 | 
|---|
 | 191 |      * only its upper triangular part and copying it to the lower part
 | 
|---|
 | 192 |      */
 | 
|---|
 | 193 | 
 | 
|---|
 | 194 |     (*jacf)(p, jac, m, n, adata); ++njev;
 | 
|---|
 | 195 | 
 | 
|---|
 | 196 |     /* J^T J, J^T e */
 | 
|---|
 | 197 |     if(nm<__BLOCKSZ__SQ){ // this is a small problem
 | 
|---|
 | 198 |       /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.
 | 
|---|
 | 199 |        * Thus, the product J^T J can be computed using an outer loop for
 | 
|---|
 | 200 |        * l that adds J_li*J_lj to each element ij of the result. Note that
 | 
|---|
 | 201 |        * with this scheme, the accesses to J and JtJ are always along rows,
 | 
|---|
 | 202 |        * therefore induces less cache misses compared to the straightforward
 | 
|---|
 | 203 |        * algorithm for computing the product (i.e., l loop is innermost one).
 | 
|---|
 | 204 |        * A similar scheme applies to the computation of J^T e.
 | 
|---|
 | 205 |        * However, for large minimization problems (i.e., involving a large number
 | 
|---|
 | 206 |        * of unknowns and measurements) for which J/J^T J rows are too large to
 | 
|---|
 | 207 |        * fit in the L1 cache, even this scheme incures many cache misses. In
 | 
|---|
 | 208 |        * such cases, a cache-efficient blocking scheme is preferable.
 | 
|---|
 | 209 |        *
 | 
|---|
 | 210 |        * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
 | 
|---|
 | 211 |        * performance problem.
 | 
|---|
 | 212 |        *
 | 
|---|
 | 213 |        * Note that the non-blocking algorithm is faster on small
 | 
|---|
 | 214 |        * problems since in this case it avoids the overheads of blocking. 
 | 
|---|
 | 215 |        */
 | 
|---|
 | 216 | 
 | 
|---|
 | 217 |       /* looping downwards saves a few computations */
 | 
|---|
 | 218 |       register int l;
 | 
|---|
 | 219 |       register LM_REAL alpha, *jaclm, *jacTjacim;
 | 
|---|
 | 220 | 
 | 
|---|
 | 221 |       for(i=m*m; i-->0; )
 | 
|---|
 | 222 |         jacTjac[i]=0.0;
 | 
|---|
 | 223 |       for(i=m; i-->0; )
 | 
|---|
 | 224 |         jacTe[i]=0.0;
 | 
|---|
 | 225 | 
 | 
|---|
 | 226 |       for(l=n; l-->0; ){
 | 
|---|
 | 227 |         jaclm=jac+l*m;
 | 
|---|
 | 228 |         for(i=m; i-->0; ){
 | 
|---|
 | 229 |           jacTjacim=jacTjac+i*m;
 | 
|---|
 | 230 |           alpha=jaclm[i]; //jac[l*m+i];
 | 
|---|
 | 231 |           for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */
 | 
|---|
 | 232 |             jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha
 | 
|---|
 | 233 | 
 | 
|---|
 | 234 |           /* J^T e */
 | 
|---|
 | 235 |           jacTe[i]+=alpha*e[l];
 | 
|---|
 | 236 |         }
 | 
|---|
 | 237 |       }
 | 
|---|
 | 238 | 
 | 
|---|
 | 239 |       for(i=m; i-->0; ) /* copy to upper part */
 | 
|---|
 | 240 |         for(j=i+1; j<m; ++j)
 | 
|---|
 | 241 |           jacTjac[i*m+j]=jacTjac[j*m+i];
 | 
|---|
 | 242 | 
 | 
|---|
 | 243 |     }
 | 
|---|
 | 244 |     else{ // this is a large problem
 | 
|---|
 | 245 |       /* Cache efficient computation of J^T J based on blocking
 | 
|---|
 | 246 |        */
 | 
|---|
 | 247 |       LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);
 | 
|---|
 | 248 | 
 | 
|---|
 | 249 |       /* cache efficient computation of J^T e */
 | 
|---|
 | 250 |       for(i=0; i<m; ++i)
 | 
|---|
 | 251 |         jacTe[i]=0.0;
 | 
|---|
 | 252 | 
 | 
|---|
 | 253 |       for(i=0; i<n; ++i){
 | 
|---|
 | 254 |         register LM_REAL *jacrow;
 | 
|---|
 | 255 | 
 | 
|---|
 | 256 |         for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
 | 
|---|
 | 257 |           jacTe[l]+=jacrow[l]*tmp;
 | 
|---|
 | 258 |       }
 | 
|---|
 | 259 |     }
 | 
|---|
 | 260 | 
 | 
|---|
 | 261 |           /* Compute ||J^T e||_inf and ||p||^2 */
 | 
|---|
 | 262 |     for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){
 | 
|---|
 | 263 |       if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;
 | 
|---|
 | 264 | 
 | 
|---|
 | 265 |       diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
 | 
|---|
 | 266 |       p_L2+=p[i]*p[i];
 | 
|---|
 | 267 |     }
 | 
|---|
 | 268 |     //p_L2=sqrt(p_L2);
 | 
|---|
 | 269 | 
 | 
|---|
 | 270 | #if 0
 | 
|---|
 | 271 | if(!(k%100)){
 | 
|---|
 | 272 |   printf("Current estimate: ");
 | 
|---|
 | 273 |   for(i=0; i<m; ++i)
 | 
|---|
 | 274 |     printf("%.9g ", p[i]);
 | 
|---|
 | 275 |   printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
 | 
|---|
 | 276 | }
 | 
|---|
 | 277 | #endif
 | 
|---|
 | 278 | 
 | 
|---|
 | 279 |     /* check for convergence */
 | 
|---|
 | 280 |     if((jacTe_inf <= eps1)){
 | 
|---|
 | 281 |       Dp_L2=0.0; /* no increment for p in this case */
 | 
|---|
 | 282 |       stop=1;
 | 
|---|
 | 283 |       break;
 | 
|---|
 | 284 |     }
 | 
|---|
 | 285 | 
 | 
|---|
 | 286 |    /* compute initial damping factor */
 | 
|---|
 | 287 |     if(k==0){
 | 
|---|
 | 288 |       for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
 | 
|---|
 | 289 |         if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
 | 
|---|
 | 290 |       mu=tau*tmp;
 | 
|---|
 | 291 |     }
 | 
|---|
 | 292 | 
 | 
|---|
 | 293 |     /* determine increment using adaptive damping */
 | 
|---|
 | 294 |     while(1){
 | 
|---|
 | 295 |       /* augment normal equations */
 | 
|---|
 | 296 |       for(i=0; i<m; ++i)
 | 
|---|
 | 297 |         jacTjac[i*m+i]+=mu;
 | 
|---|
 | 298 | 
 | 
|---|
 | 299 |       /* solve augmented equations */
 | 
|---|
 | 300 | #ifdef HAVE_LAPACK
 | 
|---|
 | 301 |       /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD.
 | 
|---|
 | 302 |        * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest.
 | 
|---|
 | 303 |        * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off;
 | 
|---|
 | 304 |        * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but
 | 
|---|
 | 305 |        * slower than LDLt; LDLt offers a good tradeoff between robustness and speed
 | 
|---|
 | 306 |        */
 | 
|---|
 | 307 | 
 | 
|---|
 | 308 |       issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK;
 | 
|---|
 | 309 |       //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
 | 
|---|
 | 310 |       //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;
 | 
|---|
 | 311 | #ifdef HAVE_PLASMA
 | 
|---|
 | 312 |       //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL;
 | 
|---|
 | 313 | #endif
 | 
|---|
 | 314 |       //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;
 | 
|---|
 | 315 |       //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;
 | 
|---|
 | 316 |       //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;
 | 
|---|
 | 317 | 
 | 
|---|
 | 318 | #else
 | 
|---|
 | 319 |       /* use the LU included with levmar */
 | 
|---|
 | 320 |       issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
 | 
|---|
 | 321 | #endif /* HAVE_LAPACK */
 | 
|---|
 | 322 | 
 | 
|---|
 | 323 |       if(issolved){
 | 
|---|
 | 324 |         /* compute p's new estimate and ||Dp||^2 */
 | 
|---|
 | 325 |         for(i=0, Dp_L2=0.0; i<m; ++i){
 | 
|---|
 | 326 |           pDp[i]=p[i] + (tmp=Dp[i]);
 | 
|---|
 | 327 |           Dp_L2+=tmp*tmp;
 | 
|---|
 | 328 |         }
 | 
|---|
 | 329 |         //Dp_L2=sqrt(Dp_L2);
 | 
|---|
 | 330 | 
 | 
|---|
 | 331 |         if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
 | 
|---|
 | 332 |         //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
 | 
|---|
 | 333 |           stop=2;
 | 
|---|
 | 334 |           break;
 | 
|---|
 | 335 |         }
 | 
|---|
 | 336 | 
 | 
|---|
 | 337 |        if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */
 | 
|---|
 | 338 |        //if(Dp_L2>=(p_L2+eps2)/LM_CNST(EPSILON)){ /* almost singular */
 | 
|---|
 | 339 |          stop=4;
 | 
|---|
 | 340 |          break;
 | 
|---|
 | 341 |        }
 | 
|---|
 | 342 | 
 | 
|---|
 | 343 |         (*func)(pDp, hx, m, n, adata); ++nfev; /* evaluate function at p + Dp */
 | 
|---|
 | 344 |         /* compute ||e(pDp)||_2 */
 | 
|---|
 | 345 |         /* ### hx=x-hx, pDp_eL2=||hx|| */
 | 
|---|
 | 346 | #if 1
 | 
|---|
 | 347 |         pDp_eL2=LEVMAR_L2NRMXMY(hx, x, hx, n);
 | 
|---|
 | 348 | #else
 | 
|---|
 | 349 |         for(i=0, pDp_eL2=0.0; i<n; ++i){
 | 
|---|
 | 350 |           hx[i]=tmp=x[i]-hx[i];
 | 
|---|
 | 351 |           pDp_eL2+=tmp*tmp;
 | 
|---|
 | 352 |         }
 | 
|---|
 | 353 | #endif
 | 
|---|
 | 354 |         if(!LM_FINITE(pDp_eL2)){ /* sum of squares is not finite, most probably due to a user error.
 | 
|---|
 | 355 |                                   * This check makes sure that the inner loop does not run indefinitely.
 | 
|---|
 | 356 |                                   * Thanks to Steve Danauskas for reporting such cases
 | 
|---|
 | 357 |                                   */
 | 
|---|
 | 358 |           stop=7;
 | 
|---|
 | 359 |           break;
 | 
|---|
 | 360 |         }
 | 
|---|
 | 361 | 
 | 
|---|
 | 362 |         for(i=0, dL=0.0; i<m; ++i)
 | 
|---|
 | 363 |           dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);
 | 
|---|
 | 364 | 
 | 
|---|
 | 365 |         dF=p_eL2-pDp_eL2;
 | 
|---|
 | 366 | 
 | 
|---|
 | 367 |         if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */
 | 
|---|
 | 368 |           tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));
 | 
|---|
 | 369 |           tmp=LM_CNST(1.0)-tmp*tmp*tmp;
 | 
|---|
 | 370 |           mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );
 | 
|---|
 | 371 |           nu=2;
 | 
|---|
 | 372 | 
 | 
|---|
 | 373 |           for(i=0 ; i<m; ++i) /* update p's estimate */
 | 
|---|
 | 374 |             p[i]=pDp[i];
 | 
|---|
 | 375 | 
 | 
|---|
 | 376 |           for(i=0; i<n; ++i) /* update e and ||e||_2 */
 | 
|---|
 | 377 |             e[i]=hx[i];
 | 
|---|
 | 378 |           p_eL2=pDp_eL2;
 | 
|---|
 | 379 |           break;
 | 
|---|
 | 380 |         }
 | 
|---|
 | 381 |       }
 | 
|---|
 | 382 | 
 | 
|---|
 | 383 |       /* if this point is reached, either the linear system could not be solved or
 | 
|---|
 | 384 |        * the error did not reduce; in any case, the increment must be rejected
 | 
|---|
 | 385 |        */
 | 
|---|
 | 386 | 
 | 
|---|
 | 387 |       mu*=nu;
 | 
|---|
 | 388 |       nu2=nu<<1; // 2*nu;
 | 
|---|
 | 389 |       if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
 | 
|---|
 | 390 |         stop=5;
 | 
|---|
 | 391 |         break;
 | 
|---|
 | 392 |       }
 | 
|---|
 | 393 |       nu=nu2;
 | 
|---|
 | 394 | 
 | 
|---|
 | 395 |       for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
 | 
|---|
 | 396 |         jacTjac[i*m+i]=diag_jacTjac[i];
 | 
|---|
 | 397 |     } /* inner loop */
 | 
|---|
 | 398 |   }
 | 
|---|
 | 399 | 
 | 
|---|
 | 400 |   if(k>=itmax) stop=3;
 | 
|---|
 | 401 | 
 | 
|---|
 | 402 |   for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
 | 
|---|
 | 403 |     jacTjac[i*m+i]=diag_jacTjac[i];
 | 
|---|
 | 404 | 
 | 
|---|
 | 405 |   if(info){
 | 
|---|
 | 406 |     info[0]=init_p_eL2;
 | 
|---|
 | 407 |     info[1]=p_eL2;
 | 
|---|
 | 408 |     info[2]=jacTe_inf;
 | 
|---|
 | 409 |     info[3]=Dp_L2;
 | 
|---|
 | 410 |     for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
 | 
|---|
 | 411 |       if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
 | 
|---|
 | 412 |     info[4]=mu/tmp;
 | 
|---|
 | 413 |     info[5]=(LM_REAL)k;
 | 
|---|
 | 414 |     info[6]=(LM_REAL)stop;
 | 
|---|
 | 415 |     info[7]=(LM_REAL)nfev;
 | 
|---|
 | 416 |     info[8]=(LM_REAL)njev;
 | 
|---|
 | 417 |     info[9]=(LM_REAL)nlss;
 | 
|---|
 | 418 |   }
 | 
|---|
 | 419 | 
 | 
|---|
 | 420 |   /* covariance matrix */
 | 
|---|
 | 421 |   if(covar){
 | 
|---|
 | 422 |     LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
 | 
|---|
 | 423 |   }
 | 
|---|
 | 424 | 
 | 
|---|
 | 425 |   if(freework) free(work);
 | 
|---|
 | 426 | 
 | 
|---|
 | 427 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 428 |   if(linsolver) (*linsolver)(NULL, NULL, NULL, 0);
 | 
|---|
 | 429 | #endif
 | 
|---|
 | 430 | 
 | 
|---|
 | 431 |   return (stop!=4 && stop!=7)?  k : LM_ERROR;
 | 
|---|
 | 432 | }
 | 
|---|
 | 433 | 
 | 
|---|
 | 434 | 
 | 
|---|
 | 435 | /* Secant version of the LEVMAR_DER() function above: the Jacobian is approximated with 
 | 
|---|
 | 436 |  * the aid of finite differences (forward or central, see the comment for the opts argument)
 | 
|---|
 | 437 |  */
 | 
|---|
 | 438 | int LEVMAR_DIF(
 | 
|---|
 | 439 |   void (*func)(LM_REAL *p, LM_REAL *hx, int m, int n, void *adata), /* functional relation describing measurements. A p \in R^m yields a \hat{x} \in  R^n */
 | 
|---|
 | 440 |   LM_REAL *p,         /* I/O: initial parameter estimates. On output has the estimated solution */
 | 
|---|
 | 441 |   LM_REAL *x,         /* I: measurement vector. NULL implies a zero vector */
 | 
|---|
 | 442 |   int m,              /* I: parameter vector dimension (i.e. #unknowns) */
 | 
|---|
 | 443 |   int n,              /* I: measurement vector dimension */
 | 
|---|
 | 444 |   int itmax,          /* I: maximum number of iterations */
 | 
|---|
 | 445 |   LM_REAL opts[5],    /* I: opts[0-4] = minim. options [\mu, \epsilon1, \epsilon2, \epsilon3, \delta]. Respectively the
 | 
|---|
 | 446 |                        * scale factor for initial \mu, stopping thresholds for ||J^T e||_inf, ||Dp||_2 and ||e||_2 and
 | 
|---|
 | 447 |                        * the step used in difference approximation to the Jacobian. Set to NULL for defaults to be used.
 | 
|---|
 | 448 |                        * If \delta<0, the Jacobian is approximated with central differences which are more accurate
 | 
|---|
 | 449 |                        * (but slower!) compared to the forward differences employed by default. 
 | 
|---|
 | 450 |                        */
 | 
|---|
 | 451 |   LM_REAL info[LM_INFO_SZ],
 | 
|---|
 | 452 |                                                    /* O: information regarding the minimization. Set to NULL if don't care
 | 
|---|
 | 453 |                       * info[0]= ||e||_2 at initial p.
 | 
|---|
 | 454 |                       * info[1-4]=[ ||e||_2, ||J^T e||_inf,  ||Dp||_2, mu/max[J^T J]_ii ], all computed at estimated p.
 | 
|---|
 | 455 |                       * info[5]= # iterations,
 | 
|---|
 | 456 |                       * info[6]=reason for terminating: 1 - stopped by small gradient J^T e
 | 
|---|
 | 457 |                       *                                 2 - stopped by small Dp
 | 
|---|
 | 458 |                       *                                 3 - stopped by itmax
 | 
|---|
 | 459 |                       *                                 4 - singular matrix. Restart from current p with increased mu 
 | 
|---|
 | 460 |                       *                                 5 - no further error reduction is possible. Restart with increased mu
 | 
|---|
 | 461 |                       *                                 6 - stopped by small ||e||_2
 | 
|---|
 | 462 |                       *                                 7 - stopped by invalid (i.e. NaN or Inf) "func" values. This is a user error
 | 
|---|
 | 463 |                       * info[7]= # function evaluations
 | 
|---|
 | 464 |                       * info[8]= # Jacobian evaluations
 | 
|---|
 | 465 |                       * info[9]= # linear systems solved, i.e. # attempts for reducing error
 | 
|---|
 | 466 |                       */
 | 
|---|
 | 467 |   LM_REAL *work,     /* working memory at least LM_DIF_WORKSZ() reals large, allocated if NULL */
 | 
|---|
 | 468 |   LM_REAL *covar,    /* O: Covariance matrix corresponding to LS solution; mxm. Set to NULL if not needed. */
 | 
|---|
 | 469 |   void *adata)       /* pointer to possibly additional data, passed uninterpreted to func.
 | 
|---|
 | 470 |                       * Set to NULL if not needed
 | 
|---|
 | 471 |                       */
 | 
|---|
 | 472 | {
 | 
|---|
 | 473 | register int i, j, k, l;
 | 
|---|
 | 474 | int worksz, freework=0, issolved;
 | 
|---|
 | 475 | /* temp work arrays */
 | 
|---|
 | 476 | LM_REAL *e,          /* nx1 */
 | 
|---|
 | 477 |        *hx,         /* \hat{x}_i, nx1 */
 | 
|---|
 | 478 |        *jacTe,      /* J^T e_i mx1 */
 | 
|---|
 | 479 |        *jac,        /* nxm */
 | 
|---|
 | 480 |        *jacTjac,    /* mxm */
 | 
|---|
 | 481 |        *Dp,         /* mx1 */
 | 
|---|
 | 482 |    *diag_jacTjac,   /* diagonal of J^T J, mx1 */
 | 
|---|
 | 483 |        *pDp,        /* p + Dp, mx1 */
 | 
|---|
 | 484 |        *wrk,        /* nx1 */
 | 
|---|
 | 485 |        *wrk2;       /* nx1, used only for holding a temporary e vector and when differentiating with central differences */
 | 
|---|
 | 486 | 
 | 
|---|
 | 487 | int using_ffdif=1;
 | 
|---|
 | 488 | 
 | 
|---|
 | 489 | register LM_REAL mu,  /* damping constant */
 | 
|---|
 | 490 |                 tmp; /* mainly used in matrix & vector multiplications */
 | 
|---|
 | 491 | LM_REAL p_eL2, jacTe_inf, pDp_eL2; /* ||e(p)||_2, ||J^T e||_inf, ||e(p+Dp)||_2 */
 | 
|---|
 | 492 | LM_REAL p_L2, Dp_L2=LM_REAL_MAX, dF, dL;
 | 
|---|
 | 493 | LM_REAL tau, eps1, eps2, eps2_sq, eps3, delta;
 | 
|---|
 | 494 | LM_REAL init_p_eL2;
 | 
|---|
 | 495 | int nu, nu2, stop=0, nfev, njap=0, nlss=0, K=(m>=10)? m: 10, updjac, updp=1, newjac;
 | 
|---|
 | 496 | const int nm=n*m;
 | 
|---|
 | 497 | int (*linsolver)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)=NULL;
 | 
|---|
 | 498 | 
 | 
|---|
 | 499 |   mu=jacTe_inf=p_L2=0.0; /* -Wall */
 | 
|---|
 | 500 |   updjac=newjac=0; /* -Wall */
 | 
|---|
 | 501 | 
 | 
|---|
 | 502 |   if(n<m){
 | 
|---|
 | 503 |     fprintf(stderr, LCAT(LEVMAR_DIF, "(): cannot solve a problem with fewer measurements [%d] than unknowns [%d]\n"), n, m);
 | 
|---|
 | 504 |     return LM_ERROR;
 | 
|---|
 | 505 |   }
 | 
|---|
 | 506 | 
 | 
|---|
 | 507 |   if(opts){
 | 
|---|
 | 508 |           tau=opts[0];
 | 
|---|
 | 509 |           eps1=opts[1];
 | 
|---|
 | 510 |           eps2=opts[2];
 | 
|---|
 | 511 |           eps2_sq=opts[2]*opts[2];
 | 
|---|
 | 512 |     eps3=opts[3];
 | 
|---|
 | 513 |           delta=opts[4];
 | 
|---|
 | 514 |     if(delta<0.0){
 | 
|---|
 | 515 |       delta=-delta; /* make positive */
 | 
|---|
 | 516 |       using_ffdif=0; /* use central differencing */
 | 
|---|
 | 517 |     }
 | 
|---|
 | 518 |   }
 | 
|---|
 | 519 |   else{ // use default values
 | 
|---|
 | 520 |           tau=LM_CNST(LM_INIT_MU);
 | 
|---|
 | 521 |           eps1=LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 522 |           eps2=LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 523 |           eps2_sq=LM_CNST(LM_STOP_THRESH)*LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 524 |     eps3=LM_CNST(LM_STOP_THRESH);
 | 
|---|
 | 525 |           delta=LM_CNST(LM_DIFF_DELTA);
 | 
|---|
 | 526 |   }
 | 
|---|
 | 527 | 
 | 
|---|
 | 528 |   if(!work){
 | 
|---|
 | 529 |     worksz=LM_DIF_WORKSZ(m, n); //4*n+4*m + n*m + m*m;
 | 
|---|
 | 530 |     work=(LM_REAL *)malloc(worksz*sizeof(LM_REAL)); /* allocate a big chunk in one step */
 | 
|---|
 | 531 |     if(!work){
 | 
|---|
 | 532 |       fprintf(stderr, LCAT(LEVMAR_DIF, "(): memory allocation request failed\n"));
 | 
|---|
 | 533 |       return LM_ERROR;
 | 
|---|
 | 534 |     }
 | 
|---|
 | 535 |     freework=1;
 | 
|---|
 | 536 |   }
 | 
|---|
 | 537 | 
 | 
|---|
 | 538 |   /* set up work arrays */
 | 
|---|
 | 539 |   e=work;
 | 
|---|
 | 540 |   hx=e + n;
 | 
|---|
 | 541 |   jacTe=hx + n;
 | 
|---|
 | 542 |   jac=jacTe + m;
 | 
|---|
 | 543 |   jacTjac=jac + nm;
 | 
|---|
 | 544 |   Dp=jacTjac + m*m;
 | 
|---|
 | 545 |   diag_jacTjac=Dp + m;
 | 
|---|
 | 546 |   pDp=diag_jacTjac + m;
 | 
|---|
 | 547 |   wrk=pDp + m;
 | 
|---|
 | 548 |   wrk2=wrk + n;
 | 
|---|
 | 549 | 
 | 
|---|
 | 550 |   /* compute e=x - f(p) and its L2 norm */
 | 
|---|
 | 551 |   (*func)(p, hx, m, n, adata); nfev=1;
 | 
|---|
 | 552 |   /* ### e=x-hx, p_eL2=||e|| */
 | 
|---|
 | 553 | #if 1
 | 
|---|
 | 554 |   p_eL2=LEVMAR_L2NRMXMY(e, x, hx, n);
 | 
|---|
 | 555 | #else
 | 
|---|
 | 556 |   for(i=0, p_eL2=0.0; i<n; ++i){
 | 
|---|
 | 557 |     e[i]=tmp=x[i]-hx[i];
 | 
|---|
 | 558 |     p_eL2+=tmp*tmp;
 | 
|---|
 | 559 |   }
 | 
|---|
 | 560 | #endif
 | 
|---|
 | 561 |   init_p_eL2=p_eL2;
 | 
|---|
 | 562 |   if(!LM_FINITE(p_eL2)) stop=7;
 | 
|---|
 | 563 | 
 | 
|---|
 | 564 |   nu=20; /* force computation of J */
 | 
|---|
 | 565 | 
 | 
|---|
 | 566 |   for(k=0; k<itmax && !stop; ++k){
 | 
|---|
 | 567 |     /* Note that p and e have been updated at a previous iteration */
 | 
|---|
 | 568 | 
 | 
|---|
 | 569 |     if(p_eL2<=eps3){ /* error is small */
 | 
|---|
 | 570 |       stop=6;
 | 
|---|
 | 571 |       break;
 | 
|---|
 | 572 |     }
 | 
|---|
 | 573 | 
 | 
|---|
 | 574 |     /* Compute the Jacobian J at p,  J^T J,  J^T e,  ||J^T e||_inf and ||p||^2.
 | 
|---|
 | 575 |      * The symmetry of J^T J is again exploited for speed
 | 
|---|
 | 576 |      */
 | 
|---|
 | 577 | 
 | 
|---|
 | 578 |     if((updp && nu>16) || updjac==K){ /* compute difference approximation to J */
 | 
|---|
 | 579 |       if(using_ffdif){ /* use forward differences */
 | 
|---|
 | 580 |         LEVMAR_FDIF_FORW_JAC_APPROX(func, p, hx, wrk, delta, jac, m, n, adata);
 | 
|---|
 | 581 |         ++njap; nfev+=m;
 | 
|---|
 | 582 |       }
 | 
|---|
 | 583 |       else{ /* use central differences */
 | 
|---|
 | 584 |         LEVMAR_FDIF_CENT_JAC_APPROX(func, p, wrk, wrk2, delta, jac, m, n, adata);
 | 
|---|
 | 585 |         ++njap; nfev+=2*m;
 | 
|---|
 | 586 |       }
 | 
|---|
 | 587 |       nu=2; updjac=0; updp=0; newjac=1;
 | 
|---|
 | 588 |     }
 | 
|---|
 | 589 | 
 | 
|---|
 | 590 |     if(newjac){ /* Jacobian has changed, recompute J^T J, J^t e, etc */
 | 
|---|
 | 591 |       newjac=0;
 | 
|---|
 | 592 | 
 | 
|---|
 | 593 |       /* J^T J, J^T e */
 | 
|---|
 | 594 |       if(nm<=__BLOCKSZ__SQ){ // this is a small problem
 | 
|---|
 | 595 |         /* J^T*J_ij = \sum_l J^T_il * J_lj = \sum_l J_li * J_lj.
 | 
|---|
 | 596 |          * Thus, the product J^T J can be computed using an outer loop for
 | 
|---|
 | 597 |          * l that adds J_li*J_lj to each element ij of the result. Note that
 | 
|---|
 | 598 |          * with this scheme, the accesses to J and JtJ are always along rows,
 | 
|---|
 | 599 |          * therefore induces less cache misses compared to the straightforward
 | 
|---|
 | 600 |          * algorithm for computing the product (i.e., l loop is innermost one).
 | 
|---|
 | 601 |          * A similar scheme applies to the computation of J^T e.
 | 
|---|
 | 602 |          * However, for large minimization problems (i.e., involving a large number
 | 
|---|
 | 603 |          * of unknowns and measurements) for which J/J^T J rows are too large to
 | 
|---|
 | 604 |          * fit in the L1 cache, even this scheme incures many cache misses. In
 | 
|---|
 | 605 |          * such cases, a cache-efficient blocking scheme is preferable.
 | 
|---|
 | 606 |          *
 | 
|---|
 | 607 |          * Thanks to John Nitao of Lawrence Livermore Lab for pointing out this
 | 
|---|
 | 608 |          * performance problem.
 | 
|---|
 | 609 |          *
 | 
|---|
 | 610 |          * Note that the non-blocking algorithm is faster on small
 | 
|---|
 | 611 |          * problems since in this case it avoids the overheads of blocking. 
 | 
|---|
 | 612 |          */
 | 
|---|
 | 613 |         register int l;
 | 
|---|
 | 614 |         register LM_REAL alpha, *jaclm, *jacTjacim;
 | 
|---|
 | 615 | 
 | 
|---|
 | 616 |         /* looping downwards saves a few computations */
 | 
|---|
 | 617 |         for(i=m*m; i-->0; )
 | 
|---|
 | 618 |           jacTjac[i]=0.0;
 | 
|---|
 | 619 |         for(i=m; i-->0; )
 | 
|---|
 | 620 |           jacTe[i]=0.0;
 | 
|---|
 | 621 | 
 | 
|---|
 | 622 |         for(l=n; l-->0; ){
 | 
|---|
 | 623 |           jaclm=jac+l*m;
 | 
|---|
 | 624 |           for(i=m; i-->0; ){
 | 
|---|
 | 625 |             jacTjacim=jacTjac+i*m;
 | 
|---|
 | 626 |             alpha=jaclm[i]; //jac[l*m+i];
 | 
|---|
 | 627 |             for(j=i+1; j-->0; ) /* j<=i computes lower triangular part only */
 | 
|---|
 | 628 |               jacTjacim[j]+=jaclm[j]*alpha; //jacTjac[i*m+j]+=jac[l*m+j]*alpha
 | 
|---|
 | 629 | 
 | 
|---|
 | 630 |             /* J^T e */
 | 
|---|
 | 631 |             jacTe[i]+=alpha*e[l];
 | 
|---|
 | 632 |           }
 | 
|---|
 | 633 |         }
 | 
|---|
 | 634 | 
 | 
|---|
 | 635 |         for(i=m; i-->0; ) /* copy to upper part */
 | 
|---|
 | 636 |           for(j=i+1; j<m; ++j)
 | 
|---|
 | 637 |             jacTjac[i*m+j]=jacTjac[j*m+i];
 | 
|---|
 | 638 |       }
 | 
|---|
 | 639 |       else{ // this is a large problem
 | 
|---|
 | 640 |         /* Cache efficient computation of J^T J based on blocking
 | 
|---|
 | 641 |          */
 | 
|---|
 | 642 |         LEVMAR_TRANS_MAT_MAT_MULT(jac, jacTjac, n, m);
 | 
|---|
 | 643 | 
 | 
|---|
 | 644 |         /* cache efficient computation of J^T e */
 | 
|---|
 | 645 |         for(i=0; i<m; ++i)
 | 
|---|
 | 646 |           jacTe[i]=0.0;
 | 
|---|
 | 647 | 
 | 
|---|
 | 648 |         for(i=0; i<n; ++i){
 | 
|---|
 | 649 |           register LM_REAL *jacrow;
 | 
|---|
 | 650 | 
 | 
|---|
 | 651 |           for(l=0, jacrow=jac+i*m, tmp=e[i]; l<m; ++l)
 | 
|---|
 | 652 |             jacTe[l]+=jacrow[l]*tmp;
 | 
|---|
 | 653 |         }
 | 
|---|
 | 654 |       }
 | 
|---|
 | 655 |       
 | 
|---|
 | 656 |       /* Compute ||J^T e||_inf and ||p||^2 */
 | 
|---|
 | 657 |       for(i=0, p_L2=jacTe_inf=0.0; i<m; ++i){
 | 
|---|
 | 658 |         if(jacTe_inf < (tmp=FABS(jacTe[i]))) jacTe_inf=tmp;
 | 
|---|
 | 659 | 
 | 
|---|
 | 660 |         diag_jacTjac[i]=jacTjac[i*m+i]; /* save diagonal entries so that augmentation can be later canceled */
 | 
|---|
 | 661 |         p_L2+=p[i]*p[i];
 | 
|---|
 | 662 |       }
 | 
|---|
 | 663 |       //p_L2=sqrt(p_L2);
 | 
|---|
 | 664 |     }
 | 
|---|
 | 665 | 
 | 
|---|
 | 666 | #if 0
 | 
|---|
 | 667 | if(!(k%100)){
 | 
|---|
 | 668 |   printf("Current estimate: ");
 | 
|---|
 | 669 |   for(i=0; i<m; ++i)
 | 
|---|
 | 670 |     printf("%.9g ", p[i]);
 | 
|---|
 | 671 |   printf("-- errors %.9g %0.9g\n", jacTe_inf, p_eL2);
 | 
|---|
 | 672 | }
 | 
|---|
 | 673 | #endif
 | 
|---|
 | 674 | 
 | 
|---|
 | 675 |     /* check for convergence */
 | 
|---|
 | 676 |     if((jacTe_inf <= eps1)){
 | 
|---|
 | 677 |       Dp_L2=0.0; /* no increment for p in this case */
 | 
|---|
 | 678 |       stop=1;
 | 
|---|
 | 679 |       break;
 | 
|---|
 | 680 |     }
 | 
|---|
 | 681 | 
 | 
|---|
 | 682 |    /* compute initial damping factor */
 | 
|---|
 | 683 |     if(k==0){
 | 
|---|
 | 684 |       for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
 | 
|---|
 | 685 |         if(diag_jacTjac[i]>tmp) tmp=diag_jacTjac[i]; /* find max diagonal element */
 | 
|---|
 | 686 |       mu=tau*tmp;
 | 
|---|
 | 687 |     }
 | 
|---|
 | 688 | 
 | 
|---|
 | 689 |     /* determine increment using adaptive damping */
 | 
|---|
 | 690 | 
 | 
|---|
 | 691 |     /* augment normal equations */
 | 
|---|
 | 692 |     for(i=0; i<m; ++i)
 | 
|---|
 | 693 |       jacTjac[i*m+i]+=mu;
 | 
|---|
 | 694 | 
 | 
|---|
 | 695 |     /* solve augmented equations */
 | 
|---|
 | 696 | #ifdef HAVE_LAPACK
 | 
|---|
 | 697 |     /* 7 alternatives are available: LU, Cholesky + Cholesky with PLASMA, LDLt, 2 variants of QR decomposition and SVD.
 | 
|---|
 | 698 |      * For matrices with dimensions of at least a few hundreds, the PLASMA implementation of Cholesky is the fastest.
 | 
|---|
 | 699 |      * From the serial solvers, Cholesky is the fastest but might occasionally be inapplicable due to numerical round-off;
 | 
|---|
 | 700 |      * QR is slower but more robust; SVD is the slowest but most robust; LU is quite robust but
 | 
|---|
 | 701 |      * slower than LDLt; LDLt offers a good tradeoff between robustness and speed
 | 
|---|
 | 702 |      */
 | 
|---|
 | 703 | 
 | 
|---|
 | 704 |     issolved=AX_EQ_B_BK(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_BK;
 | 
|---|
 | 705 |     //issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
 | 
|---|
 | 706 |     //issolved=AX_EQ_B_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_CHOL;
 | 
|---|
 | 707 | #ifdef HAVE_PLASMA
 | 
|---|
 | 708 |     //issolved=AX_EQ_B_PLASMA_CHOL(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_PLASMA_CHOL;
 | 
|---|
 | 709 | #endif
 | 
|---|
 | 710 |     //issolved=AX_EQ_B_QR(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_QR;
 | 
|---|
 | 711 |     //issolved=AX_EQ_B_QRLS(jacTjac, jacTe, Dp, m, m); ++nlss; linsolver=(int (*)(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m))AX_EQ_B_QRLS;
 | 
|---|
 | 712 |     //issolved=AX_EQ_B_SVD(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_SVD;
 | 
|---|
 | 713 | #else
 | 
|---|
 | 714 |     /* use the LU included with levmar */
 | 
|---|
 | 715 |     issolved=AX_EQ_B_LU(jacTjac, jacTe, Dp, m); ++nlss; linsolver=AX_EQ_B_LU;
 | 
|---|
 | 716 | #endif /* HAVE_LAPACK */
 | 
|---|
 | 717 | 
 | 
|---|
 | 718 |     if(issolved){
 | 
|---|
 | 719 |     /* compute p's new estimate and ||Dp||^2 */
 | 
|---|
 | 720 |       for(i=0, Dp_L2=0.0; i<m; ++i){
 | 
|---|
 | 721 |         pDp[i]=p[i] + (tmp=Dp[i]);
 | 
|---|
 | 722 |         Dp_L2+=tmp*tmp;
 | 
|---|
 | 723 |       }
 | 
|---|
 | 724 |       //Dp_L2=sqrt(Dp_L2);
 | 
|---|
 | 725 | 
 | 
|---|
 | 726 |       if(Dp_L2<=eps2_sq*p_L2){ /* relative change in p is small, stop */
 | 
|---|
 | 727 |       //if(Dp_L2<=eps2*(p_L2 + eps2)){ /* relative change in p is small, stop */
 | 
|---|
 | 728 |         stop=2;
 | 
|---|
 | 729 |         break;
 | 
|---|
 | 730 |       }
 | 
|---|
 | 731 | 
 | 
|---|
 | 732 |       if(Dp_L2>=(p_L2+eps2)/(LM_CNST(EPSILON)*LM_CNST(EPSILON))){ /* almost singular */
 | 
|---|
 | 733 |       //if(Dp_L2>=(p_L2+eps2)/LM_CNST(EPSILON)){ /* almost singular */
 | 
|---|
 | 734 |         stop=4;
 | 
|---|
 | 735 |         break;
 | 
|---|
 | 736 |       }
 | 
|---|
 | 737 | 
 | 
|---|
 | 738 |       (*func)(pDp, wrk, m, n, adata); ++nfev; /* evaluate function at p + Dp */
 | 
|---|
 | 739 |       /* compute ||e(pDp)||_2 */
 | 
|---|
 | 740 |       /* ### wrk2=x-wrk, pDp_eL2=||wrk2|| */
 | 
|---|
 | 741 | #if 1
 | 
|---|
 | 742 |       pDp_eL2=LEVMAR_L2NRMXMY(wrk2, x, wrk, n);
 | 
|---|
 | 743 | #else
 | 
|---|
 | 744 |       for(i=0, pDp_eL2=0.0; i<n; ++i){
 | 
|---|
 | 745 |         wrk2[i]=tmp=x[i]-wrk[i];
 | 
|---|
 | 746 |         pDp_eL2+=tmp*tmp;
 | 
|---|
 | 747 |       }
 | 
|---|
 | 748 | #endif
 | 
|---|
 | 749 |       if(!LM_FINITE(pDp_eL2)){ /* sum of squares is not finite, most probably due to a user error.
 | 
|---|
 | 750 |                                 * This check makes sure that the loop terminates early in the case
 | 
|---|
 | 751 |                                 * of invalid input. Thanks to Steve Danauskas for suggesting it
 | 
|---|
 | 752 |                                 */
 | 
|---|
 | 753 | 
 | 
|---|
 | 754 |         stop=7;
 | 
|---|
 | 755 |         break;
 | 
|---|
 | 756 |       }
 | 
|---|
 | 757 | 
 | 
|---|
 | 758 |       dF=p_eL2-pDp_eL2;
 | 
|---|
 | 759 |       if(updp || dF>0){ /* update jac */
 | 
|---|
 | 760 |         for(i=0; i<n; ++i){
 | 
|---|
 | 761 |           for(l=0, tmp=0.0; l<m; ++l)
 | 
|---|
 | 762 |             tmp+=jac[i*m+l]*Dp[l]; /* (J * Dp)[i] */
 | 
|---|
 | 763 |           tmp=(wrk[i] - hx[i] - tmp)/Dp_L2; /* (f(p+dp)[i] - f(p)[i] - (J * Dp)[i])/(dp^T*dp) */
 | 
|---|
 | 764 |           for(j=0; j<m; ++j)
 | 
|---|
 | 765 |             jac[i*m+j]+=tmp*Dp[j];
 | 
|---|
 | 766 |         }
 | 
|---|
 | 767 |         ++updjac;
 | 
|---|
 | 768 |         newjac=1;
 | 
|---|
 | 769 |       }
 | 
|---|
 | 770 | 
 | 
|---|
 | 771 |       for(i=0, dL=0.0; i<m; ++i)
 | 
|---|
 | 772 |         dL+=Dp[i]*(mu*Dp[i]+jacTe[i]);
 | 
|---|
 | 773 | 
 | 
|---|
 | 774 |       if(dL>0.0 && dF>0.0){ /* reduction in error, increment is accepted */
 | 
|---|
 | 775 |         tmp=(LM_CNST(2.0)*dF/dL-LM_CNST(1.0));
 | 
|---|
 | 776 |         tmp=LM_CNST(1.0)-tmp*tmp*tmp;
 | 
|---|
 | 777 |         mu=mu*( (tmp>=LM_CNST(ONE_THIRD))? tmp : LM_CNST(ONE_THIRD) );
 | 
|---|
 | 778 |         nu=2;
 | 
|---|
 | 779 | 
 | 
|---|
 | 780 |         for(i=0 ; i<m; ++i) /* update p's estimate */
 | 
|---|
 | 781 |           p[i]=pDp[i];
 | 
|---|
 | 782 | 
 | 
|---|
 | 783 |         for(i=0; i<n; ++i){ /* update e, hx and ||e||_2 */
 | 
|---|
 | 784 |           e[i]=wrk2[i]; //x[i]-wrk[i];
 | 
|---|
 | 785 |           hx[i]=wrk[i];
 | 
|---|
 | 786 |         }
 | 
|---|
 | 787 |         p_eL2=pDp_eL2;
 | 
|---|
 | 788 |         updp=1;
 | 
|---|
 | 789 |         continue;
 | 
|---|
 | 790 |       }
 | 
|---|
 | 791 |     }
 | 
|---|
 | 792 | 
 | 
|---|
 | 793 |     /* if this point is reached, either the linear system could not be solved or
 | 
|---|
 | 794 |      * the error did not reduce; in any case, the increment must be rejected
 | 
|---|
 | 795 |      */
 | 
|---|
 | 796 | 
 | 
|---|
 | 797 |     mu*=nu;
 | 
|---|
 | 798 |     nu2=nu<<1; // 2*nu;
 | 
|---|
 | 799 |     if(nu2<=nu){ /* nu has wrapped around (overflown). Thanks to Frank Jordan for spotting this case */
 | 
|---|
 | 800 |       stop=5;
 | 
|---|
 | 801 |       break;
 | 
|---|
 | 802 |     }
 | 
|---|
 | 803 |     nu=nu2;
 | 
|---|
 | 804 | 
 | 
|---|
 | 805 |     for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
 | 
|---|
 | 806 |       jacTjac[i*m+i]=diag_jacTjac[i];
 | 
|---|
 | 807 |   }
 | 
|---|
 | 808 | 
 | 
|---|
 | 809 |   if(k>=itmax) stop=3;
 | 
|---|
 | 810 | 
 | 
|---|
 | 811 |   for(i=0; i<m; ++i) /* restore diagonal J^T J entries */
 | 
|---|
 | 812 |     jacTjac[i*m+i]=diag_jacTjac[i];
 | 
|---|
 | 813 | 
 | 
|---|
 | 814 |   if(info){
 | 
|---|
 | 815 |     info[0]=init_p_eL2;
 | 
|---|
 | 816 |     info[1]=p_eL2;
 | 
|---|
 | 817 |     info[2]=jacTe_inf;
 | 
|---|
 | 818 |     info[3]=Dp_L2;
 | 
|---|
 | 819 |     for(i=0, tmp=LM_REAL_MIN; i<m; ++i)
 | 
|---|
 | 820 |       if(tmp<jacTjac[i*m+i]) tmp=jacTjac[i*m+i];
 | 
|---|
 | 821 |     info[4]=mu/tmp;
 | 
|---|
 | 822 |     info[5]=(LM_REAL)k;
 | 
|---|
 | 823 |     info[6]=(LM_REAL)stop;
 | 
|---|
 | 824 |     info[7]=(LM_REAL)nfev;
 | 
|---|
 | 825 |     info[8]=(LM_REAL)njap;
 | 
|---|
 | 826 |     info[9]=(LM_REAL)nlss;
 | 
|---|
 | 827 |   }
 | 
|---|
 | 828 | 
 | 
|---|
 | 829 |   /* covariance matrix */
 | 
|---|
 | 830 |   if(covar){
 | 
|---|
 | 831 |     LEVMAR_COVAR(jacTjac, covar, p_eL2, m, n);
 | 
|---|
 | 832 |   }
 | 
|---|
 | 833 | 
 | 
|---|
 | 834 |                                                                
 | 
|---|
 | 835 |   if(freework) free(work);
 | 
|---|
 | 836 | 
 | 
|---|
 | 837 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 838 |   if(linsolver) (*linsolver)(NULL, NULL, NULL, 0);
 | 
|---|
 | 839 | #endif
 | 
|---|
 | 840 | 
 | 
|---|
 | 841 |   return (stop!=4 && stop!=7)?  k : LM_ERROR;
 | 
|---|
 | 842 | }
 | 
|---|
 | 843 | 
 | 
|---|
 | 844 | /* undefine everything. THIS MUST REMAIN AT THE END OF THE FILE */
 | 
|---|
 | 845 | #undef LEVMAR_DER
 | 
|---|
 | 846 | #undef LEVMAR_DIF
 | 
|---|
 | 847 | #undef LEVMAR_FDIF_FORW_JAC_APPROX
 | 
|---|
 | 848 | #undef LEVMAR_FDIF_CENT_JAC_APPROX
 | 
|---|
 | 849 | #undef LEVMAR_COVAR
 | 
|---|
 | 850 | #undef LEVMAR_TRANS_MAT_MAT_MULT
 | 
|---|
 | 851 | #undef LEVMAR_L2NRMXMY
 | 
|---|
 | 852 | #undef AX_EQ_B_LU
 | 
|---|
 | 853 | #undef AX_EQ_B_CHOL
 | 
|---|
 | 854 | #undef AX_EQ_B_PLASMA_CHOL
 | 
|---|
 | 855 | #undef AX_EQ_B_QR
 | 
|---|
 | 856 | #undef AX_EQ_B_QRLS
 | 
|---|
 | 857 | #undef AX_EQ_B_SVD
 | 
|---|
 | 858 | #undef AX_EQ_B_BK
 | 
|---|