source: ThirdParty/levmar/src/expfit.c@ 7516f6

Action_Thermostats Adding_MD_integration_tests Adding_StructOpt_integration_tests AutomationFragmentation_failures Candidate_v1.6.1 ChemicalSpaceEvaluator Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Exclude_Hydrogens_annealWithBondGraph Fix_Verbose_Codepatterns ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion Gui_displays_atomic_force_velocity JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool PythonUI_with_named_parameters Recreated_GuiChecks StoppableMakroAction TremoloParser_IncreasedPrecision
Last change on this file since 7516f6 was 8ce1a9, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '5443b10a06f0c125d0ae0500abb09901fda9666b' as 'ThirdParty/levmar'

  • Property mode set to 100644
File size: 3.8 KB
Line 
1////////////////////////////////////////////////////////////////////////////////////
2// Example program that shows how to use levmar in order to fit the three-
3// parameter exponential model x_i = p[0]*exp(-p[1]*i) + p[2] to a set of
4// data measurements; example is based on a similar one from GSL.
5//
6// Copyright (C) 2008 Manolis Lourakis (lourakis at ics forth gr)
7// Institute of Computer Science, Foundation for Research & Technology - Hellas
8// Heraklion, Crete, Greece.
9//
10// This program is free software; you can redistribute it and/or modify
11// it under the terms of the GNU General Public License as published by
12// the Free Software Foundation; either version 2 of the License, or
13// (at your option) any later version.
14//
15// This program is distributed in the hope that it will be useful,
16// but WITHOUT ANY WARRANTY; without even the implied warranty of
17// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18// GNU General Public License for more details.
19//
20////////////////////////////////////////////////////////////////////////////////////
21
22#include <stdio.h>
23#include <stdlib.h>
24#include <math.h>
25
26#include <levmar.h>
27
28#ifndef LM_DBL_PREC
29#error Example program assumes that levmar has been compiled with double precision, see LM_DBL_PREC!
30#endif
31
32
33/* the following macros concern the initialization of a random number generator for adding noise */
34#undef REPEATABLE_RANDOM
35#define DBL_RAND_MAX (double)(RAND_MAX)
36
37#ifdef _MSC_VER // MSVC
38#include <process.h>
39#define GETPID _getpid
40#elif defined(__GNUC__) // GCC
41#include <sys/types.h>
42#include <unistd.h>
43#define GETPID getpid
44#else
45#warning Do not know the name of the function returning the process id for your OS/compiler combination
46#define GETPID 0
47#endif /* _MSC_VER */
48
49#ifdef REPEATABLE_RANDOM
50#define INIT_RANDOM(seed) srandom(seed)
51#else
52#define INIT_RANDOM(seed) srandom((int)GETPID()) // seed unused
53#endif
54
55/* Gaussian noise with mean m and variance s, uses the Box-Muller transformation */
56double gNoise(double m, double s)
57{
58double r1, r2, val;
59
60 r1=((double)random())/DBL_RAND_MAX;
61 r2=((double)random())/DBL_RAND_MAX;
62
63 val=sqrt(-2.0*log(r1))*cos(2.0*M_PI*r2);
64
65 val=s*val+m;
66
67 return val;
68}
69
70/* model to be fitted to measurements: x_i = p[0]*exp(-p[1]*i) + p[2], i=0...n-1 */
71void expfunc(double *p, double *x, int m, int n, void *data)
72{
73register int i;
74
75 for(i=0; i<n; ++i){
76 x[i]=p[0]*exp(-p[1]*i) + p[2];
77 }
78}
79
80/* Jacobian of expfunc() */
81void jacexpfunc(double *p, double *jac, int m, int n, void *data)
82{
83register int i, j;
84
85 /* fill Jacobian row by row */
86 for(i=j=0; i<n; ++i){
87 jac[j++]=exp(-p[1]*i);
88 jac[j++]=-p[0]*i*exp(-p[1]*i);
89 jac[j++]=1.0;
90 }
91}
92
93int main()
94{
95const int n=40, m=3; // 40 measurements, 3 parameters
96double p[m], x[n], opts[LM_OPTS_SZ], info[LM_INFO_SZ];
97register int i;
98int ret;
99
100 /* generate some measurement using the exponential model with
101 * parameters (5.0, 0.1, 1.0), corrupted with zero-mean
102 * Gaussian noise of s=0.1
103 */
104 INIT_RANDOM(0);
105 for(i=0; i<n; ++i)
106 x[i]=(5.0*exp(-0.1*i) + 1.0) + gNoise(0.0, 0.1);
107
108 /* initial parameters estimate: (1.0, 0.0, 0.0) */
109 p[0]=1.0; p[1]=0.0; p[2]=0.0;
110
111 /* optimization control parameters; passing to levmar NULL instead of opts reverts to defaults */
112 opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
113 opts[4]=LM_DIFF_DELTA; // relevant only if the finite difference Jacobian version is used
114
115 /* invoke the optimization function */
116 ret=dlevmar_der(expfunc, jacexpfunc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
117 //ret=dlevmar_dif(expfunc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // without Jacobian
118 printf("Levenberg-Marquardt returned in %g iter, reason %g, sumsq %g [%g]\n", info[5], info[6], info[1], info[0]);
119 printf("Best fit parameters: %.7g %.7g %.7g\n", p[0], p[1], p[2]);
120
121 exit(0);
122}
Note: See TracBrowser for help on using the repository browser.