| 1 | ////////////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 2 | //  Example program that shows how to use levmar in order to fit the three-
 | 
|---|
| 3 | //  parameter exponential model x_i = p[0]*exp(-p[1]*i) + p[2] to a set of
 | 
|---|
| 4 | //  data measurements; example is based on a similar one from GSL.
 | 
|---|
| 5 | //
 | 
|---|
| 6 | //  Copyright (C) 2008  Manolis Lourakis (lourakis at ics forth gr)
 | 
|---|
| 7 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas
 | 
|---|
| 8 | //  Heraklion, Crete, Greece.
 | 
|---|
| 9 | //
 | 
|---|
| 10 | //  This program is free software; you can redistribute it and/or modify
 | 
|---|
| 11 | //  it under the terms of the GNU General Public License as published by
 | 
|---|
| 12 | //  the Free Software Foundation; either version 2 of the License, or
 | 
|---|
| 13 | //  (at your option) any later version.
 | 
|---|
| 14 | //
 | 
|---|
| 15 | //  This program is distributed in the hope that it will be useful,
 | 
|---|
| 16 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 17 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 18 | //  GNU General Public License for more details.
 | 
|---|
| 19 | //
 | 
|---|
| 20 | ////////////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 21 | 
 | 
|---|
| 22 | #include <stdio.h>
 | 
|---|
| 23 | #include <stdlib.h>
 | 
|---|
| 24 | #include <math.h>
 | 
|---|
| 25 | 
 | 
|---|
| 26 | #include <levmar.h>
 | 
|---|
| 27 | 
 | 
|---|
| 28 | #ifndef LM_DBL_PREC
 | 
|---|
| 29 | #error Example program assumes that levmar has been compiled with double precision, see LM_DBL_PREC!
 | 
|---|
| 30 | #endif
 | 
|---|
| 31 | 
 | 
|---|
| 32 | 
 | 
|---|
| 33 | /* the following macros concern the initialization of a random number generator for adding noise */
 | 
|---|
| 34 | #undef REPEATABLE_RANDOM
 | 
|---|
| 35 | #define DBL_RAND_MAX (double)(RAND_MAX)
 | 
|---|
| 36 | 
 | 
|---|
| 37 | #ifdef _MSC_VER // MSVC
 | 
|---|
| 38 | #include <process.h>
 | 
|---|
| 39 | #define GETPID  _getpid
 | 
|---|
| 40 | #elif defined(__GNUC__) // GCC
 | 
|---|
| 41 | #include <sys/types.h>
 | 
|---|
| 42 | #include <unistd.h>
 | 
|---|
| 43 | #define GETPID  getpid
 | 
|---|
| 44 | #else
 | 
|---|
| 45 | #warning Do not know the name of the function returning the process id for your OS/compiler combination
 | 
|---|
| 46 | #define GETPID  0
 | 
|---|
| 47 | #endif /* _MSC_VER */
 | 
|---|
| 48 | 
 | 
|---|
| 49 | #ifdef REPEATABLE_RANDOM
 | 
|---|
| 50 | #define INIT_RANDOM(seed) srandom(seed)
 | 
|---|
| 51 | #else
 | 
|---|
| 52 | #define INIT_RANDOM(seed) srandom((int)GETPID()) // seed unused
 | 
|---|
| 53 | #endif
 | 
|---|
| 54 | 
 | 
|---|
| 55 | /* Gaussian noise with mean m and variance s, uses the Box-Muller transformation */
 | 
|---|
| 56 | double gNoise(double m, double s)
 | 
|---|
| 57 | {
 | 
|---|
| 58 | double r1, r2, val;
 | 
|---|
| 59 | 
 | 
|---|
| 60 |   r1=((double)random())/DBL_RAND_MAX;
 | 
|---|
| 61 |   r2=((double)random())/DBL_RAND_MAX;
 | 
|---|
| 62 | 
 | 
|---|
| 63 |   val=sqrt(-2.0*log(r1))*cos(2.0*M_PI*r2);
 | 
|---|
| 64 | 
 | 
|---|
| 65 |   val=s*val+m;
 | 
|---|
| 66 | 
 | 
|---|
| 67 |   return val;
 | 
|---|
| 68 | }
 | 
|---|
| 69 | 
 | 
|---|
| 70 | /* model to be fitted to measurements: x_i = p[0]*exp(-p[1]*i) + p[2], i=0...n-1 */
 | 
|---|
| 71 | void expfunc(double *p, double *x, int m, int n, void *data)
 | 
|---|
| 72 | {
 | 
|---|
| 73 | register int i;
 | 
|---|
| 74 | 
 | 
|---|
| 75 |   for(i=0; i<n; ++i){
 | 
|---|
| 76 |     x[i]=p[0]*exp(-p[1]*i) + p[2];
 | 
|---|
| 77 |   }
 | 
|---|
| 78 | }
 | 
|---|
| 79 | 
 | 
|---|
| 80 | /* Jacobian of expfunc() */
 | 
|---|
| 81 | void jacexpfunc(double *p, double *jac, int m, int n, void *data)
 | 
|---|
| 82 | {   
 | 
|---|
| 83 | register int i, j;
 | 
|---|
| 84 |   
 | 
|---|
| 85 |   /* fill Jacobian row by row */
 | 
|---|
| 86 |   for(i=j=0; i<n; ++i){
 | 
|---|
| 87 |     jac[j++]=exp(-p[1]*i);
 | 
|---|
| 88 |     jac[j++]=-p[0]*i*exp(-p[1]*i);
 | 
|---|
| 89 |     jac[j++]=1.0;
 | 
|---|
| 90 |   }
 | 
|---|
| 91 | }
 | 
|---|
| 92 | 
 | 
|---|
| 93 | int main()
 | 
|---|
| 94 | {
 | 
|---|
| 95 | const int n=40, m=3; // 40 measurements, 3 parameters
 | 
|---|
| 96 | double p[m], x[n], opts[LM_OPTS_SZ], info[LM_INFO_SZ];
 | 
|---|
| 97 | register int i;
 | 
|---|
| 98 | int ret;
 | 
|---|
| 99 | 
 | 
|---|
| 100 |   /* generate some measurement using the exponential model with
 | 
|---|
| 101 |    * parameters (5.0, 0.1, 1.0), corrupted with zero-mean
 | 
|---|
| 102 |    * Gaussian noise of s=0.1
 | 
|---|
| 103 |    */
 | 
|---|
| 104 |   INIT_RANDOM(0);
 | 
|---|
| 105 |   for(i=0; i<n; ++i)
 | 
|---|
| 106 |     x[i]=(5.0*exp(-0.1*i) + 1.0) + gNoise(0.0, 0.1);
 | 
|---|
| 107 | 
 | 
|---|
| 108 |   /* initial parameters estimate: (1.0, 0.0, 0.0) */
 | 
|---|
| 109 |   p[0]=1.0; p[1]=0.0; p[2]=0.0;
 | 
|---|
| 110 | 
 | 
|---|
| 111 |   /* optimization control parameters; passing to levmar NULL instead of opts reverts to defaults */
 | 
|---|
| 112 |   opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20;
 | 
|---|
| 113 |   opts[4]=LM_DIFF_DELTA; // relevant only if the finite difference Jacobian version is used 
 | 
|---|
| 114 | 
 | 
|---|
| 115 |   /* invoke the optimization function */
 | 
|---|
| 116 |   ret=dlevmar_der(expfunc, jacexpfunc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian
 | 
|---|
| 117 |   //ret=dlevmar_dif(expfunc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // without Jacobian
 | 
|---|
| 118 |   printf("Levenberg-Marquardt returned in %g iter, reason %g, sumsq %g [%g]\n", info[5], info[6], info[1], info[0]);
 | 
|---|
| 119 |   printf("Best fit parameters: %.7g %.7g %.7g\n", p[0], p[1], p[2]);
 | 
|---|
| 120 | 
 | 
|---|
| 121 |   exit(0);
 | 
|---|
| 122 | }
 | 
|---|