| [5443b1] | 1 | //////////////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 2 | //  Example program that shows how to use levmar in order to fit the three- | 
|---|
|  | 3 | //  parameter exponential model x_i = p[0]*exp(-p[1]*i) + p[2] to a set of | 
|---|
|  | 4 | //  data measurements; example is based on a similar one from GSL. | 
|---|
|  | 5 | // | 
|---|
|  | 6 | //  Copyright (C) 2008  Manolis Lourakis (lourakis at ics forth gr) | 
|---|
|  | 7 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas | 
|---|
|  | 8 | //  Heraklion, Crete, Greece. | 
|---|
|  | 9 | // | 
|---|
|  | 10 | //  This program is free software; you can redistribute it and/or modify | 
|---|
|  | 11 | //  it under the terms of the GNU General Public License as published by | 
|---|
|  | 12 | //  the Free Software Foundation; either version 2 of the License, or | 
|---|
|  | 13 | //  (at your option) any later version. | 
|---|
|  | 14 | // | 
|---|
|  | 15 | //  This program is distributed in the hope that it will be useful, | 
|---|
|  | 16 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 17 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 18 | //  GNU General Public License for more details. | 
|---|
|  | 19 | // | 
|---|
|  | 20 | //////////////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 21 |  | 
|---|
|  | 22 | #include <stdio.h> | 
|---|
|  | 23 | #include <stdlib.h> | 
|---|
|  | 24 | #include <math.h> | 
|---|
|  | 25 |  | 
|---|
|  | 26 | #include <levmar.h> | 
|---|
|  | 27 |  | 
|---|
|  | 28 | #ifndef LM_DBL_PREC | 
|---|
|  | 29 | #error Example program assumes that levmar has been compiled with double precision, see LM_DBL_PREC! | 
|---|
|  | 30 | #endif | 
|---|
|  | 31 |  | 
|---|
|  | 32 |  | 
|---|
|  | 33 | /* the following macros concern the initialization of a random number generator for adding noise */ | 
|---|
|  | 34 | #undef REPEATABLE_RANDOM | 
|---|
|  | 35 | #define DBL_RAND_MAX (double)(RAND_MAX) | 
|---|
|  | 36 |  | 
|---|
|  | 37 | #ifdef _MSC_VER // MSVC | 
|---|
|  | 38 | #include <process.h> | 
|---|
|  | 39 | #define GETPID  _getpid | 
|---|
|  | 40 | #elif defined(__GNUC__) // GCC | 
|---|
|  | 41 | #include <sys/types.h> | 
|---|
|  | 42 | #include <unistd.h> | 
|---|
|  | 43 | #define GETPID  getpid | 
|---|
|  | 44 | #else | 
|---|
|  | 45 | #warning Do not know the name of the function returning the process id for your OS/compiler combination | 
|---|
|  | 46 | #define GETPID  0 | 
|---|
|  | 47 | #endif /* _MSC_VER */ | 
|---|
|  | 48 |  | 
|---|
|  | 49 | #ifdef REPEATABLE_RANDOM | 
|---|
|  | 50 | #define INIT_RANDOM(seed) srandom(seed) | 
|---|
|  | 51 | #else | 
|---|
|  | 52 | #define INIT_RANDOM(seed) srandom((int)GETPID()) // seed unused | 
|---|
|  | 53 | #endif | 
|---|
|  | 54 |  | 
|---|
|  | 55 | /* Gaussian noise with mean m and variance s, uses the Box-Muller transformation */ | 
|---|
|  | 56 | double gNoise(double m, double s) | 
|---|
|  | 57 | { | 
|---|
|  | 58 | double r1, r2, val; | 
|---|
|  | 59 |  | 
|---|
|  | 60 | r1=((double)random())/DBL_RAND_MAX; | 
|---|
|  | 61 | r2=((double)random())/DBL_RAND_MAX; | 
|---|
|  | 62 |  | 
|---|
|  | 63 | val=sqrt(-2.0*log(r1))*cos(2.0*M_PI*r2); | 
|---|
|  | 64 |  | 
|---|
|  | 65 | val=s*val+m; | 
|---|
|  | 66 |  | 
|---|
|  | 67 | return val; | 
|---|
|  | 68 | } | 
|---|
|  | 69 |  | 
|---|
|  | 70 | /* model to be fitted to measurements: x_i = p[0]*exp(-p[1]*i) + p[2], i=0...n-1 */ | 
|---|
|  | 71 | void expfunc(double *p, double *x, int m, int n, void *data) | 
|---|
|  | 72 | { | 
|---|
|  | 73 | register int i; | 
|---|
|  | 74 |  | 
|---|
|  | 75 | for(i=0; i<n; ++i){ | 
|---|
|  | 76 | x[i]=p[0]*exp(-p[1]*i) + p[2]; | 
|---|
|  | 77 | } | 
|---|
|  | 78 | } | 
|---|
|  | 79 |  | 
|---|
|  | 80 | /* Jacobian of expfunc() */ | 
|---|
|  | 81 | void jacexpfunc(double *p, double *jac, int m, int n, void *data) | 
|---|
|  | 82 | { | 
|---|
|  | 83 | register int i, j; | 
|---|
|  | 84 |  | 
|---|
|  | 85 | /* fill Jacobian row by row */ | 
|---|
|  | 86 | for(i=j=0; i<n; ++i){ | 
|---|
|  | 87 | jac[j++]=exp(-p[1]*i); | 
|---|
|  | 88 | jac[j++]=-p[0]*i*exp(-p[1]*i); | 
|---|
|  | 89 | jac[j++]=1.0; | 
|---|
|  | 90 | } | 
|---|
|  | 91 | } | 
|---|
|  | 92 |  | 
|---|
|  | 93 | int main() | 
|---|
|  | 94 | { | 
|---|
|  | 95 | const int n=40, m=3; // 40 measurements, 3 parameters | 
|---|
|  | 96 | double p[m], x[n], opts[LM_OPTS_SZ], info[LM_INFO_SZ]; | 
|---|
|  | 97 | register int i; | 
|---|
|  | 98 | int ret; | 
|---|
|  | 99 |  | 
|---|
|  | 100 | /* generate some measurement using the exponential model with | 
|---|
|  | 101 | * parameters (5.0, 0.1, 1.0), corrupted with zero-mean | 
|---|
|  | 102 | * Gaussian noise of s=0.1 | 
|---|
|  | 103 | */ | 
|---|
|  | 104 | INIT_RANDOM(0); | 
|---|
|  | 105 | for(i=0; i<n; ++i) | 
|---|
|  | 106 | x[i]=(5.0*exp(-0.1*i) + 1.0) + gNoise(0.0, 0.1); | 
|---|
|  | 107 |  | 
|---|
|  | 108 | /* initial parameters estimate: (1.0, 0.0, 0.0) */ | 
|---|
|  | 109 | p[0]=1.0; p[1]=0.0; p[2]=0.0; | 
|---|
|  | 110 |  | 
|---|
|  | 111 | /* optimization control parameters; passing to levmar NULL instead of opts reverts to defaults */ | 
|---|
|  | 112 | opts[0]=LM_INIT_MU; opts[1]=1E-15; opts[2]=1E-15; opts[3]=1E-20; | 
|---|
|  | 113 | opts[4]=LM_DIFF_DELTA; // relevant only if the finite difference Jacobian version is used | 
|---|
|  | 114 |  | 
|---|
|  | 115 | /* invoke the optimization function */ | 
|---|
|  | 116 | ret=dlevmar_der(expfunc, jacexpfunc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // with analytic Jacobian | 
|---|
|  | 117 | //ret=dlevmar_dif(expfunc, p, x, m, n, 1000, opts, info, NULL, NULL, NULL); // without Jacobian | 
|---|
|  | 118 | printf("Levenberg-Marquardt returned in %g iter, reason %g, sumsq %g [%g]\n", info[5], info[6], info[1], info[0]); | 
|---|
|  | 119 | printf("Best fit parameters: %.7g %.7g %.7g\n", p[0], p[1], p[2]); | 
|---|
|  | 120 |  | 
|---|
|  | 121 | exit(0); | 
|---|
|  | 122 | } | 
|---|