source: ThirdParty/levmar/src/Axb_core.c@ 7516f6

Action_Thermostats Adding_MD_integration_tests Adding_StructOpt_integration_tests AutomationFragmentation_failures Candidate_v1.6.1 ChemicalSpaceEvaluator Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Exclude_Hydrogens_annealWithBondGraph Fix_Verbose_Codepatterns ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion Gui_displays_atomic_force_velocity JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool PythonUI_with_named_parameters Recreated_GuiChecks StoppableMakroAction TremoloParser_IncreasedPrecision
Last change on this file since 7516f6 was 8ce1a9, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '5443b10a06f0c125d0ae0500abb09901fda9666b' as 'ThirdParty/levmar'

  • Property mode set to 100644
File size: 35.5 KB
Line 
1/////////////////////////////////////////////////////////////////////////////////
2//
3// Solution of linear systems involved in the Levenberg - Marquardt
4// minimization algorithm
5// Copyright (C) 2004 Manolis Lourakis (lourakis at ics forth gr)
6// Institute of Computer Science, Foundation for Research & Technology - Hellas
7// Heraklion, Crete, Greece.
8//
9// This program is free software; you can redistribute it and/or modify
10// it under the terms of the GNU General Public License as published by
11// the Free Software Foundation; either version 2 of the License, or
12// (at your option) any later version.
13//
14// This program is distributed in the hope that it will be useful,
15// but WITHOUT ANY WARRANTY; without even the implied warranty of
16// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17// GNU General Public License for more details.
18//
19/////////////////////////////////////////////////////////////////////////////////
20
21
22/* Solvers for the linear systems Ax=b. Solvers should NOT modify their A & B arguments! */
23
24
25#ifndef LM_REAL // not included by Axb.c
26#error This file should not be compiled directly!
27#endif
28
29
30#ifdef LINSOLVERS_RETAIN_MEMORY
31#define __STATIC__ static
32#else
33#define __STATIC__ // empty
34#endif /* LINSOLVERS_RETAIN_MEMORY */
35
36#ifdef HAVE_LAPACK
37
38/* prototypes of LAPACK routines */
39
40#define GEQRF LM_MK_LAPACK_NAME(geqrf)
41#define ORGQR LM_MK_LAPACK_NAME(orgqr)
42#define TRTRS LM_MK_LAPACK_NAME(trtrs)
43#define POTF2 LM_MK_LAPACK_NAME(potf2)
44#define POTRF LM_MK_LAPACK_NAME(potrf)
45#define POTRS LM_MK_LAPACK_NAME(potrs)
46#define GETRF LM_MK_LAPACK_NAME(getrf)
47#define GETRS LM_MK_LAPACK_NAME(getrs)
48#define GESVD LM_MK_LAPACK_NAME(gesvd)
49#define GESDD LM_MK_LAPACK_NAME(gesdd)
50#define SYTRF LM_MK_LAPACK_NAME(sytrf)
51#define SYTRS LM_MK_LAPACK_NAME(sytrs)
52#define PLASMA_POSV LM_CAT_(PLASMA_, LM_ADD_PREFIX(posv))
53
54#ifdef __cplusplus
55extern "C" {
56#endif
57/* QR decomposition */
58extern int GEQRF(int *m, int *n, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);
59extern int ORGQR(int *m, int *n, int *k, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);
60
61/* solution of triangular systems */
62extern int TRTRS(char *uplo, char *trans, char *diag, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);
63
64/* Cholesky decomposition and systems solution */
65extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info);
66extern int POTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *info); /* block version of dpotf2 */
67extern int POTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);
68
69/* LU decomposition and systems solution */
70extern int GETRF(int *m, int *n, LM_REAL *a, int *lda, int *ipiv, int *info);
71extern int GETRS(char *trans, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);
72
73/* Singular Value Decomposition (SVD) */
74extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu,
75 LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info);
76
77/* lapack 3.0 new SVD routine, faster than xgesvd().
78 * In case that your version of LAPACK does not include them, use the above two older routines
79 */
80extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt,
81 LM_REAL *work, int *lwork, int *iwork, int *info);
82
83/* LDLt/UDUt factorization and systems solution */
84extern int SYTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *ipiv, LM_REAL *work, int *lwork, int *info);
85extern int SYTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);
86#ifdef __cplusplus
87}
88#endif
89
90/* precision-specific definitions */
91#define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)
92#define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)
93#define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)
94#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)
95#define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)
96#define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK)
97#define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol)
98
99/*
100 * This function returns the solution of Ax = b
101 *
102 * The function is based on QR decomposition with explicit computation of Q:
103 * If A=Q R with Q orthogonal and R upper triangular, the linear system becomes
104 * Q R x = b or R x = Q^T b.
105 * The last equation can be solved directly.
106 *
107 * A is mxm, b is mx1
108 *
109 * The function returns 0 in case of error, 1 if successful
110 *
111 * This function is often called repetitively to solve problems of identical
112 * dimensions. To avoid repetitive malloc's and free's, allocated memory is
113 * retained between calls and free'd-malloc'ed when not of the appropriate size.
114 * A call with NULL as the first argument forces this memory to be released.
115 */
116int AX_EQ_B_QR(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
117{
118__STATIC__ LM_REAL *buf=NULL;
119__STATIC__ int buf_sz=0;
120
121static int nb=0; /* no __STATIC__ decl. here! */
122
123LM_REAL *a, *tau, *r, *work;
124int a_sz, tau_sz, r_sz, tot_sz;
125register int i, j;
126int info, worksz, nrhs=1;
127register LM_REAL sum;
128
129 if(!A)
130#ifdef LINSOLVERS_RETAIN_MEMORY
131 {
132 if(buf) free(buf);
133 buf=NULL;
134 buf_sz=0;
135
136 return 1;
137 }
138#else
139 return 1; /* NOP */
140#endif /* LINSOLVERS_RETAIN_MEMORY */
141
142 /* calculate required memory size */
143 a_sz=m*m;
144 tau_sz=m;
145 r_sz=m*m; /* only the upper triangular part really needed */
146 if(!nb){
147 LM_REAL tmp;
148
149 worksz=-1; // workspace query; optimal size is returned in tmp
150 GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);
151 nb=((int)tmp)/m; // optimal worksize is m*nb
152 }
153 worksz=nb*m;
154 tot_sz=a_sz + tau_sz + r_sz + worksz;
155
156#ifdef LINSOLVERS_RETAIN_MEMORY
157 if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
158 if(buf) free(buf); /* free previously allocated memory */
159
160 buf_sz=tot_sz;
161 buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
162 if(!buf){
163 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");
164 exit(1);
165 }
166 }
167#else
168 buf_sz=tot_sz;
169 buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
170 if(!buf){
171 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");
172 exit(1);
173 }
174#endif /* LINSOLVERS_RETAIN_MEMORY */
175
176 a=buf;
177 tau=a+a_sz;
178 r=tau+tau_sz;
179 work=r+r_sz;
180
181 /* store A (column major!) into a */
182 for(i=0; i<m; i++)
183 for(j=0; j<m; j++)
184 a[i+j*m]=A[i*m+j];
185
186 /* QR decomposition of A */
187 GEQRF((int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
188 /* error treatment */
189 if(info!=0){
190 if(info<0){
191 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QR) "()\n", -info);
192 exit(1);
193 }
194 else{
195 fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QR) "()\n", info);
196#ifndef LINSOLVERS_RETAIN_MEMORY
197 free(buf);
198#endif
199
200 return 0;
201 }
202 }
203
204 /* R is stored in the upper triangular part of a; copy it in r so that ORGQR() below won't destroy it */
205 memcpy(r, a, r_sz*sizeof(LM_REAL));
206
207 /* compute Q using the elementary reflectors computed by the above decomposition */
208 ORGQR((int *)&m, (int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
209 if(info!=0){
210 if(info<0){
211 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", ORGQR) " in ", AX_EQ_B_QR) "()\n", -info);
212 exit(1);
213 }
214 else{
215 fprintf(stderr, RCAT("Unknown LAPACK error (%d) in ", AX_EQ_B_QR) "()\n", info);
216#ifndef LINSOLVERS_RETAIN_MEMORY
217 free(buf);
218#endif
219
220 return 0;
221 }
222 }
223
224 /* Q is now in a; compute Q^T b in x */
225 for(i=0; i<m; i++){
226 for(j=0, sum=0.0; j<m; j++)
227 sum+=a[i*m+j]*B[j];
228 x[i]=sum;
229 }
230
231 /* solve the linear system R x = Q^t b */
232 TRTRS("U", "N", "N", (int *)&m, (int *)&nrhs, r, (int *)&m, x, (int *)&m, &info);
233 /* error treatment */
234 if(info!=0){
235 if(info<0){
236 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QR) "()\n", -info);
237 exit(1);
238 }
239 else{
240 fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QR) "()\n", info);
241#ifndef LINSOLVERS_RETAIN_MEMORY
242 free(buf);
243#endif
244
245 return 0;
246 }
247 }
248
249#ifndef LINSOLVERS_RETAIN_MEMORY
250 free(buf);
251#endif
252
253 return 1;
254}
255
256/*
257 * This function returns the solution of min_x ||Ax - b||
258 *
259 * || . || is the second order (i.e. L2) norm. This is a least squares technique that
260 * is based on QR decomposition:
261 * If A=Q R with Q orthogonal and R upper triangular, the normal equations become
262 * (A^T A) x = A^T b or (R^T Q^T Q R) x = A^T b or (R^T R) x = A^T b.
263 * This amounts to solving R^T y = A^T b for y and then R x = y for x
264 * Note that Q does not need to be explicitly computed
265 *
266 * A is mxn, b is mx1
267 *
268 * The function returns 0 in case of error, 1 if successful
269 *
270 * This function is often called repetitively to solve problems of identical
271 * dimensions. To avoid repetitive malloc's and free's, allocated memory is
272 * retained between calls and free'd-malloc'ed when not of the appropriate size.
273 * A call with NULL as the first argument forces this memory to be released.
274 */
275int AX_EQ_B_QRLS(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m, int n)
276{
277__STATIC__ LM_REAL *buf=NULL;
278__STATIC__ int buf_sz=0;
279
280static int nb=0; /* no __STATIC__ decl. here! */
281
282LM_REAL *a, *tau, *r, *work;
283int a_sz, tau_sz, r_sz, tot_sz;
284register int i, j;
285int info, worksz, nrhs=1;
286register LM_REAL sum;
287
288 if(!A)
289#ifdef LINSOLVERS_RETAIN_MEMORY
290 {
291 if(buf) free(buf);
292 buf=NULL;
293 buf_sz=0;
294
295 return 1;
296 }
297#else
298 return 1; /* NOP */
299#endif /* LINSOLVERS_RETAIN_MEMORY */
300
301 if(m<n){
302 fprintf(stderr, RCAT("Normal equations require that the number of rows is greater than number of columns in ", AX_EQ_B_QRLS) "() [%d x %d]! -- try transposing\n", m, n);
303 exit(1);
304 }
305
306 /* calculate required memory size */
307 a_sz=m*n;
308 tau_sz=n;
309 r_sz=n*n;
310 if(!nb){
311 LM_REAL tmp;
312
313 worksz=-1; // workspace query; optimal size is returned in tmp
314 GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);
315 nb=((int)tmp)/m; // optimal worksize is m*nb
316 }
317 worksz=nb*m;
318 tot_sz=a_sz + tau_sz + r_sz + worksz;
319
320#ifdef LINSOLVERS_RETAIN_MEMORY
321 if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
322 if(buf) free(buf); /* free previously allocated memory */
323
324 buf_sz=tot_sz;
325 buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
326 if(!buf){
327 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");
328 exit(1);
329 }
330 }
331#else
332 buf_sz=tot_sz;
333 buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
334 if(!buf){
335 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");
336 exit(1);
337 }
338#endif /* LINSOLVERS_RETAIN_MEMORY */
339
340 a=buf;
341 tau=a+a_sz;
342 r=tau+tau_sz;
343 work=r+r_sz;
344
345 /* store A (column major!) into a */
346 for(i=0; i<m; i++)
347 for(j=0; j<n; j++)
348 a[i+j*m]=A[i*n+j];
349
350 /* compute A^T b in x */
351 for(i=0; i<n; i++){
352 for(j=0, sum=0.0; j<m; j++)
353 sum+=A[j*n+i]*B[j];
354 x[i]=sum;
355 }
356
357 /* QR decomposition of A */
358 GEQRF((int *)&m, (int *)&n, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
359 /* error treatment */
360 if(info!=0){
361 if(info<0){
362 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", -info);
363 exit(1);
364 }
365 else{
366 fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", info);
367#ifndef LINSOLVERS_RETAIN_MEMORY
368 free(buf);
369#endif
370
371 return 0;
372 }
373 }
374
375 /* R is stored in the upper triangular part of a. Note that a is mxn while r nxn */
376 for(j=0; j<n; j++){
377 for(i=0; i<=j; i++)
378 r[i+j*n]=a[i+j*m];
379
380 /* lower part is zero */
381 for(i=j+1; i<n; i++)
382 r[i+j*n]=0.0;
383 }
384
385 /* solve the linear system R^T y = A^t b */
386 TRTRS("U", "T", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info);
387 /* error treatment */
388 if(info!=0){
389 if(info<0){
390 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);
391 exit(1);
392 }
393 else{
394 fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);
395#ifndef LINSOLVERS_RETAIN_MEMORY
396 free(buf);
397#endif
398
399 return 0;
400 }
401 }
402
403 /* solve the linear system R x = y */
404 TRTRS("U", "N", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info);
405 /* error treatment */
406 if(info!=0){
407 if(info<0){
408 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);
409 exit(1);
410 }
411 else{
412 fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);
413#ifndef LINSOLVERS_RETAIN_MEMORY
414 free(buf);
415#endif
416
417 return 0;
418 }
419 }
420
421#ifndef LINSOLVERS_RETAIN_MEMORY
422 free(buf);
423#endif
424
425 return 1;
426}
427
428/*
429 * This function returns the solution of Ax=b
430 *
431 * The function assumes that A is symmetric & postive definite and employs
432 * the Cholesky decomposition:
433 * If A=L L^T with L lower triangular, the system to be solved becomes
434 * (L L^T) x = b
435 * This amounts to solving L y = b for y and then L^T x = y for x
436 *
437 * A is mxm, b is mx1
438 *
439 * The function returns 0 in case of error, 1 if successful
440 *
441 * This function is often called repetitively to solve problems of identical
442 * dimensions. To avoid repetitive malloc's and free's, allocated memory is
443 * retained between calls and free'd-malloc'ed when not of the appropriate size.
444 * A call with NULL as the first argument forces this memory to be released.
445 */
446int AX_EQ_B_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
447{
448__STATIC__ LM_REAL *buf=NULL;
449__STATIC__ int buf_sz=0;
450
451LM_REAL *a;
452int a_sz, tot_sz;
453int info, nrhs=1;
454
455 if(!A)
456#ifdef LINSOLVERS_RETAIN_MEMORY
457 {
458 if(buf) free(buf);
459 buf=NULL;
460 buf_sz=0;
461
462 return 1;
463 }
464#else
465 return 1; /* NOP */
466#endif /* LINSOLVERS_RETAIN_MEMORY */
467
468 /* calculate required memory size */
469 a_sz=m*m;
470 tot_sz=a_sz;
471
472#ifdef LINSOLVERS_RETAIN_MEMORY
473 if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
474 if(buf) free(buf); /* free previously allocated memory */
475
476 buf_sz=tot_sz;
477 buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
478 if(!buf){
479 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");
480 exit(1);
481 }
482 }
483#else
484 buf_sz=tot_sz;
485 buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
486 if(!buf){
487 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");
488 exit(1);
489 }
490#endif /* LINSOLVERS_RETAIN_MEMORY */
491
492 a=buf;
493
494 /* store A into a and B into x. A is assumed symmetric,
495 * hence no transposition is needed
496 */
497 memcpy(a, A, a_sz*sizeof(LM_REAL));
498 memcpy(x, B, m*sizeof(LM_REAL));
499
500 /* Cholesky decomposition of A */
501 //POTF2("L", (int *)&m, a, (int *)&m, (int *)&info);
502 POTRF("L", (int *)&m, a, (int *)&m, (int *)&info);
503 /* error treatment */
504 if(info!=0){
505 if(info<0){
506 fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTF2) "/", POTRF) " in ",
507 AX_EQ_B_CHOL) "()\n", -info);
508 exit(1);
509 }
510 else{
511 fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\nthe factorization could not be completed for ", POTF2) "/", POTRF) " in ", AX_EQ_B_CHOL) "()\n", info);
512#ifndef LINSOLVERS_RETAIN_MEMORY
513 free(buf);
514#endif
515
516 return 0;
517 }
518 }
519
520 /* solve using the computed Cholesky in one lapack call */
521 POTRS("L", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
522 if(info<0){
523 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTRS) " in ", AX_EQ_B_CHOL) "()\n", -info);
524 exit(1);
525 }
526
527#if 0
528 /* alternative: solve the linear system L y = b ... */
529 TRTRS("L", "N", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
530 /* error treatment */
531 if(info!=0){
532 if(info<0){
533 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_CHOL) "()\n", -info);
534 exit(1);
535 }
536 else{
537 fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info);
538#ifndef LINSOLVERS_RETAIN_MEMORY
539 free(buf);
540#endif
541
542 return 0;
543 }
544 }
545
546 /* ... solve the linear system L^T x = y */
547 TRTRS("L", "T", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
548 /* error treatment */
549 if(info!=0){
550 if(info<0){
551 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) "in ", AX_EQ_B_CHOL) "()\n", -info);
552 exit(1);
553 }
554 else{
555 fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info);
556#ifndef LINSOLVERS_RETAIN_MEMORY
557 free(buf);
558#endif
559
560 return 0;
561 }
562 }
563#endif /* 0 */
564
565#ifndef LINSOLVERS_RETAIN_MEMORY
566 free(buf);
567#endif
568
569 return 1;
570}
571
572#ifdef HAVE_PLASMA
573
574/* Linear algebra using PLASMA parallel library for multicore CPUs.
575 * http://icl.cs.utk.edu/plasma/
576 *
577 * WARNING: BLAS multithreading should be disabled, e.g. setenv MKL_NUM_THREADS 1
578 */
579
580#ifndef _LM_PLASMA_MISC_
581/* avoid multiple inclusion of helper code */
582#define _LM_PLASMA_MISC_
583
584#include <plasma.h>
585#include <cblas.h>
586#include <lapacke.h>
587#include <plasma_tmg.h>
588#include <core_blas.h>
589
590/* programmatically determine the number of cores on the current machine */
591#ifdef _WIN32
592#include <windows.h>
593#elif __linux
594#include <unistd.h>
595#endif
596static int getnbcores()
597{
598#ifdef _WIN32
599 SYSTEM_INFO sysinfo;
600 GetSystemInfo(&sysinfo);
601 return sysinfo.dwNumberOfProcessors;
602#elif __linux
603 return sysconf(_SC_NPROCESSORS_ONLN);
604#else // unknown system
605 return 2<<1; // will be halved by right shift below
606#endif
607}
608
609static int PLASMA_ncores=-(getnbcores()>>1); // >0 if PLASMA initialized, <0 otherwise
610
611/* user-specified number of cores */
612void levmar_PLASMA_setnbcores(int cores)
613{
614 PLASMA_ncores=(cores>0)? -cores : ((cores)? cores : -2);
615}
616#endif /* _LM_PLASMA_MISC_ */
617
618/*
619 * This function returns the solution of Ax=b
620 *
621 * The function assumes that A is symmetric & positive definite and employs the
622 * Cholesky decomposition implemented by PLASMA for homogeneous multicore processors.
623 *
624 * A is mxm, b is mx1
625 *
626 * The function returns 0 in case of error, 1 if successfull
627 *
628 * This function is often called repetitively to solve problems of identical
629 * dimensions. To avoid repetitive malloc's and free's, allocated memory is
630 * retained between calls and free'd-malloc'ed when not of the appropriate size.
631 * A call with NULL as the first argument forces this memory to be released.
632 */
633int AX_EQ_B_PLASMA_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
634{
635__STATIC__ LM_REAL *buf=NULL;
636__STATIC__ int buf_sz=0;
637
638LM_REAL *a;
639int a_sz, tot_sz;
640int info, nrhs=1;
641
642 if(A==NULL){
643#ifdef LINSOLVERS_RETAIN_MEMORY
644 if(buf) free(buf);
645 buf=NULL;
646 buf_sz=0;
647#endif /* LINSOLVERS_RETAIN_MEMORY */
648
649 PLASMA_Finalize();
650 PLASMA_ncores=-PLASMA_ncores;
651
652 return 1;
653 }
654
655 /* calculate required memory size */
656 a_sz=m*m;
657 tot_sz=a_sz;
658
659#ifdef LINSOLVERS_RETAIN_MEMORY
660 if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
661 if(buf) free(buf); /* free previously allocated memory */
662
663 buf_sz=tot_sz;
664 buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
665 if(!buf){
666 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_PLASMA_CHOL) "() failed!\n");
667 exit(1);
668 }
669 }
670#else
671 buf_sz=tot_sz;
672 buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
673 if(!buf){
674 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_PLASMA_CHOL) "() failed!\n");
675 exit(1);
676 }
677#endif /* LINSOLVERS_RETAIN_MEMORY */
678
679 a=buf;
680
681 /* store A into a and B into x; A is assumed to be symmetric,
682 * hence no transposition is needed
683 */
684 memcpy(a, A, a_sz*sizeof(LM_REAL));
685 memcpy(x, B, m*sizeof(LM_REAL));
686
687 /* initialize PLASMA */
688 if(PLASMA_ncores<0){
689 PLASMA_ncores=-PLASMA_ncores;
690 PLASMA_Init(PLASMA_ncores);
691 fprintf(stderr, RCAT("\n", AX_EQ_B_PLASMA_CHOL) "(): PLASMA is running on %d cores.\n\n", PLASMA_ncores);
692 }
693
694 /* Solve the linear system */
695 info=PLASMA_POSV(PlasmaLower, m, 1, a, m, x, m);
696 /* error treatment */
697 if(info!=0){
698 if(info<0){
699 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", PLASMA_POSV) " in ",
700 AX_EQ_B_PLASMA_CHOL) "()\n", -info);
701 exit(1);
702 }
703 else{
704 fprintf(stderr, RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\n"
705 "the factorization could not be completed for ", PLASMA_POSV) " in ", AX_EQ_B_CHOL) "()\n", info);
706#ifndef LINSOLVERS_RETAIN_MEMORY
707 free(buf);
708#endif
709 return 0;
710 }
711 }
712
713#ifndef LINSOLVERS_RETAIN_MEMORY
714 free(buf);
715#endif
716
717 return 1;
718}
719#endif /* HAVE_PLASMA */
720
721/*
722 * This function returns the solution of Ax = b
723 *
724 * The function employs LU decomposition:
725 * If A=L U with L lower and U upper triangular, then the original system
726 * amounts to solving
727 * L y = b, U x = y
728 *
729 * A is mxm, b is mx1
730 *
731 * The function returns 0 in case of error, 1 if successful
732 *
733 * This function is often called repetitively to solve problems of identical
734 * dimensions. To avoid repetitive malloc's and free's, allocated memory is
735 * retained between calls and free'd-malloc'ed when not of the appropriate size.
736 * A call with NULL as the first argument forces this memory to be released.
737 */
738int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
739{
740__STATIC__ LM_REAL *buf=NULL;
741__STATIC__ int buf_sz=0;
742
743int a_sz, ipiv_sz, tot_sz;
744register int i, j;
745int info, *ipiv, nrhs=1;
746LM_REAL *a;
747
748 if(!A)
749#ifdef LINSOLVERS_RETAIN_MEMORY
750 {
751 if(buf) free(buf);
752 buf=NULL;
753 buf_sz=0;
754
755 return 1;
756 }
757#else
758 return 1; /* NOP */
759#endif /* LINSOLVERS_RETAIN_MEMORY */
760
761 /* calculate required memory size */
762 ipiv_sz=m;
763 a_sz=m*m;
764 tot_sz=a_sz*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
765
766#ifdef LINSOLVERS_RETAIN_MEMORY
767 if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
768 if(buf) free(buf); /* free previously allocated memory */
769
770 buf_sz=tot_sz;
771 buf=(LM_REAL *)malloc(buf_sz);
772 if(!buf){
773 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
774 exit(1);
775 }
776 }
777#else
778 buf_sz=tot_sz;
779 buf=(LM_REAL *)malloc(buf_sz);
780 if(!buf){
781 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
782 exit(1);
783 }
784#endif /* LINSOLVERS_RETAIN_MEMORY */
785
786 a=buf;
787 ipiv=(int *)(a+a_sz);
788
789 /* store A (column major!) into a and B into x */
790 for(i=0; i<m; i++){
791 for(j=0; j<m; j++)
792 a[i+j*m]=A[i*m+j];
793
794 x[i]=B[i];
795 }
796
797 /* LU decomposition for A */
798 GETRF((int *)&m, (int *)&m, a, (int *)&m, ipiv, (int *)&info);
799 if(info!=0){
800 if(info<0){
801 fprintf(stderr, RCAT(RCAT("argument %d of ", GETRF) " illegal in ", AX_EQ_B_LU) "()\n", -info);
802 exit(1);
803 }
804 else{
805 fprintf(stderr, RCAT(RCAT("singular matrix A for ", GETRF) " in ", AX_EQ_B_LU) "()\n");
806#ifndef LINSOLVERS_RETAIN_MEMORY
807 free(buf);
808#endif
809
810 return 0;
811 }
812 }
813
814 /* solve the system with the computed LU */
815 GETRS("N", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info);
816 if(info!=0){
817 if(info<0){
818 fprintf(stderr, RCAT(RCAT("argument %d of ", GETRS) " illegal in ", AX_EQ_B_LU) "()\n", -info);
819 exit(1);
820 }
821 else{
822 fprintf(stderr, RCAT(RCAT("unknown error for ", GETRS) " in ", AX_EQ_B_LU) "()\n");
823#ifndef LINSOLVERS_RETAIN_MEMORY
824 free(buf);
825#endif
826
827 return 0;
828 }
829 }
830
831#ifndef LINSOLVERS_RETAIN_MEMORY
832 free(buf);
833#endif
834
835 return 1;
836}
837
838/*
839 * This function returns the solution of Ax = b
840 *
841 * The function is based on SVD decomposition:
842 * If A=U D V^T with U, V orthogonal and D diagonal, the linear system becomes
843 * (U D V^T) x = b or x=V D^{-1} U^T b
844 * Note that V D^{-1} U^T is the pseudoinverse A^+
845 *
846 * A is mxm, b is mx1.
847 *
848 * The function returns 0 in case of error, 1 if successful
849 *
850 * This function is often called repetitively to solve problems of identical
851 * dimensions. To avoid repetitive malloc's and free's, allocated memory is
852 * retained between calls and free'd-malloc'ed when not of the appropriate size.
853 * A call with NULL as the first argument forces this memory to be released.
854 */
855int AX_EQ_B_SVD(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
856{
857__STATIC__ LM_REAL *buf=NULL;
858__STATIC__ int buf_sz=0;
859static LM_REAL eps=LM_CNST(-1.0);
860
861register int i, j;
862LM_REAL *a, *u, *s, *vt, *work;
863int a_sz, u_sz, s_sz, vt_sz, tot_sz;
864LM_REAL thresh, one_over_denom;
865register LM_REAL sum;
866int info, rank, worksz, *iwork, iworksz;
867
868 if(!A)
869#ifdef LINSOLVERS_RETAIN_MEMORY
870 {
871 if(buf) free(buf);
872 buf=NULL;
873 buf_sz=0;
874
875 return 1;
876 }
877#else
878 return 1; /* NOP */
879#endif /* LINSOLVERS_RETAIN_MEMORY */
880
881 /* calculate required memory size */
882#if 1 /* use optimal size */
883 worksz=-1; // workspace query. Keep in mind that GESDD requires more memory than GESVD
884 /* note that optimal work size is returned in thresh */
885 GESVD("A", "A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, &info);
886 //GESDD("A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, NULL, &info);
887 worksz=(int)thresh;
888#else /* use minimum size */
889 worksz=5*m; // min worksize for GESVD
890 //worksz=m*(7*m+4); // min worksize for GESDD
891#endif
892 iworksz=8*m;
893 a_sz=m*m;
894 u_sz=m*m; s_sz=m; vt_sz=m*m;
895
896 tot_sz=(a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL) + iworksz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
897
898#ifdef LINSOLVERS_RETAIN_MEMORY
899 if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
900 if(buf) free(buf); /* free previously allocated memory */
901
902 buf_sz=tot_sz;
903 buf=(LM_REAL *)malloc(buf_sz);
904 if(!buf){
905 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n");
906 exit(1);
907 }
908 }
909#else
910 buf_sz=tot_sz;
911 buf=(LM_REAL *)malloc(buf_sz);
912 if(!buf){
913 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n");
914 exit(1);
915 }
916#endif /* LINSOLVERS_RETAIN_MEMORY */
917
918 a=buf;
919 u=a+a_sz;
920 s=u+u_sz;
921 vt=s+s_sz;
922 work=vt+vt_sz;
923 iwork=(int *)(work+worksz);
924
925 /* store A (column major!) into a */
926 for(i=0; i<m; i++)
927 for(j=0; j<m; j++)
928 a[i+j*m]=A[i*m+j];
929
930 /* SVD decomposition of A */
931 GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info);
932 //GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info);
933
934 /* error treatment */
935 if(info!=0){
936 if(info<0){
937 fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", AX_EQ_B_SVD) "()\n", -info);
938 exit(1);
939 }
940 else{
941 fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", AX_EQ_B_SVD) "() [info=%d]\n", info);
942#ifndef LINSOLVERS_RETAIN_MEMORY
943 free(buf);
944#endif
945
946 return 0;
947 }
948 }
949
950 if(eps<0.0){
951 LM_REAL aux;
952
953 /* compute machine epsilon */
954 for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5))
955 ;
956 eps*=LM_CNST(2.0);
957 }
958
959 /* compute the pseudoinverse in a */
960 for(i=0; i<a_sz; i++) a[i]=0.0; /* initialize to zero */
961 for(rank=0, thresh=eps*s[0]; rank<m && s[rank]>thresh; rank++){
962 one_over_denom=LM_CNST(1.0)/s[rank];
963
964 for(j=0; j<m; j++)
965 for(i=0; i<m; i++)
966 a[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom;
967 }
968
969 /* compute A^+ b in x */
970 for(i=0; i<m; i++){
971 for(j=0, sum=0.0; j<m; j++)
972 sum+=a[i*m+j]*B[j];
973 x[i]=sum;
974 }
975
976#ifndef LINSOLVERS_RETAIN_MEMORY
977 free(buf);
978#endif
979
980 return 1;
981}
982
983/*
984 * This function returns the solution of Ax = b for a real symmetric matrix A
985 *
986 * The function is based on LDLT factorization with the pivoting
987 * strategy of Bunch and Kaufman:
988 * A is factored as L*D*L^T where L is lower triangular and
989 * D symmetric and block diagonal (aka spectral decomposition,
990 * Banachiewicz factorization, modified Cholesky factorization)
991 *
992 * A is mxm, b is mx1.
993 *
994 * The function returns 0 in case of error, 1 if successfull
995 *
996 * This function is often called repetitively to solve problems of identical
997 * dimensions. To avoid repetitive malloc's and free's, allocated memory is
998 * retained between calls and free'd-malloc'ed when not of the appropriate size.
999 * A call with NULL as the first argument forces this memory to be released.
1000 */
1001int AX_EQ_B_BK(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
1002{
1003__STATIC__ LM_REAL *buf=NULL;
1004__STATIC__ int buf_sz=0, nb=0;
1005
1006LM_REAL *a, *work;
1007int a_sz, ipiv_sz, work_sz, tot_sz;
1008int info, *ipiv, nrhs=1;
1009
1010 if(!A)
1011#ifdef LINSOLVERS_RETAIN_MEMORY
1012 {
1013 if(buf) free(buf);
1014 buf=NULL;
1015 buf_sz=0;
1016
1017 return 1;
1018 }
1019#else
1020 return 1; /* NOP */
1021#endif /* LINSOLVERS_RETAIN_MEMORY */
1022
1023 /* calculate required memory size */
1024 ipiv_sz=m;
1025 a_sz=m*m;
1026 if(!nb){
1027 LM_REAL tmp;
1028
1029 work_sz=-1; // workspace query; optimal size is returned in tmp
1030 SYTRF("L", (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&work_sz, (int *)&info);
1031 nb=((int)tmp)/m; // optimal worksize is m*nb
1032 }
1033 work_sz=(nb!=-1)? nb*m : 1;
1034 tot_sz=(a_sz + work_sz)*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
1035
1036#ifdef LINSOLVERS_RETAIN_MEMORY
1037 if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
1038 if(buf) free(buf); /* free previously allocated memory */
1039
1040 buf_sz=tot_sz;
1041 buf=(LM_REAL *)malloc(buf_sz);
1042 if(!buf){
1043 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n");
1044 exit(1);
1045 }
1046 }
1047#else
1048 buf_sz=tot_sz;
1049 buf=(LM_REAL *)malloc(buf_sz);
1050 if(!buf){
1051 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n");
1052 exit(1);
1053 }
1054#endif /* LINSOLVERS_RETAIN_MEMORY */
1055
1056 a=buf;
1057 work=a+a_sz;
1058 ipiv=(int *)(work+work_sz);
1059
1060 /* store A into a and B into x; A is assumed to be symmetric, hence
1061 * the column and row major order representations are the same
1062 */
1063 memcpy(a, A, a_sz*sizeof(LM_REAL));
1064 memcpy(x, B, m*sizeof(LM_REAL));
1065
1066 /* LDLt factorization for A */
1067 SYTRF("L", (int *)&m, a, (int *)&m, ipiv, work, (int *)&work_sz, (int *)&info);
1068 if(info!=0){
1069 if(info<0){
1070 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRF) " in ", AX_EQ_B_BK) "()\n", -info);
1071 exit(1);
1072 }
1073 else{
1074 fprintf(stderr, RCAT(RCAT("LAPACK error: singular block diagonal matrix D for", SYTRF) " in ", AX_EQ_B_BK)"() [D(%d, %d) is zero]\n", info, info);
1075#ifndef LINSOLVERS_RETAIN_MEMORY
1076 free(buf);
1077#endif
1078
1079 return 0;
1080 }
1081 }
1082
1083 /* solve the system with the computed factorization */
1084 SYTRS("L", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info);
1085 if(info<0){
1086 fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRS) " in ", AX_EQ_B_BK) "()\n", -info);
1087 exit(1);
1088 }
1089
1090#ifndef LINSOLVERS_RETAIN_MEMORY
1091 free(buf);
1092#endif
1093
1094 return 1;
1095}
1096
1097/* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */
1098#undef AX_EQ_B_QR
1099#undef AX_EQ_B_QRLS
1100#undef AX_EQ_B_CHOL
1101#undef AX_EQ_B_LU
1102#undef AX_EQ_B_SVD
1103#undef AX_EQ_B_BK
1104#undef AX_EQ_B_PLASMA_CHOL
1105
1106#undef GEQRF
1107#undef ORGQR
1108#undef TRTRS
1109#undef POTF2
1110#undef POTRF
1111#undef POTRS
1112#undef GETRF
1113#undef GETRS
1114#undef GESVD
1115#undef GESDD
1116#undef SYTRF
1117#undef SYTRS
1118#undef PLASMA_POSV
1119
1120#else // no LAPACK
1121
1122/* precision-specific definitions */
1123#define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)
1124
1125/*
1126 * This function returns the solution of Ax = b
1127 *
1128 * The function employs LU decomposition followed by forward/back substitution (see
1129 * also the LAPACK-based LU solver above)
1130 *
1131 * A is mxm, b is mx1
1132 *
1133 * The function returns 0 in case of error, 1 if successful
1134 *
1135 * This function is often called repetitively to solve problems of identical
1136 * dimensions. To avoid repetitive malloc's and free's, allocated memory is
1137 * retained between calls and free'd-malloc'ed when not of the appropriate size.
1138 * A call with NULL as the first argument forces this memory to be released.
1139 */
1140int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
1141{
1142__STATIC__ void *buf=NULL;
1143__STATIC__ int buf_sz=0;
1144
1145register int i, j, k;
1146int *idx, maxi=-1, idx_sz, a_sz, work_sz, tot_sz;
1147LM_REAL *a, *work, max, sum, tmp;
1148
1149 if(!A)
1150#ifdef LINSOLVERS_RETAIN_MEMORY
1151 {
1152 if(buf) free(buf);
1153 buf=NULL;
1154 buf_sz=0;
1155
1156 return 1;
1157 }
1158#else
1159 return 1; /* NOP */
1160#endif /* LINSOLVERS_RETAIN_MEMORY */
1161
1162 /* calculate required memory size */
1163 idx_sz=m;
1164 a_sz=m*m;
1165 work_sz=m;
1166 tot_sz=(a_sz+work_sz)*sizeof(LM_REAL) + idx_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
1167
1168#ifdef LINSOLVERS_RETAIN_MEMORY
1169 if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
1170 if(buf) free(buf); /* free previously allocated memory */
1171
1172 buf_sz=tot_sz;
1173 buf=(void *)malloc(tot_sz);
1174 if(!buf){
1175 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
1176 exit(1);
1177 }
1178 }
1179#else
1180 buf_sz=tot_sz;
1181 buf=(void *)malloc(tot_sz);
1182 if(!buf){
1183 fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
1184 exit(1);
1185 }
1186#endif /* LINSOLVERS_RETAIN_MEMORY */
1187
1188 a=buf;
1189 work=a+a_sz;
1190 idx=(int *)(work+work_sz);
1191
1192 /* avoid destroying A, B by copying them to a, x resp. */
1193 memcpy(a, A, a_sz*sizeof(LM_REAL));
1194 memcpy(x, B, m*sizeof(LM_REAL));
1195
1196 /* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */
1197 for(i=0; i<m; ++i){
1198 max=0.0;
1199 for(j=0; j<m; ++j)
1200 if((tmp=FABS(a[i*m+j]))>max)
1201 max=tmp;
1202 if(max==0.0){
1203 fprintf(stderr, RCAT("Singular matrix A in ", AX_EQ_B_LU) "()!\n");
1204#ifndef LINSOLVERS_RETAIN_MEMORY
1205 free(buf);
1206#endif
1207
1208 return 0;
1209 }
1210 work[i]=LM_CNST(1.0)/max;
1211 }
1212
1213 for(j=0; j<m; ++j){
1214 for(i=0; i<j; ++i){
1215 sum=a[i*m+j];
1216 for(k=0; k<i; ++k)
1217 sum-=a[i*m+k]*a[k*m+j];
1218 a[i*m+j]=sum;
1219 }
1220 max=0.0;
1221 for(i=j; i<m; ++i){
1222 sum=a[i*m+j];
1223 for(k=0; k<j; ++k)
1224 sum-=a[i*m+k]*a[k*m+j];
1225 a[i*m+j]=sum;
1226 if((tmp=work[i]*FABS(sum))>=max){
1227 max=tmp;
1228 maxi=i;
1229 }
1230 }
1231 if(j!=maxi){
1232 for(k=0; k<m; ++k){
1233 tmp=a[maxi*m+k];
1234 a[maxi*m+k]=a[j*m+k];
1235 a[j*m+k]=tmp;
1236 }
1237 work[maxi]=work[j];
1238 }
1239 idx[j]=maxi;
1240 if(a[j*m+j]==0.0)
1241 a[j*m+j]=LM_REAL_EPSILON;
1242 if(j!=m-1){
1243 tmp=LM_CNST(1.0)/(a[j*m+j]);
1244 for(i=j+1; i<m; ++i)
1245 a[i*m+j]*=tmp;
1246 }
1247 }
1248
1249 /* The decomposition has now replaced a. Solve the linear system using
1250 * forward and back substitution
1251 */
1252 for(i=k=0; i<m; ++i){
1253 j=idx[i];
1254 sum=x[j];
1255 x[j]=x[i];
1256 if(k!=0)
1257 for(j=k-1; j<i; ++j)
1258 sum-=a[i*m+j]*x[j];
1259 else
1260 if(sum!=0.0)
1261 k=i+1;
1262 x[i]=sum;
1263 }
1264
1265 for(i=m-1; i>=0; --i){
1266 sum=x[i];
1267 for(j=i+1; j<m; ++j)
1268 sum-=a[i*m+j]*x[j];
1269 x[i]=sum/a[i*m+i];
1270 }
1271
1272#ifndef LINSOLVERS_RETAIN_MEMORY
1273 free(buf);
1274#endif
1275
1276 return 1;
1277}
1278
1279/* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */
1280#undef AX_EQ_B_LU
1281
1282#endif /* HAVE_LAPACK */
Note: See TracBrowser for help on using the repository browser.