| [5443b1] | 1 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 2 | // 
 | 
|---|
 | 3 | //  Solution of linear systems involved in the Levenberg - Marquardt
 | 
|---|
 | 4 | //  minimization algorithm
 | 
|---|
 | 5 | //  Copyright (C) 2004  Manolis Lourakis (lourakis at ics forth gr)
 | 
|---|
 | 6 | //  Institute of Computer Science, Foundation for Research & Technology - Hellas
 | 
|---|
 | 7 | //  Heraklion, Crete, Greece.
 | 
|---|
 | 8 | //
 | 
|---|
 | 9 | //  This program is free software; you can redistribute it and/or modify
 | 
|---|
 | 10 | //  it under the terms of the GNU General Public License as published by
 | 
|---|
 | 11 | //  the Free Software Foundation; either version 2 of the License, or
 | 
|---|
 | 12 | //  (at your option) any later version.
 | 
|---|
 | 13 | //
 | 
|---|
 | 14 | //  This program is distributed in the hope that it will be useful,
 | 
|---|
 | 15 | //  but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
 | 16 | //  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
 | 17 | //  GNU General Public License for more details.
 | 
|---|
 | 18 | //
 | 
|---|
 | 19 | /////////////////////////////////////////////////////////////////////////////////
 | 
|---|
 | 20 | 
 | 
|---|
 | 21 | 
 | 
|---|
 | 22 | /* Solvers for the linear systems Ax=b. Solvers should NOT modify their A & B arguments! */
 | 
|---|
 | 23 | 
 | 
|---|
 | 24 | 
 | 
|---|
 | 25 | #ifndef LM_REAL // not included by Axb.c
 | 
|---|
 | 26 | #error This file should not be compiled directly!
 | 
|---|
 | 27 | #endif
 | 
|---|
 | 28 | 
 | 
|---|
 | 29 | 
 | 
|---|
 | 30 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 31 | #define __STATIC__ static
 | 
|---|
 | 32 | #else
 | 
|---|
 | 33 | #define __STATIC__ // empty
 | 
|---|
 | 34 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 35 | 
 | 
|---|
 | 36 | #ifdef HAVE_LAPACK
 | 
|---|
 | 37 | 
 | 
|---|
 | 38 | /* prototypes of LAPACK routines */
 | 
|---|
 | 39 | 
 | 
|---|
 | 40 | #define GEQRF LM_MK_LAPACK_NAME(geqrf)
 | 
|---|
 | 41 | #define ORGQR LM_MK_LAPACK_NAME(orgqr)
 | 
|---|
 | 42 | #define TRTRS LM_MK_LAPACK_NAME(trtrs)
 | 
|---|
 | 43 | #define POTF2 LM_MK_LAPACK_NAME(potf2)
 | 
|---|
 | 44 | #define POTRF LM_MK_LAPACK_NAME(potrf)
 | 
|---|
 | 45 | #define POTRS LM_MK_LAPACK_NAME(potrs)
 | 
|---|
 | 46 | #define GETRF LM_MK_LAPACK_NAME(getrf)
 | 
|---|
 | 47 | #define GETRS LM_MK_LAPACK_NAME(getrs)
 | 
|---|
 | 48 | #define GESVD LM_MK_LAPACK_NAME(gesvd)
 | 
|---|
 | 49 | #define GESDD LM_MK_LAPACK_NAME(gesdd)
 | 
|---|
 | 50 | #define SYTRF LM_MK_LAPACK_NAME(sytrf)
 | 
|---|
 | 51 | #define SYTRS LM_MK_LAPACK_NAME(sytrs)
 | 
|---|
 | 52 | #define PLASMA_POSV LM_CAT_(PLASMA_, LM_ADD_PREFIX(posv))
 | 
|---|
 | 53 | 
 | 
|---|
 | 54 | #ifdef __cplusplus
 | 
|---|
 | 55 | extern "C" {
 | 
|---|
 | 56 | #endif
 | 
|---|
 | 57 | /* QR decomposition */
 | 
|---|
 | 58 | extern int GEQRF(int *m, int *n, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);
 | 
|---|
 | 59 | extern int ORGQR(int *m, int *n, int *k, LM_REAL *a, int *lda, LM_REAL *tau, LM_REAL *work, int *lwork, int *info);
 | 
|---|
 | 60 | 
 | 
|---|
 | 61 | /* solution of triangular systems */
 | 
|---|
 | 62 | extern int TRTRS(char *uplo, char *trans, char *diag, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);
 | 
|---|
 | 63 | 
 | 
|---|
 | 64 | /* Cholesky decomposition and systems solution */
 | 
|---|
 | 65 | extern int POTF2(char *uplo, int *n, LM_REAL *a, int *lda, int *info);
 | 
|---|
 | 66 | extern int POTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *info); /* block version of dpotf2 */
 | 
|---|
 | 67 | extern int POTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, LM_REAL *b, int *ldb, int *info);
 | 
|---|
 | 68 | 
 | 
|---|
 | 69 | /* LU decomposition and systems solution */
 | 
|---|
 | 70 | extern int GETRF(int *m, int *n, LM_REAL *a, int *lda, int *ipiv, int *info);
 | 
|---|
 | 71 | extern int GETRS(char *trans, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);
 | 
|---|
 | 72 | 
 | 
|---|
 | 73 | /* Singular Value Decomposition (SVD) */
 | 
|---|
 | 74 | extern int GESVD(char *jobu, char *jobvt, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu,
 | 
|---|
 | 75 |                    LM_REAL *vt, int *ldvt, LM_REAL *work, int *lwork, int *info);
 | 
|---|
 | 76 | 
 | 
|---|
 | 77 | /* lapack 3.0 new SVD routine, faster than xgesvd().
 | 
|---|
 | 78 |  * In case that your version of LAPACK does not include them, use the above two older routines
 | 
|---|
 | 79 |  */
 | 
|---|
 | 80 | extern int GESDD(char *jobz, int *m, int *n, LM_REAL *a, int *lda, LM_REAL *s, LM_REAL *u, int *ldu, LM_REAL *vt, int *ldvt,
 | 
|---|
 | 81 |                    LM_REAL *work, int *lwork, int *iwork, int *info);
 | 
|---|
 | 82 | 
 | 
|---|
 | 83 | /* LDLt/UDUt factorization and systems solution */
 | 
|---|
 | 84 | extern int SYTRF(char *uplo, int *n, LM_REAL *a, int *lda, int *ipiv, LM_REAL *work, int *lwork, int *info);
 | 
|---|
 | 85 | extern int SYTRS(char *uplo, int *n, int *nrhs, LM_REAL *a, int *lda, int *ipiv, LM_REAL *b, int *ldb, int *info);
 | 
|---|
 | 86 | #ifdef __cplusplus
 | 
|---|
 | 87 | }
 | 
|---|
 | 88 | #endif
 | 
|---|
 | 89 | 
 | 
|---|
 | 90 | /* precision-specific definitions */
 | 
|---|
 | 91 | #define AX_EQ_B_QR LM_ADD_PREFIX(Ax_eq_b_QR)
 | 
|---|
 | 92 | #define AX_EQ_B_QRLS LM_ADD_PREFIX(Ax_eq_b_QRLS)
 | 
|---|
 | 93 | #define AX_EQ_B_CHOL LM_ADD_PREFIX(Ax_eq_b_Chol)
 | 
|---|
 | 94 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU)
 | 
|---|
 | 95 | #define AX_EQ_B_SVD LM_ADD_PREFIX(Ax_eq_b_SVD)
 | 
|---|
 | 96 | #define AX_EQ_B_BK LM_ADD_PREFIX(Ax_eq_b_BK)
 | 
|---|
 | 97 | #define AX_EQ_B_PLASMA_CHOL LM_ADD_PREFIX(Ax_eq_b_PLASMA_Chol)
 | 
|---|
 | 98 | 
 | 
|---|
 | 99 | /*
 | 
|---|
 | 100 |  * This function returns the solution of Ax = b
 | 
|---|
 | 101 |  *
 | 
|---|
 | 102 |  * The function is based on QR decomposition with explicit computation of Q:
 | 
|---|
 | 103 |  * If A=Q R with Q orthogonal and R upper triangular, the linear system becomes
 | 
|---|
 | 104 |  * Q R x = b or R x = Q^T b.
 | 
|---|
 | 105 |  * The last equation can be solved directly.
 | 
|---|
 | 106 |  *
 | 
|---|
 | 107 |  * A is mxm, b is mx1
 | 
|---|
 | 108 |  *
 | 
|---|
 | 109 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
 | 110 |  *
 | 
|---|
 | 111 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
 | 112 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
 | 113 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
 | 114 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
 | 115 |  */
 | 
|---|
 | 116 | int AX_EQ_B_QR(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
 | 117 | {
 | 
|---|
 | 118 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
 | 119 | __STATIC__ int buf_sz=0;
 | 
|---|
 | 120 | 
 | 
|---|
 | 121 | static int nb=0; /* no __STATIC__ decl. here! */
 | 
|---|
 | 122 | 
 | 
|---|
 | 123 | LM_REAL *a, *tau, *r, *work;
 | 
|---|
 | 124 | int a_sz, tau_sz, r_sz, tot_sz;
 | 
|---|
 | 125 | register int i, j;
 | 
|---|
 | 126 | int info, worksz, nrhs=1;
 | 
|---|
 | 127 | register LM_REAL sum;
 | 
|---|
 | 128 | 
 | 
|---|
 | 129 |     if(!A)
 | 
|---|
 | 130 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 131 |     {
 | 
|---|
 | 132 |       if(buf) free(buf);
 | 
|---|
 | 133 |       buf=NULL;
 | 
|---|
 | 134 |       buf_sz=0;
 | 
|---|
 | 135 | 
 | 
|---|
 | 136 |       return 1;
 | 
|---|
 | 137 |     }
 | 
|---|
 | 138 | #else
 | 
|---|
 | 139 |       return 1; /* NOP */
 | 
|---|
 | 140 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 141 |    
 | 
|---|
 | 142 |     /* calculate required memory size */
 | 
|---|
 | 143 |     a_sz=m*m;
 | 
|---|
 | 144 |     tau_sz=m;
 | 
|---|
 | 145 |     r_sz=m*m; /* only the upper triangular part really needed */
 | 
|---|
 | 146 |     if(!nb){
 | 
|---|
 | 147 |       LM_REAL tmp;
 | 
|---|
 | 148 | 
 | 
|---|
 | 149 |       worksz=-1; // workspace query; optimal size is returned in tmp
 | 
|---|
 | 150 |       GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);
 | 
|---|
 | 151 |       nb=((int)tmp)/m; // optimal worksize is m*nb
 | 
|---|
 | 152 |     }
 | 
|---|
 | 153 |     worksz=nb*m;
 | 
|---|
 | 154 |     tot_sz=a_sz + tau_sz + r_sz + worksz;
 | 
|---|
 | 155 | 
 | 
|---|
 | 156 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 157 |     if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
 | 158 |       if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
 | 159 | 
 | 
|---|
 | 160 |       buf_sz=tot_sz;
 | 
|---|
 | 161 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
 | 162 |       if(!buf){
 | 
|---|
 | 163 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");
 | 
|---|
 | 164 |         exit(1);
 | 
|---|
 | 165 |       }
 | 
|---|
 | 166 |     }
 | 
|---|
 | 167 | #else
 | 
|---|
 | 168 |       buf_sz=tot_sz;
 | 
|---|
 | 169 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
 | 170 |       if(!buf){
 | 
|---|
 | 171 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QR) "() failed!\n");
 | 
|---|
 | 172 |         exit(1);
 | 
|---|
 | 173 |       }
 | 
|---|
 | 174 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 175 | 
 | 
|---|
 | 176 |     a=buf;
 | 
|---|
 | 177 |     tau=a+a_sz;
 | 
|---|
 | 178 |     r=tau+tau_sz;
 | 
|---|
 | 179 |     work=r+r_sz;
 | 
|---|
 | 180 | 
 | 
|---|
 | 181 |   /* store A (column major!) into a */
 | 
|---|
 | 182 |         for(i=0; i<m; i++)
 | 
|---|
 | 183 |                 for(j=0; j<m; j++)
 | 
|---|
 | 184 |                         a[i+j*m]=A[i*m+j];
 | 
|---|
 | 185 | 
 | 
|---|
 | 186 |   /* QR decomposition of A */
 | 
|---|
 | 187 |   GEQRF((int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
 | 
|---|
 | 188 |   /* error treatment */
 | 
|---|
 | 189 |   if(info!=0){
 | 
|---|
 | 190 |     if(info<0){
 | 
|---|
 | 191 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QR) "()\n", -info);
 | 
|---|
 | 192 |       exit(1);
 | 
|---|
 | 193 |     }
 | 
|---|
 | 194 |     else{
 | 
|---|
 | 195 |       fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QR) "()\n", info);
 | 
|---|
 | 196 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 197 |       free(buf);
 | 
|---|
 | 198 | #endif
 | 
|---|
 | 199 | 
 | 
|---|
 | 200 |       return 0;
 | 
|---|
 | 201 |     }
 | 
|---|
 | 202 |   }
 | 
|---|
 | 203 | 
 | 
|---|
 | 204 |   /* R is stored in the upper triangular part of a; copy it in r so that ORGQR() below won't destroy it */ 
 | 
|---|
 | 205 |   memcpy(r, a, r_sz*sizeof(LM_REAL));
 | 
|---|
 | 206 | 
 | 
|---|
 | 207 |   /* compute Q using the elementary reflectors computed by the above decomposition */
 | 
|---|
 | 208 |   ORGQR((int *)&m, (int *)&m, (int *)&m, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
 | 
|---|
 | 209 |   if(info!=0){
 | 
|---|
 | 210 |     if(info<0){
 | 
|---|
 | 211 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", ORGQR) " in ", AX_EQ_B_QR) "()\n", -info);
 | 
|---|
 | 212 |       exit(1);
 | 
|---|
 | 213 |     }
 | 
|---|
 | 214 |     else{
 | 
|---|
 | 215 |       fprintf(stderr, RCAT("Unknown LAPACK error (%d) in ", AX_EQ_B_QR) "()\n", info);
 | 
|---|
 | 216 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 217 |       free(buf);
 | 
|---|
 | 218 | #endif
 | 
|---|
 | 219 | 
 | 
|---|
 | 220 |       return 0;
 | 
|---|
 | 221 |     }
 | 
|---|
 | 222 |   }
 | 
|---|
 | 223 | 
 | 
|---|
 | 224 |   /* Q is now in a; compute Q^T b in x */
 | 
|---|
 | 225 |   for(i=0; i<m; i++){
 | 
|---|
 | 226 |     for(j=0, sum=0.0; j<m; j++)
 | 
|---|
 | 227 |       sum+=a[i*m+j]*B[j];
 | 
|---|
 | 228 |     x[i]=sum;
 | 
|---|
 | 229 |   }
 | 
|---|
 | 230 | 
 | 
|---|
 | 231 |   /* solve the linear system R x = Q^t b */
 | 
|---|
 | 232 |   TRTRS("U", "N", "N", (int *)&m, (int *)&nrhs, r, (int *)&m, x, (int *)&m, &info);
 | 
|---|
 | 233 |   /* error treatment */
 | 
|---|
 | 234 |   if(info!=0){
 | 
|---|
 | 235 |     if(info<0){
 | 
|---|
 | 236 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QR) "()\n", -info);
 | 
|---|
 | 237 |       exit(1);
 | 
|---|
 | 238 |     }
 | 
|---|
 | 239 |     else{
 | 
|---|
 | 240 |       fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QR) "()\n", info);
 | 
|---|
 | 241 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 242 |       free(buf);
 | 
|---|
 | 243 | #endif
 | 
|---|
 | 244 | 
 | 
|---|
 | 245 |       return 0;
 | 
|---|
 | 246 |     }
 | 
|---|
 | 247 |   }
 | 
|---|
 | 248 | 
 | 
|---|
 | 249 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 250 |   free(buf);
 | 
|---|
 | 251 | #endif
 | 
|---|
 | 252 | 
 | 
|---|
 | 253 |         return 1;
 | 
|---|
 | 254 | }
 | 
|---|
 | 255 | 
 | 
|---|
 | 256 | /*
 | 
|---|
 | 257 |  * This function returns the solution of min_x ||Ax - b||
 | 
|---|
 | 258 |  *
 | 
|---|
 | 259 |  * || . || is the second order (i.e. L2) norm. This is a least squares technique that
 | 
|---|
 | 260 |  * is based on QR decomposition:
 | 
|---|
 | 261 |  * If A=Q R with Q orthogonal and R upper triangular, the normal equations become
 | 
|---|
 | 262 |  * (A^T A) x = A^T b  or (R^T Q^T Q R) x = A^T b or (R^T R) x = A^T b.
 | 
|---|
 | 263 |  * This amounts to solving R^T y = A^T b for y and then R x = y for x
 | 
|---|
 | 264 |  * Note that Q does not need to be explicitly computed
 | 
|---|
 | 265 |  *
 | 
|---|
 | 266 |  * A is mxn, b is mx1
 | 
|---|
 | 267 |  *
 | 
|---|
 | 268 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
 | 269 |  *
 | 
|---|
 | 270 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
 | 271 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
 | 272 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
 | 273 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
 | 274 |  */
 | 
|---|
 | 275 | int AX_EQ_B_QRLS(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m, int n)
 | 
|---|
 | 276 | {
 | 
|---|
 | 277 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
 | 278 | __STATIC__ int buf_sz=0;
 | 
|---|
 | 279 | 
 | 
|---|
 | 280 | static int nb=0; /* no __STATIC__ decl. here! */
 | 
|---|
 | 281 | 
 | 
|---|
 | 282 | LM_REAL *a, *tau, *r, *work;
 | 
|---|
 | 283 | int a_sz, tau_sz, r_sz, tot_sz;
 | 
|---|
 | 284 | register int i, j;
 | 
|---|
 | 285 | int info, worksz, nrhs=1;
 | 
|---|
 | 286 | register LM_REAL sum;
 | 
|---|
 | 287 |    
 | 
|---|
 | 288 |     if(!A)
 | 
|---|
 | 289 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 290 |     {
 | 
|---|
 | 291 |       if(buf) free(buf);
 | 
|---|
 | 292 |       buf=NULL;
 | 
|---|
 | 293 |       buf_sz=0;
 | 
|---|
 | 294 | 
 | 
|---|
 | 295 |       return 1;
 | 
|---|
 | 296 |     }
 | 
|---|
 | 297 | #else
 | 
|---|
 | 298 |       return 1; /* NOP */
 | 
|---|
 | 299 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 300 |    
 | 
|---|
 | 301 |     if(m<n){
 | 
|---|
 | 302 |                   fprintf(stderr, RCAT("Normal equations require that the number of rows is greater than number of columns in ", AX_EQ_B_QRLS) "() [%d x %d]! -- try transposing\n", m, n);
 | 
|---|
 | 303 |                   exit(1);
 | 
|---|
 | 304 |           }
 | 
|---|
 | 305 |       
 | 
|---|
 | 306 |     /* calculate required memory size */
 | 
|---|
 | 307 |     a_sz=m*n;
 | 
|---|
 | 308 |     tau_sz=n;
 | 
|---|
 | 309 |     r_sz=n*n;
 | 
|---|
 | 310 |     if(!nb){
 | 
|---|
 | 311 |       LM_REAL tmp;
 | 
|---|
 | 312 | 
 | 
|---|
 | 313 |       worksz=-1; // workspace query; optimal size is returned in tmp
 | 
|---|
 | 314 |       GEQRF((int *)&m, (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&worksz, (int *)&info);
 | 
|---|
 | 315 |       nb=((int)tmp)/m; // optimal worksize is m*nb
 | 
|---|
 | 316 |     }
 | 
|---|
 | 317 |     worksz=nb*m;
 | 
|---|
 | 318 |     tot_sz=a_sz + tau_sz + r_sz + worksz;
 | 
|---|
 | 319 | 
 | 
|---|
 | 320 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 321 |     if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
 | 322 |       if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
 | 323 | 
 | 
|---|
 | 324 |       buf_sz=tot_sz;
 | 
|---|
 | 325 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
 | 326 |       if(!buf){
 | 
|---|
 | 327 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");
 | 
|---|
 | 328 |         exit(1);
 | 
|---|
 | 329 |       }
 | 
|---|
 | 330 |     }
 | 
|---|
 | 331 | #else
 | 
|---|
 | 332 |       buf_sz=tot_sz;
 | 
|---|
 | 333 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
 | 334 |       if(!buf){
 | 
|---|
 | 335 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_QRLS) "() failed!\n");
 | 
|---|
 | 336 |         exit(1);
 | 
|---|
 | 337 |       }
 | 
|---|
 | 338 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 339 | 
 | 
|---|
 | 340 |     a=buf;
 | 
|---|
 | 341 |     tau=a+a_sz;
 | 
|---|
 | 342 |     r=tau+tau_sz;
 | 
|---|
 | 343 |     work=r+r_sz;
 | 
|---|
 | 344 | 
 | 
|---|
 | 345 |   /* store A (column major!) into a */
 | 
|---|
 | 346 |         for(i=0; i<m; i++)
 | 
|---|
 | 347 |                 for(j=0; j<n; j++)
 | 
|---|
 | 348 |                         a[i+j*m]=A[i*n+j];
 | 
|---|
 | 349 | 
 | 
|---|
 | 350 |   /* compute A^T b in x */
 | 
|---|
 | 351 |   for(i=0; i<n; i++){
 | 
|---|
 | 352 |     for(j=0, sum=0.0; j<m; j++)
 | 
|---|
 | 353 |       sum+=A[j*n+i]*B[j];
 | 
|---|
 | 354 |     x[i]=sum;
 | 
|---|
 | 355 |   }
 | 
|---|
 | 356 | 
 | 
|---|
 | 357 |   /* QR decomposition of A */
 | 
|---|
 | 358 |   GEQRF((int *)&m, (int *)&n, a, (int *)&m, tau, work, (int *)&worksz, (int *)&info);
 | 
|---|
 | 359 |   /* error treatment */
 | 
|---|
 | 360 |   if(info!=0){
 | 
|---|
 | 361 |     if(info<0){
 | 
|---|
 | 362 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", -info);
 | 
|---|
 | 363 |       exit(1);
 | 
|---|
 | 364 |     }
 | 
|---|
 | 365 |     else{
 | 
|---|
 | 366 |       fprintf(stderr, RCAT(RCAT("Unknown LAPACK error %d for ", GEQRF) " in ", AX_EQ_B_QRLS) "()\n", info);
 | 
|---|
 | 367 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 368 |       free(buf);
 | 
|---|
 | 369 | #endif
 | 
|---|
 | 370 | 
 | 
|---|
 | 371 |       return 0;
 | 
|---|
 | 372 |     }
 | 
|---|
 | 373 |   }
 | 
|---|
 | 374 | 
 | 
|---|
 | 375 |   /* R is stored in the upper triangular part of a. Note that a is mxn while r nxn */
 | 
|---|
 | 376 |   for(j=0; j<n; j++){
 | 
|---|
 | 377 |     for(i=0; i<=j; i++)
 | 
|---|
 | 378 |       r[i+j*n]=a[i+j*m];
 | 
|---|
 | 379 | 
 | 
|---|
 | 380 |     /* lower part is zero */
 | 
|---|
 | 381 |     for(i=j+1; i<n; i++)
 | 
|---|
 | 382 |       r[i+j*n]=0.0;
 | 
|---|
 | 383 |   }
 | 
|---|
 | 384 | 
 | 
|---|
 | 385 |   /* solve the linear system R^T y = A^t b */
 | 
|---|
 | 386 |   TRTRS("U", "T", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info);
 | 
|---|
 | 387 |   /* error treatment */
 | 
|---|
 | 388 |   if(info!=0){
 | 
|---|
 | 389 |     if(info<0){
 | 
|---|
 | 390 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);
 | 
|---|
 | 391 |       exit(1);
 | 
|---|
 | 392 |     }
 | 
|---|
 | 393 |     else{
 | 
|---|
 | 394 |       fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);
 | 
|---|
 | 395 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 396 |       free(buf);
 | 
|---|
 | 397 | #endif
 | 
|---|
 | 398 | 
 | 
|---|
 | 399 |       return 0;
 | 
|---|
 | 400 |     }
 | 
|---|
 | 401 |   }
 | 
|---|
 | 402 | 
 | 
|---|
 | 403 |   /* solve the linear system R x = y */
 | 
|---|
 | 404 |   TRTRS("U", "N", "N", (int *)&n, (int *)&nrhs, r, (int *)&n, x, (int *)&n, &info);
 | 
|---|
 | 405 |   /* error treatment */
 | 
|---|
 | 406 |   if(info!=0){
 | 
|---|
 | 407 |     if(info<0){
 | 
|---|
 | 408 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_QRLS) "()\n", -info);
 | 
|---|
 | 409 |       exit(1);
 | 
|---|
 | 410 |     }
 | 
|---|
 | 411 |     else{
 | 
|---|
 | 412 |       fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_QRLS) "()\n", info);
 | 
|---|
 | 413 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 414 |       free(buf);
 | 
|---|
 | 415 | #endif
 | 
|---|
 | 416 | 
 | 
|---|
 | 417 |       return 0;
 | 
|---|
 | 418 |     }
 | 
|---|
 | 419 |   }
 | 
|---|
 | 420 | 
 | 
|---|
 | 421 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 422 |   free(buf);
 | 
|---|
 | 423 | #endif
 | 
|---|
 | 424 | 
 | 
|---|
 | 425 |         return 1;
 | 
|---|
 | 426 | }
 | 
|---|
 | 427 | 
 | 
|---|
 | 428 | /*
 | 
|---|
 | 429 |  * This function returns the solution of Ax=b
 | 
|---|
 | 430 |  *
 | 
|---|
 | 431 |  * The function assumes that A is symmetric & postive definite and employs
 | 
|---|
 | 432 |  * the Cholesky decomposition:
 | 
|---|
 | 433 |  * If A=L L^T with L lower triangular, the system to be solved becomes
 | 
|---|
 | 434 |  * (L L^T) x = b
 | 
|---|
 | 435 |  * This amounts to solving L y = b for y and then L^T x = y for x
 | 
|---|
 | 436 |  *
 | 
|---|
 | 437 |  * A is mxm, b is mx1
 | 
|---|
 | 438 |  *
 | 
|---|
 | 439 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
 | 440 |  *
 | 
|---|
 | 441 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
 | 442 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
 | 443 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
 | 444 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
 | 445 |  */
 | 
|---|
 | 446 | int AX_EQ_B_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
 | 447 | {
 | 
|---|
 | 448 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
 | 449 | __STATIC__ int buf_sz=0;
 | 
|---|
 | 450 | 
 | 
|---|
 | 451 | LM_REAL *a;
 | 
|---|
 | 452 | int a_sz, tot_sz;
 | 
|---|
 | 453 | int info, nrhs=1;
 | 
|---|
 | 454 |    
 | 
|---|
 | 455 |     if(!A)
 | 
|---|
 | 456 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 457 |     {
 | 
|---|
 | 458 |       if(buf) free(buf);
 | 
|---|
 | 459 |       buf=NULL;
 | 
|---|
 | 460 |       buf_sz=0;
 | 
|---|
 | 461 | 
 | 
|---|
 | 462 |       return 1;
 | 
|---|
 | 463 |     }
 | 
|---|
 | 464 | #else
 | 
|---|
 | 465 |       return 1; /* NOP */
 | 
|---|
 | 466 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 467 |    
 | 
|---|
 | 468 |     /* calculate required memory size */
 | 
|---|
 | 469 |     a_sz=m*m;
 | 
|---|
 | 470 |     tot_sz=a_sz;
 | 
|---|
 | 471 | 
 | 
|---|
 | 472 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 473 |     if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
 | 474 |       if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
 | 475 | 
 | 
|---|
 | 476 |       buf_sz=tot_sz;
 | 
|---|
 | 477 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
 | 478 |       if(!buf){
 | 
|---|
 | 479 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");
 | 
|---|
 | 480 |         exit(1);
 | 
|---|
 | 481 |       }
 | 
|---|
 | 482 |     }
 | 
|---|
 | 483 | #else
 | 
|---|
 | 484 |       buf_sz=tot_sz;
 | 
|---|
 | 485 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
 | 486 |       if(!buf){
 | 
|---|
 | 487 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_CHOL) "() failed!\n");
 | 
|---|
 | 488 |         exit(1);
 | 
|---|
 | 489 |       }
 | 
|---|
 | 490 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 491 | 
 | 
|---|
 | 492 |   a=buf;
 | 
|---|
 | 493 | 
 | 
|---|
 | 494 |   /* store A into a and B into x. A is assumed symmetric,
 | 
|---|
 | 495 |    * hence no transposition is needed
 | 
|---|
 | 496 |    */
 | 
|---|
 | 497 |   memcpy(a, A, a_sz*sizeof(LM_REAL));
 | 
|---|
 | 498 |   memcpy(x, B, m*sizeof(LM_REAL));
 | 
|---|
 | 499 | 
 | 
|---|
 | 500 |   /* Cholesky decomposition of A */
 | 
|---|
 | 501 |   //POTF2("L", (int *)&m, a, (int *)&m, (int *)&info);
 | 
|---|
 | 502 |   POTRF("L", (int *)&m, a, (int *)&m, (int *)&info);
 | 
|---|
 | 503 |   /* error treatment */
 | 
|---|
 | 504 |   if(info!=0){
 | 
|---|
 | 505 |     if(info<0){
 | 
|---|
 | 506 |       fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTF2) "/", POTRF) " in ",
 | 
|---|
 | 507 |                       AX_EQ_B_CHOL) "()\n", -info);
 | 
|---|
 | 508 |       exit(1);
 | 
|---|
 | 509 |     }
 | 
|---|
 | 510 |     else{
 | 
|---|
 | 511 |       fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\nthe factorization could not be completed for ", POTF2) "/", POTRF) " in ", AX_EQ_B_CHOL) "()\n", info);
 | 
|---|
 | 512 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 513 |       free(buf);
 | 
|---|
 | 514 | #endif
 | 
|---|
 | 515 | 
 | 
|---|
 | 516 |       return 0;
 | 
|---|
 | 517 |     }
 | 
|---|
 | 518 |   }
 | 
|---|
 | 519 | 
 | 
|---|
 | 520 |   /* solve using the computed Cholesky in one lapack call */
 | 
|---|
 | 521 |   POTRS("L", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
 | 
|---|
 | 522 |   if(info<0){
 | 
|---|
 | 523 |     fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", POTRS) " in ", AX_EQ_B_CHOL) "()\n", -info);
 | 
|---|
 | 524 |     exit(1);
 | 
|---|
 | 525 |   }
 | 
|---|
 | 526 | 
 | 
|---|
 | 527 | #if 0
 | 
|---|
 | 528 |   /* alternative: solve the linear system L y = b ... */
 | 
|---|
 | 529 |   TRTRS("L", "N", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
 | 
|---|
 | 530 |   /* error treatment */
 | 
|---|
 | 531 |   if(info!=0){
 | 
|---|
 | 532 |     if(info<0){
 | 
|---|
 | 533 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) " in ", AX_EQ_B_CHOL) "()\n", -info);
 | 
|---|
 | 534 |       exit(1);
 | 
|---|
 | 535 |     }
 | 
|---|
 | 536 |     else{
 | 
|---|
 | 537 |       fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info);
 | 
|---|
 | 538 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 539 |       free(buf);
 | 
|---|
 | 540 | #endif
 | 
|---|
 | 541 | 
 | 
|---|
 | 542 |       return 0;
 | 
|---|
 | 543 |     }
 | 
|---|
 | 544 |   }
 | 
|---|
 | 545 | 
 | 
|---|
 | 546 |   /* ... solve the linear system L^T x = y */
 | 
|---|
 | 547 |   TRTRS("L", "T", "N", (int *)&m, (int *)&nrhs, a, (int *)&m, x, (int *)&m, &info);
 | 
|---|
 | 548 |   /* error treatment */
 | 
|---|
 | 549 |   if(info!=0){
 | 
|---|
 | 550 |     if(info<0){
 | 
|---|
 | 551 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", TRTRS) "in ", AX_EQ_B_CHOL) "()\n", -info);
 | 
|---|
 | 552 |       exit(1);
 | 
|---|
 | 553 |     }
 | 
|---|
 | 554 |     else{
 | 
|---|
 | 555 |       fprintf(stderr, RCAT("LAPACK error: the %d-th diagonal element of A is zero (singular matrix) in ", AX_EQ_B_CHOL) "()\n", info);
 | 
|---|
 | 556 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 557 |       free(buf);
 | 
|---|
 | 558 | #endif
 | 
|---|
 | 559 | 
 | 
|---|
 | 560 |       return 0;
 | 
|---|
 | 561 |     }
 | 
|---|
 | 562 |   }
 | 
|---|
 | 563 | #endif /* 0 */
 | 
|---|
 | 564 | 
 | 
|---|
 | 565 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 566 |   free(buf);
 | 
|---|
 | 567 | #endif
 | 
|---|
 | 568 | 
 | 
|---|
 | 569 |         return 1;
 | 
|---|
 | 570 | }
 | 
|---|
 | 571 | 
 | 
|---|
 | 572 | #ifdef HAVE_PLASMA
 | 
|---|
 | 573 | 
 | 
|---|
 | 574 | /* Linear algebra using PLASMA parallel library for multicore CPUs.
 | 
|---|
 | 575 |  * http://icl.cs.utk.edu/plasma/
 | 
|---|
 | 576 |  *
 | 
|---|
 | 577 |  * WARNING: BLAS multithreading should be disabled, e.g. setenv MKL_NUM_THREADS 1
 | 
|---|
 | 578 |  */
 | 
|---|
 | 579 | 
 | 
|---|
 | 580 | #ifndef _LM_PLASMA_MISC_
 | 
|---|
 | 581 | /* avoid multiple inclusion of helper code */
 | 
|---|
 | 582 | #define _LM_PLASMA_MISC_
 | 
|---|
 | 583 | 
 | 
|---|
 | 584 | #include <plasma.h>
 | 
|---|
 | 585 | #include <cblas.h>
 | 
|---|
 | 586 | #include <lapacke.h>
 | 
|---|
 | 587 | #include <plasma_tmg.h>
 | 
|---|
 | 588 | #include <core_blas.h>
 | 
|---|
 | 589 | 
 | 
|---|
 | 590 | /* programmatically determine the number of cores on the current machine */
 | 
|---|
 | 591 | #ifdef _WIN32
 | 
|---|
 | 592 | #include <windows.h>
 | 
|---|
 | 593 | #elif __linux
 | 
|---|
 | 594 | #include <unistd.h>
 | 
|---|
 | 595 | #endif
 | 
|---|
 | 596 | static int getnbcores()
 | 
|---|
 | 597 | {
 | 
|---|
 | 598 | #ifdef _WIN32
 | 
|---|
 | 599 |   SYSTEM_INFO sysinfo;
 | 
|---|
 | 600 |   GetSystemInfo(&sysinfo);
 | 
|---|
 | 601 |   return sysinfo.dwNumberOfProcessors;
 | 
|---|
 | 602 | #elif __linux
 | 
|---|
 | 603 |   return sysconf(_SC_NPROCESSORS_ONLN);
 | 
|---|
 | 604 | #else // unknown system
 | 
|---|
 | 605 |   return 2<<1; // will be halved by right shift below
 | 
|---|
 | 606 | #endif
 | 
|---|
 | 607 | }
 | 
|---|
 | 608 | 
 | 
|---|
 | 609 | static int PLASMA_ncores=-(getnbcores()>>1); // >0 if PLASMA initialized, <0 otherwise
 | 
|---|
 | 610 | 
 | 
|---|
 | 611 | /* user-specified number of cores */
 | 
|---|
 | 612 | void levmar_PLASMA_setnbcores(int cores)
 | 
|---|
 | 613 | {
 | 
|---|
 | 614 |   PLASMA_ncores=(cores>0)? -cores : ((cores)? cores : -2);
 | 
|---|
 | 615 | }
 | 
|---|
 | 616 | #endif /* _LM_PLASMA_MISC_ */
 | 
|---|
 | 617 | 
 | 
|---|
 | 618 | /*
 | 
|---|
 | 619 |  * This function returns the solution of Ax=b
 | 
|---|
 | 620 |  *
 | 
|---|
 | 621 |  * The function assumes that A is symmetric & positive definite and employs the
 | 
|---|
 | 622 |  * Cholesky decomposition implemented by PLASMA for homogeneous multicore processors.
 | 
|---|
 | 623 |  *
 | 
|---|
 | 624 |  * A is mxm, b is mx1
 | 
|---|
 | 625 |  *
 | 
|---|
 | 626 |  * The function returns 0 in case of error, 1 if successfull
 | 
|---|
 | 627 |  *
 | 
|---|
 | 628 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
 | 629 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
 | 630 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
 | 631 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
 | 632 |  */
 | 
|---|
 | 633 | int AX_EQ_B_PLASMA_CHOL(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
 | 634 | {
 | 
|---|
 | 635 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
 | 636 | __STATIC__ int buf_sz=0;
 | 
|---|
 | 637 | 
 | 
|---|
 | 638 | LM_REAL *a;
 | 
|---|
 | 639 | int a_sz, tot_sz;
 | 
|---|
 | 640 | int info, nrhs=1;
 | 
|---|
 | 641 | 
 | 
|---|
 | 642 |     if(A==NULL){
 | 
|---|
 | 643 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 644 |       if(buf) free(buf);
 | 
|---|
 | 645 |       buf=NULL;
 | 
|---|
 | 646 |       buf_sz=0;
 | 
|---|
 | 647 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 648 | 
 | 
|---|
 | 649 |       PLASMA_Finalize();
 | 
|---|
 | 650 |       PLASMA_ncores=-PLASMA_ncores;
 | 
|---|
 | 651 | 
 | 
|---|
 | 652 |       return 1;
 | 
|---|
 | 653 |     }
 | 
|---|
 | 654 | 
 | 
|---|
 | 655 |     /* calculate required memory size */
 | 
|---|
 | 656 |     a_sz=m*m;
 | 
|---|
 | 657 |     tot_sz=a_sz;
 | 
|---|
 | 658 | 
 | 
|---|
 | 659 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 660 |     if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
 | 661 |       if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
 | 662 | 
 | 
|---|
 | 663 |       buf_sz=tot_sz;
 | 
|---|
 | 664 |       buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
 | 665 |       if(!buf){
 | 
|---|
 | 666 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_PLASMA_CHOL) "() failed!\n");
 | 
|---|
 | 667 |         exit(1);
 | 
|---|
 | 668 |       }
 | 
|---|
 | 669 |     }
 | 
|---|
 | 670 | #else
 | 
|---|
 | 671 |     buf_sz=tot_sz;
 | 
|---|
 | 672 |     buf=(LM_REAL *)malloc(buf_sz*sizeof(LM_REAL));
 | 
|---|
 | 673 |     if(!buf){
 | 
|---|
 | 674 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_PLASMA_CHOL) "() failed!\n");
 | 
|---|
 | 675 |       exit(1);
 | 
|---|
 | 676 |     }
 | 
|---|
 | 677 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 678 | 
 | 
|---|
 | 679 |     a=buf;
 | 
|---|
 | 680 | 
 | 
|---|
 | 681 |     /* store A into a and B into x; A is assumed to be symmetric,
 | 
|---|
 | 682 |      * hence no transposition is needed
 | 
|---|
 | 683 |      */
 | 
|---|
 | 684 |     memcpy(a, A, a_sz*sizeof(LM_REAL));
 | 
|---|
 | 685 |     memcpy(x, B, m*sizeof(LM_REAL));
 | 
|---|
 | 686 | 
 | 
|---|
 | 687 |   /* initialize PLASMA */
 | 
|---|
 | 688 |   if(PLASMA_ncores<0){
 | 
|---|
 | 689 |     PLASMA_ncores=-PLASMA_ncores;
 | 
|---|
 | 690 |     PLASMA_Init(PLASMA_ncores);
 | 
|---|
 | 691 |     fprintf(stderr, RCAT("\n", AX_EQ_B_PLASMA_CHOL) "(): PLASMA is running on %d cores.\n\n", PLASMA_ncores);
 | 
|---|
 | 692 |   }
 | 
|---|
 | 693 |   
 | 
|---|
 | 694 |   /* Solve the linear system */
 | 
|---|
 | 695 |   info=PLASMA_POSV(PlasmaLower, m, 1, a, m, x, m);
 | 
|---|
 | 696 |   /* error treatment */
 | 
|---|
 | 697 |   if(info!=0){
 | 
|---|
 | 698 |     if(info<0){
 | 
|---|
 | 699 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", PLASMA_POSV) " in ",
 | 
|---|
 | 700 |                       AX_EQ_B_PLASMA_CHOL) "()\n", -info);
 | 
|---|
 | 701 |       exit(1);
 | 
|---|
 | 702 |     }
 | 
|---|
 | 703 |     else{
 | 
|---|
 | 704 |       fprintf(stderr, RCAT(RCAT("LAPACK error: the leading minor of order %d is not positive definite,\n"
 | 
|---|
 | 705 |                                 "the factorization could not be completed for ", PLASMA_POSV) " in ", AX_EQ_B_CHOL) "()\n", info);
 | 
|---|
 | 706 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 707 |       free(buf);
 | 
|---|
 | 708 | #endif
 | 
|---|
 | 709 |       return 0;
 | 
|---|
 | 710 |     }
 | 
|---|
 | 711 |   }
 | 
|---|
 | 712 | 
 | 
|---|
 | 713 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 714 |   free(buf);
 | 
|---|
 | 715 | #endif
 | 
|---|
 | 716 | 
 | 
|---|
 | 717 |         return 1;
 | 
|---|
 | 718 | }
 | 
|---|
 | 719 | #endif /* HAVE_PLASMA */
 | 
|---|
 | 720 | 
 | 
|---|
 | 721 | /*
 | 
|---|
 | 722 |  * This function returns the solution of Ax = b
 | 
|---|
 | 723 |  *
 | 
|---|
 | 724 |  * The function employs LU decomposition:
 | 
|---|
 | 725 |  * If A=L U with L lower and U upper triangular, then the original system
 | 
|---|
 | 726 |  * amounts to solving
 | 
|---|
 | 727 |  * L y = b, U x = y
 | 
|---|
 | 728 |  *
 | 
|---|
 | 729 |  * A is mxm, b is mx1
 | 
|---|
 | 730 |  *
 | 
|---|
 | 731 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
 | 732 |  *
 | 
|---|
 | 733 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
 | 734 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
 | 735 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
 | 736 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
 | 737 |  */
 | 
|---|
 | 738 | int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
 | 739 | {
 | 
|---|
 | 740 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
 | 741 | __STATIC__ int buf_sz=0;
 | 
|---|
 | 742 | 
 | 
|---|
 | 743 | int a_sz, ipiv_sz, tot_sz;
 | 
|---|
 | 744 | register int i, j;
 | 
|---|
 | 745 | int info, *ipiv, nrhs=1;
 | 
|---|
 | 746 | LM_REAL *a;
 | 
|---|
 | 747 |    
 | 
|---|
 | 748 |     if(!A)
 | 
|---|
 | 749 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 750 |     {
 | 
|---|
 | 751 |       if(buf) free(buf);
 | 
|---|
 | 752 |       buf=NULL;
 | 
|---|
 | 753 |       buf_sz=0;
 | 
|---|
 | 754 | 
 | 
|---|
 | 755 |       return 1;
 | 
|---|
 | 756 |     }
 | 
|---|
 | 757 | #else
 | 
|---|
 | 758 |       return 1; /* NOP */
 | 
|---|
 | 759 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 760 |    
 | 
|---|
 | 761 |     /* calculate required memory size */
 | 
|---|
 | 762 |     ipiv_sz=m;
 | 
|---|
 | 763 |     a_sz=m*m;
 | 
|---|
 | 764 |     tot_sz=a_sz*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
 | 765 | 
 | 
|---|
 | 766 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 767 |     if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
 | 768 |       if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
 | 769 | 
 | 
|---|
 | 770 |       buf_sz=tot_sz;
 | 
|---|
 | 771 |       buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
 | 772 |       if(!buf){
 | 
|---|
 | 773 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
 | 
|---|
 | 774 |         exit(1);
 | 
|---|
 | 775 |       }
 | 
|---|
 | 776 |     }
 | 
|---|
 | 777 | #else
 | 
|---|
 | 778 |       buf_sz=tot_sz;
 | 
|---|
 | 779 |       buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
 | 780 |       if(!buf){
 | 
|---|
 | 781 |         fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
 | 
|---|
 | 782 |         exit(1);
 | 
|---|
 | 783 |       }
 | 
|---|
 | 784 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 785 | 
 | 
|---|
 | 786 |     a=buf;
 | 
|---|
 | 787 |     ipiv=(int *)(a+a_sz);
 | 
|---|
 | 788 | 
 | 
|---|
 | 789 |     /* store A (column major!) into a and B into x */
 | 
|---|
 | 790 |           for(i=0; i<m; i++){
 | 
|---|
 | 791 |                   for(j=0; j<m; j++)
 | 
|---|
 | 792 |         a[i+j*m]=A[i*m+j];
 | 
|---|
 | 793 | 
 | 
|---|
 | 794 |       x[i]=B[i];
 | 
|---|
 | 795 |     }
 | 
|---|
 | 796 | 
 | 
|---|
 | 797 |   /* LU decomposition for A */
 | 
|---|
 | 798 |         GETRF((int *)&m, (int *)&m, a, (int *)&m, ipiv, (int *)&info);  
 | 
|---|
 | 799 |         if(info!=0){
 | 
|---|
 | 800 |                 if(info<0){
 | 
|---|
 | 801 |       fprintf(stderr, RCAT(RCAT("argument %d of ", GETRF) " illegal in ", AX_EQ_B_LU) "()\n", -info);
 | 
|---|
 | 802 |                         exit(1);
 | 
|---|
 | 803 |                 }
 | 
|---|
 | 804 |                 else{
 | 
|---|
 | 805 |       fprintf(stderr, RCAT(RCAT("singular matrix A for ", GETRF) " in ", AX_EQ_B_LU) "()\n");
 | 
|---|
 | 806 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 807 |       free(buf);
 | 
|---|
 | 808 | #endif
 | 
|---|
 | 809 | 
 | 
|---|
 | 810 |                         return 0;
 | 
|---|
 | 811 |                 }
 | 
|---|
 | 812 |         }
 | 
|---|
 | 813 | 
 | 
|---|
 | 814 |   /* solve the system with the computed LU */
 | 
|---|
 | 815 |   GETRS("N", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info);
 | 
|---|
 | 816 |         if(info!=0){
 | 
|---|
 | 817 |                 if(info<0){
 | 
|---|
 | 818 |                         fprintf(stderr, RCAT(RCAT("argument %d of ", GETRS) " illegal in ", AX_EQ_B_LU) "()\n", -info);
 | 
|---|
 | 819 |                         exit(1);
 | 
|---|
 | 820 |                 }
 | 
|---|
 | 821 |                 else{
 | 
|---|
 | 822 |                         fprintf(stderr, RCAT(RCAT("unknown error for ", GETRS) " in ", AX_EQ_B_LU) "()\n");
 | 
|---|
 | 823 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 824 |       free(buf);
 | 
|---|
 | 825 | #endif
 | 
|---|
 | 826 | 
 | 
|---|
 | 827 |                         return 0;
 | 
|---|
 | 828 |                 }
 | 
|---|
 | 829 |         }
 | 
|---|
 | 830 | 
 | 
|---|
 | 831 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 832 |   free(buf);
 | 
|---|
 | 833 | #endif
 | 
|---|
 | 834 | 
 | 
|---|
 | 835 |         return 1;
 | 
|---|
 | 836 | }
 | 
|---|
 | 837 | 
 | 
|---|
 | 838 | /*
 | 
|---|
 | 839 |  * This function returns the solution of Ax = b
 | 
|---|
 | 840 |  *
 | 
|---|
 | 841 |  * The function is based on SVD decomposition:
 | 
|---|
 | 842 |  * If A=U D V^T with U, V orthogonal and D diagonal, the linear system becomes
 | 
|---|
 | 843 |  * (U D V^T) x = b or x=V D^{-1} U^T b
 | 
|---|
 | 844 |  * Note that V D^{-1} U^T is the pseudoinverse A^+
 | 
|---|
 | 845 |  *
 | 
|---|
 | 846 |  * A is mxm, b is mx1.
 | 
|---|
 | 847 |  *
 | 
|---|
 | 848 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
 | 849 |  *
 | 
|---|
 | 850 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
 | 851 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
 | 852 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
 | 853 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
 | 854 |  */
 | 
|---|
 | 855 | int AX_EQ_B_SVD(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
 | 856 | {
 | 
|---|
 | 857 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
 | 858 | __STATIC__ int buf_sz=0;
 | 
|---|
 | 859 | static LM_REAL eps=LM_CNST(-1.0);
 | 
|---|
 | 860 | 
 | 
|---|
 | 861 | register int i, j;
 | 
|---|
 | 862 | LM_REAL *a, *u, *s, *vt, *work;
 | 
|---|
 | 863 | int a_sz, u_sz, s_sz, vt_sz, tot_sz;
 | 
|---|
 | 864 | LM_REAL thresh, one_over_denom;
 | 
|---|
 | 865 | register LM_REAL sum;
 | 
|---|
 | 866 | int info, rank, worksz, *iwork, iworksz;
 | 
|---|
 | 867 |    
 | 
|---|
 | 868 |     if(!A)
 | 
|---|
 | 869 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 870 |     {
 | 
|---|
 | 871 |       if(buf) free(buf);
 | 
|---|
 | 872 |       buf=NULL;
 | 
|---|
 | 873 |       buf_sz=0;
 | 
|---|
 | 874 | 
 | 
|---|
 | 875 |       return 1;
 | 
|---|
 | 876 |     }
 | 
|---|
 | 877 | #else
 | 
|---|
 | 878 |       return 1; /* NOP */
 | 
|---|
 | 879 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 880 |    
 | 
|---|
 | 881 |   /* calculate required memory size */
 | 
|---|
 | 882 | #if 1 /* use optimal size */
 | 
|---|
 | 883 |   worksz=-1; // workspace query. Keep in mind that GESDD requires more memory than GESVD
 | 
|---|
 | 884 |   /* note that optimal work size is returned in thresh */
 | 
|---|
 | 885 |   GESVD("A", "A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, &info);
 | 
|---|
 | 886 |   //GESDD("A", (int *)&m, (int *)&m, NULL, (int *)&m, NULL, NULL, (int *)&m, NULL, (int *)&m, (LM_REAL *)&thresh, (int *)&worksz, NULL, &info);
 | 
|---|
 | 887 |   worksz=(int)thresh;
 | 
|---|
 | 888 | #else /* use minimum size */
 | 
|---|
 | 889 |   worksz=5*m; // min worksize for GESVD
 | 
|---|
 | 890 |   //worksz=m*(7*m+4); // min worksize for GESDD
 | 
|---|
 | 891 | #endif
 | 
|---|
 | 892 |   iworksz=8*m;
 | 
|---|
 | 893 |   a_sz=m*m;
 | 
|---|
 | 894 |   u_sz=m*m; s_sz=m; vt_sz=m*m;
 | 
|---|
 | 895 | 
 | 
|---|
 | 896 |   tot_sz=(a_sz + u_sz + s_sz + vt_sz + worksz)*sizeof(LM_REAL) + iworksz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
 | 897 | 
 | 
|---|
 | 898 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 899 |   if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
 | 900 |     if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
 | 901 | 
 | 
|---|
 | 902 |     buf_sz=tot_sz;
 | 
|---|
 | 903 |     buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
 | 904 |     if(!buf){
 | 
|---|
 | 905 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n");
 | 
|---|
 | 906 |       exit(1);
 | 
|---|
 | 907 |     }
 | 
|---|
 | 908 |   }
 | 
|---|
 | 909 | #else
 | 
|---|
 | 910 |     buf_sz=tot_sz;
 | 
|---|
 | 911 |     buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
 | 912 |     if(!buf){
 | 
|---|
 | 913 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_SVD) "() failed!\n");
 | 
|---|
 | 914 |       exit(1);
 | 
|---|
 | 915 |     }
 | 
|---|
 | 916 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 917 | 
 | 
|---|
 | 918 |   a=buf;
 | 
|---|
 | 919 |   u=a+a_sz;
 | 
|---|
 | 920 |   s=u+u_sz;
 | 
|---|
 | 921 |   vt=s+s_sz;
 | 
|---|
 | 922 |   work=vt+vt_sz;
 | 
|---|
 | 923 |   iwork=(int *)(work+worksz);
 | 
|---|
 | 924 | 
 | 
|---|
 | 925 |   /* store A (column major!) into a */
 | 
|---|
 | 926 |   for(i=0; i<m; i++)
 | 
|---|
 | 927 |     for(j=0; j<m; j++)
 | 
|---|
 | 928 |       a[i+j*m]=A[i*m+j];
 | 
|---|
 | 929 | 
 | 
|---|
 | 930 |   /* SVD decomposition of A */
 | 
|---|
 | 931 |   GESVD("A", "A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, &info);
 | 
|---|
 | 932 |   //GESDD("A", (int *)&m, (int *)&m, a, (int *)&m, s, u, (int *)&m, vt, (int *)&m, work, (int *)&worksz, iwork, &info);
 | 
|---|
 | 933 | 
 | 
|---|
 | 934 |   /* error treatment */
 | 
|---|
 | 935 |   if(info!=0){
 | 
|---|
 | 936 |     if(info<0){
 | 
|---|
 | 937 |       fprintf(stderr, RCAT(RCAT(RCAT("LAPACK error: illegal value for argument %d of ", GESVD), "/" GESDD) " in ", AX_EQ_B_SVD) "()\n", -info);
 | 
|---|
 | 938 |       exit(1);
 | 
|---|
 | 939 |     }
 | 
|---|
 | 940 |     else{
 | 
|---|
 | 941 |       fprintf(stderr, RCAT("LAPACK error: dgesdd (dbdsdc)/dgesvd (dbdsqr) failed to converge in ", AX_EQ_B_SVD) "() [info=%d]\n", info);
 | 
|---|
 | 942 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 943 |       free(buf);
 | 
|---|
 | 944 | #endif
 | 
|---|
 | 945 | 
 | 
|---|
 | 946 |       return 0;
 | 
|---|
 | 947 |     }
 | 
|---|
 | 948 |   }
 | 
|---|
 | 949 | 
 | 
|---|
 | 950 |   if(eps<0.0){
 | 
|---|
 | 951 |     LM_REAL aux;
 | 
|---|
 | 952 | 
 | 
|---|
 | 953 |     /* compute machine epsilon */
 | 
|---|
 | 954 |     for(eps=LM_CNST(1.0); aux=eps+LM_CNST(1.0), aux-LM_CNST(1.0)>0.0; eps*=LM_CNST(0.5))
 | 
|---|
 | 955 |                                           ;
 | 
|---|
 | 956 |     eps*=LM_CNST(2.0);
 | 
|---|
 | 957 |   }
 | 
|---|
 | 958 | 
 | 
|---|
 | 959 |   /* compute the pseudoinverse in a */
 | 
|---|
 | 960 |         for(i=0; i<a_sz; i++) a[i]=0.0; /* initialize to zero */
 | 
|---|
 | 961 |   for(rank=0, thresh=eps*s[0]; rank<m && s[rank]>thresh; rank++){
 | 
|---|
 | 962 |     one_over_denom=LM_CNST(1.0)/s[rank];
 | 
|---|
 | 963 | 
 | 
|---|
 | 964 |     for(j=0; j<m; j++)
 | 
|---|
 | 965 |       for(i=0; i<m; i++)
 | 
|---|
 | 966 |         a[i*m+j]+=vt[rank+i*m]*u[j+rank*m]*one_over_denom;
 | 
|---|
 | 967 |   }
 | 
|---|
 | 968 | 
 | 
|---|
 | 969 |         /* compute A^+ b in x */
 | 
|---|
 | 970 |         for(i=0; i<m; i++){
 | 
|---|
 | 971 |           for(j=0, sum=0.0; j<m; j++)
 | 
|---|
 | 972 |       sum+=a[i*m+j]*B[j];
 | 
|---|
 | 973 |     x[i]=sum;
 | 
|---|
 | 974 |   }
 | 
|---|
 | 975 | 
 | 
|---|
 | 976 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 977 |   free(buf);
 | 
|---|
 | 978 | #endif
 | 
|---|
 | 979 | 
 | 
|---|
 | 980 |         return 1;
 | 
|---|
 | 981 | }
 | 
|---|
 | 982 | 
 | 
|---|
 | 983 | /*
 | 
|---|
 | 984 |  * This function returns the solution of Ax = b for a real symmetric matrix A
 | 
|---|
 | 985 |  *
 | 
|---|
 | 986 |  * The function is based on LDLT factorization with the pivoting
 | 
|---|
 | 987 |  * strategy of Bunch and Kaufman:
 | 
|---|
 | 988 |  * A is factored as L*D*L^T where L is lower triangular and
 | 
|---|
 | 989 |  * D symmetric and block diagonal (aka spectral decomposition,
 | 
|---|
 | 990 |  * Banachiewicz factorization, modified Cholesky factorization)
 | 
|---|
 | 991 |  *
 | 
|---|
 | 992 |  * A is mxm, b is mx1.
 | 
|---|
 | 993 |  *
 | 
|---|
 | 994 |  * The function returns 0 in case of error, 1 if successfull
 | 
|---|
 | 995 |  *
 | 
|---|
 | 996 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
 | 997 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
 | 998 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
 | 999 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
 | 1000 |  */
 | 
|---|
 | 1001 | int AX_EQ_B_BK(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
 | 1002 | {
 | 
|---|
 | 1003 | __STATIC__ LM_REAL *buf=NULL;
 | 
|---|
 | 1004 | __STATIC__ int buf_sz=0, nb=0;
 | 
|---|
 | 1005 | 
 | 
|---|
 | 1006 | LM_REAL *a, *work;
 | 
|---|
 | 1007 | int a_sz, ipiv_sz, work_sz, tot_sz;
 | 
|---|
 | 1008 | int info, *ipiv, nrhs=1;
 | 
|---|
 | 1009 |    
 | 
|---|
 | 1010 |   if(!A)
 | 
|---|
 | 1011 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 1012 |   {
 | 
|---|
 | 1013 |     if(buf) free(buf);
 | 
|---|
 | 1014 |     buf=NULL;
 | 
|---|
 | 1015 |     buf_sz=0;
 | 
|---|
 | 1016 | 
 | 
|---|
 | 1017 |     return 1;
 | 
|---|
 | 1018 |   }
 | 
|---|
 | 1019 | #else
 | 
|---|
 | 1020 |   return 1; /* NOP */
 | 
|---|
 | 1021 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 1022 | 
 | 
|---|
 | 1023 |   /* calculate required memory size */
 | 
|---|
 | 1024 |   ipiv_sz=m;
 | 
|---|
 | 1025 |   a_sz=m*m;
 | 
|---|
 | 1026 |   if(!nb){
 | 
|---|
 | 1027 |     LM_REAL tmp;
 | 
|---|
 | 1028 | 
 | 
|---|
 | 1029 |     work_sz=-1; // workspace query; optimal size is returned in tmp
 | 
|---|
 | 1030 |     SYTRF("L", (int *)&m, NULL, (int *)&m, NULL, (LM_REAL *)&tmp, (int *)&work_sz, (int *)&info);
 | 
|---|
 | 1031 |     nb=((int)tmp)/m; // optimal worksize is m*nb
 | 
|---|
 | 1032 |   }
 | 
|---|
 | 1033 |   work_sz=(nb!=-1)? nb*m : 1;
 | 
|---|
 | 1034 |   tot_sz=(a_sz + work_sz)*sizeof(LM_REAL) + ipiv_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
 | 1035 | 
 | 
|---|
 | 1036 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 1037 |   if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
 | 1038 |     if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
 | 1039 | 
 | 
|---|
 | 1040 |     buf_sz=tot_sz;
 | 
|---|
 | 1041 |     buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
 | 1042 |     if(!buf){
 | 
|---|
 | 1043 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n");
 | 
|---|
 | 1044 |       exit(1);
 | 
|---|
 | 1045 |     }
 | 
|---|
 | 1046 |   }
 | 
|---|
 | 1047 | #else
 | 
|---|
 | 1048 |   buf_sz=tot_sz;
 | 
|---|
 | 1049 |   buf=(LM_REAL *)malloc(buf_sz);
 | 
|---|
 | 1050 |   if(!buf){
 | 
|---|
 | 1051 |     fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_BK) "() failed!\n");
 | 
|---|
 | 1052 |     exit(1);
 | 
|---|
 | 1053 |   }
 | 
|---|
 | 1054 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 1055 | 
 | 
|---|
 | 1056 |   a=buf;
 | 
|---|
 | 1057 |   work=a+a_sz;
 | 
|---|
 | 1058 |   ipiv=(int *)(work+work_sz);
 | 
|---|
 | 1059 | 
 | 
|---|
 | 1060 |   /* store A into a and B into x; A is assumed to be symmetric, hence
 | 
|---|
 | 1061 |    * the column and row major order representations are the same
 | 
|---|
 | 1062 |    */
 | 
|---|
 | 1063 |   memcpy(a, A, a_sz*sizeof(LM_REAL));
 | 
|---|
 | 1064 |   memcpy(x, B, m*sizeof(LM_REAL));
 | 
|---|
 | 1065 | 
 | 
|---|
 | 1066 |   /* LDLt factorization for A */
 | 
|---|
 | 1067 |         SYTRF("L", (int *)&m, a, (int *)&m, ipiv, work, (int *)&work_sz, (int *)&info);
 | 
|---|
 | 1068 |         if(info!=0){
 | 
|---|
 | 1069 |                 if(info<0){
 | 
|---|
 | 1070 |       fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRF) " in ", AX_EQ_B_BK) "()\n", -info);
 | 
|---|
 | 1071 |                         exit(1);
 | 
|---|
 | 1072 |                 }
 | 
|---|
 | 1073 |                 else{
 | 
|---|
 | 1074 |       fprintf(stderr, RCAT(RCAT("LAPACK error: singular block diagonal matrix D for", SYTRF) " in ", AX_EQ_B_BK)"() [D(%d, %d) is zero]\n", info, info);
 | 
|---|
 | 1075 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 1076 |       free(buf);
 | 
|---|
 | 1077 | #endif
 | 
|---|
 | 1078 | 
 | 
|---|
 | 1079 |                         return 0;
 | 
|---|
 | 1080 |                 }
 | 
|---|
 | 1081 |         }
 | 
|---|
 | 1082 | 
 | 
|---|
 | 1083 |   /* solve the system with the computed factorization */
 | 
|---|
 | 1084 |   SYTRS("L", (int *)&m, (int *)&nrhs, a, (int *)&m, ipiv, x, (int *)&m, (int *)&info);
 | 
|---|
 | 1085 |   if(info<0){
 | 
|---|
 | 1086 |     fprintf(stderr, RCAT(RCAT("LAPACK error: illegal value for argument %d of ", SYTRS) " in ", AX_EQ_B_BK) "()\n", -info);
 | 
|---|
 | 1087 |     exit(1);
 | 
|---|
 | 1088 |         }
 | 
|---|
 | 1089 | 
 | 
|---|
 | 1090 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 1091 |   free(buf);
 | 
|---|
 | 1092 | #endif
 | 
|---|
 | 1093 | 
 | 
|---|
 | 1094 |         return 1;
 | 
|---|
 | 1095 | }
 | 
|---|
 | 1096 | 
 | 
|---|
 | 1097 | /* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */
 | 
|---|
 | 1098 | #undef AX_EQ_B_QR
 | 
|---|
 | 1099 | #undef AX_EQ_B_QRLS
 | 
|---|
 | 1100 | #undef AX_EQ_B_CHOL
 | 
|---|
 | 1101 | #undef AX_EQ_B_LU
 | 
|---|
 | 1102 | #undef AX_EQ_B_SVD
 | 
|---|
 | 1103 | #undef AX_EQ_B_BK
 | 
|---|
 | 1104 | #undef AX_EQ_B_PLASMA_CHOL
 | 
|---|
 | 1105 | 
 | 
|---|
 | 1106 | #undef GEQRF
 | 
|---|
 | 1107 | #undef ORGQR
 | 
|---|
 | 1108 | #undef TRTRS
 | 
|---|
 | 1109 | #undef POTF2
 | 
|---|
 | 1110 | #undef POTRF
 | 
|---|
 | 1111 | #undef POTRS
 | 
|---|
 | 1112 | #undef GETRF
 | 
|---|
 | 1113 | #undef GETRS
 | 
|---|
 | 1114 | #undef GESVD
 | 
|---|
 | 1115 | #undef GESDD
 | 
|---|
 | 1116 | #undef SYTRF
 | 
|---|
 | 1117 | #undef SYTRS
 | 
|---|
 | 1118 | #undef PLASMA_POSV
 | 
|---|
 | 1119 | 
 | 
|---|
 | 1120 | #else // no LAPACK
 | 
|---|
 | 1121 | 
 | 
|---|
 | 1122 | /* precision-specific definitions */
 | 
|---|
 | 1123 | #define AX_EQ_B_LU LM_ADD_PREFIX(Ax_eq_b_LU_noLapack)
 | 
|---|
 | 1124 | 
 | 
|---|
 | 1125 | /*
 | 
|---|
 | 1126 |  * This function returns the solution of Ax = b
 | 
|---|
 | 1127 |  *
 | 
|---|
 | 1128 |  * The function employs LU decomposition followed by forward/back substitution (see 
 | 
|---|
 | 1129 |  * also the LAPACK-based LU solver above)
 | 
|---|
 | 1130 |  *
 | 
|---|
 | 1131 |  * A is mxm, b is mx1
 | 
|---|
 | 1132 |  *
 | 
|---|
 | 1133 |  * The function returns 0 in case of error, 1 if successful
 | 
|---|
 | 1134 |  *
 | 
|---|
 | 1135 |  * This function is often called repetitively to solve problems of identical
 | 
|---|
 | 1136 |  * dimensions. To avoid repetitive malloc's and free's, allocated memory is
 | 
|---|
 | 1137 |  * retained between calls and free'd-malloc'ed when not of the appropriate size.
 | 
|---|
 | 1138 |  * A call with NULL as the first argument forces this memory to be released.
 | 
|---|
 | 1139 |  */
 | 
|---|
 | 1140 | int AX_EQ_B_LU(LM_REAL *A, LM_REAL *B, LM_REAL *x, int m)
 | 
|---|
 | 1141 | {
 | 
|---|
 | 1142 | __STATIC__ void *buf=NULL;
 | 
|---|
 | 1143 | __STATIC__ int buf_sz=0;
 | 
|---|
 | 1144 | 
 | 
|---|
 | 1145 | register int i, j, k;
 | 
|---|
 | 1146 | int *idx, maxi=-1, idx_sz, a_sz, work_sz, tot_sz;
 | 
|---|
 | 1147 | LM_REAL *a, *work, max, sum, tmp;
 | 
|---|
 | 1148 | 
 | 
|---|
 | 1149 |     if(!A)
 | 
|---|
 | 1150 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 1151 |     {
 | 
|---|
 | 1152 |       if(buf) free(buf);
 | 
|---|
 | 1153 |       buf=NULL;
 | 
|---|
 | 1154 |       buf_sz=0;
 | 
|---|
 | 1155 | 
 | 
|---|
 | 1156 |       return 1;
 | 
|---|
 | 1157 |     }
 | 
|---|
 | 1158 | #else
 | 
|---|
 | 1159 |     return 1; /* NOP */
 | 
|---|
 | 1160 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 1161 |    
 | 
|---|
 | 1162 |   /* calculate required memory size */
 | 
|---|
 | 1163 |   idx_sz=m;
 | 
|---|
 | 1164 |   a_sz=m*m;
 | 
|---|
 | 1165 |   work_sz=m;
 | 
|---|
 | 1166 |   tot_sz=(a_sz+work_sz)*sizeof(LM_REAL) + idx_sz*sizeof(int); /* should be arranged in that order for proper doubles alignment */
 | 
|---|
 | 1167 | 
 | 
|---|
 | 1168 | #ifdef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 1169 |   if(tot_sz>buf_sz){ /* insufficient memory, allocate a "big" memory chunk at once */
 | 
|---|
 | 1170 |     if(buf) free(buf); /* free previously allocated memory */
 | 
|---|
 | 1171 | 
 | 
|---|
 | 1172 |     buf_sz=tot_sz;
 | 
|---|
 | 1173 |     buf=(void *)malloc(tot_sz);
 | 
|---|
 | 1174 |     if(!buf){
 | 
|---|
 | 1175 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
 | 
|---|
 | 1176 |       exit(1);
 | 
|---|
 | 1177 |     }
 | 
|---|
 | 1178 |   }
 | 
|---|
 | 1179 | #else
 | 
|---|
 | 1180 |     buf_sz=tot_sz;
 | 
|---|
 | 1181 |     buf=(void *)malloc(tot_sz);
 | 
|---|
 | 1182 |     if(!buf){
 | 
|---|
 | 1183 |       fprintf(stderr, RCAT("memory allocation in ", AX_EQ_B_LU) "() failed!\n");
 | 
|---|
 | 1184 |       exit(1);
 | 
|---|
 | 1185 |     }
 | 
|---|
 | 1186 | #endif /* LINSOLVERS_RETAIN_MEMORY */
 | 
|---|
 | 1187 | 
 | 
|---|
 | 1188 |   a=buf;
 | 
|---|
 | 1189 |   work=a+a_sz;
 | 
|---|
 | 1190 |   idx=(int *)(work+work_sz);
 | 
|---|
 | 1191 | 
 | 
|---|
 | 1192 |   /* avoid destroying A, B by copying them to a, x resp. */
 | 
|---|
 | 1193 |   memcpy(a, A, a_sz*sizeof(LM_REAL));
 | 
|---|
 | 1194 |   memcpy(x, B, m*sizeof(LM_REAL));
 | 
|---|
 | 1195 | 
 | 
|---|
 | 1196 |   /* compute the LU decomposition of a row permutation of matrix a; the permutation itself is saved in idx[] */
 | 
|---|
 | 1197 |         for(i=0; i<m; ++i){
 | 
|---|
 | 1198 |                 max=0.0;
 | 
|---|
 | 1199 |                 for(j=0; j<m; ++j)
 | 
|---|
 | 1200 |                         if((tmp=FABS(a[i*m+j]))>max)
 | 
|---|
 | 1201 |         max=tmp;
 | 
|---|
 | 1202 |                   if(max==0.0){
 | 
|---|
 | 1203 |         fprintf(stderr, RCAT("Singular matrix A in ", AX_EQ_B_LU) "()!\n");
 | 
|---|
 | 1204 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 1205 |         free(buf);
 | 
|---|
 | 1206 | #endif
 | 
|---|
 | 1207 | 
 | 
|---|
 | 1208 |         return 0;
 | 
|---|
 | 1209 |       }
 | 
|---|
 | 1210 |                   work[i]=LM_CNST(1.0)/max;
 | 
|---|
 | 1211 |         }
 | 
|---|
 | 1212 | 
 | 
|---|
 | 1213 |         for(j=0; j<m; ++j){
 | 
|---|
 | 1214 |                 for(i=0; i<j; ++i){
 | 
|---|
 | 1215 |                         sum=a[i*m+j];
 | 
|---|
 | 1216 |                         for(k=0; k<i; ++k)
 | 
|---|
 | 1217 |         sum-=a[i*m+k]*a[k*m+j];
 | 
|---|
 | 1218 |                         a[i*m+j]=sum;
 | 
|---|
 | 1219 |                 }
 | 
|---|
 | 1220 |                 max=0.0;
 | 
|---|
 | 1221 |                 for(i=j; i<m; ++i){
 | 
|---|
 | 1222 |                         sum=a[i*m+j];
 | 
|---|
 | 1223 |                         for(k=0; k<j; ++k)
 | 
|---|
 | 1224 |         sum-=a[i*m+k]*a[k*m+j];
 | 
|---|
 | 1225 |                         a[i*m+j]=sum;
 | 
|---|
 | 1226 |                         if((tmp=work[i]*FABS(sum))>=max){
 | 
|---|
 | 1227 |                                 max=tmp;
 | 
|---|
 | 1228 |                                 maxi=i;
 | 
|---|
 | 1229 |                         }
 | 
|---|
 | 1230 |                 }
 | 
|---|
 | 1231 |                 if(j!=maxi){
 | 
|---|
 | 1232 |                         for(k=0; k<m; ++k){
 | 
|---|
 | 1233 |                                 tmp=a[maxi*m+k];
 | 
|---|
 | 1234 |                                 a[maxi*m+k]=a[j*m+k];
 | 
|---|
 | 1235 |                                 a[j*m+k]=tmp;
 | 
|---|
 | 1236 |                         }
 | 
|---|
 | 1237 |                         work[maxi]=work[j];
 | 
|---|
 | 1238 |                 }
 | 
|---|
 | 1239 |                 idx[j]=maxi;
 | 
|---|
 | 1240 |                 if(a[j*m+j]==0.0)
 | 
|---|
 | 1241 |       a[j*m+j]=LM_REAL_EPSILON;
 | 
|---|
 | 1242 |                 if(j!=m-1){
 | 
|---|
 | 1243 |                         tmp=LM_CNST(1.0)/(a[j*m+j]);
 | 
|---|
 | 1244 |                         for(i=j+1; i<m; ++i)
 | 
|---|
 | 1245 |         a[i*m+j]*=tmp;
 | 
|---|
 | 1246 |                 }
 | 
|---|
 | 1247 |         }
 | 
|---|
 | 1248 | 
 | 
|---|
 | 1249 |   /* The decomposition has now replaced a. Solve the linear system using
 | 
|---|
 | 1250 |    * forward and back substitution
 | 
|---|
 | 1251 |    */
 | 
|---|
 | 1252 |         for(i=k=0; i<m; ++i){
 | 
|---|
 | 1253 |                 j=idx[i];
 | 
|---|
 | 1254 |                 sum=x[j];
 | 
|---|
 | 1255 |                 x[j]=x[i];
 | 
|---|
 | 1256 |                 if(k!=0)
 | 
|---|
 | 1257 |                         for(j=k-1; j<i; ++j)
 | 
|---|
 | 1258 |         sum-=a[i*m+j]*x[j];
 | 
|---|
 | 1259 |                 else
 | 
|---|
 | 1260 |       if(sum!=0.0)
 | 
|---|
 | 1261 |                           k=i+1;
 | 
|---|
 | 1262 |                 x[i]=sum;
 | 
|---|
 | 1263 |         }
 | 
|---|
 | 1264 | 
 | 
|---|
 | 1265 |         for(i=m-1; i>=0; --i){
 | 
|---|
 | 1266 |                 sum=x[i];
 | 
|---|
 | 1267 |                 for(j=i+1; j<m; ++j)
 | 
|---|
 | 1268 |       sum-=a[i*m+j]*x[j];
 | 
|---|
 | 1269 |                 x[i]=sum/a[i*m+i];
 | 
|---|
 | 1270 |         }
 | 
|---|
 | 1271 | 
 | 
|---|
 | 1272 | #ifndef LINSOLVERS_RETAIN_MEMORY
 | 
|---|
 | 1273 |   free(buf);
 | 
|---|
 | 1274 | #endif
 | 
|---|
 | 1275 | 
 | 
|---|
 | 1276 |   return 1;
 | 
|---|
 | 1277 | }
 | 
|---|
 | 1278 | 
 | 
|---|
 | 1279 | /* undefine all. IT MUST REMAIN IN THIS POSITION IN FILE */
 | 
|---|
 | 1280 | #undef AX_EQ_B_LU
 | 
|---|
 | 1281 | 
 | 
|---|
 | 1282 | #endif /* HAVE_LAPACK */
 | 
|---|