1 | % Demo program for levmar's MEX-file interface
|
---|
2 | % Performs minimization of several test problems
|
---|
3 |
|
---|
4 | format long;
|
---|
5 |
|
---|
6 | % Unconstrained minimization
|
---|
7 |
|
---|
8 | % fitting the exponential model x_i=p(1)*exp(-p(2)*i)+p(3) of expfit.c to noisy measurements obtained with (5.0 0.1 1.0)
|
---|
9 | p0=[1.0, 0.0, 0.0];
|
---|
10 | x=[5.8728, 5.4948, 5.0081, 4.5929, 4.3574, 4.1198, 3.6843, 3.3642, 2.9742, 3.0237, 2.7002, 2.8781,...
|
---|
11 | 2.5144, 2.4432, 2.2894, 2.0938, 1.9265, 2.1271, 1.8387, 1.7791, 1.6686, 1.6232, 1.571, 1.6057,...
|
---|
12 | 1.3825, 1.5087, 1.3624, 1.4206, 1.2097, 1.3129, 1.131, 1.306, 1.2008, 1.3469, 1.1837, 1.2102,...
|
---|
13 | 0.96518, 1.2129, 1.2003, 1.0743];
|
---|
14 |
|
---|
15 | options=[1E-03, 1E-15, 1E-15, 1E-20, 1E-06];
|
---|
16 | % arg demonstrates additional data passing to expfit/jacexpfit
|
---|
17 | arg=[40];
|
---|
18 |
|
---|
19 | [ret, popt, info]=levmar('expfit', 'jacexpfit', p0, x, 200, options, arg);
|
---|
20 | disp('Exponential model fitting (see also ../expfit.c)');
|
---|
21 | popt
|
---|
22 |
|
---|
23 |
|
---|
24 | % Meyer's (reformulated) problem
|
---|
25 | p0=[8.85, 4.0, 2.5];
|
---|
26 |
|
---|
27 | x=[];
|
---|
28 | x(1:4)=[34.780, 28.610, 23.650, 19.630];
|
---|
29 | x(5:8)=[16.370, 13.720, 11.540, 9.744];
|
---|
30 | x(9:12)=[8.261, 7.030, 6.005, 5.147];
|
---|
31 | x(13:16)=[4.427, 3.820, 3.307, 2.872];
|
---|
32 |
|
---|
33 | options=[1E-03, 1E-15, 1E-15, 1E-20, 1E-06];
|
---|
34 | % arg1, arg2 demonstrate additional dummy data passing to meyer/jacmeyer
|
---|
35 | arg1=[17];
|
---|
36 | arg2=[27];
|
---|
37 |
|
---|
38 | %[ret, popt, info]=levmar('meyer', 'jacmeyer', p0, x, 200, options, arg1, arg2);
|
---|
39 |
|
---|
40 | %[ret, popt, info, covar]=levmar('meyer', 'jacmeyer', p0, x, 200, options, arg1, arg2);
|
---|
41 | [ret, popt, info, covar]=levmar('meyer', p0, x, 200, options, 'unc', arg1, arg2);
|
---|
42 | disp('Meyer''s (reformulated) problem');
|
---|
43 | popt
|
---|
44 |
|
---|
45 |
|
---|
46 | % Osborne's problem
|
---|
47 | p0=[0.5, 1.5, -1.0, 1.0E-2, 2.0E-2];
|
---|
48 |
|
---|
49 | x=[8.44E-1, 9.08E-1, 9.32E-1, 9.36E-1, 9.25E-1, 9.08E-1, 8.81E-1,...
|
---|
50 | 8.5E-1, 8.18E-1, 7.84E-1, 7.51E-1, 7.18E-1, 6.85E-1, 6.58E-1,...
|
---|
51 | 6.28E-1, 6.03E-1, 5.8E-1, 5.58E-1, 5.38E-1, 5.22E-1, 5.06E-1,...
|
---|
52 | 4.9E-1, 4.78E-1, 4.67E-1, 4.57E-1, 4.48E-1, 4.38E-1, 4.31E-1,...
|
---|
53 | 4.24E-1, 4.2E-1, 4.14E-1, 4.11E-1, 4.06E-1];
|
---|
54 |
|
---|
55 |
|
---|
56 | options=[1E-03, 1E-15, 1E-15, 1E-20, 1E-06];
|
---|
57 |
|
---|
58 | [ret, popt, info, covar]=levmar('osborne', 'jacosborne', p0, x, 200, options);
|
---|
59 | %[ret, popt, info, covar]=levmar('osborne', p0, x, 200, options, 'unc');
|
---|
60 | disp('Osborne''s problem');
|
---|
61 | popt
|
---|
62 |
|
---|
63 |
|
---|
64 | % Linear constraints
|
---|
65 |
|
---|
66 | % Boggs-Tolle problem 3
|
---|
67 | p0=[2.0, 2.0, 2.0, 2.0, 2.0];
|
---|
68 | x=[0.0, 0.0, 0.0, 0.0, 0.0];
|
---|
69 | options=[1E-03, 1E-15, 1E-15, 1E-20];
|
---|
70 | adata=[];
|
---|
71 |
|
---|
72 | A=[1.0, 3.0, 0.0, 0.0, 0.0;
|
---|
73 | 0.0, 0.0, 1.0, 1.0, -2.0;
|
---|
74 | 0.0, 1.0, 0.0, 0.0, -1.0];
|
---|
75 | b=[0.0, 0.0, 0.0]';
|
---|
76 |
|
---|
77 | [ret, popt, info, covar]=levmar('bt3', 'jacbt3', p0, x, 200, options, 'lec', A, b, adata);
|
---|
78 | disp('Boggs-Tolle problem 3');
|
---|
79 | popt
|
---|
80 |
|
---|
81 |
|
---|
82 | % Box constraints
|
---|
83 |
|
---|
84 | % Hock-Schittkowski problem 01
|
---|
85 | p0=[-2.0, 1.0];
|
---|
86 | x=[0.0, 0.0];
|
---|
87 | lb=[-realmax, -1.5];
|
---|
88 | ub=[realmax, realmax];
|
---|
89 | options=[1E-03, 1E-15, 1E-15, 1E-20];
|
---|
90 |
|
---|
91 | [ret, popt, info, covar]=levmar('hs01', 'jachs01', p0, x, 200, options, 'bc', lb, ub);
|
---|
92 | disp('Hock-Schittkowski problem 01');
|
---|
93 | popt
|
---|
94 |
|
---|
95 |
|
---|
96 | % Box and linear constraints
|
---|
97 |
|
---|
98 | % Hock-Schittkowski modified problem 52 (#1)
|
---|
99 | p0=[2.0, 2.0, 2.0, 2.0, 2.0];
|
---|
100 | x=[0.0, 0.0, 0.0, 0.0];
|
---|
101 | lb=[-0.09, 0.0, -realmax, -0.2, 0.0];
|
---|
102 | ub=[realmax, 0.3, 0.25, 0.3, 0.3];
|
---|
103 | A=[1.0, 3.0, 0.0, 0.0, 0.0;
|
---|
104 | 0.0, 0.0, 1.0, 1.0, -2.0;
|
---|
105 | 0.0, 1.0, 0.0, 0.0, -1.0];
|
---|
106 | b=[0.0, 0.0, 0.0]';
|
---|
107 | options=[1E-03, 1E-15, 1E-15, 1E-20];
|
---|
108 |
|
---|
109 | [ret, popt, info, covar]=levmar('modhs52', 'jacmodhs52', p0, x, 200, options, 'blec', lb, ub, A, b);
|
---|
110 | disp('Hock-Schittkowski modified problem 52 (#1)');
|
---|
111 | popt
|
---|
112 |
|
---|
113 | % Schittkowski modified problem 235
|
---|
114 | p0=[-2.0, 3.0, 1.0];
|
---|
115 | x=[0.0, 0.0];
|
---|
116 | lb=[-realmax, 0.1, 0.7];
|
---|
117 | ub=[realmax, 2.9, realmax];
|
---|
118 | A=[1.0, 0.0, 1.0;
|
---|
119 | 0.0, 1.0, -4.0];
|
---|
120 | b=[-1.0, 0.0]';
|
---|
121 | options=[1E-03, 1E-15, 1E-15, 1E-20];
|
---|
122 |
|
---|
123 | [ret, popt, info, covar]=levmar('mods235', p0, x, 200, options, 'blec', lb, ub, A, b);
|
---|
124 | disp('Hock-Schittkowski modified problem 235');
|
---|
125 | popt
|
---|
126 |
|
---|
127 | % Box, linear equation & inequality constraints
|
---|
128 | p0=[0.5, 0.5, 0.5, 0.5];
|
---|
129 | x=[0.0, 0.0, 0.0, 0.0];
|
---|
130 | lb=[0.0, 0.0, 0.0, 0.0];
|
---|
131 | ub=[realmax, realmax, realmax, realmax];
|
---|
132 | A=[0.0, 1.0, 4.0, 0.0];
|
---|
133 | b=[1.5]';
|
---|
134 | C=[-1.0, -2.0, -1.0, -1.0;
|
---|
135 | -3.0, -1.0, -2.0, 1.0];
|
---|
136 | d=[-5.0, -0.4]';
|
---|
137 |
|
---|
138 | [ret, popt, info, covar]=levmar('modhs76', 'jacmodhs76', p0, x, 200, options, 'bleic', lb, ub, A, b, C, d);
|
---|
139 | disp('Hock-Schittkowski modified problem 76');
|
---|
140 | popt
|
---|