1 | /*
|
---|
2 | * Project: MoleCuilder
|
---|
3 | * Description: creates and alters molecular systems
|
---|
4 | * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
|
---|
5 | *
|
---|
6 | *
|
---|
7 | * This file is part of MoleCuilder.
|
---|
8 | *
|
---|
9 | * MoleCuilder is free software: you can redistribute it and/or modify
|
---|
10 | * it under the terms of the GNU General Public License as published by
|
---|
11 | * the Free Software Foundation, either version 2 of the License, or
|
---|
12 | * (at your option) any later version.
|
---|
13 | *
|
---|
14 | * MoleCuilder is distributed in the hope that it will be useful,
|
---|
15 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
16 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
17 | * GNU General Public License for more details.
|
---|
18 | *
|
---|
19 | * You should have received a copy of the GNU General Public License
|
---|
20 | * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
|
---|
21 | */
|
---|
22 |
|
---|
23 | /*
|
---|
24 | * Line.cpp
|
---|
25 | *
|
---|
26 | * Created on: Apr 30, 2010
|
---|
27 | * Author: crueger
|
---|
28 | */
|
---|
29 |
|
---|
30 | // include config.h
|
---|
31 | #ifdef HAVE_CONFIG_H
|
---|
32 | #include <config.h>
|
---|
33 | #endif
|
---|
34 |
|
---|
35 | #include "CodePatterns/MemDebug.hpp"
|
---|
36 |
|
---|
37 | #include "Line.hpp"
|
---|
38 |
|
---|
39 | #include <cmath>
|
---|
40 | #include <iostream>
|
---|
41 | #include <limits>
|
---|
42 |
|
---|
43 | #include "CodePatterns/Info.hpp"
|
---|
44 | #include "CodePatterns/Log.hpp"
|
---|
45 | #include "CodePatterns/Verbose.hpp"
|
---|
46 | #include "defs.hpp"
|
---|
47 | #include "Exceptions.hpp"
|
---|
48 | #include "LinePoint.hpp"
|
---|
49 | #include "MatrixContent.hpp"
|
---|
50 | #include "Plane.hpp"
|
---|
51 | #include "RealSpaceMatrix.hpp"
|
---|
52 | #include "Vector.hpp"
|
---|
53 |
|
---|
54 | using namespace std;
|
---|
55 |
|
---|
56 | Line::Line(const Vector &_origin, const Vector &_direction) :
|
---|
57 | direction(new Vector(_direction))
|
---|
58 | {
|
---|
59 | direction->Normalize();
|
---|
60 | origin.reset(new Vector(_origin.partition(*direction).second));
|
---|
61 | }
|
---|
62 |
|
---|
63 | Line::Line(const Line &src) :
|
---|
64 | origin(new Vector(*src.origin)),
|
---|
65 | direction(new Vector(*src.direction))
|
---|
66 | {}
|
---|
67 |
|
---|
68 | Line::~Line()
|
---|
69 | {}
|
---|
70 |
|
---|
71 | Line &Line::operator=(const Line& rhs){
|
---|
72 | if(this!=&rhs){
|
---|
73 | origin.reset(new Vector(*rhs.origin));
|
---|
74 | direction.reset(new Vector(*rhs.direction));
|
---|
75 | }
|
---|
76 | return *this;
|
---|
77 | }
|
---|
78 |
|
---|
79 |
|
---|
80 | double Line::distance(const Vector &point) const{
|
---|
81 | // get any vector from line to point
|
---|
82 | Vector helper = point - *origin;
|
---|
83 | // partition this vector along direction
|
---|
84 | // the residue points from the line to the point
|
---|
85 | return helper.partition(*direction).second.Norm();
|
---|
86 | }
|
---|
87 |
|
---|
88 | Vector Line::getClosestPoint(const Vector &point) const{
|
---|
89 | // get any vector from line to point
|
---|
90 | Vector helper = point - *origin;
|
---|
91 | // partition this vector along direction
|
---|
92 | // add only the part along the direction
|
---|
93 | return *origin + helper.partition(*direction).first;
|
---|
94 | }
|
---|
95 |
|
---|
96 | Vector Line::getDirection() const{
|
---|
97 | return *direction;
|
---|
98 | }
|
---|
99 |
|
---|
100 | Vector Line::getOrigin() const{
|
---|
101 | return *origin;
|
---|
102 | }
|
---|
103 |
|
---|
104 | vector<Vector> Line::getPointsOnLine() const{
|
---|
105 | vector<Vector> res;
|
---|
106 | res.reserve(2);
|
---|
107 | res.push_back(*origin);
|
---|
108 | res.push_back(*origin+*direction);
|
---|
109 | return res;
|
---|
110 | }
|
---|
111 |
|
---|
112 | /** Calculates the intersection of the two lines that are both on the same plane.
|
---|
113 | * This is taken from Weisstein, Eric W. "Line-Line Intersection." From MathWorld--A Wolfram Web Resource. http://mathworld.wolfram.com/Line-LineIntersection.html
|
---|
114 | * \param *out output stream for debugging
|
---|
115 | * \param *Line1a first vector of first line
|
---|
116 | * \param *Line1b second vector of first line
|
---|
117 | * \param *Line2a first vector of second line
|
---|
118 | * \param *Line2b second vector of second line
|
---|
119 | * \return true - \a this will contain the intersection on return, false - lines are parallel
|
---|
120 | */
|
---|
121 | Vector Line::getIntersection(const Line& otherLine) const{
|
---|
122 | pointset line1Points = getPointsOnLine();
|
---|
123 |
|
---|
124 | Vector Line1a = line1Points[0];
|
---|
125 | Vector Line1b = line1Points[1];
|
---|
126 |
|
---|
127 | pointset line2Points = otherLine.getPointsOnLine();
|
---|
128 |
|
---|
129 | Vector Line2a = line2Points[0];
|
---|
130 | Vector Line2b = line2Points[1];
|
---|
131 |
|
---|
132 | Vector res;
|
---|
133 |
|
---|
134 | auto_ptr<MatrixContent> M = auto_ptr<MatrixContent>(new MatrixContent(4,4));
|
---|
135 |
|
---|
136 | M->setValue(1.);
|
---|
137 | for (int i=0;i<3;i++) {
|
---|
138 | M->set(0, i, Line1a[i]);
|
---|
139 | M->set(1, i, Line1b[i]);
|
---|
140 | M->set(2, i, Line2a[i]);
|
---|
141 | M->set(3, i, Line2b[i]);
|
---|
142 | }
|
---|
143 |
|
---|
144 | //Log() << Verbose(1) << "Coefficent matrix is:" << endl;
|
---|
145 | //for (int i=0;i<4;i++) {
|
---|
146 | // for (int j=0;j<4;j++)
|
---|
147 | // cout << "\t" << M->Get(i,j);
|
---|
148 | // cout << endl;
|
---|
149 | //}
|
---|
150 | if (fabs(M->Determinant()) > LINALG_MYEPSILON()) {
|
---|
151 | eLog() << Verbose(2) << "Determinant of coefficient matrix is NOT zero." << endl;
|
---|
152 | throw SkewException() << LinearAlgebraDeterminant(M->Determinant()) << LinearAlgebraMatrixContent(&(*M));
|
---|
153 | }
|
---|
154 |
|
---|
155 | Log() << Verbose(6) << "INFO: Line1a = " << Line1a << ", Line1b = " << Line1b << ", Line2a = " << Line2a << ", Line2b = " << Line2b << "." << endl;
|
---|
156 |
|
---|
157 |
|
---|
158 | // constuct a,b,c
|
---|
159 | Vector a = Line1b - Line1a;
|
---|
160 | Vector b = Line2b - Line2a;
|
---|
161 | Vector c = Line2a - Line1a;
|
---|
162 | Vector d = Line2b - Line1b;
|
---|
163 | Log() << Verbose(7) << "INFO: a = " << a << ", b = " << b << ", c = " << c << "." << endl;
|
---|
164 | if ((a.NormSquared() <= LINALG_MYEPSILON()) || (b.NormSquared() <= LINALG_MYEPSILON())) {
|
---|
165 | res.Zero();
|
---|
166 | eLog() << Verbose(2) << "At least one of the lines is ill-defined, i.e. offset equals second vector." << endl;
|
---|
167 | throw LinearDependenceException() << LinearAlgebraVectorPair( make_pair(&a, &b) );
|
---|
168 | }
|
---|
169 |
|
---|
170 | // check for parallelity
|
---|
171 | Vector parallel;
|
---|
172 | double factor = 0.;
|
---|
173 | if (fabs(a.ScalarProduct(b)*a.ScalarProduct(b)/a.NormSquared()/b.NormSquared() - 1.) <= LINALG_MYEPSILON()) {
|
---|
174 | parallel = Line1a - Line2a;
|
---|
175 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
176 | if ((factor > -LINALG_MYEPSILON()) && (factor - 1. <= LINALG_MYEPSILON())) {
|
---|
177 | res = Line2a;
|
---|
178 | Log() << Verbose(5) << "Lines conincide." << endl;
|
---|
179 | return res;
|
---|
180 | } else {
|
---|
181 | parallel = Line1a - Line2b;
|
---|
182 | factor = parallel.ScalarProduct(a)/a.Norm();
|
---|
183 | if ((factor > -LINALG_MYEPSILON()) && (factor - 1. <= LINALG_MYEPSILON())) {
|
---|
184 | res = Line2b;
|
---|
185 | Log() << Verbose(5) << "Lines conincide." << endl;
|
---|
186 | return res;
|
---|
187 | }
|
---|
188 | }
|
---|
189 | eLog() << Verbose(2) << "Lines are parallel." << endl;
|
---|
190 | res.Zero();
|
---|
191 | throw LinearDependenceException() << LinearAlgebraVectorPair( make_pair(&a, &b) );
|
---|
192 | }
|
---|
193 |
|
---|
194 | // obtain s
|
---|
195 | double s;
|
---|
196 | Vector temp1, temp2;
|
---|
197 | temp1 = c;
|
---|
198 | temp1.VectorProduct(b);
|
---|
199 | temp2 = a;
|
---|
200 | temp2.VectorProduct(b);
|
---|
201 | Log() << Verbose(7) << "INFO: temp1 = " << temp1 << ", temp2 = " << temp2 << "." << endl;
|
---|
202 | if (fabs(temp2.NormSquared()) > LINALG_MYEPSILON())
|
---|
203 | s = temp1.ScalarProduct(temp2)/temp2.NormSquared();
|
---|
204 | else
|
---|
205 | s = 0.;
|
---|
206 | Log() << Verbose(6) << "Factor s is " << temp1.ScalarProduct(temp2) << "/" << temp2.NormSquared() << " = " << s << "." << endl;
|
---|
207 |
|
---|
208 | // construct intersection
|
---|
209 | res = a;
|
---|
210 | res.Scale(s);
|
---|
211 | res += Line1a;
|
---|
212 | Log() << Verbose(5) << "Intersection is at " << res << "." << endl;
|
---|
213 |
|
---|
214 | return res;
|
---|
215 | }
|
---|
216 |
|
---|
217 | /** Rotates the vector by an angle of \a alpha around this line.
|
---|
218 | * \param rhs Vector to rotate
|
---|
219 | * \param alpha rotation angle in radian
|
---|
220 | */
|
---|
221 | Vector Line::rotateVector(const Vector &rhs, double alpha) const{
|
---|
222 | Vector helper = rhs;
|
---|
223 |
|
---|
224 | // translate the coordinate system so that the line goes through (0,0,0)
|
---|
225 | helper -= *origin;
|
---|
226 |
|
---|
227 | // partition the vector into a part that gets rotated and a part that lies along the line
|
---|
228 | pair<Vector,Vector> parts = helper.partition(*direction);
|
---|
229 |
|
---|
230 | // we just keep anything that is along the axis
|
---|
231 | Vector res = parts.first;
|
---|
232 |
|
---|
233 | // the rest has to be rotated
|
---|
234 | Vector a = parts.second;
|
---|
235 | // we only have to do the rest, if we actually could partition the vector
|
---|
236 | if(!a.IsZero()){
|
---|
237 | // construct a vector that is orthogonal to a and direction and has length |a|
|
---|
238 | Vector y = a;
|
---|
239 | // direction is normalized, so the result has length |a|
|
---|
240 | y.VectorProduct(*direction);
|
---|
241 |
|
---|
242 | res += cos(alpha) * a + sin(alpha) * y;
|
---|
243 | }
|
---|
244 |
|
---|
245 | // translate the coordinate system back
|
---|
246 | res += *origin;
|
---|
247 | return res;
|
---|
248 | }
|
---|
249 |
|
---|
250 | Line Line::rotateLine(const Line &rhs, double alpha) const{
|
---|
251 | Vector lineOrigin = rotateVector(rhs.getOrigin(),alpha);
|
---|
252 | Vector helper = rhs.getDirection();
|
---|
253 | // rotate the direction without considering the ofset
|
---|
254 | pair<Vector,Vector> parts = helper.partition(*direction);
|
---|
255 | Vector lineDirection = parts.first;
|
---|
256 | Vector a = parts.second;
|
---|
257 | if(!a.IsZero()){
|
---|
258 | // construct a vector that is orthogonal to a and direction and has length |a|
|
---|
259 | Vector y = a;
|
---|
260 | // direction is normalized, so the result has length |a|
|
---|
261 | y.VectorProduct(*direction);
|
---|
262 |
|
---|
263 | lineDirection += cos(alpha) * a + sin(alpha) * y;
|
---|
264 | }
|
---|
265 | return Line(lineOrigin,lineDirection);
|
---|
266 | }
|
---|
267 |
|
---|
268 | Plane Line::rotatePlane(const Plane &rhs, double alpha) const{
|
---|
269 | vector<Vector> points = rhs.getPointsOnPlane();
|
---|
270 | transform(points.begin(),
|
---|
271 | points.end(),
|
---|
272 | points.begin(),
|
---|
273 | boost::bind(&Line::rotateVector,this,_1,alpha));
|
---|
274 | return Plane(points[0],points[1],points[2]);
|
---|
275 | }
|
---|
276 |
|
---|
277 | RealSpaceMatrix Line::getRotationMatrix(double alpha) const
|
---|
278 | {
|
---|
279 | RealSpaceMatrix M;
|
---|
280 | M.setRotation(getDirection(), alpha);
|
---|
281 |
|
---|
282 | return M;
|
---|
283 | }
|
---|
284 |
|
---|
285 | Plane Line::getOrthogonalPlane(const Vector &origin) const{
|
---|
286 | return Plane(getDirection(),origin);
|
---|
287 | }
|
---|
288 |
|
---|
289 | std::vector<Vector> Line::getSphereIntersections() const{
|
---|
290 | std::vector<Vector> res;
|
---|
291 |
|
---|
292 | // line is kept in normalized form, so we can skip a lot of calculations
|
---|
293 | double discriminant = 1-origin->NormSquared();
|
---|
294 | // we might have 2, 1 or 0 solutions, depending on discriminant
|
---|
295 | if(discriminant>=0){
|
---|
296 | if(discriminant==0){
|
---|
297 | res.push_back(*origin);
|
---|
298 | }
|
---|
299 | else{
|
---|
300 | Vector helper = sqrt(discriminant)*(*direction);
|
---|
301 | res.push_back(*origin+helper);
|
---|
302 | res.push_back(*origin-helper);
|
---|
303 | }
|
---|
304 | }
|
---|
305 | return res;
|
---|
306 | }
|
---|
307 |
|
---|
308 | LinePoint Line::getLinePoint(const Vector &point) const{
|
---|
309 | ASSERT(isContained(point),"Line point queried for point not on line");
|
---|
310 | Vector helper = point - (*origin);
|
---|
311 | double param = helper.ScalarProduct(*direction);
|
---|
312 | return LinePoint(*this,param);
|
---|
313 | }
|
---|
314 |
|
---|
315 | LinePoint Line::posEndpoint() const{
|
---|
316 | return LinePoint(*this, numeric_limits<double>::infinity());
|
---|
317 | }
|
---|
318 | LinePoint Line::negEndpoint() const{
|
---|
319 | return LinePoint(*this,-numeric_limits<double>::infinity());
|
---|
320 | }
|
---|
321 |
|
---|
322 | bool operator==(const Line &x,const Line &y){
|
---|
323 | return *x.origin == *y.origin && *x.direction == *y.direction;
|
---|
324 | }
|
---|
325 |
|
---|
326 | Line makeLineThrough(const Vector &x1, const Vector &x2){
|
---|
327 | if(x1==x2){
|
---|
328 | throw LinearDependenceException() << LinearAlgebraVectorPair( make_pair(&x1, &x2) );
|
---|
329 | }
|
---|
330 | return Line(x1,x1-x2);
|
---|
331 | }
|
---|
332 |
|
---|
333 | std::ostream& operator<<(std::ostream& ost, const Line& m)
|
---|
334 | {
|
---|
335 | const Vector origin = m.getOrigin();
|
---|
336 | const Vector direction = m.getDirection();
|
---|
337 | ost << "(";
|
---|
338 | for (int i=0;i<NDIM;i++) {
|
---|
339 | ost << origin[i];
|
---|
340 | if (i != 2)
|
---|
341 | ost << ",";
|
---|
342 | }
|
---|
343 | ost << ") -> (";
|
---|
344 | for (int i=0;i<NDIM;i++) {
|
---|
345 | ost << direction[i];
|
---|
346 | if (i != 2)
|
---|
347 | ost << ",";
|
---|
348 | }
|
---|
349 | ost << ")";
|
---|
350 | return ost;
|
---|
351 | };
|
---|
352 |
|
---|
353 |
|
---|
354 | /******************************** Points on the line ********************/
|
---|